You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1069 lines
39KB

  1. /*
  2. * AMR narrowband decoder
  3. * Copyright (c) 2006-2007 Robert Swain
  4. * Copyright (c) 2009 Colin McQuillan
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AMR narrowband decoder
  25. *
  26. * This decoder uses floats for simplicity and so is not bit-exact. One
  27. * difference is that differences in phase can accumulate. The test sequences
  28. * in 3GPP TS 26.074 can still be useful.
  29. *
  30. * - Comparing this file's output to the output of the ref decoder gives a
  31. * PSNR of 30 to 80. Plotting the output samples shows a difference in
  32. * phase in some areas.
  33. *
  34. * - Comparing both decoders against their input, this decoder gives a similar
  35. * PSNR. If the test sequence homing frames are removed (this decoder does
  36. * not detect them), the PSNR is at least as good as the reference on 140
  37. * out of 169 tests.
  38. */
  39. #include <string.h>
  40. #include <math.h>
  41. #include "avcodec.h"
  42. #include "libavutil/common.h"
  43. #include "celp_math.h"
  44. #include "celp_filters.h"
  45. #include "acelp_filters.h"
  46. #include "acelp_vectors.h"
  47. #include "acelp_pitch_delay.h"
  48. #include "lsp.h"
  49. #include "amr.h"
  50. #include "amrnbdata.h"
  51. #define AMR_BLOCK_SIZE 160 ///< samples per frame
  52. #define AMR_SAMPLE_BOUND 32768.0 ///< threshold for synthesis overflow
  53. /**
  54. * Scale from constructed speech to [-1,1]
  55. *
  56. * AMR is designed to produce 16-bit PCM samples (3GPP TS 26.090 4.2) but
  57. * upscales by two (section 6.2.2).
  58. *
  59. * Fundamentally, this scale is determined by energy_mean through
  60. * the fixed vector contribution to the excitation vector.
  61. */
  62. #define AMR_SAMPLE_SCALE (2.0 / 32768.0)
  63. /** Prediction factor for 12.2kbit/s mode */
  64. #define PRED_FAC_MODE_12k2 0.65
  65. #define LSF_R_FAC (8000.0 / 32768.0) ///< LSF residual tables to Hertz
  66. #define MIN_LSF_SPACING (50.0488 / 8000.0) ///< Ensures stability of LPC filter
  67. #define PITCH_LAG_MIN_MODE_12k2 18 ///< Lower bound on decoded lag search in 12.2kbit/s mode
  68. /** Initial energy in dB. Also used for bad frames (unimplemented). */
  69. #define MIN_ENERGY -14.0
  70. /** Maximum sharpening factor
  71. *
  72. * The specification says 0.8, which should be 13107, but the reference C code
  73. * uses 13017 instead. (Amusingly the same applies to SHARP_MAX in bitexact G.729.)
  74. */
  75. #define SHARP_MAX 0.79449462890625
  76. /** Number of impulse response coefficients used for tilt factor */
  77. #define AMR_TILT_RESPONSE 22
  78. /** Tilt factor = 1st reflection coefficient * gamma_t */
  79. #define AMR_TILT_GAMMA_T 0.8
  80. /** Adaptive gain control factor used in post-filter */
  81. #define AMR_AGC_ALPHA 0.9
  82. typedef struct AMRContext {
  83. AVFrame avframe; ///< AVFrame for decoded samples
  84. AMRNBFrame frame; ///< decoded AMR parameters (lsf coefficients, codebook indexes, etc)
  85. uint8_t bad_frame_indicator; ///< bad frame ? 1 : 0
  86. enum Mode cur_frame_mode;
  87. int16_t prev_lsf_r[LP_FILTER_ORDER]; ///< residual LSF vector from previous subframe
  88. double lsp[4][LP_FILTER_ORDER]; ///< lsp vectors from current frame
  89. double prev_lsp_sub4[LP_FILTER_ORDER]; ///< lsp vector for the 4th subframe of the previous frame
  90. float lsf_q[4][LP_FILTER_ORDER]; ///< Interpolated LSF vector for fixed gain smoothing
  91. float lsf_avg[LP_FILTER_ORDER]; ///< vector of averaged lsf vector
  92. float lpc[4][LP_FILTER_ORDER]; ///< lpc coefficient vectors for 4 subframes
  93. uint8_t pitch_lag_int; ///< integer part of pitch lag from current subframe
  94. float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE]; ///< current excitation and all necessary excitation history
  95. float *excitation; ///< pointer to the current excitation vector in excitation_buf
  96. float pitch_vector[AMR_SUBFRAME_SIZE]; ///< adaptive code book (pitch) vector
  97. float fixed_vector[AMR_SUBFRAME_SIZE]; ///< algebraic codebook (fixed) vector (must be kept zero between frames)
  98. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  99. float pitch_gain[5]; ///< quantified pitch gains for the current and previous four subframes
  100. float fixed_gain[5]; ///< quantified fixed gains for the current and previous four subframes
  101. float beta; ///< previous pitch_gain, bounded by [0.0,SHARP_MAX]
  102. uint8_t diff_count; ///< the number of subframes for which diff has been above 0.65
  103. uint8_t hang_count; ///< the number of subframes since a hangover period started
  104. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness processing to determine "onset"
  105. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  106. uint8_t ir_filter_onset; ///< flag for impulse response filter strength
  107. float postfilter_mem[10]; ///< previous intermediate values in the formant filter
  108. float tilt_mem; ///< previous input to tilt compensation filter
  109. float postfilter_agc; ///< previous factor used for adaptive gain control
  110. float high_pass_mem[2]; ///< previous intermediate values in the high-pass filter
  111. float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE]; ///< floating point samples
  112. } AMRContext;
  113. /** Double version of ff_weighted_vector_sumf() */
  114. static void weighted_vector_sumd(double *out, const double *in_a,
  115. const double *in_b, double weight_coeff_a,
  116. double weight_coeff_b, int length)
  117. {
  118. int i;
  119. for (i = 0; i < length; i++)
  120. out[i] = weight_coeff_a * in_a[i]
  121. + weight_coeff_b * in_b[i];
  122. }
  123. static av_cold int amrnb_decode_init(AVCodecContext *avctx)
  124. {
  125. AMRContext *p = avctx->priv_data;
  126. int i;
  127. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  128. // p->excitation always points to the same position in p->excitation_buf
  129. p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];
  130. for (i = 0; i < LP_FILTER_ORDER; i++) {
  131. p->prev_lsp_sub4[i] = lsp_sub4_init[i] * 1000 / (float)(1 << 15);
  132. p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
  133. }
  134. for (i = 0; i < 4; i++)
  135. p->prediction_error[i] = MIN_ENERGY;
  136. avcodec_get_frame_defaults(&p->avframe);
  137. avctx->coded_frame = &p->avframe;
  138. return 0;
  139. }
  140. /**
  141. * Unpack an RFC4867 speech frame into the AMR frame mode and parameters.
  142. *
  143. * The order of speech bits is specified by 3GPP TS 26.101.
  144. *
  145. * @param p the context
  146. * @param buf pointer to the input buffer
  147. * @param buf_size size of the input buffer
  148. *
  149. * @return the frame mode
  150. */
  151. static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
  152. int buf_size)
  153. {
  154. enum Mode mode;
  155. // Decode the first octet.
  156. mode = buf[0] >> 3 & 0x0F; // frame type
  157. p->bad_frame_indicator = (buf[0] & 0x4) != 0x4; // quality bit
  158. if (mode >= N_MODES || buf_size < frame_sizes_nb[mode] + 1) {
  159. return NO_DATA;
  160. }
  161. if (mode < MODE_DTX)
  162. ff_amr_bit_reorder((uint16_t *) &p->frame, sizeof(AMRNBFrame), buf + 1,
  163. amr_unpacking_bitmaps_per_mode[mode]);
  164. return mode;
  165. }
  166. /// @name AMR pitch LPC coefficient decoding functions
  167. /// @{
  168. /**
  169. * Interpolate the LSF vector (used for fixed gain smoothing).
  170. * The interpolation is done over all four subframes even in MODE_12k2.
  171. *
  172. * @param[in,out] lsf_q LSFs in [0,1] for each subframe
  173. * @param[in] lsf_new New LSFs in [0,1] for subframe 4
  174. */
  175. static void interpolate_lsf(float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
  176. {
  177. int i;
  178. for (i = 0; i < 4; i++)
  179. ff_weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
  180. 0.25 * (3 - i), 0.25 * (i + 1),
  181. LP_FILTER_ORDER);
  182. }
  183. /**
  184. * Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector.
  185. *
  186. * @param p the context
  187. * @param lsp output LSP vector
  188. * @param lsf_no_r LSF vector without the residual vector added
  189. * @param lsf_quantizer pointers to LSF dictionary tables
  190. * @param quantizer_offset offset in tables
  191. * @param sign for the 3 dictionary table
  192. * @param update store data for computing the next frame's LSFs
  193. */
  194. static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
  195. const float lsf_no_r[LP_FILTER_ORDER],
  196. const int16_t *lsf_quantizer[5],
  197. const int quantizer_offset,
  198. const int sign, const int update)
  199. {
  200. int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
  201. float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
  202. int i;
  203. for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
  204. memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
  205. 2 * sizeof(*lsf_r));
  206. if (sign) {
  207. lsf_r[4] *= -1;
  208. lsf_r[5] *= -1;
  209. }
  210. if (update)
  211. memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
  212. for (i = 0; i < LP_FILTER_ORDER; i++)
  213. lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
  214. ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
  215. if (update)
  216. interpolate_lsf(p->lsf_q, lsf_q);
  217. ff_acelp_lsf2lspd(lsp, lsf_q, LP_FILTER_ORDER);
  218. }
  219. /**
  220. * Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors.
  221. *
  222. * @param p pointer to the AMRContext
  223. */
  224. static void lsf2lsp_5(AMRContext *p)
  225. {
  226. const uint16_t *lsf_param = p->frame.lsf;
  227. float lsf_no_r[LP_FILTER_ORDER]; // LSFs without the residual vector
  228. const int16_t *lsf_quantizer[5];
  229. int i;
  230. lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
  231. lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
  232. lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
  233. lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
  234. lsf_quantizer[4] = lsf_5_5[lsf_param[4]];
  235. for (i = 0; i < LP_FILTER_ORDER; i++)
  236. lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];
  237. lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
  238. lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);
  239. // interpolate LSP vectors at subframes 1 and 3
  240. weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
  241. weighted_vector_sumd(p->lsp[2], p->lsp[1] , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
  242. }
  243. /**
  244. * Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector.
  245. *
  246. * @param p pointer to the AMRContext
  247. */
  248. static void lsf2lsp_3(AMRContext *p)
  249. {
  250. const uint16_t *lsf_param = p->frame.lsf;
  251. int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
  252. float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
  253. const int16_t *lsf_quantizer;
  254. int i, j;
  255. lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
  256. memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
  257. lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
  258. memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
  259. lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
  260. memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
  261. // calculate mean-removed LSF vector and add mean
  262. for (i = 0; i < LP_FILTER_ORDER; i++)
  263. lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);
  264. ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
  265. // store data for computing the next frame's LSFs
  266. interpolate_lsf(p->lsf_q, lsf_q);
  267. memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
  268. ff_acelp_lsf2lspd(p->lsp[3], lsf_q, LP_FILTER_ORDER);
  269. // interpolate LSP vectors at subframes 1, 2 and 3
  270. for (i = 1; i <= 3; i++)
  271. for(j = 0; j < LP_FILTER_ORDER; j++)
  272. p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
  273. (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
  274. }
  275. /// @}
  276. /// @name AMR pitch vector decoding functions
  277. /// @{
  278. /**
  279. * Like ff_decode_pitch_lag(), but with 1/6 resolution
  280. */
  281. static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
  282. const int prev_lag_int, const int subframe)
  283. {
  284. if (subframe == 0 || subframe == 2) {
  285. if (pitch_index < 463) {
  286. *lag_int = (pitch_index + 107) * 10923 >> 16;
  287. *lag_frac = pitch_index - *lag_int * 6 + 105;
  288. } else {
  289. *lag_int = pitch_index - 368;
  290. *lag_frac = 0;
  291. }
  292. } else {
  293. *lag_int = ((pitch_index + 5) * 10923 >> 16) - 1;
  294. *lag_frac = pitch_index - *lag_int * 6 - 3;
  295. *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
  296. PITCH_DELAY_MAX - 9);
  297. }
  298. }
  299. static void decode_pitch_vector(AMRContext *p,
  300. const AMRNBSubframe *amr_subframe,
  301. const int subframe)
  302. {
  303. int pitch_lag_int, pitch_lag_frac;
  304. enum Mode mode = p->cur_frame_mode;
  305. if (p->cur_frame_mode == MODE_12k2) {
  306. decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
  307. amr_subframe->p_lag, p->pitch_lag_int,
  308. subframe);
  309. } else
  310. ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
  311. amr_subframe->p_lag,
  312. p->pitch_lag_int, subframe,
  313. mode != MODE_4k75 && mode != MODE_5k15,
  314. mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
  315. p->pitch_lag_int = pitch_lag_int; // store previous lag in a uint8_t
  316. pitch_lag_frac <<= (p->cur_frame_mode != MODE_12k2);
  317. pitch_lag_int += pitch_lag_frac > 0;
  318. /* Calculate the pitch vector by interpolating the past excitation at the
  319. pitch lag using a b60 hamming windowed sinc function. */
  320. ff_acelp_interpolatef(p->excitation, p->excitation + 1 - pitch_lag_int,
  321. ff_b60_sinc, 6,
  322. pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
  323. 10, AMR_SUBFRAME_SIZE);
  324. memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
  325. }
  326. /// @}
  327. /// @name AMR algebraic code book (fixed) vector decoding functions
  328. /// @{
  329. /**
  330. * Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame.
  331. */
  332. static void decode_10bit_pulse(int code, int pulse_position[8],
  333. int i1, int i2, int i3)
  334. {
  335. // coded using 7+3 bits with the 3 LSBs being, individually, the LSB of 1 of
  336. // the 3 pulses and the upper 7 bits being coded in base 5
  337. const uint8_t *positions = base_five_table[code >> 3];
  338. pulse_position[i1] = (positions[2] << 1) + ( code & 1);
  339. pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
  340. pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
  341. }
  342. /**
  343. * Decode the algebraic codebook index to pulse positions and signs and
  344. * construct the algebraic codebook vector for MODE_10k2.
  345. *
  346. * @param fixed_index positions of the eight pulses
  347. * @param fixed_sparse pointer to the algebraic codebook vector
  348. */
  349. static void decode_8_pulses_31bits(const int16_t *fixed_index,
  350. AMRFixed *fixed_sparse)
  351. {
  352. int pulse_position[8];
  353. int i, temp;
  354. decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
  355. decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);
  356. // coded using 5+2 bits with the 2 LSBs being, individually, the LSB of 1 of
  357. // the 2 pulses and the upper 5 bits being coded in base 5
  358. temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
  359. pulse_position[3] = temp % 5;
  360. pulse_position[7] = temp / 5;
  361. if (pulse_position[7] & 1)
  362. pulse_position[3] = 4 - pulse_position[3];
  363. pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6] & 1);
  364. pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
  365. fixed_sparse->n = 8;
  366. for (i = 0; i < 4; i++) {
  367. const int pos1 = (pulse_position[i] << 2) + i;
  368. const int pos2 = (pulse_position[i + 4] << 2) + i;
  369. const float sign = fixed_index[i] ? -1.0 : 1.0;
  370. fixed_sparse->x[i ] = pos1;
  371. fixed_sparse->x[i + 4] = pos2;
  372. fixed_sparse->y[i ] = sign;
  373. fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
  374. }
  375. }
  376. /**
  377. * Decode the algebraic codebook index to pulse positions and signs,
  378. * then construct the algebraic codebook vector.
  379. *
  380. * nb of pulses | bits encoding pulses
  381. * For MODE_4k75 or MODE_5k15, 2 | 1-3, 4-6, 7
  382. * MODE_5k9, 2 | 1, 2-4, 5-6, 7-9
  383. * MODE_6k7, 3 | 1-3, 4, 5-7, 8, 9-11
  384. * MODE_7k4 or MODE_7k95, 4 | 1-3, 4-6, 7-9, 10, 11-13
  385. *
  386. * @param fixed_sparse pointer to the algebraic codebook vector
  387. * @param pulses algebraic codebook indexes
  388. * @param mode mode of the current frame
  389. * @param subframe current subframe number
  390. */
  391. static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
  392. const enum Mode mode, const int subframe)
  393. {
  394. assert(MODE_4k75 <= mode && mode <= MODE_12k2);
  395. if (mode == MODE_12k2) {
  396. ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
  397. } else if (mode == MODE_10k2) {
  398. decode_8_pulses_31bits(pulses, fixed_sparse);
  399. } else {
  400. int *pulse_position = fixed_sparse->x;
  401. int i, pulse_subset;
  402. const int fixed_index = pulses[0];
  403. if (mode <= MODE_5k15) {
  404. pulse_subset = ((fixed_index >> 3) & 8) + (subframe << 1);
  405. pulse_position[0] = ( fixed_index & 7) * 5 + track_position[pulse_subset];
  406. pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
  407. fixed_sparse->n = 2;
  408. } else if (mode == MODE_5k9) {
  409. pulse_subset = ((fixed_index & 1) << 1) + 1;
  410. pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
  411. pulse_subset = (fixed_index >> 4) & 3;
  412. pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
  413. fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
  414. } else if (mode == MODE_6k7) {
  415. pulse_position[0] = (fixed_index & 7) * 5;
  416. pulse_subset = (fixed_index >> 2) & 2;
  417. pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
  418. pulse_subset = (fixed_index >> 6) & 2;
  419. pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
  420. fixed_sparse->n = 3;
  421. } else { // mode <= MODE_7k95
  422. pulse_position[0] = gray_decode[ fixed_index & 7];
  423. pulse_position[1] = gray_decode[(fixed_index >> 3) & 7] + 1;
  424. pulse_position[2] = gray_decode[(fixed_index >> 6) & 7] + 2;
  425. pulse_subset = (fixed_index >> 9) & 1;
  426. pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
  427. fixed_sparse->n = 4;
  428. }
  429. for (i = 0; i < fixed_sparse->n; i++)
  430. fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
  431. }
  432. }
  433. /**
  434. * Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2)
  435. *
  436. * @param p the context
  437. * @param subframe unpacked amr subframe
  438. * @param mode mode of the current frame
  439. * @param fixed_sparse sparse respresentation of the fixed vector
  440. */
  441. static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
  442. AMRFixed *fixed_sparse)
  443. {
  444. // The spec suggests the current pitch gain is always used, but in other
  445. // modes the pitch and codebook gains are joinly quantized (sec 5.8.2)
  446. // so the codebook gain cannot depend on the quantized pitch gain.
  447. if (mode == MODE_12k2)
  448. p->beta = FFMIN(p->pitch_gain[4], 1.0);
  449. fixed_sparse->pitch_lag = p->pitch_lag_int;
  450. fixed_sparse->pitch_fac = p->beta;
  451. // Save pitch sharpening factor for the next subframe
  452. // MODE_4k75 only updates on the 2nd and 4th subframes - this follows from
  453. // the fact that the gains for two subframes are jointly quantized.
  454. if (mode != MODE_4k75 || subframe & 1)
  455. p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
  456. }
  457. /// @}
  458. /// @name AMR gain decoding functions
  459. /// @{
  460. /**
  461. * fixed gain smoothing
  462. * Note that where the spec specifies the "spectrum in the q domain"
  463. * in section 6.1.4, in fact frequencies should be used.
  464. *
  465. * @param p the context
  466. * @param lsf LSFs for the current subframe, in the range [0,1]
  467. * @param lsf_avg averaged LSFs
  468. * @param mode mode of the current frame
  469. *
  470. * @return fixed gain smoothed
  471. */
  472. static float fixed_gain_smooth(AMRContext *p , const float *lsf,
  473. const float *lsf_avg, const enum Mode mode)
  474. {
  475. float diff = 0.0;
  476. int i;
  477. for (i = 0; i < LP_FILTER_ORDER; i++)
  478. diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
  479. // If diff is large for ten subframes, disable smoothing for a 40-subframe
  480. // hangover period.
  481. p->diff_count++;
  482. if (diff <= 0.65)
  483. p->diff_count = 0;
  484. if (p->diff_count > 10) {
  485. p->hang_count = 0;
  486. p->diff_count--; // don't let diff_count overflow
  487. }
  488. if (p->hang_count < 40) {
  489. p->hang_count++;
  490. } else if (mode < MODE_7k4 || mode == MODE_10k2) {
  491. const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
  492. const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
  493. p->fixed_gain[2] + p->fixed_gain[3] +
  494. p->fixed_gain[4]) * 0.2;
  495. return smoothing_factor * p->fixed_gain[4] +
  496. (1.0 - smoothing_factor) * fixed_gain_mean;
  497. }
  498. return p->fixed_gain[4];
  499. }
  500. /**
  501. * Decode pitch gain and fixed gain factor (part of section 6.1.3).
  502. *
  503. * @param p the context
  504. * @param amr_subframe unpacked amr subframe
  505. * @param mode mode of the current frame
  506. * @param subframe current subframe number
  507. * @param fixed_gain_factor decoded gain correction factor
  508. */
  509. static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
  510. const enum Mode mode, const int subframe,
  511. float *fixed_gain_factor)
  512. {
  513. if (mode == MODE_12k2 || mode == MODE_7k95) {
  514. p->pitch_gain[4] = qua_gain_pit [amr_subframe->p_gain ]
  515. * (1.0 / 16384.0);
  516. *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
  517. * (1.0 / 2048.0);
  518. } else {
  519. const uint16_t *gains;
  520. if (mode >= MODE_6k7) {
  521. gains = gains_high[amr_subframe->p_gain];
  522. } else if (mode >= MODE_5k15) {
  523. gains = gains_low [amr_subframe->p_gain];
  524. } else {
  525. // gain index is only coded in subframes 0,2 for MODE_4k75
  526. gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
  527. }
  528. p->pitch_gain[4] = gains[0] * (1.0 / 16384.0);
  529. *fixed_gain_factor = gains[1] * (1.0 / 4096.0);
  530. }
  531. }
  532. /// @}
  533. /// @name AMR preprocessing functions
  534. /// @{
  535. /**
  536. * Circularly convolve a sparse fixed vector with a phase dispersion impulse
  537. * response filter (D.6.2 of G.729 and 6.1.5 of AMR).
  538. *
  539. * @param out vector with filter applied
  540. * @param in source vector
  541. * @param filter phase filter coefficients
  542. *
  543. * out[n] = sum(i,0,len-1){ in[i] * filter[(len + n - i)%len] }
  544. */
  545. static void apply_ir_filter(float *out, const AMRFixed *in,
  546. const float *filter)
  547. {
  548. float filter1[AMR_SUBFRAME_SIZE], ///< filters at pitch lag*1 and *2
  549. filter2[AMR_SUBFRAME_SIZE];
  550. int lag = in->pitch_lag;
  551. float fac = in->pitch_fac;
  552. int i;
  553. if (lag < AMR_SUBFRAME_SIZE) {
  554. ff_celp_circ_addf(filter1, filter, filter, lag, fac,
  555. AMR_SUBFRAME_SIZE);
  556. if (lag < AMR_SUBFRAME_SIZE >> 1)
  557. ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
  558. AMR_SUBFRAME_SIZE);
  559. }
  560. memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
  561. for (i = 0; i < in->n; i++) {
  562. int x = in->x[i];
  563. float y = in->y[i];
  564. const float *filterp;
  565. if (x >= AMR_SUBFRAME_SIZE - lag) {
  566. filterp = filter;
  567. } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
  568. filterp = filter1;
  569. } else
  570. filterp = filter2;
  571. ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
  572. }
  573. }
  574. /**
  575. * Reduce fixed vector sparseness by smoothing with one of three IR filters.
  576. * Also know as "adaptive phase dispersion".
  577. *
  578. * This implements 3GPP TS 26.090 section 6.1(5).
  579. *
  580. * @param p the context
  581. * @param fixed_sparse algebraic codebook vector
  582. * @param fixed_vector unfiltered fixed vector
  583. * @param fixed_gain smoothed gain
  584. * @param out space for modified vector if necessary
  585. */
  586. static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
  587. const float *fixed_vector,
  588. float fixed_gain, float *out)
  589. {
  590. int ir_filter_nr;
  591. if (p->pitch_gain[4] < 0.6) {
  592. ir_filter_nr = 0; // strong filtering
  593. } else if (p->pitch_gain[4] < 0.9) {
  594. ir_filter_nr = 1; // medium filtering
  595. } else
  596. ir_filter_nr = 2; // no filtering
  597. // detect 'onset'
  598. if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
  599. p->ir_filter_onset = 2;
  600. } else if (p->ir_filter_onset)
  601. p->ir_filter_onset--;
  602. if (!p->ir_filter_onset) {
  603. int i, count = 0;
  604. for (i = 0; i < 5; i++)
  605. if (p->pitch_gain[i] < 0.6)
  606. count++;
  607. if (count > 2)
  608. ir_filter_nr = 0;
  609. if (ir_filter_nr > p->prev_ir_filter_nr + 1)
  610. ir_filter_nr--;
  611. } else if (ir_filter_nr < 2)
  612. ir_filter_nr++;
  613. // Disable filtering for very low level of fixed_gain.
  614. // Note this step is not specified in the technical description but is in
  615. // the reference source in the function Ph_disp.
  616. if (fixed_gain < 5.0)
  617. ir_filter_nr = 2;
  618. if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
  619. && ir_filter_nr < 2) {
  620. apply_ir_filter(out, fixed_sparse,
  621. (p->cur_frame_mode == MODE_7k95 ?
  622. ir_filters_lookup_MODE_7k95 :
  623. ir_filters_lookup)[ir_filter_nr]);
  624. fixed_vector = out;
  625. }
  626. // update ir filter strength history
  627. p->prev_ir_filter_nr = ir_filter_nr;
  628. p->prev_sparse_fixed_gain = fixed_gain;
  629. return fixed_vector;
  630. }
  631. /// @}
  632. /// @name AMR synthesis functions
  633. /// @{
  634. /**
  635. * Conduct 10th order linear predictive coding synthesis.
  636. *
  637. * @param p pointer to the AMRContext
  638. * @param lpc pointer to the LPC coefficients
  639. * @param fixed_gain fixed codebook gain for synthesis
  640. * @param fixed_vector algebraic codebook vector
  641. * @param samples pointer to the output speech samples
  642. * @param overflow 16-bit overflow flag
  643. */
  644. static int synthesis(AMRContext *p, float *lpc,
  645. float fixed_gain, const float *fixed_vector,
  646. float *samples, uint8_t overflow)
  647. {
  648. int i;
  649. float excitation[AMR_SUBFRAME_SIZE];
  650. // if an overflow has been detected, the pitch vector is scaled down by a
  651. // factor of 4
  652. if (overflow)
  653. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  654. p->pitch_vector[i] *= 0.25;
  655. ff_weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
  656. p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
  657. // emphasize pitch vector contribution
  658. if (p->pitch_gain[4] > 0.5 && !overflow) {
  659. float energy = ff_dot_productf(excitation, excitation,
  660. AMR_SUBFRAME_SIZE);
  661. float pitch_factor =
  662. p->pitch_gain[4] *
  663. (p->cur_frame_mode == MODE_12k2 ?
  664. 0.25 * FFMIN(p->pitch_gain[4], 1.0) :
  665. 0.5 * FFMIN(p->pitch_gain[4], SHARP_MAX));
  666. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  667. excitation[i] += pitch_factor * p->pitch_vector[i];
  668. ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
  669. AMR_SUBFRAME_SIZE);
  670. }
  671. ff_celp_lp_synthesis_filterf(samples, lpc, excitation, AMR_SUBFRAME_SIZE,
  672. LP_FILTER_ORDER);
  673. // detect overflow
  674. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  675. if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
  676. return 1;
  677. }
  678. return 0;
  679. }
  680. /// @}
  681. /// @name AMR update functions
  682. /// @{
  683. /**
  684. * Update buffers and history at the end of decoding a subframe.
  685. *
  686. * @param p pointer to the AMRContext
  687. */
  688. static void update_state(AMRContext *p)
  689. {
  690. memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));
  691. memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
  692. (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));
  693. memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
  694. memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));
  695. memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
  696. LP_FILTER_ORDER * sizeof(float));
  697. }
  698. /// @}
  699. /// @name AMR Postprocessing functions
  700. /// @{
  701. /**
  702. * Get the tilt factor of a formant filter from its transfer function
  703. *
  704. * @param lpc_n LP_FILTER_ORDER coefficients of the numerator
  705. * @param lpc_d LP_FILTER_ORDER coefficients of the denominator
  706. */
  707. static float tilt_factor(float *lpc_n, float *lpc_d)
  708. {
  709. float rh0, rh1; // autocorrelation at lag 0 and 1
  710. // LP_FILTER_ORDER prior zeros are needed for ff_celp_lp_synthesis_filterf
  711. float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
  712. float *hf = impulse_buffer + LP_FILTER_ORDER; // start of impulse response
  713. hf[0] = 1.0;
  714. memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
  715. ff_celp_lp_synthesis_filterf(hf, lpc_d, hf, AMR_TILT_RESPONSE,
  716. LP_FILTER_ORDER);
  717. rh0 = ff_dot_productf(hf, hf, AMR_TILT_RESPONSE);
  718. rh1 = ff_dot_productf(hf, hf + 1, AMR_TILT_RESPONSE - 1);
  719. // The spec only specifies this check for 12.2 and 10.2 kbit/s
  720. // modes. But in the ref source the tilt is always non-negative.
  721. return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
  722. }
  723. /**
  724. * Perform adaptive post-filtering to enhance the quality of the speech.
  725. * See section 6.2.1.
  726. *
  727. * @param p pointer to the AMRContext
  728. * @param lpc interpolated LP coefficients for this subframe
  729. * @param buf_out output of the filter
  730. */
  731. static void postfilter(AMRContext *p, float *lpc, float *buf_out)
  732. {
  733. int i;
  734. float *samples = p->samples_in + LP_FILTER_ORDER; // Start of input
  735. float speech_gain = ff_dot_productf(samples, samples,
  736. AMR_SUBFRAME_SIZE);
  737. float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER]; // Output of pole filter
  738. const float *gamma_n, *gamma_d; // Formant filter factor table
  739. float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER]; // Transfer function coefficients
  740. if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
  741. gamma_n = ff_pow_0_7;
  742. gamma_d = ff_pow_0_75;
  743. } else {
  744. gamma_n = ff_pow_0_55;
  745. gamma_d = ff_pow_0_7;
  746. }
  747. for (i = 0; i < LP_FILTER_ORDER; i++) {
  748. lpc_n[i] = lpc[i] * gamma_n[i];
  749. lpc_d[i] = lpc[i] * gamma_d[i];
  750. }
  751. memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
  752. ff_celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
  753. AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
  754. memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
  755. sizeof(float) * LP_FILTER_ORDER);
  756. ff_celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
  757. pole_out + LP_FILTER_ORDER,
  758. AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
  759. ff_tilt_compensation(&p->tilt_mem, tilt_factor(lpc_n, lpc_d), buf_out,
  760. AMR_SUBFRAME_SIZE);
  761. ff_adaptive_gain_control(buf_out, buf_out, speech_gain, AMR_SUBFRAME_SIZE,
  762. AMR_AGC_ALPHA, &p->postfilter_agc);
  763. }
  764. /// @}
  765. static int amrnb_decode_frame(AVCodecContext *avctx, void *data,
  766. int *got_frame_ptr, AVPacket *avpkt)
  767. {
  768. AMRContext *p = avctx->priv_data; // pointer to private data
  769. const uint8_t *buf = avpkt->data;
  770. int buf_size = avpkt->size;
  771. float *buf_out; // pointer to the output data buffer
  772. int i, subframe, ret;
  773. float fixed_gain_factor;
  774. AMRFixed fixed_sparse = {0}; // fixed vector up to anti-sparseness processing
  775. float spare_vector[AMR_SUBFRAME_SIZE]; // extra stack space to hold result from anti-sparseness processing
  776. float synth_fixed_gain; // the fixed gain that synthesis should use
  777. const float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  778. /* get output buffer */
  779. p->avframe.nb_samples = AMR_BLOCK_SIZE;
  780. if ((ret = avctx->get_buffer(avctx, &p->avframe)) < 0) {
  781. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  782. return ret;
  783. }
  784. buf_out = (float *)p->avframe.data[0];
  785. p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
  786. if (p->cur_frame_mode == NO_DATA) {
  787. av_log(avctx, AV_LOG_ERROR, "Corrupt bitstream\n");
  788. return AVERROR_INVALIDDATA;
  789. }
  790. if (p->cur_frame_mode == MODE_DTX) {
  791. av_log_missing_feature(avctx, "dtx mode", 1);
  792. return -1;
  793. }
  794. if (p->cur_frame_mode == MODE_12k2) {
  795. lsf2lsp_5(p);
  796. } else
  797. lsf2lsp_3(p);
  798. for (i = 0; i < 4; i++)
  799. ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);
  800. for (subframe = 0; subframe < 4; subframe++) {
  801. const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];
  802. decode_pitch_vector(p, amr_subframe, subframe);
  803. decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
  804. p->cur_frame_mode, subframe);
  805. // The fixed gain (section 6.1.3) depends on the fixed vector
  806. // (section 6.1.2), but the fixed vector calculation uses
  807. // pitch sharpening based on the on the pitch gain (section 6.1.3).
  808. // So the correct order is: pitch gain, pitch sharpening, fixed gain.
  809. decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
  810. &fixed_gain_factor);
  811. pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);
  812. if (fixed_sparse.pitch_lag == 0) {
  813. av_log(avctx, AV_LOG_ERROR, "The file is corrupted, pitch_lag = 0 is not allowed\n");
  814. return AVERROR_INVALIDDATA;
  815. }
  816. ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
  817. AMR_SUBFRAME_SIZE);
  818. p->fixed_gain[4] =
  819. ff_amr_set_fixed_gain(fixed_gain_factor,
  820. ff_dot_productf(p->fixed_vector, p->fixed_vector,
  821. AMR_SUBFRAME_SIZE)/AMR_SUBFRAME_SIZE,
  822. p->prediction_error,
  823. energy_mean[p->cur_frame_mode], energy_pred_fac);
  824. // The excitation feedback is calculated without any processing such
  825. // as fixed gain smoothing. This isn't mentioned in the specification.
  826. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  827. p->excitation[i] *= p->pitch_gain[4];
  828. ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
  829. AMR_SUBFRAME_SIZE);
  830. // In the ref decoder, excitation is stored with no fractional bits.
  831. // This step prevents buzz in silent periods. The ref encoder can
  832. // emit long sequences with pitch factor greater than one. This
  833. // creates unwanted feedback if the excitation vector is nonzero.
  834. // (e.g. test sequence T19_795.COD in 3GPP TS 26.074)
  835. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  836. p->excitation[i] = truncf(p->excitation[i]);
  837. // Smooth fixed gain.
  838. // The specification is ambiguous, but in the reference source, the
  839. // smoothed value is NOT fed back into later fixed gain smoothing.
  840. synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
  841. p->lsf_avg, p->cur_frame_mode);
  842. synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
  843. synth_fixed_gain, spare_vector);
  844. if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
  845. synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
  846. // overflow detected -> rerun synthesis scaling pitch vector down
  847. // by a factor of 4, skipping pitch vector contribution emphasis
  848. // and adaptive gain control
  849. synthesis(p, p->lpc[subframe], synth_fixed_gain,
  850. synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);
  851. postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
  852. // update buffers and history
  853. ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
  854. update_state(p);
  855. }
  856. ff_acelp_apply_order_2_transfer_function(buf_out, buf_out, highpass_zeros,
  857. highpass_poles,
  858. highpass_gain * AMR_SAMPLE_SCALE,
  859. p->high_pass_mem, AMR_BLOCK_SIZE);
  860. /* Update averaged lsf vector (used for fixed gain smoothing).
  861. *
  862. * Note that lsf_avg should not incorporate the current frame's LSFs
  863. * for fixed_gain_smooth.
  864. * The specification has an incorrect formula: the reference decoder uses
  865. * qbar(n-1) rather than qbar(n) in section 6.1(4) equation 71. */
  866. ff_weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
  867. 0.84, 0.16, LP_FILTER_ORDER);
  868. *got_frame_ptr = 1;
  869. *(AVFrame *)data = p->avframe;
  870. /* return the amount of bytes consumed if everything was OK */
  871. return frame_sizes_nb[p->cur_frame_mode] + 1; // +7 for rounding and +8 for TOC
  872. }
  873. AVCodec ff_amrnb_decoder = {
  874. .name = "amrnb",
  875. .type = AVMEDIA_TYPE_AUDIO,
  876. .id = CODEC_ID_AMR_NB,
  877. .priv_data_size = sizeof(AMRContext),
  878. .init = amrnb_decode_init,
  879. .decode = amrnb_decode_frame,
  880. .capabilities = CODEC_CAP_DR1,
  881. .long_name = NULL_IF_CONFIG_SMALL("Adaptive Multi-Rate NarrowBand"),
  882. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  883. AV_SAMPLE_FMT_NONE },
  884. };