You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

488 lines
13KB

  1. /*
  2. * (c) 2002 Fabrice Bellard
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * FFT and MDCT tests.
  23. */
  24. #include "libavutil/cpu.h"
  25. #include "libavutil/mathematics.h"
  26. #include "libavutil/lfg.h"
  27. #include "libavutil/log.h"
  28. #include "libavutil/time.h"
  29. #include "fft.h"
  30. #if CONFIG_FFT_FLOAT
  31. #include "dct.h"
  32. #include "rdft.h"
  33. #endif
  34. #include <math.h>
  35. #include <unistd.h>
  36. #include <stdlib.h>
  37. #include <string.h>
  38. /* reference fft */
  39. #define MUL16(a,b) ((a) * (b))
  40. #define CMAC(pre, pim, are, aim, bre, bim) \
  41. {\
  42. pre += (MUL16(are, bre) - MUL16(aim, bim));\
  43. pim += (MUL16(are, bim) + MUL16(bre, aim));\
  44. }
  45. #if CONFIG_FFT_FLOAT
  46. # define RANGE 1.0
  47. # define REF_SCALE(x, bits) (x)
  48. # define FMT "%10.6f"
  49. #else
  50. # define RANGE 16384
  51. # define REF_SCALE(x, bits) ((x) / (1<<(bits)))
  52. # define FMT "%6d"
  53. #endif
  54. struct {
  55. float re, im;
  56. } *exptab;
  57. static void fft_ref_init(int nbits, int inverse)
  58. {
  59. int n, i;
  60. double c1, s1, alpha;
  61. n = 1 << nbits;
  62. exptab = av_malloc((n / 2) * sizeof(*exptab));
  63. for (i = 0; i < (n/2); i++) {
  64. alpha = 2 * M_PI * (float)i / (float)n;
  65. c1 = cos(alpha);
  66. s1 = sin(alpha);
  67. if (!inverse)
  68. s1 = -s1;
  69. exptab[i].re = c1;
  70. exptab[i].im = s1;
  71. }
  72. }
  73. static void fft_ref(FFTComplex *tabr, FFTComplex *tab, int nbits)
  74. {
  75. int n, i, j, k, n2;
  76. double tmp_re, tmp_im, s, c;
  77. FFTComplex *q;
  78. n = 1 << nbits;
  79. n2 = n >> 1;
  80. for (i = 0; i < n; i++) {
  81. tmp_re = 0;
  82. tmp_im = 0;
  83. q = tab;
  84. for (j = 0; j < n; j++) {
  85. k = (i * j) & (n - 1);
  86. if (k >= n2) {
  87. c = -exptab[k - n2].re;
  88. s = -exptab[k - n2].im;
  89. } else {
  90. c = exptab[k].re;
  91. s = exptab[k].im;
  92. }
  93. CMAC(tmp_re, tmp_im, c, s, q->re, q->im);
  94. q++;
  95. }
  96. tabr[i].re = REF_SCALE(tmp_re, nbits);
  97. tabr[i].im = REF_SCALE(tmp_im, nbits);
  98. }
  99. }
  100. static void imdct_ref(FFTSample *out, FFTSample *in, int nbits)
  101. {
  102. int n = 1<<nbits;
  103. int k, i, a;
  104. double sum, f;
  105. for (i = 0; i < n; i++) {
  106. sum = 0;
  107. for (k = 0; k < n/2; k++) {
  108. a = (2 * i + 1 + (n / 2)) * (2 * k + 1);
  109. f = cos(M_PI * a / (double)(2 * n));
  110. sum += f * in[k];
  111. }
  112. out[i] = REF_SCALE(-sum, nbits - 2);
  113. }
  114. }
  115. /* NOTE: no normalisation by 1 / N is done */
  116. static void mdct_ref(FFTSample *output, FFTSample *input, int nbits)
  117. {
  118. int n = 1<<nbits;
  119. int k, i;
  120. double a, s;
  121. /* do it by hand */
  122. for (k = 0; k < n/2; k++) {
  123. s = 0;
  124. for (i = 0; i < n; i++) {
  125. a = (2*M_PI*(2*i+1+n/2)*(2*k+1) / (4 * n));
  126. s += input[i] * cos(a);
  127. }
  128. output[k] = REF_SCALE(s, nbits - 1);
  129. }
  130. }
  131. #if CONFIG_FFT_FLOAT
  132. static void idct_ref(float *output, float *input, int nbits)
  133. {
  134. int n = 1<<nbits;
  135. int k, i;
  136. double a, s;
  137. /* do it by hand */
  138. for (i = 0; i < n; i++) {
  139. s = 0.5 * input[0];
  140. for (k = 1; k < n; k++) {
  141. a = M_PI*k*(i+0.5) / n;
  142. s += input[k] * cos(a);
  143. }
  144. output[i] = 2 * s / n;
  145. }
  146. }
  147. static void dct_ref(float *output, float *input, int nbits)
  148. {
  149. int n = 1<<nbits;
  150. int k, i;
  151. double a, s;
  152. /* do it by hand */
  153. for (k = 0; k < n; k++) {
  154. s = 0;
  155. for (i = 0; i < n; i++) {
  156. a = M_PI*k*(i+0.5) / n;
  157. s += input[i] * cos(a);
  158. }
  159. output[k] = s;
  160. }
  161. }
  162. #endif
  163. static FFTSample frandom(AVLFG *prng)
  164. {
  165. return (int16_t)av_lfg_get(prng) / 32768.0 * RANGE;
  166. }
  167. static int check_diff(FFTSample *tab1, FFTSample *tab2, int n, double scale)
  168. {
  169. int i;
  170. double max= 0;
  171. double error= 0;
  172. int err = 0;
  173. for (i = 0; i < n; i++) {
  174. double e = fabsf(tab1[i] - (tab2[i] / scale)) / RANGE;
  175. if (e >= 1e-3) {
  176. av_log(NULL, AV_LOG_ERROR, "ERROR %5d: "FMT" "FMT"\n",
  177. i, tab1[i], tab2[i]);
  178. err = 1;
  179. }
  180. error+= e*e;
  181. if(e>max) max= e;
  182. }
  183. av_log(NULL, AV_LOG_INFO, "max:%f e:%g\n", max, sqrt(error)/n);
  184. return err;
  185. }
  186. static void help(void)
  187. {
  188. av_log(NULL, AV_LOG_INFO,"usage: fft-test [-h] [-s] [-i] [-n b]\n"
  189. "-h print this help\n"
  190. "-s speed test\n"
  191. "-m (I)MDCT test\n"
  192. "-d (I)DCT test\n"
  193. "-r (I)RDFT test\n"
  194. "-i inverse transform test\n"
  195. "-n b set the transform size to 2^b\n"
  196. "-f x set scale factor for output data of (I)MDCT to x\n"
  197. );
  198. }
  199. enum tf_transform {
  200. TRANSFORM_FFT,
  201. TRANSFORM_MDCT,
  202. TRANSFORM_RDFT,
  203. TRANSFORM_DCT,
  204. };
  205. int main(int argc, char **argv)
  206. {
  207. FFTComplex *tab, *tab1, *tab_ref;
  208. FFTSample *tab2;
  209. int it, i, c;
  210. int cpuflags;
  211. int do_speed = 0;
  212. int err = 1;
  213. enum tf_transform transform = TRANSFORM_FFT;
  214. int do_inverse = 0;
  215. FFTContext s1, *s = &s1;
  216. FFTContext m1, *m = &m1;
  217. #if CONFIG_FFT_FLOAT
  218. RDFTContext r1, *r = &r1;
  219. DCTContext d1, *d = &d1;
  220. int fft_size_2;
  221. #endif
  222. int fft_nbits, fft_size;
  223. double scale = 1.0;
  224. AVLFG prng;
  225. av_lfg_init(&prng, 1);
  226. fft_nbits = 9;
  227. for(;;) {
  228. c = getopt(argc, argv, "hsimrdn:f:c:");
  229. if (c == -1)
  230. break;
  231. switch(c) {
  232. case 'h':
  233. help();
  234. return 1;
  235. case 's':
  236. do_speed = 1;
  237. break;
  238. case 'i':
  239. do_inverse = 1;
  240. break;
  241. case 'm':
  242. transform = TRANSFORM_MDCT;
  243. break;
  244. case 'r':
  245. transform = TRANSFORM_RDFT;
  246. break;
  247. case 'd':
  248. transform = TRANSFORM_DCT;
  249. break;
  250. case 'n':
  251. fft_nbits = atoi(optarg);
  252. break;
  253. case 'f':
  254. scale = atof(optarg);
  255. break;
  256. case 'c':
  257. cpuflags = av_parse_cpu_flags(optarg);
  258. if (cpuflags < 0)
  259. return 1;
  260. av_set_cpu_flags_mask(cpuflags);
  261. break;
  262. }
  263. }
  264. fft_size = 1 << fft_nbits;
  265. tab = av_malloc(fft_size * sizeof(FFTComplex));
  266. tab1 = av_malloc(fft_size * sizeof(FFTComplex));
  267. tab_ref = av_malloc(fft_size * sizeof(FFTComplex));
  268. tab2 = av_malloc(fft_size * sizeof(FFTSample));
  269. switch (transform) {
  270. case TRANSFORM_MDCT:
  271. av_log(NULL, AV_LOG_INFO,"Scale factor is set to %f\n", scale);
  272. if (do_inverse)
  273. av_log(NULL, AV_LOG_INFO,"IMDCT");
  274. else
  275. av_log(NULL, AV_LOG_INFO,"MDCT");
  276. ff_mdct_init(m, fft_nbits, do_inverse, scale);
  277. break;
  278. case TRANSFORM_FFT:
  279. if (do_inverse)
  280. av_log(NULL, AV_LOG_INFO,"IFFT");
  281. else
  282. av_log(NULL, AV_LOG_INFO,"FFT");
  283. ff_fft_init(s, fft_nbits, do_inverse);
  284. fft_ref_init(fft_nbits, do_inverse);
  285. break;
  286. #if CONFIG_FFT_FLOAT
  287. case TRANSFORM_RDFT:
  288. if (do_inverse)
  289. av_log(NULL, AV_LOG_INFO,"IDFT_C2R");
  290. else
  291. av_log(NULL, AV_LOG_INFO,"DFT_R2C");
  292. ff_rdft_init(r, fft_nbits, do_inverse ? IDFT_C2R : DFT_R2C);
  293. fft_ref_init(fft_nbits, do_inverse);
  294. break;
  295. case TRANSFORM_DCT:
  296. if (do_inverse)
  297. av_log(NULL, AV_LOG_INFO,"DCT_III");
  298. else
  299. av_log(NULL, AV_LOG_INFO,"DCT_II");
  300. ff_dct_init(d, fft_nbits, do_inverse ? DCT_III : DCT_II);
  301. break;
  302. #endif
  303. default:
  304. av_log(NULL, AV_LOG_ERROR, "Requested transform not supported\n");
  305. return 1;
  306. }
  307. av_log(NULL, AV_LOG_INFO," %d test\n", fft_size);
  308. /* generate random data */
  309. for (i = 0; i < fft_size; i++) {
  310. tab1[i].re = frandom(&prng);
  311. tab1[i].im = frandom(&prng);
  312. }
  313. /* checking result */
  314. av_log(NULL, AV_LOG_INFO,"Checking...\n");
  315. switch (transform) {
  316. case TRANSFORM_MDCT:
  317. if (do_inverse) {
  318. imdct_ref((FFTSample *)tab_ref, (FFTSample *)tab1, fft_nbits);
  319. m->imdct_calc(m, tab2, (FFTSample *)tab1);
  320. err = check_diff((FFTSample *)tab_ref, tab2, fft_size, scale);
  321. } else {
  322. mdct_ref((FFTSample *)tab_ref, (FFTSample *)tab1, fft_nbits);
  323. m->mdct_calc(m, tab2, (FFTSample *)tab1);
  324. err = check_diff((FFTSample *)tab_ref, tab2, fft_size / 2, scale);
  325. }
  326. break;
  327. case TRANSFORM_FFT:
  328. memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
  329. s->fft_permute(s, tab);
  330. s->fft_calc(s, tab);
  331. fft_ref(tab_ref, tab1, fft_nbits);
  332. err = check_diff((FFTSample *)tab_ref, (FFTSample *)tab, fft_size * 2, 1.0);
  333. break;
  334. #if CONFIG_FFT_FLOAT
  335. case TRANSFORM_RDFT:
  336. fft_size_2 = fft_size >> 1;
  337. if (do_inverse) {
  338. tab1[ 0].im = 0;
  339. tab1[fft_size_2].im = 0;
  340. for (i = 1; i < fft_size_2; i++) {
  341. tab1[fft_size_2+i].re = tab1[fft_size_2-i].re;
  342. tab1[fft_size_2+i].im = -tab1[fft_size_2-i].im;
  343. }
  344. memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
  345. tab2[1] = tab1[fft_size_2].re;
  346. r->rdft_calc(r, tab2);
  347. fft_ref(tab_ref, tab1, fft_nbits);
  348. for (i = 0; i < fft_size; i++) {
  349. tab[i].re = tab2[i];
  350. tab[i].im = 0;
  351. }
  352. err = check_diff((float *)tab_ref, (float *)tab, fft_size * 2, 0.5);
  353. } else {
  354. for (i = 0; i < fft_size; i++) {
  355. tab2[i] = tab1[i].re;
  356. tab1[i].im = 0;
  357. }
  358. r->rdft_calc(r, tab2);
  359. fft_ref(tab_ref, tab1, fft_nbits);
  360. tab_ref[0].im = tab_ref[fft_size_2].re;
  361. err = check_diff((float *)tab_ref, (float *)tab2, fft_size, 1.0);
  362. }
  363. break;
  364. case TRANSFORM_DCT:
  365. memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
  366. d->dct_calc(d, tab);
  367. if (do_inverse) {
  368. idct_ref(tab_ref, tab1, fft_nbits);
  369. } else {
  370. dct_ref(tab_ref, tab1, fft_nbits);
  371. }
  372. err = check_diff((float *)tab_ref, (float *)tab, fft_size, 1.0);
  373. break;
  374. #endif
  375. }
  376. /* do a speed test */
  377. if (do_speed) {
  378. int64_t time_start, duration;
  379. int nb_its;
  380. av_log(NULL, AV_LOG_INFO,"Speed test...\n");
  381. /* we measure during about 1 seconds */
  382. nb_its = 1;
  383. for(;;) {
  384. time_start = av_gettime();
  385. for (it = 0; it < nb_its; it++) {
  386. switch (transform) {
  387. case TRANSFORM_MDCT:
  388. if (do_inverse) {
  389. m->imdct_calc(m, (FFTSample *)tab, (FFTSample *)tab1);
  390. } else {
  391. m->mdct_calc(m, (FFTSample *)tab, (FFTSample *)tab1);
  392. }
  393. break;
  394. case TRANSFORM_FFT:
  395. memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
  396. s->fft_calc(s, tab);
  397. break;
  398. #if CONFIG_FFT_FLOAT
  399. case TRANSFORM_RDFT:
  400. memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
  401. r->rdft_calc(r, tab2);
  402. break;
  403. case TRANSFORM_DCT:
  404. memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
  405. d->dct_calc(d, tab2);
  406. break;
  407. #endif
  408. }
  409. }
  410. duration = av_gettime() - time_start;
  411. if (duration >= 1000000)
  412. break;
  413. nb_its *= 2;
  414. }
  415. av_log(NULL, AV_LOG_INFO,"time: %0.1f us/transform [total time=%0.2f s its=%d]\n",
  416. (double)duration / nb_its,
  417. (double)duration / 1000000.0,
  418. nb_its);
  419. }
  420. switch (transform) {
  421. case TRANSFORM_MDCT:
  422. ff_mdct_end(m);
  423. break;
  424. case TRANSFORM_FFT:
  425. ff_fft_end(s);
  426. break;
  427. #if CONFIG_FFT_FLOAT
  428. case TRANSFORM_RDFT:
  429. ff_rdft_end(r);
  430. break;
  431. case TRANSFORM_DCT:
  432. ff_dct_end(d);
  433. break;
  434. #endif
  435. }
  436. av_free(tab);
  437. av_free(tab1);
  438. av_free(tab2);
  439. av_free(tab_ref);
  440. av_free(exptab);
  441. return err;
  442. }