You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

391 lines
17KB

  1. /*
  2. * Copyright (C) 2011 Michael Niedermayer (michaelni@gmx.at)
  3. * Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <stdint.h>
  22. #include "libavutil/libm.h"
  23. #include "libavutil/samplefmt.h"
  24. #include "avresample.h"
  25. #include "internal.h"
  26. #include "audio_data.h"
  27. #include "audio_mix.h"
  28. /* channel positions */
  29. #define FRONT_LEFT 0
  30. #define FRONT_RIGHT 1
  31. #define FRONT_CENTER 2
  32. #define LOW_FREQUENCY 3
  33. #define BACK_LEFT 4
  34. #define BACK_RIGHT 5
  35. #define FRONT_LEFT_OF_CENTER 6
  36. #define FRONT_RIGHT_OF_CENTER 7
  37. #define BACK_CENTER 8
  38. #define SIDE_LEFT 9
  39. #define SIDE_RIGHT 10
  40. #define TOP_CENTER 11
  41. #define TOP_FRONT_LEFT 12
  42. #define TOP_FRONT_CENTER 13
  43. #define TOP_FRONT_RIGHT 14
  44. #define TOP_BACK_LEFT 15
  45. #define TOP_BACK_CENTER 16
  46. #define TOP_BACK_RIGHT 17
  47. #define STEREO_LEFT 29
  48. #define STEREO_RIGHT 30
  49. #define WIDE_LEFT 31
  50. #define WIDE_RIGHT 32
  51. #define SURROUND_DIRECT_LEFT 33
  52. #define SURROUND_DIRECT_RIGHT 34
  53. #define SQRT3_2 1.22474487139158904909 /* sqrt(3/2) */
  54. static av_always_inline int even(uint64_t layout)
  55. {
  56. return (!layout || (layout & (layout - 1)));
  57. }
  58. static int sane_layout(uint64_t layout)
  59. {
  60. /* check that there is at least 1 front speaker */
  61. if (!(layout & AV_CH_LAYOUT_SURROUND))
  62. return 0;
  63. /* check for left/right symmetry */
  64. if (!even(layout & (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT)) ||
  65. !even(layout & (AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT)) ||
  66. !even(layout & (AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT)) ||
  67. !even(layout & (AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER)) ||
  68. !even(layout & (AV_CH_TOP_FRONT_LEFT | AV_CH_TOP_FRONT_RIGHT)) ||
  69. !even(layout & (AV_CH_TOP_BACK_LEFT | AV_CH_TOP_BACK_RIGHT)) ||
  70. !even(layout & (AV_CH_STEREO_LEFT | AV_CH_STEREO_RIGHT)) ||
  71. !even(layout & (AV_CH_WIDE_LEFT | AV_CH_WIDE_RIGHT)) ||
  72. !even(layout & (AV_CH_SURROUND_DIRECT_LEFT | AV_CH_SURROUND_DIRECT_RIGHT)))
  73. return 0;
  74. return 1;
  75. }
  76. int avresample_build_matrix(uint64_t in_layout, uint64_t out_layout,
  77. double center_mix_level, double surround_mix_level,
  78. double lfe_mix_level, int normalize,
  79. double *matrix_out, int stride,
  80. enum AVMatrixEncoding matrix_encoding)
  81. {
  82. int i, j, out_i, out_j;
  83. double matrix[64][64] = {{0}};
  84. int64_t unaccounted;
  85. double maxcoef = 0;
  86. int in_channels, out_channels;
  87. if ((out_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == AV_CH_LAYOUT_STEREO_DOWNMIX) {
  88. out_layout = AV_CH_LAYOUT_STEREO;
  89. }
  90. unaccounted = in_layout & ~out_layout;
  91. in_channels = av_get_channel_layout_nb_channels( in_layout);
  92. out_channels = av_get_channel_layout_nb_channels(out_layout);
  93. memset(matrix_out, 0, out_channels * stride * sizeof(*matrix_out));
  94. /* check if layouts are supported */
  95. if (!in_layout || in_channels > AVRESAMPLE_MAX_CHANNELS)
  96. return AVERROR(EINVAL);
  97. if (!out_layout || out_channels > AVRESAMPLE_MAX_CHANNELS)
  98. return AVERROR(EINVAL);
  99. /* check if layouts are unbalanced or abnormal */
  100. if (!sane_layout(in_layout) || !sane_layout(out_layout))
  101. return AVERROR_PATCHWELCOME;
  102. /* route matching input/output channels */
  103. for (i = 0; i < 64; i++) {
  104. if (in_layout & out_layout & (1ULL << i))
  105. matrix[i][i] = 1.0;
  106. }
  107. /* mix front center to front left/right */
  108. if (unaccounted & AV_CH_FRONT_CENTER) {
  109. if ((out_layout & AV_CH_LAYOUT_STEREO) == AV_CH_LAYOUT_STEREO) {
  110. matrix[FRONT_LEFT ][FRONT_CENTER] += M_SQRT1_2;
  111. matrix[FRONT_RIGHT][FRONT_CENTER] += M_SQRT1_2;
  112. } else
  113. return AVERROR_PATCHWELCOME;
  114. }
  115. /* mix front left/right to center */
  116. if (unaccounted & AV_CH_LAYOUT_STEREO) {
  117. if (out_layout & AV_CH_FRONT_CENTER) {
  118. matrix[FRONT_CENTER][FRONT_LEFT ] += M_SQRT1_2;
  119. matrix[FRONT_CENTER][FRONT_RIGHT] += M_SQRT1_2;
  120. /* mix left/right/center to center */
  121. if (in_layout & AV_CH_FRONT_CENTER)
  122. matrix[FRONT_CENTER][FRONT_CENTER] = center_mix_level * M_SQRT2;
  123. } else
  124. return AVERROR_PATCHWELCOME;
  125. }
  126. /* mix back center to back, side, or front */
  127. if (unaccounted & AV_CH_BACK_CENTER) {
  128. if (out_layout & AV_CH_BACK_LEFT) {
  129. matrix[BACK_LEFT ][BACK_CENTER] += M_SQRT1_2;
  130. matrix[BACK_RIGHT][BACK_CENTER] += M_SQRT1_2;
  131. } else if (out_layout & AV_CH_SIDE_LEFT) {
  132. matrix[SIDE_LEFT ][BACK_CENTER] += M_SQRT1_2;
  133. matrix[SIDE_RIGHT][BACK_CENTER] += M_SQRT1_2;
  134. } else if (out_layout & AV_CH_FRONT_LEFT) {
  135. if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY ||
  136. matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
  137. if (unaccounted & (AV_CH_BACK_LEFT | AV_CH_SIDE_LEFT)) {
  138. matrix[FRONT_LEFT ][BACK_CENTER] -= surround_mix_level * M_SQRT1_2;
  139. matrix[FRONT_RIGHT][BACK_CENTER] += surround_mix_level * M_SQRT1_2;
  140. } else {
  141. matrix[FRONT_LEFT ][BACK_CENTER] -= surround_mix_level;
  142. matrix[FRONT_RIGHT][BACK_CENTER] += surround_mix_level;
  143. }
  144. } else {
  145. matrix[FRONT_LEFT ][BACK_CENTER] += surround_mix_level * M_SQRT1_2;
  146. matrix[FRONT_RIGHT][BACK_CENTER] += surround_mix_level * M_SQRT1_2;
  147. }
  148. } else if (out_layout & AV_CH_FRONT_CENTER) {
  149. matrix[FRONT_CENTER][BACK_CENTER] += surround_mix_level * M_SQRT1_2;
  150. } else
  151. return AVERROR_PATCHWELCOME;
  152. }
  153. /* mix back left/right to back center, side, or front */
  154. if (unaccounted & AV_CH_BACK_LEFT) {
  155. if (out_layout & AV_CH_BACK_CENTER) {
  156. matrix[BACK_CENTER][BACK_LEFT ] += M_SQRT1_2;
  157. matrix[BACK_CENTER][BACK_RIGHT] += M_SQRT1_2;
  158. } else if (out_layout & AV_CH_SIDE_LEFT) {
  159. /* if side channels do not exist in the input, just copy back
  160. channels to side channels, otherwise mix back into side */
  161. if (in_layout & AV_CH_SIDE_LEFT) {
  162. matrix[SIDE_LEFT ][BACK_LEFT ] += M_SQRT1_2;
  163. matrix[SIDE_RIGHT][BACK_RIGHT] += M_SQRT1_2;
  164. } else {
  165. matrix[SIDE_LEFT ][BACK_LEFT ] += 1.0;
  166. matrix[SIDE_RIGHT][BACK_RIGHT] += 1.0;
  167. }
  168. } else if (out_layout & AV_CH_FRONT_LEFT) {
  169. if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
  170. matrix[FRONT_LEFT ][BACK_LEFT ] -= surround_mix_level * M_SQRT1_2;
  171. matrix[FRONT_LEFT ][BACK_RIGHT] -= surround_mix_level * M_SQRT1_2;
  172. matrix[FRONT_RIGHT][BACK_LEFT ] += surround_mix_level * M_SQRT1_2;
  173. matrix[FRONT_RIGHT][BACK_RIGHT] += surround_mix_level * M_SQRT1_2;
  174. } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
  175. matrix[FRONT_LEFT ][BACK_LEFT ] -= surround_mix_level * SQRT3_2;
  176. matrix[FRONT_LEFT ][BACK_RIGHT] -= surround_mix_level * M_SQRT1_2;
  177. matrix[FRONT_RIGHT][BACK_LEFT ] += surround_mix_level * M_SQRT1_2;
  178. matrix[FRONT_RIGHT][BACK_RIGHT] += surround_mix_level * SQRT3_2;
  179. } else {
  180. matrix[FRONT_LEFT ][BACK_LEFT ] += surround_mix_level;
  181. matrix[FRONT_RIGHT][BACK_RIGHT] += surround_mix_level;
  182. }
  183. } else if (out_layout & AV_CH_FRONT_CENTER) {
  184. matrix[FRONT_CENTER][BACK_LEFT ] += surround_mix_level * M_SQRT1_2;
  185. matrix[FRONT_CENTER][BACK_RIGHT] += surround_mix_level * M_SQRT1_2;
  186. } else
  187. return AVERROR_PATCHWELCOME;
  188. }
  189. /* mix side left/right into back or front */
  190. if (unaccounted & AV_CH_SIDE_LEFT) {
  191. if (out_layout & AV_CH_BACK_LEFT) {
  192. /* if back channels do not exist in the input, just copy side
  193. channels to back channels, otherwise mix side into back */
  194. if (in_layout & AV_CH_BACK_LEFT) {
  195. matrix[BACK_LEFT ][SIDE_LEFT ] += M_SQRT1_2;
  196. matrix[BACK_RIGHT][SIDE_RIGHT] += M_SQRT1_2;
  197. } else {
  198. matrix[BACK_LEFT ][SIDE_LEFT ] += 1.0;
  199. matrix[BACK_RIGHT][SIDE_RIGHT] += 1.0;
  200. }
  201. } else if (out_layout & AV_CH_BACK_CENTER) {
  202. matrix[BACK_CENTER][SIDE_LEFT ] += M_SQRT1_2;
  203. matrix[BACK_CENTER][SIDE_RIGHT] += M_SQRT1_2;
  204. } else if (out_layout & AV_CH_FRONT_LEFT) {
  205. if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
  206. matrix[FRONT_LEFT ][SIDE_LEFT ] -= surround_mix_level * M_SQRT1_2;
  207. matrix[FRONT_LEFT ][SIDE_RIGHT] -= surround_mix_level * M_SQRT1_2;
  208. matrix[FRONT_RIGHT][SIDE_LEFT ] += surround_mix_level * M_SQRT1_2;
  209. matrix[FRONT_RIGHT][SIDE_RIGHT] += surround_mix_level * M_SQRT1_2;
  210. } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
  211. matrix[FRONT_LEFT ][SIDE_LEFT ] -= surround_mix_level * SQRT3_2;
  212. matrix[FRONT_LEFT ][SIDE_RIGHT] -= surround_mix_level * M_SQRT1_2;
  213. matrix[FRONT_RIGHT][SIDE_LEFT ] += surround_mix_level * M_SQRT1_2;
  214. matrix[FRONT_RIGHT][SIDE_RIGHT] += surround_mix_level * SQRT3_2;
  215. } else {
  216. matrix[FRONT_LEFT ][SIDE_LEFT ] += surround_mix_level;
  217. matrix[FRONT_RIGHT][SIDE_RIGHT] += surround_mix_level;
  218. }
  219. } else if (out_layout & AV_CH_FRONT_CENTER) {
  220. matrix[FRONT_CENTER][SIDE_LEFT ] += surround_mix_level * M_SQRT1_2;
  221. matrix[FRONT_CENTER][SIDE_RIGHT] += surround_mix_level * M_SQRT1_2;
  222. } else
  223. return AVERROR_PATCHWELCOME;
  224. }
  225. /* mix left-of-center/right-of-center into front left/right or center */
  226. if (unaccounted & AV_CH_FRONT_LEFT_OF_CENTER) {
  227. if (out_layout & AV_CH_FRONT_LEFT) {
  228. matrix[FRONT_LEFT ][FRONT_LEFT_OF_CENTER ] += 1.0;
  229. matrix[FRONT_RIGHT][FRONT_RIGHT_OF_CENTER] += 1.0;
  230. } else if (out_layout & AV_CH_FRONT_CENTER) {
  231. matrix[FRONT_CENTER][FRONT_LEFT_OF_CENTER ] += M_SQRT1_2;
  232. matrix[FRONT_CENTER][FRONT_RIGHT_OF_CENTER] += M_SQRT1_2;
  233. } else
  234. return AVERROR_PATCHWELCOME;
  235. }
  236. /* mix LFE into front left/right or center */
  237. if (unaccounted & AV_CH_LOW_FREQUENCY) {
  238. if (out_layout & AV_CH_FRONT_CENTER) {
  239. matrix[FRONT_CENTER][LOW_FREQUENCY] += lfe_mix_level;
  240. } else if (out_layout & AV_CH_FRONT_LEFT) {
  241. matrix[FRONT_LEFT ][LOW_FREQUENCY] += lfe_mix_level * M_SQRT1_2;
  242. matrix[FRONT_RIGHT][LOW_FREQUENCY] += lfe_mix_level * M_SQRT1_2;
  243. } else
  244. return AVERROR_PATCHWELCOME;
  245. }
  246. /* transfer internal matrix to output matrix and calculate maximum
  247. per-channel coefficient sum */
  248. for (out_i = i = 0; out_i < out_channels && i < 64; i++) {
  249. double sum = 0;
  250. for (out_j = j = 0; out_j < in_channels && j < 64; j++) {
  251. matrix_out[out_i * stride + out_j] = matrix[i][j];
  252. sum += fabs(matrix[i][j]);
  253. if (in_layout & (1ULL << j))
  254. out_j++;
  255. }
  256. maxcoef = FFMAX(maxcoef, sum);
  257. if (out_layout & (1ULL << i))
  258. out_i++;
  259. }
  260. /* normalize */
  261. if (normalize && maxcoef > 1.0) {
  262. for (i = 0; i < out_channels; i++)
  263. for (j = 0; j < in_channels; j++)
  264. matrix_out[i * stride + j] /= maxcoef;
  265. }
  266. return 0;
  267. }
  268. int avresample_get_matrix(AVAudioResampleContext *avr, double *matrix,
  269. int stride)
  270. {
  271. int in_channels, out_channels, i, o;
  272. in_channels = av_get_channel_layout_nb_channels(avr->in_channel_layout);
  273. out_channels = av_get_channel_layout_nb_channels(avr->out_channel_layout);
  274. if ( in_channels < 0 || in_channels > AVRESAMPLE_MAX_CHANNELS ||
  275. out_channels < 0 || out_channels > AVRESAMPLE_MAX_CHANNELS) {
  276. av_log(avr, AV_LOG_ERROR, "Invalid channel layouts\n");
  277. return AVERROR(EINVAL);
  278. }
  279. switch (avr->mix_coeff_type) {
  280. case AV_MIX_COEFF_TYPE_Q8:
  281. if (!avr->am->matrix_q8[0]) {
  282. av_log(avr, AV_LOG_ERROR, "matrix is not set\n");
  283. return AVERROR(EINVAL);
  284. }
  285. for (o = 0; o < out_channels; o++)
  286. for (i = 0; i < in_channels; i++)
  287. matrix[o * stride + i] = avr->am->matrix_q8[o][i] / 256.0;
  288. break;
  289. case AV_MIX_COEFF_TYPE_Q15:
  290. if (!avr->am->matrix_q15[0]) {
  291. av_log(avr, AV_LOG_ERROR, "matrix is not set\n");
  292. return AVERROR(EINVAL);
  293. }
  294. for (o = 0; o < out_channels; o++)
  295. for (i = 0; i < in_channels; i++)
  296. matrix[o * stride + i] = avr->am->matrix_q15[o][i] / 32768.0;
  297. break;
  298. case AV_MIX_COEFF_TYPE_FLT:
  299. if (!avr->am->matrix_flt[0]) {
  300. av_log(avr, AV_LOG_ERROR, "matrix is not set\n");
  301. return AVERROR(EINVAL);
  302. }
  303. for (o = 0; o < out_channels; o++)
  304. for (i = 0; i < in_channels; i++)
  305. matrix[o * stride + i] = avr->am->matrix_flt[o][i];
  306. break;
  307. default:
  308. av_log(avr, AV_LOG_ERROR, "Invalid mix coeff type\n");
  309. return AVERROR(EINVAL);
  310. }
  311. return 0;
  312. }
  313. int avresample_set_matrix(AVAudioResampleContext *avr, const double *matrix,
  314. int stride)
  315. {
  316. int in_channels, out_channels, i, o;
  317. in_channels = av_get_channel_layout_nb_channels(avr->in_channel_layout);
  318. out_channels = av_get_channel_layout_nb_channels(avr->out_channel_layout);
  319. if ( in_channels < 0 || in_channels > AVRESAMPLE_MAX_CHANNELS ||
  320. out_channels < 0 || out_channels > AVRESAMPLE_MAX_CHANNELS) {
  321. av_log(avr, AV_LOG_ERROR, "Invalid channel layouts\n");
  322. return AVERROR(EINVAL);
  323. }
  324. if (avr->am->matrix)
  325. av_freep(avr->am->matrix);
  326. #define CONVERT_MATRIX(type, expr) \
  327. avr->am->matrix_## type[0] = av_mallocz(out_channels * in_channels * \
  328. sizeof(*avr->am->matrix_## type[0])); \
  329. if (!avr->am->matrix_## type[0]) \
  330. return AVERROR(ENOMEM); \
  331. for (o = 0; o < out_channels; o++) { \
  332. if (o > 0) \
  333. avr->am->matrix_## type[o] = avr->am->matrix_## type[o - 1] + \
  334. in_channels; \
  335. for (i = 0; i < in_channels; i++) { \
  336. double v = matrix[o * stride + i]; \
  337. avr->am->matrix_## type[o][i] = expr; \
  338. } \
  339. } \
  340. avr->am->matrix = (void **)avr->am->matrix_## type;
  341. switch (avr->mix_coeff_type) {
  342. case AV_MIX_COEFF_TYPE_Q8:
  343. CONVERT_MATRIX(q8, av_clip_int16(lrint(256.0 * v)))
  344. break;
  345. case AV_MIX_COEFF_TYPE_Q15:
  346. CONVERT_MATRIX(q15, av_clipl_int32(llrint(32768.0 * v)))
  347. break;
  348. case AV_MIX_COEFF_TYPE_FLT:
  349. CONVERT_MATRIX(flt, v)
  350. break;
  351. default:
  352. av_log(avr, AV_LOG_ERROR, "Invalid mix coeff type\n");
  353. return AVERROR(EINVAL);
  354. }
  355. /* TODO: detect situations where we can just swap around pointers
  356. instead of doing matrix multiplications with 0.0 and 1.0 */
  357. return 0;
  358. }