You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1429 lines
51KB

  1. /*
  2. * DCA compatible decoder
  3. * Copyright (C) 2004 Gildas Bazin
  4. * Copyright (C) 2004 Benjamin Zores
  5. * Copyright (C) 2006 Benjamin Larsson
  6. * Copyright (C) 2007 Konstantin Shishkov
  7. *
  8. * This file is part of Libav.
  9. *
  10. * Libav is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * Libav is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with Libav; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include <math.h>
  25. #include <stddef.h>
  26. #include <stdio.h>
  27. #include "libavutil/channel_layout.h"
  28. #include "libavutil/common.h"
  29. #include "libavutil/float_dsp.h"
  30. #include "libavutil/internal.h"
  31. #include "libavutil/intreadwrite.h"
  32. #include "libavutil/mathematics.h"
  33. #include "libavutil/opt.h"
  34. #include "libavutil/samplefmt.h"
  35. #include "avcodec.h"
  36. #include "dca.h"
  37. #include "dca_syncwords.h"
  38. #include "dcadata.h"
  39. #include "dcadsp.h"
  40. #include "dcahuff.h"
  41. #include "fft.h"
  42. #include "fmtconvert.h"
  43. #include "get_bits.h"
  44. #include "internal.h"
  45. #include "mathops.h"
  46. #include "put_bits.h"
  47. #include "synth_filter.h"
  48. #if ARCH_ARM
  49. # include "arm/dca.h"
  50. #endif
  51. enum DCAMode {
  52. DCA_MONO = 0,
  53. DCA_CHANNEL,
  54. DCA_STEREO,
  55. DCA_STEREO_SUMDIFF,
  56. DCA_STEREO_TOTAL,
  57. DCA_3F,
  58. DCA_2F1R,
  59. DCA_3F1R,
  60. DCA_2F2R,
  61. DCA_3F2R,
  62. DCA_4F2R
  63. };
  64. /* -1 are reserved or unknown */
  65. static const int dca_ext_audio_descr_mask[] = {
  66. DCA_EXT_XCH,
  67. -1,
  68. DCA_EXT_X96,
  69. DCA_EXT_XCH | DCA_EXT_X96,
  70. -1,
  71. -1,
  72. DCA_EXT_XXCH,
  73. -1,
  74. };
  75. /* Tables for mapping dts channel configurations to libavcodec multichannel api.
  76. * Some compromises have been made for special configurations. Most configurations
  77. * are never used so complete accuracy is not needed.
  78. *
  79. * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
  80. * S -> side, when both rear and back are configured move one of them to the side channel
  81. * OV -> center back
  82. * All 2 channel configurations -> AV_CH_LAYOUT_STEREO
  83. */
  84. static const uint64_t dca_core_channel_layout[] = {
  85. AV_CH_FRONT_CENTER, ///< 1, A
  86. AV_CH_LAYOUT_STEREO, ///< 2, A + B (dual mono)
  87. AV_CH_LAYOUT_STEREO, ///< 2, L + R (stereo)
  88. AV_CH_LAYOUT_STEREO, ///< 2, (L + R) + (L - R) (sum-difference)
  89. AV_CH_LAYOUT_STEREO, ///< 2, LT + RT (left and right total)
  90. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER, ///< 3, C + L + R
  91. AV_CH_LAYOUT_STEREO | AV_CH_BACK_CENTER, ///< 3, L + R + S
  92. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 4, C + L + R + S
  93. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 4, L + R + SL + SR
  94. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT |
  95. AV_CH_SIDE_RIGHT, ///< 5, C + L + R + SL + SR
  96. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  97. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER, ///< 6, CL + CR + L + R + SL + SR
  98. AV_CH_LAYOUT_STEREO | AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT |
  99. AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 6, C + L + R + LR + RR + OV
  100. AV_CH_FRONT_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  101. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_BACK_CENTER |
  102. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 6, CF + CR + LF + RF + LR + RR
  103. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  104. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  105. AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR
  106. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  107. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  108. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2 + SR1 + SR2
  109. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  110. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  111. AV_CH_SIDE_LEFT | AV_CH_BACK_CENTER | AV_CH_SIDE_RIGHT, ///< 8, CL + C + CR + L + R + SL + S + SR
  112. };
  113. #define DCA_DOLBY 101 /* FIXME */
  114. #define DCA_CHANNEL_BITS 6
  115. #define DCA_CHANNEL_MASK 0x3F
  116. #define DCA_LFE 0x80
  117. #define HEADER_SIZE 14
  118. #define DCA_NSYNCAUX 0x9A1105A0
  119. /** Bit allocation */
  120. typedef struct BitAlloc {
  121. int offset; ///< code values offset
  122. int maxbits[8]; ///< max bits in VLC
  123. int wrap; ///< wrap for get_vlc2()
  124. VLC vlc[8]; ///< actual codes
  125. } BitAlloc;
  126. static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
  127. static BitAlloc dca_tmode; ///< transition mode VLCs
  128. static BitAlloc dca_scalefactor; ///< scalefactor VLCs
  129. static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
  130. static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
  131. int idx)
  132. {
  133. return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
  134. ba->offset;
  135. }
  136. static av_cold void dca_init_vlcs(void)
  137. {
  138. static int vlcs_initialized = 0;
  139. int i, j, c = 14;
  140. static VLC_TYPE dca_table[23622][2];
  141. if (vlcs_initialized)
  142. return;
  143. dca_bitalloc_index.offset = 1;
  144. dca_bitalloc_index.wrap = 2;
  145. for (i = 0; i < 5; i++) {
  146. dca_bitalloc_index.vlc[i].table = &dca_table[ff_dca_vlc_offs[i]];
  147. dca_bitalloc_index.vlc[i].table_allocated = ff_dca_vlc_offs[i + 1] - ff_dca_vlc_offs[i];
  148. init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
  149. bitalloc_12_bits[i], 1, 1,
  150. bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  151. }
  152. dca_scalefactor.offset = -64;
  153. dca_scalefactor.wrap = 2;
  154. for (i = 0; i < 5; i++) {
  155. dca_scalefactor.vlc[i].table = &dca_table[ff_dca_vlc_offs[i + 5]];
  156. dca_scalefactor.vlc[i].table_allocated = ff_dca_vlc_offs[i + 6] - ff_dca_vlc_offs[i + 5];
  157. init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
  158. scales_bits[i], 1, 1,
  159. scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  160. }
  161. dca_tmode.offset = 0;
  162. dca_tmode.wrap = 1;
  163. for (i = 0; i < 4; i++) {
  164. dca_tmode.vlc[i].table = &dca_table[ff_dca_vlc_offs[i + 10]];
  165. dca_tmode.vlc[i].table_allocated = ff_dca_vlc_offs[i + 11] - ff_dca_vlc_offs[i + 10];
  166. init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
  167. tmode_bits[i], 1, 1,
  168. tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  169. }
  170. for (i = 0; i < 10; i++)
  171. for (j = 0; j < 7; j++) {
  172. if (!bitalloc_codes[i][j])
  173. break;
  174. dca_smpl_bitalloc[i + 1].offset = bitalloc_offsets[i];
  175. dca_smpl_bitalloc[i + 1].wrap = 1 + (j > 4);
  176. dca_smpl_bitalloc[i + 1].vlc[j].table = &dca_table[ff_dca_vlc_offs[c]];
  177. dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = ff_dca_vlc_offs[c + 1] - ff_dca_vlc_offs[c];
  178. init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
  179. bitalloc_sizes[i],
  180. bitalloc_bits[i][j], 1, 1,
  181. bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
  182. c++;
  183. }
  184. vlcs_initialized = 1;
  185. }
  186. static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
  187. {
  188. while (len--)
  189. *dst++ = get_bits(gb, bits);
  190. }
  191. static int dca_parse_audio_coding_header(DCAContext *s, int base_channel)
  192. {
  193. int i, j;
  194. static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
  195. static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
  196. static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
  197. s->total_channels = get_bits(&s->gb, 3) + 1 + base_channel;
  198. s->prim_channels = s->total_channels;
  199. if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
  200. s->prim_channels = DCA_PRIM_CHANNELS_MAX;
  201. for (i = base_channel; i < s->prim_channels; i++) {
  202. s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
  203. if (s->subband_activity[i] > DCA_SUBBANDS)
  204. s->subband_activity[i] = DCA_SUBBANDS;
  205. }
  206. for (i = base_channel; i < s->prim_channels; i++) {
  207. s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
  208. if (s->vq_start_subband[i] > DCA_SUBBANDS)
  209. s->vq_start_subband[i] = DCA_SUBBANDS;
  210. }
  211. get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3);
  212. get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2);
  213. get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
  214. get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3);
  215. /* Get codebooks quantization indexes */
  216. if (!base_channel)
  217. memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
  218. for (j = 1; j < 11; j++)
  219. for (i = base_channel; i < s->prim_channels; i++)
  220. s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
  221. /* Get scale factor adjustment */
  222. for (j = 0; j < 11; j++)
  223. for (i = base_channel; i < s->prim_channels; i++)
  224. s->scalefactor_adj[i][j] = 1;
  225. for (j = 1; j < 11; j++)
  226. for (i = base_channel; i < s->prim_channels; i++)
  227. if (s->quant_index_huffman[i][j] < thr[j])
  228. s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
  229. if (s->crc_present) {
  230. /* Audio header CRC check */
  231. get_bits(&s->gb, 16);
  232. }
  233. s->current_subframe = 0;
  234. s->current_subsubframe = 0;
  235. return 0;
  236. }
  237. static int dca_parse_frame_header(DCAContext *s)
  238. {
  239. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  240. /* Sync code */
  241. skip_bits_long(&s->gb, 32);
  242. /* Frame header */
  243. s->frame_type = get_bits(&s->gb, 1);
  244. s->samples_deficit = get_bits(&s->gb, 5) + 1;
  245. s->crc_present = get_bits(&s->gb, 1);
  246. s->sample_blocks = get_bits(&s->gb, 7) + 1;
  247. s->frame_size = get_bits(&s->gb, 14) + 1;
  248. if (s->frame_size < 95)
  249. return AVERROR_INVALIDDATA;
  250. s->amode = get_bits(&s->gb, 6);
  251. s->sample_rate = avpriv_dca_sample_rates[get_bits(&s->gb, 4)];
  252. if (!s->sample_rate)
  253. return AVERROR_INVALIDDATA;
  254. s->bit_rate_index = get_bits(&s->gb, 5);
  255. s->bit_rate = ff_dca_bit_rates[s->bit_rate_index];
  256. if (!s->bit_rate)
  257. return AVERROR_INVALIDDATA;
  258. skip_bits1(&s->gb); // always 0 (reserved, cf. ETSI TS 102 114 V1.4.1)
  259. s->dynrange = get_bits(&s->gb, 1);
  260. s->timestamp = get_bits(&s->gb, 1);
  261. s->aux_data = get_bits(&s->gb, 1);
  262. s->hdcd = get_bits(&s->gb, 1);
  263. s->ext_descr = get_bits(&s->gb, 3);
  264. s->ext_coding = get_bits(&s->gb, 1);
  265. s->aspf = get_bits(&s->gb, 1);
  266. s->lfe = get_bits(&s->gb, 2);
  267. s->predictor_history = get_bits(&s->gb, 1);
  268. if (s->lfe > 2) {
  269. av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE value: %d\n", s->lfe);
  270. return AVERROR_INVALIDDATA;
  271. }
  272. /* TODO: check CRC */
  273. if (s->crc_present)
  274. s->header_crc = get_bits(&s->gb, 16);
  275. s->multirate_inter = get_bits(&s->gb, 1);
  276. s->version = get_bits(&s->gb, 4);
  277. s->copy_history = get_bits(&s->gb, 2);
  278. s->source_pcm_res = get_bits(&s->gb, 3);
  279. s->front_sum = get_bits(&s->gb, 1);
  280. s->surround_sum = get_bits(&s->gb, 1);
  281. s->dialog_norm = get_bits(&s->gb, 4);
  282. /* FIXME: channels mixing levels */
  283. s->output = s->amode;
  284. if (s->lfe)
  285. s->output |= DCA_LFE;
  286. /* Primary audio coding header */
  287. s->subframes = get_bits(&s->gb, 4) + 1;
  288. return dca_parse_audio_coding_header(s, 0);
  289. }
  290. static inline int get_scale(GetBitContext *gb, int level, int value, int log2range)
  291. {
  292. if (level < 5) {
  293. /* huffman encoded */
  294. value += get_bitalloc(gb, &dca_scalefactor, level);
  295. value = av_clip(value, 0, (1 << log2range) - 1);
  296. } else if (level < 8) {
  297. if (level + 1 > log2range) {
  298. skip_bits(gb, level + 1 - log2range);
  299. value = get_bits(gb, log2range);
  300. } else {
  301. value = get_bits(gb, level + 1);
  302. }
  303. }
  304. return value;
  305. }
  306. static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
  307. {
  308. /* Primary audio coding side information */
  309. int j, k;
  310. if (get_bits_left(&s->gb) < 0)
  311. return AVERROR_INVALIDDATA;
  312. if (!base_channel) {
  313. s->subsubframes[s->current_subframe] = get_bits(&s->gb, 2) + 1;
  314. s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
  315. }
  316. for (j = base_channel; j < s->prim_channels; j++) {
  317. for (k = 0; k < s->subband_activity[j]; k++)
  318. s->prediction_mode[j][k] = get_bits(&s->gb, 1);
  319. }
  320. /* Get prediction codebook */
  321. for (j = base_channel; j < s->prim_channels; j++) {
  322. for (k = 0; k < s->subband_activity[j]; k++) {
  323. if (s->prediction_mode[j][k] > 0) {
  324. /* (Prediction coefficient VQ address) */
  325. s->prediction_vq[j][k] = get_bits(&s->gb, 12);
  326. }
  327. }
  328. }
  329. /* Bit allocation index */
  330. for (j = base_channel; j < s->prim_channels; j++) {
  331. for (k = 0; k < s->vq_start_subband[j]; k++) {
  332. if (s->bitalloc_huffman[j] == 6)
  333. s->bitalloc[j][k] = get_bits(&s->gb, 5);
  334. else if (s->bitalloc_huffman[j] == 5)
  335. s->bitalloc[j][k] = get_bits(&s->gb, 4);
  336. else if (s->bitalloc_huffman[j] == 7) {
  337. av_log(s->avctx, AV_LOG_ERROR,
  338. "Invalid bit allocation index\n");
  339. return AVERROR_INVALIDDATA;
  340. } else {
  341. s->bitalloc[j][k] =
  342. get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
  343. }
  344. if (s->bitalloc[j][k] > 26) {
  345. av_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n",
  346. j, k, s->bitalloc[j][k]);
  347. return AVERROR_INVALIDDATA;
  348. }
  349. }
  350. }
  351. /* Transition mode */
  352. for (j = base_channel; j < s->prim_channels; j++) {
  353. for (k = 0; k < s->subband_activity[j]; k++) {
  354. s->transition_mode[j][k] = 0;
  355. if (s->subsubframes[s->current_subframe] > 1 &&
  356. k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
  357. s->transition_mode[j][k] =
  358. get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
  359. }
  360. }
  361. }
  362. if (get_bits_left(&s->gb) < 0)
  363. return AVERROR_INVALIDDATA;
  364. for (j = base_channel; j < s->prim_channels; j++) {
  365. const uint32_t *scale_table;
  366. int scale_sum, log_size;
  367. memset(s->scale_factor[j], 0,
  368. s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
  369. if (s->scalefactor_huffman[j] == 6) {
  370. scale_table = ff_dca_scale_factor_quant7;
  371. log_size = 7;
  372. } else {
  373. scale_table = ff_dca_scale_factor_quant6;
  374. log_size = 6;
  375. }
  376. /* When huffman coded, only the difference is encoded */
  377. scale_sum = 0;
  378. for (k = 0; k < s->subband_activity[j]; k++) {
  379. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
  380. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  381. s->scale_factor[j][k][0] = scale_table[scale_sum];
  382. }
  383. if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
  384. /* Get second scale factor */
  385. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  386. s->scale_factor[j][k][1] = scale_table[scale_sum];
  387. }
  388. }
  389. }
  390. /* Joint subband scale factor codebook select */
  391. for (j = base_channel; j < s->prim_channels; j++) {
  392. /* Transmitted only if joint subband coding enabled */
  393. if (s->joint_intensity[j] > 0)
  394. s->joint_huff[j] = get_bits(&s->gb, 3);
  395. }
  396. if (get_bits_left(&s->gb) < 0)
  397. return AVERROR_INVALIDDATA;
  398. /* Scale factors for joint subband coding */
  399. for (j = base_channel; j < s->prim_channels; j++) {
  400. int source_channel;
  401. /* Transmitted only if joint subband coding enabled */
  402. if (s->joint_intensity[j] > 0) {
  403. int scale = 0;
  404. source_channel = s->joint_intensity[j] - 1;
  405. /* When huffman coded, only the difference is encoded
  406. * (is this valid as well for joint scales ???) */
  407. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
  408. scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7);
  409. s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
  410. }
  411. if (!(s->debug_flag & 0x02)) {
  412. av_log(s->avctx, AV_LOG_DEBUG,
  413. "Joint stereo coding not supported\n");
  414. s->debug_flag |= 0x02;
  415. }
  416. }
  417. }
  418. /* Dynamic range coefficient */
  419. if (!base_channel && s->dynrange)
  420. s->dynrange_coef = get_bits(&s->gb, 8);
  421. /* Side information CRC check word */
  422. if (s->crc_present) {
  423. get_bits(&s->gb, 16);
  424. }
  425. /*
  426. * Primary audio data arrays
  427. */
  428. /* VQ encoded high frequency subbands */
  429. for (j = base_channel; j < s->prim_channels; j++)
  430. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  431. /* 1 vector -> 32 samples */
  432. s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
  433. /* Low frequency effect data */
  434. if (!base_channel && s->lfe) {
  435. /* LFE samples */
  436. int lfe_samples = 2 * s->lfe * (4 + block_index);
  437. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  438. float lfe_scale;
  439. for (j = lfe_samples; j < lfe_end_sample; j++) {
  440. /* Signed 8 bits int */
  441. s->lfe_data[j] = get_sbits(&s->gb, 8);
  442. }
  443. /* Scale factor index */
  444. skip_bits(&s->gb, 1);
  445. s->lfe_scale_factor = ff_dca_scale_factor_quant7[get_bits(&s->gb, 7)];
  446. /* Quantization step size * scale factor */
  447. lfe_scale = 0.035 * s->lfe_scale_factor;
  448. for (j = lfe_samples; j < lfe_end_sample; j++)
  449. s->lfe_data[j] *= lfe_scale;
  450. }
  451. return 0;
  452. }
  453. static void qmf_32_subbands(DCAContext *s, int chans,
  454. float samples_in[32][8], float *samples_out,
  455. float scale)
  456. {
  457. const float *prCoeff;
  458. int sb_act = s->subband_activity[chans];
  459. scale *= sqrt(1 / 8.0);
  460. /* Select filter */
  461. if (!s->multirate_inter) /* Non-perfect reconstruction */
  462. prCoeff = ff_dca_fir_32bands_nonperfect;
  463. else /* Perfect reconstruction */
  464. prCoeff = ff_dca_fir_32bands_perfect;
  465. s->dcadsp.qmf_32_subbands(samples_in, sb_act, &s->synth, &s->imdct,
  466. s->subband_fir_hist[chans],
  467. &s->hist_index[chans],
  468. s->subband_fir_noidea[chans], prCoeff,
  469. samples_out, s->raXin, scale);
  470. }
  471. static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
  472. int num_deci_sample, float *samples_in,
  473. float *samples_out)
  474. {
  475. /* samples_in: An array holding decimated samples.
  476. * Samples in current subframe starts from samples_in[0],
  477. * while samples_in[-1], samples_in[-2], ..., stores samples
  478. * from last subframe as history.
  479. *
  480. * samples_out: An array holding interpolated samples
  481. */
  482. int idx;
  483. const float *prCoeff;
  484. int deciindex;
  485. /* Select decimation filter */
  486. if (decimation_select == 1) {
  487. idx = 1;
  488. prCoeff = ff_dca_lfe_fir_128;
  489. } else {
  490. idx = 0;
  491. prCoeff = ff_dca_lfe_fir_64;
  492. }
  493. /* Interpolation */
  494. for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
  495. s->dcadsp.lfe_fir[idx](samples_out, samples_in, prCoeff);
  496. samples_in++;
  497. samples_out += 2 * 32 * (1 + idx);
  498. }
  499. }
  500. /* downmixing routines */
  501. #define MIX_REAR1(samples, s1, rs, coef) \
  502. samples[0][i] += samples[s1][i] * coef[rs][0]; \
  503. samples[1][i] += samples[s1][i] * coef[rs][1];
  504. #define MIX_REAR2(samples, s1, s2, rs, coef) \
  505. samples[0][i] += samples[s1][i] * coef[rs][0] + samples[s2][i] * coef[rs + 1][0]; \
  506. samples[1][i] += samples[s1][i] * coef[rs][1] + samples[s2][i] * coef[rs + 1][1];
  507. #define MIX_FRONT3(samples, coef) \
  508. t = samples[c][i]; \
  509. u = samples[l][i]; \
  510. v = samples[r][i]; \
  511. samples[0][i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \
  512. samples[1][i] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
  513. #define DOWNMIX_TO_STEREO(op1, op2) \
  514. for (i = 0; i < 256; i++) { \
  515. op1 \
  516. op2 \
  517. }
  518. static void dca_downmix(float **samples, int srcfmt, int lfe_present,
  519. float coef[DCA_PRIM_CHANNELS_MAX + 1][2],
  520. const int8_t *channel_mapping)
  521. {
  522. int c, l, r, sl, sr, s;
  523. int i;
  524. float t, u, v;
  525. switch (srcfmt) {
  526. case DCA_MONO:
  527. case DCA_4F2R:
  528. av_log(NULL, 0, "Not implemented!\n");
  529. break;
  530. case DCA_CHANNEL:
  531. case DCA_STEREO:
  532. case DCA_STEREO_TOTAL:
  533. case DCA_STEREO_SUMDIFF:
  534. break;
  535. case DCA_3F:
  536. c = channel_mapping[0];
  537. l = channel_mapping[1];
  538. r = channel_mapping[2];
  539. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
  540. break;
  541. case DCA_2F1R:
  542. s = channel_mapping[2];
  543. DOWNMIX_TO_STEREO(MIX_REAR1(samples, s, 2, coef), );
  544. break;
  545. case DCA_3F1R:
  546. c = channel_mapping[0];
  547. l = channel_mapping[1];
  548. r = channel_mapping[2];
  549. s = channel_mapping[3];
  550. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  551. MIX_REAR1(samples, s, 3, coef));
  552. break;
  553. case DCA_2F2R:
  554. sl = channel_mapping[2];
  555. sr = channel_mapping[3];
  556. DOWNMIX_TO_STEREO(MIX_REAR2(samples, sl, sr, 2, coef), );
  557. break;
  558. case DCA_3F2R:
  559. c = channel_mapping[0];
  560. l = channel_mapping[1];
  561. r = channel_mapping[2];
  562. sl = channel_mapping[3];
  563. sr = channel_mapping[4];
  564. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  565. MIX_REAR2(samples, sl, sr, 3, coef));
  566. break;
  567. }
  568. if (lfe_present) {
  569. int lf_buf = ff_dca_lfe_index[srcfmt];
  570. int lf_idx = ff_dca_channels[srcfmt];
  571. for (i = 0; i < 256; i++) {
  572. samples[0][i] += samples[lf_buf][i] * coef[lf_idx][0];
  573. samples[1][i] += samples[lf_buf][i] * coef[lf_idx][1];
  574. }
  575. }
  576. }
  577. #ifndef decode_blockcodes
  578. /* Very compact version of the block code decoder that does not use table
  579. * look-up but is slightly slower */
  580. static int decode_blockcode(int code, int levels, int32_t *values)
  581. {
  582. int i;
  583. int offset = (levels - 1) >> 1;
  584. for (i = 0; i < 4; i++) {
  585. int div = FASTDIV(code, levels);
  586. values[i] = code - offset - div * levels;
  587. code = div;
  588. }
  589. return code;
  590. }
  591. static int decode_blockcodes(int code1, int code2, int levels, int32_t *values)
  592. {
  593. return decode_blockcode(code1, levels, values) |
  594. decode_blockcode(code2, levels, values + 4);
  595. }
  596. #endif
  597. static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
  598. static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
  599. static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
  600. {
  601. int k, l;
  602. int subsubframe = s->current_subsubframe;
  603. const float *quant_step_table;
  604. /* FIXME */
  605. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  606. LOCAL_ALIGNED_16(int32_t, block, [8 * DCA_SUBBANDS]);
  607. /*
  608. * Audio data
  609. */
  610. /* Select quantization step size table */
  611. if (s->bit_rate_index == 0x1f)
  612. quant_step_table = ff_dca_lossless_quant_d;
  613. else
  614. quant_step_table = ff_dca_lossy_quant_d;
  615. for (k = base_channel; k < s->prim_channels; k++) {
  616. float rscale[DCA_SUBBANDS];
  617. if (get_bits_left(&s->gb) < 0)
  618. return AVERROR_INVALIDDATA;
  619. for (l = 0; l < s->vq_start_subband[k]; l++) {
  620. int m;
  621. /* Select the mid-tread linear quantizer */
  622. int abits = s->bitalloc[k][l];
  623. float quant_step_size = quant_step_table[abits];
  624. /*
  625. * Determine quantization index code book and its type
  626. */
  627. /* Select quantization index code book */
  628. int sel = s->quant_index_huffman[k][abits];
  629. /*
  630. * Extract bits from the bit stream
  631. */
  632. if (!abits) {
  633. rscale[l] = 0;
  634. memset(block + 8 * l, 0, 8 * sizeof(block[0]));
  635. } else {
  636. /* Deal with transients */
  637. int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
  638. rscale[l] = quant_step_size * s->scale_factor[k][l][sfi] *
  639. s->scalefactor_adj[k][sel];
  640. if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
  641. if (abits <= 7) {
  642. /* Block code */
  643. int block_code1, block_code2, size, levels, err;
  644. size = abits_sizes[abits - 1];
  645. levels = abits_levels[abits - 1];
  646. block_code1 = get_bits(&s->gb, size);
  647. block_code2 = get_bits(&s->gb, size);
  648. err = decode_blockcodes(block_code1, block_code2,
  649. levels, block + 8 * l);
  650. if (err) {
  651. av_log(s->avctx, AV_LOG_ERROR,
  652. "ERROR: block code look-up failed\n");
  653. return AVERROR_INVALIDDATA;
  654. }
  655. } else {
  656. /* no coding */
  657. for (m = 0; m < 8; m++)
  658. block[8 * l + m] = get_sbits(&s->gb, abits - 3);
  659. }
  660. } else {
  661. /* Huffman coded */
  662. for (m = 0; m < 8; m++)
  663. block[8 * l + m] = get_bitalloc(&s->gb,
  664. &dca_smpl_bitalloc[abits], sel);
  665. }
  666. }
  667. }
  668. s->fmt_conv.int32_to_float_fmul_array8(&s->fmt_conv, subband_samples[k][0],
  669. block, rscale, 8 * s->vq_start_subband[k]);
  670. for (l = 0; l < s->vq_start_subband[k]; l++) {
  671. int m;
  672. /*
  673. * Inverse ADPCM if in prediction mode
  674. */
  675. if (s->prediction_mode[k][l]) {
  676. int n;
  677. if (s->predictor_history)
  678. subband_samples[k][l][0] += (ff_dca_adpcm_vb[s->prediction_vq[k][l]][0] *
  679. s->subband_samples_hist[k][l][3] +
  680. ff_dca_adpcm_vb[s->prediction_vq[k][l]][1] *
  681. s->subband_samples_hist[k][l][2] +
  682. ff_dca_adpcm_vb[s->prediction_vq[k][l]][2] *
  683. s->subband_samples_hist[k][l][1] +
  684. ff_dca_adpcm_vb[s->prediction_vq[k][l]][3] *
  685. s->subband_samples_hist[k][l][0]) *
  686. (1.0f / 8192);
  687. for (m = 1; m < 8; m++) {
  688. float sum = ff_dca_adpcm_vb[s->prediction_vq[k][l]][0] *
  689. subband_samples[k][l][m - 1];
  690. for (n = 2; n <= 4; n++)
  691. if (m >= n)
  692. sum += ff_dca_adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  693. subband_samples[k][l][m - n];
  694. else if (s->predictor_history)
  695. sum += ff_dca_adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  696. s->subband_samples_hist[k][l][m - n + 4];
  697. subband_samples[k][l][m] += sum * 1.0f / 8192;
  698. }
  699. }
  700. }
  701. /*
  702. * Decode VQ encoded high frequencies
  703. */
  704. if (s->subband_activity[k] > s->vq_start_subband[k]) {
  705. if (!s->debug_flag & 0x01) {
  706. av_log(s->avctx, AV_LOG_DEBUG,
  707. "Stream with high frequencies VQ coding\n");
  708. s->debug_flag |= 0x01;
  709. }
  710. s->dcadsp.decode_hf(subband_samples[k], s->high_freq_vq[k],
  711. ff_dca_high_freq_vq, subsubframe * 8,
  712. s->scale_factor[k], s->vq_start_subband[k],
  713. s->subband_activity[k]);
  714. }
  715. }
  716. /* Check for DSYNC after subsubframe */
  717. if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
  718. if (get_bits(&s->gb, 16) != 0xFFFF) {
  719. av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
  720. return AVERROR_INVALIDDATA;
  721. }
  722. }
  723. /* Backup predictor history for adpcm */
  724. for (k = base_channel; k < s->prim_channels; k++)
  725. for (l = 0; l < s->vq_start_subband[k]; l++)
  726. AV_COPY128(s->subband_samples_hist[k][l], &subband_samples[k][l][4]);
  727. return 0;
  728. }
  729. static int dca_filter_channels(DCAContext *s, int block_index)
  730. {
  731. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  732. int k;
  733. /* 32 subbands QMF */
  734. for (k = 0; k < s->prim_channels; k++) {
  735. if (s->channel_order_tab[k] >= 0)
  736. qmf_32_subbands(s, k, subband_samples[k],
  737. s->samples_chanptr[s->channel_order_tab[k]],
  738. M_SQRT1_2 / 32768.0);
  739. }
  740. /* Generate LFE samples for this subsubframe FIXME!!! */
  741. if (s->lfe) {
  742. lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
  743. s->lfe_data + 2 * s->lfe * (block_index + 4),
  744. s->samples_chanptr[ff_dca_lfe_index[s->amode]]);
  745. /* Outputs 20bits pcm samples */
  746. }
  747. /* Downmixing to Stereo */
  748. if (s->prim_channels + !!s->lfe > 2 &&
  749. s->avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  750. dca_downmix(s->samples_chanptr, s->amode, !!s->lfe, s->downmix_coef,
  751. s->channel_order_tab);
  752. }
  753. return 0;
  754. }
  755. static int dca_subframe_footer(DCAContext *s, int base_channel)
  756. {
  757. int in, out, aux_data_count, aux_data_end, reserved;
  758. uint32_t nsyncaux;
  759. /*
  760. * Unpack optional information
  761. */
  762. /* presumably optional information only appears in the core? */
  763. if (!base_channel) {
  764. if (s->timestamp)
  765. skip_bits_long(&s->gb, 32);
  766. if (s->aux_data) {
  767. aux_data_count = get_bits(&s->gb, 6);
  768. // align (32-bit)
  769. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  770. aux_data_end = 8 * aux_data_count + get_bits_count(&s->gb);
  771. if ((nsyncaux = get_bits_long(&s->gb, 32)) != DCA_NSYNCAUX) {
  772. av_log(s->avctx, AV_LOG_ERROR, "nSYNCAUX mismatch %#"PRIx32"\n",
  773. nsyncaux);
  774. return AVERROR_INVALIDDATA;
  775. }
  776. if (get_bits1(&s->gb)) { // bAUXTimeStampFlag
  777. avpriv_request_sample(s->avctx,
  778. "Auxiliary Decode Time Stamp Flag");
  779. // align (4-bit)
  780. skip_bits(&s->gb, (-get_bits_count(&s->gb)) & 4);
  781. // 44 bits: nMSByte (8), nMarker (4), nLSByte (28), nMarker (4)
  782. skip_bits_long(&s->gb, 44);
  783. }
  784. if ((s->core_downmix = get_bits1(&s->gb))) {
  785. int am = get_bits(&s->gb, 3);
  786. switch (am) {
  787. case 0:
  788. s->core_downmix_amode = DCA_MONO;
  789. break;
  790. case 1:
  791. s->core_downmix_amode = DCA_STEREO;
  792. break;
  793. case 2:
  794. s->core_downmix_amode = DCA_STEREO_TOTAL;
  795. break;
  796. case 3:
  797. s->core_downmix_amode = DCA_3F;
  798. break;
  799. case 4:
  800. s->core_downmix_amode = DCA_2F1R;
  801. break;
  802. case 5:
  803. s->core_downmix_amode = DCA_2F2R;
  804. break;
  805. case 6:
  806. s->core_downmix_amode = DCA_3F1R;
  807. break;
  808. default:
  809. av_log(s->avctx, AV_LOG_ERROR,
  810. "Invalid mode %d for embedded downmix coefficients\n",
  811. am);
  812. return AVERROR_INVALIDDATA;
  813. }
  814. for (out = 0; out < ff_dca_channels[s->core_downmix_amode]; out++) {
  815. for (in = 0; in < s->prim_channels + !!s->lfe; in++) {
  816. uint16_t tmp = get_bits(&s->gb, 9);
  817. if ((tmp & 0xFF) > 241) {
  818. av_log(s->avctx, AV_LOG_ERROR,
  819. "Invalid downmix coefficient code %"PRIu16"\n",
  820. tmp);
  821. return AVERROR_INVALIDDATA;
  822. }
  823. s->core_downmix_codes[in][out] = tmp;
  824. }
  825. }
  826. }
  827. align_get_bits(&s->gb); // byte align
  828. skip_bits(&s->gb, 16); // nAUXCRC16
  829. // additional data (reserved, cf. ETSI TS 102 114 V1.4.1)
  830. if ((reserved = (aux_data_end - get_bits_count(&s->gb))) < 0) {
  831. av_log(s->avctx, AV_LOG_ERROR,
  832. "Overread auxiliary data by %d bits\n", -reserved);
  833. return AVERROR_INVALIDDATA;
  834. } else if (reserved) {
  835. avpriv_request_sample(s->avctx,
  836. "Core auxiliary data reserved content");
  837. skip_bits_long(&s->gb, reserved);
  838. }
  839. }
  840. if (s->crc_present && s->dynrange)
  841. get_bits(&s->gb, 16);
  842. }
  843. return 0;
  844. }
  845. /**
  846. * Decode a dca frame block
  847. *
  848. * @param s pointer to the DCAContext
  849. */
  850. static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
  851. {
  852. int ret;
  853. /* Sanity check */
  854. if (s->current_subframe >= s->subframes) {
  855. av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
  856. s->current_subframe, s->subframes);
  857. return AVERROR_INVALIDDATA;
  858. }
  859. if (!s->current_subsubframe) {
  860. /* Read subframe header */
  861. if ((ret = dca_subframe_header(s, base_channel, block_index)))
  862. return ret;
  863. }
  864. /* Read subsubframe */
  865. if ((ret = dca_subsubframe(s, base_channel, block_index)))
  866. return ret;
  867. /* Update state */
  868. s->current_subsubframe++;
  869. if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
  870. s->current_subsubframe = 0;
  871. s->current_subframe++;
  872. }
  873. if (s->current_subframe >= s->subframes) {
  874. /* Read subframe footer */
  875. if ((ret = dca_subframe_footer(s, base_channel)))
  876. return ret;
  877. }
  878. return 0;
  879. }
  880. static float dca_dmix_code(unsigned code)
  881. {
  882. int sign = (code >> 8) - 1;
  883. code &= 0xff;
  884. return ((ff_dca_dmixtable[code] ^ sign) - sign) * (1.0 / (1U << 15));
  885. }
  886. /**
  887. * Main frame decoding function
  888. * FIXME add arguments
  889. */
  890. static int dca_decode_frame(AVCodecContext *avctx, void *data,
  891. int *got_frame_ptr, AVPacket *avpkt)
  892. {
  893. AVFrame *frame = data;
  894. const uint8_t *buf = avpkt->data;
  895. int buf_size = avpkt->size;
  896. int lfe_samples;
  897. int num_core_channels = 0;
  898. int i, ret;
  899. float **samples_flt;
  900. DCAContext *s = avctx->priv_data;
  901. int channels, full_channels;
  902. int core_ss_end;
  903. s->xch_present = 0;
  904. s->dca_buffer_size = ff_dca_convert_bitstream(buf, buf_size, s->dca_buffer,
  905. DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
  906. if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
  907. av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
  908. return AVERROR_INVALIDDATA;
  909. }
  910. if ((ret = dca_parse_frame_header(s)) < 0) {
  911. // seems like the frame is corrupt, try with the next one
  912. return ret;
  913. }
  914. // set AVCodec values with parsed data
  915. avctx->sample_rate = s->sample_rate;
  916. avctx->bit_rate = s->bit_rate;
  917. s->profile = FF_PROFILE_DTS;
  918. for (i = 0; i < (s->sample_blocks / 8); i++) {
  919. if ((ret = dca_decode_block(s, 0, i))) {
  920. av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
  921. return ret;
  922. }
  923. }
  924. /* record number of core channels incase less than max channels are requested */
  925. num_core_channels = s->prim_channels;
  926. if (s->ext_coding)
  927. s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
  928. else
  929. s->core_ext_mask = 0;
  930. core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
  931. /* only scan for extensions if ext_descr was unknown or indicated a
  932. * supported XCh extension */
  933. if (s->core_ext_mask < 0 || s->core_ext_mask & DCA_EXT_XCH) {
  934. /* if ext_descr was unknown, clear s->core_ext_mask so that the
  935. * extensions scan can fill it up */
  936. s->core_ext_mask = FFMAX(s->core_ext_mask, 0);
  937. /* extensions start at 32-bit boundaries into bitstream */
  938. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  939. while (core_ss_end - get_bits_count(&s->gb) >= 32) {
  940. uint32_t bits = get_bits_long(&s->gb, 32);
  941. switch (bits) {
  942. case DCA_SYNCWORD_XCH: {
  943. int ext_amode, xch_fsize;
  944. s->xch_base_channel = s->prim_channels;
  945. /* validate sync word using XCHFSIZE field */
  946. xch_fsize = show_bits(&s->gb, 10);
  947. if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
  948. (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
  949. continue;
  950. /* skip length-to-end-of-frame field for the moment */
  951. skip_bits(&s->gb, 10);
  952. s->core_ext_mask |= DCA_EXT_XCH;
  953. /* extension amode(number of channels in extension) should be 1 */
  954. /* AFAIK XCh is not used for more channels */
  955. if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
  956. av_log(avctx, AV_LOG_ERROR,
  957. "XCh extension amode %d not supported!\n",
  958. ext_amode);
  959. continue;
  960. }
  961. /* much like core primary audio coding header */
  962. dca_parse_audio_coding_header(s, s->xch_base_channel);
  963. for (i = 0; i < (s->sample_blocks / 8); i++)
  964. if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
  965. av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
  966. continue;
  967. }
  968. s->xch_present = 1;
  969. break;
  970. }
  971. case DCA_SYNCWORD_XXCH:
  972. /* XXCh: extended channels */
  973. /* usually found either in core or HD part in DTS-HD HRA streams,
  974. * but not in DTS-ES which contains XCh extensions instead */
  975. s->core_ext_mask |= DCA_EXT_XXCH;
  976. break;
  977. case 0x1d95f262: {
  978. int fsize96 = show_bits(&s->gb, 12) + 1;
  979. if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
  980. continue;
  981. av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
  982. get_bits_count(&s->gb));
  983. skip_bits(&s->gb, 12);
  984. av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
  985. av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
  986. s->core_ext_mask |= DCA_EXT_X96;
  987. break;
  988. }
  989. }
  990. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  991. }
  992. } else {
  993. /* no supported extensions, skip the rest of the core substream */
  994. skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
  995. }
  996. if (s->core_ext_mask & DCA_EXT_X96)
  997. s->profile = FF_PROFILE_DTS_96_24;
  998. else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
  999. s->profile = FF_PROFILE_DTS_ES;
  1000. /* check for ExSS (HD part) */
  1001. if (s->dca_buffer_size - s->frame_size > 32 &&
  1002. get_bits_long(&s->gb, 32) == DCA_SYNCWORD_SUBSTREAM)
  1003. ff_dca_exss_parse_header(s);
  1004. avctx->profile = s->profile;
  1005. full_channels = channels = s->prim_channels + !!s->lfe;
  1006. if (s->amode < 16) {
  1007. avctx->channel_layout = dca_core_channel_layout[s->amode];
  1008. if (s->prim_channels + !!s->lfe > 2 &&
  1009. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1010. /*
  1011. * Neither the core's auxiliary data nor our default tables contain
  1012. * downmix coefficients for the additional channel coded in the XCh
  1013. * extension, so when we're doing a Stereo downmix, don't decode it.
  1014. */
  1015. s->xch_disable = 1;
  1016. }
  1017. #if FF_API_REQUEST_CHANNELS
  1018. FF_DISABLE_DEPRECATION_WARNINGS
  1019. if (s->xch_present && !s->xch_disable &&
  1020. (!avctx->request_channels ||
  1021. avctx->request_channels > num_core_channels + !!s->lfe)) {
  1022. FF_ENABLE_DEPRECATION_WARNINGS
  1023. #else
  1024. if (s->xch_present && !s->xch_disable) {
  1025. #endif
  1026. avctx->channel_layout |= AV_CH_BACK_CENTER;
  1027. if (s->lfe) {
  1028. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1029. s->channel_order_tab = ff_dca_channel_reorder_lfe_xch[s->amode];
  1030. } else {
  1031. s->channel_order_tab = ff_dca_channel_reorder_nolfe_xch[s->amode];
  1032. }
  1033. } else {
  1034. channels = num_core_channels + !!s->lfe;
  1035. s->xch_present = 0; /* disable further xch processing */
  1036. if (s->lfe) {
  1037. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1038. s->channel_order_tab = ff_dca_channel_reorder_lfe[s->amode];
  1039. } else
  1040. s->channel_order_tab = ff_dca_channel_reorder_nolfe[s->amode];
  1041. }
  1042. if (channels > !!s->lfe &&
  1043. s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
  1044. return AVERROR_INVALIDDATA;
  1045. if (num_core_channels + !!s->lfe > 2 &&
  1046. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1047. channels = 2;
  1048. s->output = s->prim_channels == 2 ? s->amode : DCA_STEREO;
  1049. avctx->channel_layout = AV_CH_LAYOUT_STEREO;
  1050. /* Stereo downmix coefficients
  1051. *
  1052. * The decoder can only downmix to 2-channel, so we need to ensure
  1053. * embedded downmix coefficients are actually targeting 2-channel.
  1054. */
  1055. if (s->core_downmix && (s->core_downmix_amode == DCA_STEREO ||
  1056. s->core_downmix_amode == DCA_STEREO_TOTAL)) {
  1057. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1058. /* Range checked earlier */
  1059. s->downmix_coef[i][0] = dca_dmix_code(s->core_downmix_codes[i][0]);
  1060. s->downmix_coef[i][1] = dca_dmix_code(s->core_downmix_codes[i][1]);
  1061. }
  1062. s->output = s->core_downmix_amode;
  1063. } else {
  1064. int am = s->amode & DCA_CHANNEL_MASK;
  1065. if (am >= FF_ARRAY_ELEMS(ff_dca_default_coeffs)) {
  1066. av_log(s->avctx, AV_LOG_ERROR,
  1067. "Invalid channel mode %d\n", am);
  1068. return AVERROR_INVALIDDATA;
  1069. }
  1070. if (num_core_channels + !!s->lfe >
  1071. FF_ARRAY_ELEMS(ff_dca_default_coeffs[0])) {
  1072. avpriv_request_sample(s->avctx, "Downmixing %d channels",
  1073. s->prim_channels + !!s->lfe);
  1074. return AVERROR_PATCHWELCOME;
  1075. }
  1076. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1077. s->downmix_coef[i][0] = ff_dca_default_coeffs[am][i][0];
  1078. s->downmix_coef[i][1] = ff_dca_default_coeffs[am][i][1];
  1079. }
  1080. }
  1081. av_dlog(s->avctx, "Stereo downmix coeffs:\n");
  1082. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1083. av_dlog(s->avctx, "L, input channel %d = %f\n", i,
  1084. s->downmix_coef[i][0]);
  1085. av_dlog(s->avctx, "R, input channel %d = %f\n", i,
  1086. s->downmix_coef[i][1]);
  1087. }
  1088. av_dlog(s->avctx, "\n");
  1089. }
  1090. } else {
  1091. av_log(avctx, AV_LOG_ERROR, "Non standard configuration %d !\n", s->amode);
  1092. return AVERROR_INVALIDDATA;
  1093. }
  1094. avctx->channels = channels;
  1095. /* get output buffer */
  1096. frame->nb_samples = 256 * (s->sample_blocks / 8);
  1097. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  1098. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1099. return ret;
  1100. }
  1101. samples_flt = (float **) frame->extended_data;
  1102. /* allocate buffer for extra channels if downmixing */
  1103. if (avctx->channels < full_channels) {
  1104. ret = av_samples_get_buffer_size(NULL, full_channels - channels,
  1105. frame->nb_samples,
  1106. avctx->sample_fmt, 0);
  1107. if (ret < 0)
  1108. return ret;
  1109. av_fast_malloc(&s->extra_channels_buffer,
  1110. &s->extra_channels_buffer_size, ret);
  1111. if (!s->extra_channels_buffer)
  1112. return AVERROR(ENOMEM);
  1113. ret = av_samples_fill_arrays((uint8_t **) s->extra_channels, NULL,
  1114. s->extra_channels_buffer,
  1115. full_channels - channels,
  1116. frame->nb_samples, avctx->sample_fmt, 0);
  1117. if (ret < 0)
  1118. return ret;
  1119. }
  1120. /* filter to get final output */
  1121. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1122. int ch;
  1123. for (ch = 0; ch < channels; ch++)
  1124. s->samples_chanptr[ch] = samples_flt[ch] + i * 256;
  1125. for (; ch < full_channels; ch++)
  1126. s->samples_chanptr[ch] = s->extra_channels[ch - channels] + i * 256;
  1127. dca_filter_channels(s, i);
  1128. /* If this was marked as a DTS-ES stream we need to subtract back- */
  1129. /* channel from SL & SR to remove matrixed back-channel signal */
  1130. if ((s->source_pcm_res & 1) && s->xch_present) {
  1131. float *back_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel]];
  1132. float *lt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 2]];
  1133. float *rt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 1]];
  1134. s->fdsp.vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
  1135. s->fdsp.vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
  1136. }
  1137. }
  1138. /* update lfe history */
  1139. lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
  1140. for (i = 0; i < 2 * s->lfe * 4; i++)
  1141. s->lfe_data[i] = s->lfe_data[i + lfe_samples];
  1142. /* AVMatrixEncoding
  1143. *
  1144. * DCA_STEREO_TOTAL (Lt/Rt) is equivalent to Dolby Surround */
  1145. ret = ff_side_data_update_matrix_encoding(frame,
  1146. (s->output & ~DCA_LFE) == DCA_STEREO_TOTAL ?
  1147. AV_MATRIX_ENCODING_DOLBY : AV_MATRIX_ENCODING_NONE);
  1148. if (ret < 0)
  1149. return ret;
  1150. *got_frame_ptr = 1;
  1151. return buf_size;
  1152. }
  1153. /**
  1154. * DCA initialization
  1155. *
  1156. * @param avctx pointer to the AVCodecContext
  1157. */
  1158. static av_cold int dca_decode_init(AVCodecContext *avctx)
  1159. {
  1160. DCAContext *s = avctx->priv_data;
  1161. s->avctx = avctx;
  1162. dca_init_vlcs();
  1163. avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
  1164. ff_mdct_init(&s->imdct, 6, 1, 1.0);
  1165. ff_synth_filter_init(&s->synth);
  1166. ff_dcadsp_init(&s->dcadsp);
  1167. ff_fmt_convert_init(&s->fmt_conv, avctx);
  1168. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  1169. /* allow downmixing to stereo */
  1170. #if FF_API_REQUEST_CHANNELS
  1171. FF_DISABLE_DEPRECATION_WARNINGS
  1172. if (avctx->request_channels == 2)
  1173. avctx->request_channel_layout = AV_CH_LAYOUT_STEREO;
  1174. FF_ENABLE_DEPRECATION_WARNINGS
  1175. #endif
  1176. if (avctx->channels > 2 &&
  1177. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO)
  1178. avctx->channels = 2;
  1179. return 0;
  1180. }
  1181. static av_cold int dca_decode_end(AVCodecContext *avctx)
  1182. {
  1183. DCAContext *s = avctx->priv_data;
  1184. ff_mdct_end(&s->imdct);
  1185. av_freep(&s->extra_channels_buffer);
  1186. return 0;
  1187. }
  1188. static const AVProfile profiles[] = {
  1189. { FF_PROFILE_DTS, "DTS" },
  1190. { FF_PROFILE_DTS_ES, "DTS-ES" },
  1191. { FF_PROFILE_DTS_96_24, "DTS 96/24" },
  1192. { FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
  1193. { FF_PROFILE_DTS_HD_MA, "DTS-HD MA" },
  1194. { FF_PROFILE_UNKNOWN },
  1195. };
  1196. static const AVOption options[] = {
  1197. { "disable_xch", "disable decoding of the XCh extension", offsetof(DCAContext, xch_disable), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM },
  1198. { NULL },
  1199. };
  1200. static const AVClass dca_decoder_class = {
  1201. .class_name = "DCA decoder",
  1202. .item_name = av_default_item_name,
  1203. .option = options,
  1204. .version = LIBAVUTIL_VERSION_INT,
  1205. };
  1206. AVCodec ff_dca_decoder = {
  1207. .name = "dca",
  1208. .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
  1209. .type = AVMEDIA_TYPE_AUDIO,
  1210. .id = AV_CODEC_ID_DTS,
  1211. .priv_data_size = sizeof(DCAContext),
  1212. .init = dca_decode_init,
  1213. .decode = dca_decode_frame,
  1214. .close = dca_decode_end,
  1215. .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
  1216. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  1217. AV_SAMPLE_FMT_NONE },
  1218. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  1219. .priv_class = &dca_decoder_class,
  1220. };