You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

964 lines
32KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The Libav Project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "wma.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define EXPVLCBITS 8
  39. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  40. #define HGAINVLCBITS 9
  41. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  42. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  43. #ifdef TRACE
  44. static void dump_shorts(WMACodecContext *s, const char *name, const short *tab, int n)
  45. {
  46. int i;
  47. tprintf(s->avctx, "%s[%d]:\n", name, n);
  48. for(i=0;i<n;i++) {
  49. if ((i & 7) == 0)
  50. tprintf(s->avctx, "%4d: ", i);
  51. tprintf(s->avctx, " %5d.0", tab[i]);
  52. if ((i & 7) == 7)
  53. tprintf(s->avctx, "\n");
  54. }
  55. }
  56. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  57. {
  58. int i;
  59. tprintf(s->avctx, "%s[%d]:\n", name, n);
  60. for(i=0;i<n;i++) {
  61. if ((i & 7) == 0)
  62. tprintf(s->avctx, "%4d: ", i);
  63. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  64. if ((i & 7) == 7)
  65. tprintf(s->avctx, "\n");
  66. }
  67. if ((i & 7) != 0)
  68. tprintf(s->avctx, "\n");
  69. }
  70. #endif
  71. static int wma_decode_init(AVCodecContext * avctx)
  72. {
  73. WMACodecContext *s = avctx->priv_data;
  74. int i, flags2;
  75. uint8_t *extradata;
  76. s->avctx = avctx;
  77. /* extract flag infos */
  78. flags2 = 0;
  79. extradata = avctx->extradata;
  80. if (avctx->codec->id == CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  81. flags2 = AV_RL16(extradata+2);
  82. } else if (avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  83. flags2 = AV_RL16(extradata+4);
  84. }
  85. // for(i=0; i<avctx->extradata_size; i++)
  86. // av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]);
  87. s->use_exp_vlc = flags2 & 0x0001;
  88. s->use_bit_reservoir = flags2 & 0x0002;
  89. s->use_variable_block_len = flags2 & 0x0004;
  90. if(ff_wma_init(avctx, flags2)<0)
  91. return -1;
  92. /* init MDCT */
  93. for(i = 0; i < s->nb_block_sizes; i++)
  94. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0);
  95. if (s->use_noise_coding) {
  96. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  97. ff_wma_hgain_huffbits, 1, 1,
  98. ff_wma_hgain_huffcodes, 2, 2, 0);
  99. }
  100. if (s->use_exp_vlc) {
  101. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), //FIXME move out of context
  102. ff_aac_scalefactor_bits, 1, 1,
  103. ff_aac_scalefactor_code, 4, 4, 0);
  104. } else {
  105. wma_lsp_to_curve_init(s, s->frame_len);
  106. }
  107. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  108. avcodec_get_frame_defaults(&s->frame);
  109. avctx->coded_frame = &s->frame;
  110. return 0;
  111. }
  112. /**
  113. * compute x^-0.25 with an exponent and mantissa table. We use linear
  114. * interpolation to reduce the mantissa table size at a small speed
  115. * expense (linear interpolation approximately doubles the number of
  116. * bits of precision).
  117. */
  118. static inline float pow_m1_4(WMACodecContext *s, float x)
  119. {
  120. union {
  121. float f;
  122. unsigned int v;
  123. } u, t;
  124. unsigned int e, m;
  125. float a, b;
  126. u.f = x;
  127. e = u.v >> 23;
  128. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  129. /* build interpolation scale: 1 <= t < 2. */
  130. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  131. a = s->lsp_pow_m_table1[m];
  132. b = s->lsp_pow_m_table2[m];
  133. return s->lsp_pow_e_table[e] * (a + b * t.f);
  134. }
  135. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  136. {
  137. float wdel, a, b;
  138. int i, e, m;
  139. wdel = M_PI / frame_len;
  140. for(i=0;i<frame_len;i++)
  141. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  142. /* tables for x^-0.25 computation */
  143. for(i=0;i<256;i++) {
  144. e = i - 126;
  145. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  146. }
  147. /* NOTE: these two tables are needed to avoid two operations in
  148. pow_m1_4 */
  149. b = 1.0;
  150. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  151. m = (1 << LSP_POW_BITS) + i;
  152. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  153. a = pow(a, -0.25);
  154. s->lsp_pow_m_table1[i] = 2 * a - b;
  155. s->lsp_pow_m_table2[i] = b - a;
  156. b = a;
  157. }
  158. }
  159. /**
  160. * NOTE: We use the same code as Vorbis here
  161. * @todo optimize it further with SSE/3Dnow
  162. */
  163. static void wma_lsp_to_curve(WMACodecContext *s,
  164. float *out, float *val_max_ptr,
  165. int n, float *lsp)
  166. {
  167. int i, j;
  168. float p, q, w, v, val_max;
  169. val_max = 0;
  170. for(i=0;i<n;i++) {
  171. p = 0.5f;
  172. q = 0.5f;
  173. w = s->lsp_cos_table[i];
  174. for(j=1;j<NB_LSP_COEFS;j+=2){
  175. q *= w - lsp[j - 1];
  176. p *= w - lsp[j];
  177. }
  178. p *= p * (2.0f - w);
  179. q *= q * (2.0f + w);
  180. v = p + q;
  181. v = pow_m1_4(s, v);
  182. if (v > val_max)
  183. val_max = v;
  184. out[i] = v;
  185. }
  186. *val_max_ptr = val_max;
  187. }
  188. /**
  189. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  190. */
  191. static void decode_exp_lsp(WMACodecContext *s, int ch)
  192. {
  193. float lsp_coefs[NB_LSP_COEFS];
  194. int val, i;
  195. for(i = 0; i < NB_LSP_COEFS; i++) {
  196. if (i == 0 || i >= 8)
  197. val = get_bits(&s->gb, 3);
  198. else
  199. val = get_bits(&s->gb, 4);
  200. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  201. }
  202. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  203. s->block_len, lsp_coefs);
  204. }
  205. /** pow(10, i / 16.0) for i in -60..95 */
  206. static const float pow_tab[] = {
  207. 1.7782794100389e-04, 2.0535250264571e-04,
  208. 2.3713737056617e-04, 2.7384196342644e-04,
  209. 3.1622776601684e-04, 3.6517412725484e-04,
  210. 4.2169650342858e-04, 4.8696752516586e-04,
  211. 5.6234132519035e-04, 6.4938163157621e-04,
  212. 7.4989420933246e-04, 8.6596432336006e-04,
  213. 1.0000000000000e-03, 1.1547819846895e-03,
  214. 1.3335214321633e-03, 1.5399265260595e-03,
  215. 1.7782794100389e-03, 2.0535250264571e-03,
  216. 2.3713737056617e-03, 2.7384196342644e-03,
  217. 3.1622776601684e-03, 3.6517412725484e-03,
  218. 4.2169650342858e-03, 4.8696752516586e-03,
  219. 5.6234132519035e-03, 6.4938163157621e-03,
  220. 7.4989420933246e-03, 8.6596432336006e-03,
  221. 1.0000000000000e-02, 1.1547819846895e-02,
  222. 1.3335214321633e-02, 1.5399265260595e-02,
  223. 1.7782794100389e-02, 2.0535250264571e-02,
  224. 2.3713737056617e-02, 2.7384196342644e-02,
  225. 3.1622776601684e-02, 3.6517412725484e-02,
  226. 4.2169650342858e-02, 4.8696752516586e-02,
  227. 5.6234132519035e-02, 6.4938163157621e-02,
  228. 7.4989420933246e-02, 8.6596432336007e-02,
  229. 1.0000000000000e-01, 1.1547819846895e-01,
  230. 1.3335214321633e-01, 1.5399265260595e-01,
  231. 1.7782794100389e-01, 2.0535250264571e-01,
  232. 2.3713737056617e-01, 2.7384196342644e-01,
  233. 3.1622776601684e-01, 3.6517412725484e-01,
  234. 4.2169650342858e-01, 4.8696752516586e-01,
  235. 5.6234132519035e-01, 6.4938163157621e-01,
  236. 7.4989420933246e-01, 8.6596432336007e-01,
  237. 1.0000000000000e+00, 1.1547819846895e+00,
  238. 1.3335214321633e+00, 1.5399265260595e+00,
  239. 1.7782794100389e+00, 2.0535250264571e+00,
  240. 2.3713737056617e+00, 2.7384196342644e+00,
  241. 3.1622776601684e+00, 3.6517412725484e+00,
  242. 4.2169650342858e+00, 4.8696752516586e+00,
  243. 5.6234132519035e+00, 6.4938163157621e+00,
  244. 7.4989420933246e+00, 8.6596432336007e+00,
  245. 1.0000000000000e+01, 1.1547819846895e+01,
  246. 1.3335214321633e+01, 1.5399265260595e+01,
  247. 1.7782794100389e+01, 2.0535250264571e+01,
  248. 2.3713737056617e+01, 2.7384196342644e+01,
  249. 3.1622776601684e+01, 3.6517412725484e+01,
  250. 4.2169650342858e+01, 4.8696752516586e+01,
  251. 5.6234132519035e+01, 6.4938163157621e+01,
  252. 7.4989420933246e+01, 8.6596432336007e+01,
  253. 1.0000000000000e+02, 1.1547819846895e+02,
  254. 1.3335214321633e+02, 1.5399265260595e+02,
  255. 1.7782794100389e+02, 2.0535250264571e+02,
  256. 2.3713737056617e+02, 2.7384196342644e+02,
  257. 3.1622776601684e+02, 3.6517412725484e+02,
  258. 4.2169650342858e+02, 4.8696752516586e+02,
  259. 5.6234132519035e+02, 6.4938163157621e+02,
  260. 7.4989420933246e+02, 8.6596432336007e+02,
  261. 1.0000000000000e+03, 1.1547819846895e+03,
  262. 1.3335214321633e+03, 1.5399265260595e+03,
  263. 1.7782794100389e+03, 2.0535250264571e+03,
  264. 2.3713737056617e+03, 2.7384196342644e+03,
  265. 3.1622776601684e+03, 3.6517412725484e+03,
  266. 4.2169650342858e+03, 4.8696752516586e+03,
  267. 5.6234132519035e+03, 6.4938163157621e+03,
  268. 7.4989420933246e+03, 8.6596432336007e+03,
  269. 1.0000000000000e+04, 1.1547819846895e+04,
  270. 1.3335214321633e+04, 1.5399265260595e+04,
  271. 1.7782794100389e+04, 2.0535250264571e+04,
  272. 2.3713737056617e+04, 2.7384196342644e+04,
  273. 3.1622776601684e+04, 3.6517412725484e+04,
  274. 4.2169650342858e+04, 4.8696752516586e+04,
  275. 5.6234132519035e+04, 6.4938163157621e+04,
  276. 7.4989420933246e+04, 8.6596432336007e+04,
  277. 1.0000000000000e+05, 1.1547819846895e+05,
  278. 1.3335214321633e+05, 1.5399265260595e+05,
  279. 1.7782794100389e+05, 2.0535250264571e+05,
  280. 2.3713737056617e+05, 2.7384196342644e+05,
  281. 3.1622776601684e+05, 3.6517412725484e+05,
  282. 4.2169650342858e+05, 4.8696752516586e+05,
  283. 5.6234132519035e+05, 6.4938163157621e+05,
  284. 7.4989420933246e+05, 8.6596432336007e+05,
  285. };
  286. /**
  287. * decode exponents coded with VLC codes
  288. */
  289. static int decode_exp_vlc(WMACodecContext *s, int ch)
  290. {
  291. int last_exp, n, code;
  292. const uint16_t *ptr;
  293. float v, max_scale;
  294. uint32_t *q, *q_end, iv;
  295. const float *ptab = pow_tab + 60;
  296. const uint32_t *iptab = (const uint32_t*)ptab;
  297. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  298. q = (uint32_t *)s->exponents[ch];
  299. q_end = q + s->block_len;
  300. max_scale = 0;
  301. if (s->version == 1) {
  302. last_exp = get_bits(&s->gb, 5) + 10;
  303. v = ptab[last_exp];
  304. iv = iptab[last_exp];
  305. max_scale = v;
  306. n = *ptr++;
  307. switch (n & 3) do {
  308. case 0: *q++ = iv;
  309. case 3: *q++ = iv;
  310. case 2: *q++ = iv;
  311. case 1: *q++ = iv;
  312. } while ((n -= 4) > 0);
  313. }else
  314. last_exp = 36;
  315. while (q < q_end) {
  316. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  317. if (code < 0){
  318. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  319. return -1;
  320. }
  321. /* NOTE: this offset is the same as MPEG4 AAC ! */
  322. last_exp += code - 60;
  323. if ((unsigned)last_exp + 60 >= FF_ARRAY_ELEMS(pow_tab)) {
  324. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  325. last_exp);
  326. return -1;
  327. }
  328. v = ptab[last_exp];
  329. iv = iptab[last_exp];
  330. if (v > max_scale)
  331. max_scale = v;
  332. n = *ptr++;
  333. switch (n & 3) do {
  334. case 0: *q++ = iv;
  335. case 3: *q++ = iv;
  336. case 2: *q++ = iv;
  337. case 1: *q++ = iv;
  338. } while ((n -= 4) > 0);
  339. }
  340. s->max_exponent[ch] = max_scale;
  341. return 0;
  342. }
  343. /**
  344. * Apply MDCT window and add into output.
  345. *
  346. * We ensure that when the windows overlap their squared sum
  347. * is always 1 (MDCT reconstruction rule).
  348. */
  349. static void wma_window(WMACodecContext *s, float *out)
  350. {
  351. float *in = s->output;
  352. int block_len, bsize, n;
  353. /* left part */
  354. if (s->block_len_bits <= s->prev_block_len_bits) {
  355. block_len = s->block_len;
  356. bsize = s->frame_len_bits - s->block_len_bits;
  357. s->dsp.vector_fmul_add(out, in, s->windows[bsize],
  358. out, block_len);
  359. } else {
  360. block_len = 1 << s->prev_block_len_bits;
  361. n = (s->block_len - block_len) / 2;
  362. bsize = s->frame_len_bits - s->prev_block_len_bits;
  363. s->dsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
  364. out+n, block_len);
  365. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  366. }
  367. out += s->block_len;
  368. in += s->block_len;
  369. /* right part */
  370. if (s->block_len_bits <= s->next_block_len_bits) {
  371. block_len = s->block_len;
  372. bsize = s->frame_len_bits - s->block_len_bits;
  373. s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  374. } else {
  375. block_len = 1 << s->next_block_len_bits;
  376. n = (s->block_len - block_len) / 2;
  377. bsize = s->frame_len_bits - s->next_block_len_bits;
  378. memcpy(out, in, n*sizeof(float));
  379. s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  380. memset(out+n+block_len, 0, n*sizeof(float));
  381. }
  382. }
  383. /**
  384. * @return 0 if OK. 1 if last block of frame. return -1 if
  385. * unrecorrable error.
  386. */
  387. static int wma_decode_block(WMACodecContext *s)
  388. {
  389. int n, v, a, ch, bsize;
  390. int coef_nb_bits, total_gain;
  391. int nb_coefs[MAX_CHANNELS];
  392. float mdct_norm;
  393. FFTContext *mdct;
  394. #ifdef TRACE
  395. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  396. #endif
  397. /* compute current block length */
  398. if (s->use_variable_block_len) {
  399. n = av_log2(s->nb_block_sizes - 1) + 1;
  400. if (s->reset_block_lengths) {
  401. s->reset_block_lengths = 0;
  402. v = get_bits(&s->gb, n);
  403. if (v >= s->nb_block_sizes){
  404. av_log(s->avctx, AV_LOG_ERROR, "prev_block_len_bits %d out of range\n", s->frame_len_bits - v);
  405. return -1;
  406. }
  407. s->prev_block_len_bits = s->frame_len_bits - v;
  408. v = get_bits(&s->gb, n);
  409. if (v >= s->nb_block_sizes){
  410. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits %d out of range\n", s->frame_len_bits - v);
  411. return -1;
  412. }
  413. s->block_len_bits = s->frame_len_bits - v;
  414. } else {
  415. /* update block lengths */
  416. s->prev_block_len_bits = s->block_len_bits;
  417. s->block_len_bits = s->next_block_len_bits;
  418. }
  419. v = get_bits(&s->gb, n);
  420. if (v >= s->nb_block_sizes){
  421. av_log(s->avctx, AV_LOG_ERROR, "next_block_len_bits %d out of range\n", s->frame_len_bits - v);
  422. return -1;
  423. }
  424. s->next_block_len_bits = s->frame_len_bits - v;
  425. } else {
  426. /* fixed block len */
  427. s->next_block_len_bits = s->frame_len_bits;
  428. s->prev_block_len_bits = s->frame_len_bits;
  429. s->block_len_bits = s->frame_len_bits;
  430. }
  431. /* now check if the block length is coherent with the frame length */
  432. s->block_len = 1 << s->block_len_bits;
  433. if ((s->block_pos + s->block_len) > s->frame_len){
  434. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  435. return -1;
  436. }
  437. if (s->nb_channels == 2) {
  438. s->ms_stereo = get_bits1(&s->gb);
  439. }
  440. v = 0;
  441. for(ch = 0; ch < s->nb_channels; ch++) {
  442. a = get_bits1(&s->gb);
  443. s->channel_coded[ch] = a;
  444. v |= a;
  445. }
  446. bsize = s->frame_len_bits - s->block_len_bits;
  447. /* if no channel coded, no need to go further */
  448. /* XXX: fix potential framing problems */
  449. if (!v)
  450. goto next;
  451. /* read total gain and extract corresponding number of bits for
  452. coef escape coding */
  453. total_gain = 1;
  454. for(;;) {
  455. a = get_bits(&s->gb, 7);
  456. total_gain += a;
  457. if (a != 127)
  458. break;
  459. }
  460. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  461. /* compute number of coefficients */
  462. n = s->coefs_end[bsize] - s->coefs_start;
  463. for(ch = 0; ch < s->nb_channels; ch++)
  464. nb_coefs[ch] = n;
  465. /* complex coding */
  466. if (s->use_noise_coding) {
  467. for(ch = 0; ch < s->nb_channels; ch++) {
  468. if (s->channel_coded[ch]) {
  469. int i, n, a;
  470. n = s->exponent_high_sizes[bsize];
  471. for(i=0;i<n;i++) {
  472. a = get_bits1(&s->gb);
  473. s->high_band_coded[ch][i] = a;
  474. /* if noise coding, the coefficients are not transmitted */
  475. if (a)
  476. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  477. }
  478. }
  479. }
  480. for(ch = 0; ch < s->nb_channels; ch++) {
  481. if (s->channel_coded[ch]) {
  482. int i, n, val, code;
  483. n = s->exponent_high_sizes[bsize];
  484. val = (int)0x80000000;
  485. for(i=0;i<n;i++) {
  486. if (s->high_band_coded[ch][i]) {
  487. if (val == (int)0x80000000) {
  488. val = get_bits(&s->gb, 7) - 19;
  489. } else {
  490. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  491. if (code < 0){
  492. av_log(s->avctx, AV_LOG_ERROR, "hgain vlc invalid\n");
  493. return -1;
  494. }
  495. val += code - 18;
  496. }
  497. s->high_band_values[ch][i] = val;
  498. }
  499. }
  500. }
  501. }
  502. }
  503. /* exponents can be reused in short blocks. */
  504. if ((s->block_len_bits == s->frame_len_bits) ||
  505. get_bits1(&s->gb)) {
  506. for(ch = 0; ch < s->nb_channels; ch++) {
  507. if (s->channel_coded[ch]) {
  508. if (s->use_exp_vlc) {
  509. if (decode_exp_vlc(s, ch) < 0)
  510. return -1;
  511. } else {
  512. decode_exp_lsp(s, ch);
  513. }
  514. s->exponents_bsize[ch] = bsize;
  515. }
  516. }
  517. }
  518. /* parse spectral coefficients : just RLE encoding */
  519. for(ch = 0; ch < s->nb_channels; ch++) {
  520. if (s->channel_coded[ch]) {
  521. int tindex;
  522. WMACoef* ptr = &s->coefs1[ch][0];
  523. /* special VLC tables are used for ms stereo because
  524. there is potentially less energy there */
  525. tindex = (ch == 1 && s->ms_stereo);
  526. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  527. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  528. s->level_table[tindex], s->run_table[tindex],
  529. 0, ptr, 0, nb_coefs[ch],
  530. s->block_len, s->frame_len_bits, coef_nb_bits);
  531. }
  532. if (s->version == 1 && s->nb_channels >= 2) {
  533. align_get_bits(&s->gb);
  534. }
  535. }
  536. /* normalize */
  537. {
  538. int n4 = s->block_len / 2;
  539. mdct_norm = 1.0 / (float)n4;
  540. if (s->version == 1) {
  541. mdct_norm *= sqrt(n4);
  542. }
  543. }
  544. /* finally compute the MDCT coefficients */
  545. for(ch = 0; ch < s->nb_channels; ch++) {
  546. if (s->channel_coded[ch]) {
  547. WMACoef *coefs1;
  548. float *coefs, *exponents, mult, mult1, noise;
  549. int i, j, n, n1, last_high_band, esize;
  550. float exp_power[HIGH_BAND_MAX_SIZE];
  551. coefs1 = s->coefs1[ch];
  552. exponents = s->exponents[ch];
  553. esize = s->exponents_bsize[ch];
  554. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  555. mult *= mdct_norm;
  556. coefs = s->coefs[ch];
  557. if (s->use_noise_coding) {
  558. mult1 = mult;
  559. /* very low freqs : noise */
  560. for(i = 0;i < s->coefs_start; i++) {
  561. *coefs++ = s->noise_table[s->noise_index] *
  562. exponents[i<<bsize>>esize] * mult1;
  563. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  564. }
  565. n1 = s->exponent_high_sizes[bsize];
  566. /* compute power of high bands */
  567. exponents = s->exponents[ch] +
  568. (s->high_band_start[bsize]<<bsize>>esize);
  569. last_high_band = 0; /* avoid warning */
  570. for(j=0;j<n1;j++) {
  571. n = s->exponent_high_bands[s->frame_len_bits -
  572. s->block_len_bits][j];
  573. if (s->high_band_coded[ch][j]) {
  574. float e2, v;
  575. e2 = 0;
  576. for(i = 0;i < n; i++) {
  577. v = exponents[i<<bsize>>esize];
  578. e2 += v * v;
  579. }
  580. exp_power[j] = e2 / n;
  581. last_high_band = j;
  582. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  583. }
  584. exponents += n<<bsize>>esize;
  585. }
  586. /* main freqs and high freqs */
  587. exponents = s->exponents[ch] + (s->coefs_start<<bsize>>esize);
  588. for(j=-1;j<n1;j++) {
  589. if (j < 0) {
  590. n = s->high_band_start[bsize] -
  591. s->coefs_start;
  592. } else {
  593. n = s->exponent_high_bands[s->frame_len_bits -
  594. s->block_len_bits][j];
  595. }
  596. if (j >= 0 && s->high_band_coded[ch][j]) {
  597. /* use noise with specified power */
  598. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  599. /* XXX: use a table */
  600. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  601. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  602. mult1 *= mdct_norm;
  603. for(i = 0;i < n; i++) {
  604. noise = s->noise_table[s->noise_index];
  605. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  606. *coefs++ = noise *
  607. exponents[i<<bsize>>esize] * mult1;
  608. }
  609. exponents += n<<bsize>>esize;
  610. } else {
  611. /* coded values + small noise */
  612. for(i = 0;i < n; i++) {
  613. noise = s->noise_table[s->noise_index];
  614. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  615. *coefs++ = ((*coefs1++) + noise) *
  616. exponents[i<<bsize>>esize] * mult;
  617. }
  618. exponents += n<<bsize>>esize;
  619. }
  620. }
  621. /* very high freqs : noise */
  622. n = s->block_len - s->coefs_end[bsize];
  623. mult1 = mult * exponents[((-1<<bsize))>>esize];
  624. for(i = 0; i < n; i++) {
  625. *coefs++ = s->noise_table[s->noise_index] * mult1;
  626. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  627. }
  628. } else {
  629. /* XXX: optimize more */
  630. for(i = 0;i < s->coefs_start; i++)
  631. *coefs++ = 0.0;
  632. n = nb_coefs[ch];
  633. for(i = 0;i < n; i++) {
  634. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  635. }
  636. n = s->block_len - s->coefs_end[bsize];
  637. for(i = 0;i < n; i++)
  638. *coefs++ = 0.0;
  639. }
  640. }
  641. }
  642. #ifdef TRACE
  643. for(ch = 0; ch < s->nb_channels; ch++) {
  644. if (s->channel_coded[ch]) {
  645. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  646. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  647. }
  648. }
  649. #endif
  650. if (s->ms_stereo && s->channel_coded[1]) {
  651. /* nominal case for ms stereo: we do it before mdct */
  652. /* no need to optimize this case because it should almost
  653. never happen */
  654. if (!s->channel_coded[0]) {
  655. tprintf(s->avctx, "rare ms-stereo case happened\n");
  656. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  657. s->channel_coded[0] = 1;
  658. }
  659. s->dsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  660. }
  661. next:
  662. mdct = &s->mdct_ctx[bsize];
  663. for(ch = 0; ch < s->nb_channels; ch++) {
  664. int n4, index;
  665. n4 = s->block_len / 2;
  666. if(s->channel_coded[ch]){
  667. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  668. }else if(!(s->ms_stereo && ch==1))
  669. memset(s->output, 0, sizeof(s->output));
  670. /* multiply by the window and add in the frame */
  671. index = (s->frame_len / 2) + s->block_pos - n4;
  672. wma_window(s, &s->frame_out[ch][index]);
  673. }
  674. /* update block number */
  675. s->block_num++;
  676. s->block_pos += s->block_len;
  677. if (s->block_pos >= s->frame_len)
  678. return 1;
  679. else
  680. return 0;
  681. }
  682. /* decode a frame of frame_len samples */
  683. static int wma_decode_frame(WMACodecContext *s, int16_t *samples)
  684. {
  685. int ret, n, ch, incr;
  686. const float *output[MAX_CHANNELS];
  687. #ifdef TRACE
  688. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  689. #endif
  690. /* read each block */
  691. s->block_num = 0;
  692. s->block_pos = 0;
  693. for(;;) {
  694. ret = wma_decode_block(s);
  695. if (ret < 0)
  696. return -1;
  697. if (ret)
  698. break;
  699. }
  700. /* convert frame to integer */
  701. n = s->frame_len;
  702. incr = s->nb_channels;
  703. for (ch = 0; ch < MAX_CHANNELS; ch++)
  704. output[ch] = s->frame_out[ch];
  705. s->fmt_conv.float_to_int16_interleave(samples, output, n, incr);
  706. for (ch = 0; ch < incr; ch++) {
  707. /* prepare for next block */
  708. memmove(&s->frame_out[ch][0], &s->frame_out[ch][n], n * sizeof(float));
  709. }
  710. #ifdef TRACE
  711. dump_shorts(s, "samples", samples, n * s->nb_channels);
  712. #endif
  713. return 0;
  714. }
  715. static int wma_decode_superframe(AVCodecContext *avctx, void *data,
  716. int *got_frame_ptr, AVPacket *avpkt)
  717. {
  718. const uint8_t *buf = avpkt->data;
  719. int buf_size = avpkt->size;
  720. WMACodecContext *s = avctx->priv_data;
  721. int nb_frames, bit_offset, i, pos, len, ret;
  722. uint8_t *q;
  723. int16_t *samples;
  724. tprintf(avctx, "***decode_superframe:\n");
  725. if(buf_size==0){
  726. s->last_superframe_len = 0;
  727. return 0;
  728. }
  729. if (buf_size < s->block_align) {
  730. av_log(avctx, AV_LOG_ERROR,
  731. "Input packet size too small (%d < %d)\n",
  732. buf_size, s->block_align);
  733. return AVERROR_INVALIDDATA;
  734. }
  735. buf_size = s->block_align;
  736. init_get_bits(&s->gb, buf, buf_size*8);
  737. if (s->use_bit_reservoir) {
  738. /* read super frame header */
  739. skip_bits(&s->gb, 4); /* super frame index */
  740. nb_frames = get_bits(&s->gb, 4) - (s->last_superframe_len <= 0);
  741. } else {
  742. nb_frames = 1;
  743. }
  744. /* get output buffer */
  745. s->frame.nb_samples = nb_frames * s->frame_len;
  746. if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
  747. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  748. return ret;
  749. }
  750. samples = (int16_t *)s->frame.data[0];
  751. if (s->use_bit_reservoir) {
  752. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  753. if (bit_offset > get_bits_left(&s->gb)) {
  754. av_log(avctx, AV_LOG_ERROR,
  755. "Invalid last frame bit offset %d > buf size %d (%d)\n",
  756. bit_offset, get_bits_left(&s->gb), buf_size);
  757. goto fail;
  758. }
  759. if (s->last_superframe_len > 0) {
  760. // printf("skip=%d\n", s->last_bitoffset);
  761. /* add bit_offset bits to last frame */
  762. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  763. MAX_CODED_SUPERFRAME_SIZE)
  764. goto fail;
  765. q = s->last_superframe + s->last_superframe_len;
  766. len = bit_offset;
  767. while (len > 7) {
  768. *q++ = (get_bits)(&s->gb, 8);
  769. len -= 8;
  770. }
  771. if (len > 0) {
  772. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  773. }
  774. memset(q, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  775. /* XXX: bit_offset bits into last frame */
  776. init_get_bits(&s->gb, s->last_superframe, s->last_superframe_len * 8 + bit_offset);
  777. /* skip unused bits */
  778. if (s->last_bitoffset > 0)
  779. skip_bits(&s->gb, s->last_bitoffset);
  780. /* this frame is stored in the last superframe and in the
  781. current one */
  782. if (wma_decode_frame(s, samples) < 0)
  783. goto fail;
  784. samples += s->nb_channels * s->frame_len;
  785. nb_frames--;
  786. }
  787. /* read each frame starting from bit_offset */
  788. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  789. if (pos >= MAX_CODED_SUPERFRAME_SIZE * 8 || pos > buf_size * 8)
  790. return AVERROR_INVALIDDATA;
  791. init_get_bits(&s->gb, buf + (pos >> 3), (buf_size - (pos >> 3))*8);
  792. len = pos & 7;
  793. if (len > 0)
  794. skip_bits(&s->gb, len);
  795. s->reset_block_lengths = 1;
  796. for(i=0;i<nb_frames;i++) {
  797. if (wma_decode_frame(s, samples) < 0)
  798. goto fail;
  799. samples += s->nb_channels * s->frame_len;
  800. }
  801. /* we copy the end of the frame in the last frame buffer */
  802. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  803. s->last_bitoffset = pos & 7;
  804. pos >>= 3;
  805. len = buf_size - pos;
  806. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  807. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  808. goto fail;
  809. }
  810. s->last_superframe_len = len;
  811. memcpy(s->last_superframe, buf + pos, len);
  812. } else {
  813. /* single frame decode */
  814. if (wma_decode_frame(s, samples) < 0)
  815. goto fail;
  816. samples += s->nb_channels * s->frame_len;
  817. }
  818. //av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len, (int8_t *)samples - (int8_t *)data, s->block_align);
  819. *got_frame_ptr = 1;
  820. *(AVFrame *)data = s->frame;
  821. return s->block_align;
  822. fail:
  823. /* when error, we reset the bit reservoir */
  824. s->last_superframe_len = 0;
  825. return -1;
  826. }
  827. static av_cold void flush(AVCodecContext *avctx)
  828. {
  829. WMACodecContext *s = avctx->priv_data;
  830. s->last_bitoffset=
  831. s->last_superframe_len= 0;
  832. }
  833. AVCodec ff_wmav1_decoder = {
  834. .name = "wmav1",
  835. .type = AVMEDIA_TYPE_AUDIO,
  836. .id = CODEC_ID_WMAV1,
  837. .priv_data_size = sizeof(WMACodecContext),
  838. .init = wma_decode_init,
  839. .close = ff_wma_end,
  840. .decode = wma_decode_superframe,
  841. .flush = flush,
  842. .capabilities = CODEC_CAP_DR1,
  843. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  844. };
  845. AVCodec ff_wmav2_decoder = {
  846. .name = "wmav2",
  847. .type = AVMEDIA_TYPE_AUDIO,
  848. .id = CODEC_ID_WMAV2,
  849. .priv_data_size = sizeof(WMACodecContext),
  850. .init = wma_decode_init,
  851. .close = ff_wma_end,
  852. .decode = wma_decode_superframe,
  853. .flush = flush,
  854. .capabilities = CODEC_CAP_DR1,
  855. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  856. };