You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

785 lines
23KB

  1. /*
  2. * The simplest mpeg audio layer 2 encoder
  3. * Copyright (c) 2000 Gerard Lantau.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include "avcodec.h"
  20. #include <math.h>
  21. #include "mpegaudio.h"
  22. #define DCT_BITS 14 /* number of bits for the DCT */
  23. #define MUL(a,b) (((a) * (b)) >> DCT_BITS)
  24. #define FIX(a) ((int)((a) * (1 << DCT_BITS)))
  25. #define SAMPLES_BUF_SIZE 4096
  26. typedef struct MpegAudioContext {
  27. PutBitContext pb;
  28. int nb_channels;
  29. int freq, bit_rate;
  30. int lsf; /* 1 if mpeg2 low bitrate selected */
  31. int bitrate_index; /* bit rate */
  32. int freq_index;
  33. int frame_size; /* frame size, in bits, without padding */
  34. INT64 nb_samples; /* total number of samples encoded */
  35. /* padding computation */
  36. int frame_frac, frame_frac_incr, do_padding;
  37. short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
  38. int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */
  39. int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
  40. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
  41. /* code to group 3 scale factors */
  42. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  43. int sblimit; /* number of used subbands */
  44. const unsigned char *alloc_table;
  45. } MpegAudioContext;
  46. /* define it to use floats in quantization (I don't like floats !) */
  47. //#define USE_FLOATS
  48. #include "mpegaudiotab.h"
  49. int MPA_encode_init(AVCodecContext *avctx)
  50. {
  51. MpegAudioContext *s = avctx->priv_data;
  52. int freq = avctx->sample_rate;
  53. int bitrate = avctx->bit_rate;
  54. int channels = avctx->channels;
  55. int i, v, table;
  56. float a;
  57. if (channels > 2)
  58. return -1;
  59. bitrate = bitrate / 1000;
  60. s->nb_channels = channels;
  61. s->freq = freq;
  62. s->bit_rate = bitrate * 1000;
  63. avctx->frame_size = MPA_FRAME_SIZE;
  64. avctx->key_frame = 1; /* always key frame */
  65. /* encoding freq */
  66. s->lsf = 0;
  67. for(i=0;i<3;i++) {
  68. if (mpa_freq_tab[i] == freq)
  69. break;
  70. if ((mpa_freq_tab[i] / 2) == freq) {
  71. s->lsf = 1;
  72. break;
  73. }
  74. }
  75. if (i == 3)
  76. return -1;
  77. s->freq_index = i;
  78. /* encoding bitrate & frequency */
  79. for(i=0;i<15;i++) {
  80. if (mpa_bitrate_tab[s->lsf][1][i] == bitrate)
  81. break;
  82. }
  83. if (i == 15)
  84. return -1;
  85. s->bitrate_index = i;
  86. /* compute total header size & pad bit */
  87. a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
  88. s->frame_size = ((int)a) * 8;
  89. /* frame fractional size to compute padding */
  90. s->frame_frac = 0;
  91. s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
  92. /* select the right allocation table */
  93. table = l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
  94. /* number of used subbands */
  95. s->sblimit = sblimit_table[table];
  96. s->alloc_table = alloc_tables[table];
  97. #ifdef DEBUG
  98. printf("%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
  99. bitrate, freq, s->frame_size, table, s->frame_frac_incr);
  100. #endif
  101. for(i=0;i<s->nb_channels;i++)
  102. s->samples_offset[i] = 0;
  103. for(i=0;i<257;i++) {
  104. int v;
  105. v = (mpa_enwindow[i] + 2) >> 2;
  106. filter_bank[i] = v;
  107. if ((i & 63) != 0)
  108. v = -v;
  109. if (i != 0)
  110. filter_bank[512 - i] = v;
  111. }
  112. for(i=0;i<64;i++) {
  113. v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20));
  114. if (v <= 0)
  115. v = 1;
  116. scale_factor_table[i] = v;
  117. #ifdef USE_FLOATS
  118. scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20);
  119. #else
  120. #define P 15
  121. scale_factor_shift[i] = 21 - P - (i / 3);
  122. scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0);
  123. #endif
  124. }
  125. for(i=0;i<128;i++) {
  126. v = i - 64;
  127. if (v <= -3)
  128. v = 0;
  129. else if (v < 0)
  130. v = 1;
  131. else if (v == 0)
  132. v = 2;
  133. else if (v < 3)
  134. v = 3;
  135. else
  136. v = 4;
  137. scale_diff_table[i] = v;
  138. }
  139. for(i=0;i<17;i++) {
  140. v = quant_bits[i];
  141. if (v < 0)
  142. v = -v;
  143. else
  144. v = v * 3;
  145. total_quant_bits[i] = 12 * v;
  146. }
  147. return 0;
  148. }
  149. /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
  150. static void idct32(int *out, int *tab, int sblimit, int left_shift)
  151. {
  152. int i, j;
  153. int *t, *t1, xr;
  154. const int *xp = costab32;
  155. for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
  156. t = tab + 30;
  157. t1 = tab + 2;
  158. do {
  159. t[0] += t[-4];
  160. t[1] += t[1 - 4];
  161. t -= 4;
  162. } while (t != t1);
  163. t = tab + 28;
  164. t1 = tab + 4;
  165. do {
  166. t[0] += t[-8];
  167. t[1] += t[1-8];
  168. t[2] += t[2-8];
  169. t[3] += t[3-8];
  170. t -= 8;
  171. } while (t != t1);
  172. t = tab;
  173. t1 = tab + 32;
  174. do {
  175. t[ 3] = -t[ 3];
  176. t[ 6] = -t[ 6];
  177. t[11] = -t[11];
  178. t[12] = -t[12];
  179. t[13] = -t[13];
  180. t[15] = -t[15];
  181. t += 16;
  182. } while (t != t1);
  183. t = tab;
  184. t1 = tab + 8;
  185. do {
  186. int x1, x2, x3, x4;
  187. x3 = MUL(t[16], FIX(SQRT2*0.5));
  188. x4 = t[0] - x3;
  189. x3 = t[0] + x3;
  190. x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
  191. x1 = MUL((t[8] - x2), xp[0]);
  192. x2 = MUL((t[8] + x2), xp[1]);
  193. t[ 0] = x3 + x1;
  194. t[ 8] = x4 - x2;
  195. t[16] = x4 + x2;
  196. t[24] = x3 - x1;
  197. t++;
  198. } while (t != t1);
  199. xp += 2;
  200. t = tab;
  201. t1 = tab + 4;
  202. do {
  203. xr = MUL(t[28],xp[0]);
  204. t[28] = (t[0] - xr);
  205. t[0] = (t[0] + xr);
  206. xr = MUL(t[4],xp[1]);
  207. t[ 4] = (t[24] - xr);
  208. t[24] = (t[24] + xr);
  209. xr = MUL(t[20],xp[2]);
  210. t[20] = (t[8] - xr);
  211. t[ 8] = (t[8] + xr);
  212. xr = MUL(t[12],xp[3]);
  213. t[12] = (t[16] - xr);
  214. t[16] = (t[16] + xr);
  215. t++;
  216. } while (t != t1);
  217. xp += 4;
  218. for (i = 0; i < 4; i++) {
  219. xr = MUL(tab[30-i*4],xp[0]);
  220. tab[30-i*4] = (tab[i*4] - xr);
  221. tab[ i*4] = (tab[i*4] + xr);
  222. xr = MUL(tab[ 2+i*4],xp[1]);
  223. tab[ 2+i*4] = (tab[28-i*4] - xr);
  224. tab[28-i*4] = (tab[28-i*4] + xr);
  225. xr = MUL(tab[31-i*4],xp[0]);
  226. tab[31-i*4] = (tab[1+i*4] - xr);
  227. tab[ 1+i*4] = (tab[1+i*4] + xr);
  228. xr = MUL(tab[ 3+i*4],xp[1]);
  229. tab[ 3+i*4] = (tab[29-i*4] - xr);
  230. tab[29-i*4] = (tab[29-i*4] + xr);
  231. xp += 2;
  232. }
  233. t = tab + 30;
  234. t1 = tab + 1;
  235. do {
  236. xr = MUL(t1[0], *xp);
  237. t1[0] = (t[0] - xr);
  238. t[0] = (t[0] + xr);
  239. t -= 2;
  240. t1 += 2;
  241. xp++;
  242. } while (t >= tab);
  243. for(i=0;i<32;i++) {
  244. out[i] = tab[bitinv32[i]] << left_shift;
  245. }
  246. }
  247. static void filter(MpegAudioContext *s, int ch, short *samples, int incr)
  248. {
  249. short *p, *q;
  250. int sum, offset, i, j, norm, n;
  251. short tmp[64];
  252. int tmp1[32];
  253. int *out;
  254. // print_pow1(samples, 1152);
  255. offset = s->samples_offset[ch];
  256. out = &s->sb_samples[ch][0][0][0];
  257. for(j=0;j<36;j++) {
  258. /* 32 samples at once */
  259. for(i=0;i<32;i++) {
  260. s->samples_buf[ch][offset + (31 - i)] = samples[0];
  261. samples += incr;
  262. }
  263. /* filter */
  264. p = s->samples_buf[ch] + offset;
  265. q = filter_bank;
  266. /* maxsum = 23169 */
  267. for(i=0;i<64;i++) {
  268. sum = p[0*64] * q[0*64];
  269. sum += p[1*64] * q[1*64];
  270. sum += p[2*64] * q[2*64];
  271. sum += p[3*64] * q[3*64];
  272. sum += p[4*64] * q[4*64];
  273. sum += p[5*64] * q[5*64];
  274. sum += p[6*64] * q[6*64];
  275. sum += p[7*64] * q[7*64];
  276. tmp[i] = sum >> 14;
  277. p++;
  278. q++;
  279. }
  280. tmp1[0] = tmp[16];
  281. for( i=1; i<=16; i++ ) tmp1[i] = tmp[i+16]+tmp[16-i];
  282. for( i=17; i<=31; i++ ) tmp1[i] = tmp[i+16]-tmp[80-i];
  283. /* integer IDCT 32 with normalization. XXX: There may be some
  284. overflow left */
  285. norm = 0;
  286. for(i=0;i<32;i++) {
  287. norm |= abs(tmp1[i]);
  288. }
  289. n = av_log2(norm) - 12;
  290. if (n > 0) {
  291. for(i=0;i<32;i++)
  292. tmp1[i] >>= n;
  293. } else {
  294. n = 0;
  295. }
  296. idct32(out, tmp1, s->sblimit, n);
  297. /* advance of 32 samples */
  298. offset -= 32;
  299. out += 32;
  300. /* handle the wrap around */
  301. if (offset < 0) {
  302. memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
  303. s->samples_buf[ch], (512 - 32) * 2);
  304. offset = SAMPLES_BUF_SIZE - 512;
  305. }
  306. }
  307. s->samples_offset[ch] = offset;
  308. // print_pow(s->sb_samples, 1152);
  309. }
  310. static void compute_scale_factors(unsigned char scale_code[SBLIMIT],
  311. unsigned char scale_factors[SBLIMIT][3],
  312. int sb_samples[3][12][SBLIMIT],
  313. int sblimit)
  314. {
  315. int *p, vmax, v, n, i, j, k, code;
  316. int index, d1, d2;
  317. unsigned char *sf = &scale_factors[0][0];
  318. for(j=0;j<sblimit;j++) {
  319. for(i=0;i<3;i++) {
  320. /* find the max absolute value */
  321. p = &sb_samples[i][0][j];
  322. vmax = abs(*p);
  323. for(k=1;k<12;k++) {
  324. p += SBLIMIT;
  325. v = abs(*p);
  326. if (v > vmax)
  327. vmax = v;
  328. }
  329. /* compute the scale factor index using log 2 computations */
  330. if (vmax > 0) {
  331. n = av_log2(vmax);
  332. /* n is the position of the MSB of vmax. now
  333. use at most 2 compares to find the index */
  334. index = (21 - n) * 3 - 3;
  335. if (index >= 0) {
  336. while (vmax <= scale_factor_table[index+1])
  337. index++;
  338. } else {
  339. index = 0; /* very unlikely case of overflow */
  340. }
  341. } else {
  342. index = 63;
  343. }
  344. #if 0
  345. printf("%2d:%d in=%x %x %d\n",
  346. j, i, vmax, scale_factor_table[index], index);
  347. #endif
  348. /* store the scale factor */
  349. assert(index >=0 && index <= 63);
  350. sf[i] = index;
  351. }
  352. /* compute the transmission factor : look if the scale factors
  353. are close enough to each other */
  354. d1 = scale_diff_table[sf[0] - sf[1] + 64];
  355. d2 = scale_diff_table[sf[1] - sf[2] + 64];
  356. /* handle the 25 cases */
  357. switch(d1 * 5 + d2) {
  358. case 0*5+0:
  359. case 0*5+4:
  360. case 3*5+4:
  361. case 4*5+0:
  362. case 4*5+4:
  363. code = 0;
  364. break;
  365. case 0*5+1:
  366. case 0*5+2:
  367. case 4*5+1:
  368. case 4*5+2:
  369. code = 3;
  370. sf[2] = sf[1];
  371. break;
  372. case 0*5+3:
  373. case 4*5+3:
  374. code = 3;
  375. sf[1] = sf[2];
  376. break;
  377. case 1*5+0:
  378. case 1*5+4:
  379. case 2*5+4:
  380. code = 1;
  381. sf[1] = sf[0];
  382. break;
  383. case 1*5+1:
  384. case 1*5+2:
  385. case 2*5+0:
  386. case 2*5+1:
  387. case 2*5+2:
  388. code = 2;
  389. sf[1] = sf[2] = sf[0];
  390. break;
  391. case 2*5+3:
  392. case 3*5+3:
  393. code = 2;
  394. sf[0] = sf[1] = sf[2];
  395. break;
  396. case 3*5+0:
  397. case 3*5+1:
  398. case 3*5+2:
  399. code = 2;
  400. sf[0] = sf[2] = sf[1];
  401. break;
  402. case 1*5+3:
  403. code = 2;
  404. if (sf[0] > sf[2])
  405. sf[0] = sf[2];
  406. sf[1] = sf[2] = sf[0];
  407. break;
  408. default:
  409. abort();
  410. }
  411. #if 0
  412. printf("%d: %2d %2d %2d %d %d -> %d\n", j,
  413. sf[0], sf[1], sf[2], d1, d2, code);
  414. #endif
  415. scale_code[j] = code;
  416. sf += 3;
  417. }
  418. }
  419. /* The most important function : psycho acoustic module. In this
  420. encoder there is basically none, so this is the worst you can do,
  421. but also this is the simpler. */
  422. static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
  423. {
  424. int i;
  425. for(i=0;i<s->sblimit;i++) {
  426. smr[i] = (int)(fixed_smr[i] * 10);
  427. }
  428. }
  429. #define SB_NOTALLOCATED 0
  430. #define SB_ALLOCATED 1
  431. #define SB_NOMORE 2
  432. /* Try to maximize the smr while using a number of bits inferior to
  433. the frame size. I tried to make the code simpler, faster and
  434. smaller than other encoders :-) */
  435. static void compute_bit_allocation(MpegAudioContext *s,
  436. short smr1[MPA_MAX_CHANNELS][SBLIMIT],
  437. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  438. int *padding)
  439. {
  440. int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
  441. int incr;
  442. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  443. unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
  444. const unsigned char *alloc;
  445. memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
  446. memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
  447. memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
  448. /* compute frame size and padding */
  449. max_frame_size = s->frame_size;
  450. s->frame_frac += s->frame_frac_incr;
  451. if (s->frame_frac >= 65536) {
  452. s->frame_frac -= 65536;
  453. s->do_padding = 1;
  454. max_frame_size += 8;
  455. } else {
  456. s->do_padding = 0;
  457. }
  458. /* compute the header + bit alloc size */
  459. current_frame_size = 32;
  460. alloc = s->alloc_table;
  461. for(i=0;i<s->sblimit;i++) {
  462. incr = alloc[0];
  463. current_frame_size += incr * s->nb_channels;
  464. alloc += 1 << incr;
  465. }
  466. for(;;) {
  467. /* look for the subband with the largest signal to mask ratio */
  468. max_sb = -1;
  469. max_ch = -1;
  470. max_smr = 0x80000000;
  471. for(ch=0;ch<s->nb_channels;ch++) {
  472. for(i=0;i<s->sblimit;i++) {
  473. if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
  474. max_smr = smr[ch][i];
  475. max_sb = i;
  476. max_ch = ch;
  477. }
  478. }
  479. }
  480. #if 0
  481. printf("current=%d max=%d max_sb=%d alloc=%d\n",
  482. current_frame_size, max_frame_size, max_sb,
  483. bit_alloc[max_sb]);
  484. #endif
  485. if (max_sb < 0)
  486. break;
  487. /* find alloc table entry (XXX: not optimal, should use
  488. pointer table) */
  489. alloc = s->alloc_table;
  490. for(i=0;i<max_sb;i++) {
  491. alloc += 1 << alloc[0];
  492. }
  493. if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
  494. /* nothing was coded for this band: add the necessary bits */
  495. incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
  496. incr += total_quant_bits[alloc[1]];
  497. } else {
  498. /* increments bit allocation */
  499. b = bit_alloc[max_ch][max_sb];
  500. incr = total_quant_bits[alloc[b + 1]] -
  501. total_quant_bits[alloc[b]];
  502. }
  503. if (current_frame_size + incr <= max_frame_size) {
  504. /* can increase size */
  505. b = ++bit_alloc[max_ch][max_sb];
  506. current_frame_size += incr;
  507. /* decrease smr by the resolution we added */
  508. smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
  509. /* max allocation size reached ? */
  510. if (b == ((1 << alloc[0]) - 1))
  511. subband_status[max_ch][max_sb] = SB_NOMORE;
  512. else
  513. subband_status[max_ch][max_sb] = SB_ALLOCATED;
  514. } else {
  515. /* cannot increase the size of this subband */
  516. subband_status[max_ch][max_sb] = SB_NOMORE;
  517. }
  518. }
  519. *padding = max_frame_size - current_frame_size;
  520. assert(*padding >= 0);
  521. #if 0
  522. for(i=0;i<s->sblimit;i++) {
  523. printf("%d ", bit_alloc[i]);
  524. }
  525. printf("\n");
  526. #endif
  527. }
  528. /*
  529. * Output the mpeg audio layer 2 frame. Note how the code is small
  530. * compared to other encoders :-)
  531. */
  532. static void encode_frame(MpegAudioContext *s,
  533. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  534. int padding)
  535. {
  536. int i, j, k, l, bit_alloc_bits, b, ch;
  537. unsigned char *sf;
  538. int q[3];
  539. PutBitContext *p = &s->pb;
  540. /* header */
  541. put_bits(p, 12, 0xfff);
  542. put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
  543. put_bits(p, 2, 4-2); /* layer 2 */
  544. put_bits(p, 1, 1); /* no error protection */
  545. put_bits(p, 4, s->bitrate_index);
  546. put_bits(p, 2, s->freq_index);
  547. put_bits(p, 1, s->do_padding); /* use padding */
  548. put_bits(p, 1, 0); /* private_bit */
  549. put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
  550. put_bits(p, 2, 0); /* mode_ext */
  551. put_bits(p, 1, 0); /* no copyright */
  552. put_bits(p, 1, 1); /* original */
  553. put_bits(p, 2, 0); /* no emphasis */
  554. /* bit allocation */
  555. j = 0;
  556. for(i=0;i<s->sblimit;i++) {
  557. bit_alloc_bits = s->alloc_table[j];
  558. for(ch=0;ch<s->nb_channels;ch++) {
  559. put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
  560. }
  561. j += 1 << bit_alloc_bits;
  562. }
  563. /* scale codes */
  564. for(i=0;i<s->sblimit;i++) {
  565. for(ch=0;ch<s->nb_channels;ch++) {
  566. if (bit_alloc[ch][i])
  567. put_bits(p, 2, s->scale_code[ch][i]);
  568. }
  569. }
  570. /* scale factors */
  571. for(i=0;i<s->sblimit;i++) {
  572. for(ch=0;ch<s->nb_channels;ch++) {
  573. if (bit_alloc[ch][i]) {
  574. sf = &s->scale_factors[ch][i][0];
  575. switch(s->scale_code[ch][i]) {
  576. case 0:
  577. put_bits(p, 6, sf[0]);
  578. put_bits(p, 6, sf[1]);
  579. put_bits(p, 6, sf[2]);
  580. break;
  581. case 3:
  582. case 1:
  583. put_bits(p, 6, sf[0]);
  584. put_bits(p, 6, sf[2]);
  585. break;
  586. case 2:
  587. put_bits(p, 6, sf[0]);
  588. break;
  589. }
  590. }
  591. }
  592. }
  593. /* quantization & write sub band samples */
  594. for(k=0;k<3;k++) {
  595. for(l=0;l<12;l+=3) {
  596. j = 0;
  597. for(i=0;i<s->sblimit;i++) {
  598. bit_alloc_bits = s->alloc_table[j];
  599. for(ch=0;ch<s->nb_channels;ch++) {
  600. b = bit_alloc[ch][i];
  601. if (b) {
  602. int qindex, steps, m, sample, bits;
  603. /* we encode 3 sub band samples of the same sub band at a time */
  604. qindex = s->alloc_table[j+b];
  605. steps = quant_steps[qindex];
  606. for(m=0;m<3;m++) {
  607. sample = s->sb_samples[ch][k][l + m][i];
  608. /* divide by scale factor */
  609. #ifdef USE_FLOATS
  610. {
  611. float a;
  612. a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]];
  613. q[m] = (int)((a + 1.0) * steps * 0.5);
  614. }
  615. #else
  616. {
  617. int q1, e, shift, mult;
  618. e = s->scale_factors[ch][i][k];
  619. shift = scale_factor_shift[e];
  620. mult = scale_factor_mult[e];
  621. /* normalize to P bits */
  622. if (shift < 0)
  623. q1 = sample << (-shift);
  624. else
  625. q1 = sample >> shift;
  626. q1 = (q1 * mult) >> P;
  627. q[m] = ((q1 + (1 << P)) * steps) >> (P + 1);
  628. }
  629. #endif
  630. if (q[m] >= steps)
  631. q[m] = steps - 1;
  632. assert(q[m] >= 0 && q[m] < steps);
  633. }
  634. bits = quant_bits[qindex];
  635. if (bits < 0) {
  636. /* group the 3 values to save bits */
  637. put_bits(p, -bits,
  638. q[0] + steps * (q[1] + steps * q[2]));
  639. #if 0
  640. printf("%d: gr1 %d\n",
  641. i, q[0] + steps * (q[1] + steps * q[2]));
  642. #endif
  643. } else {
  644. #if 0
  645. printf("%d: gr3 %d %d %d\n",
  646. i, q[0], q[1], q[2]);
  647. #endif
  648. put_bits(p, bits, q[0]);
  649. put_bits(p, bits, q[1]);
  650. put_bits(p, bits, q[2]);
  651. }
  652. }
  653. }
  654. /* next subband in alloc table */
  655. j += 1 << bit_alloc_bits;
  656. }
  657. }
  658. }
  659. /* padding */
  660. for(i=0;i<padding;i++)
  661. put_bits(p, 1, 0);
  662. /* flush */
  663. flush_put_bits(p);
  664. }
  665. int MPA_encode_frame(AVCodecContext *avctx,
  666. unsigned char *frame, int buf_size, void *data)
  667. {
  668. MpegAudioContext *s = avctx->priv_data;
  669. short *samples = data;
  670. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  671. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  672. int padding, i;
  673. for(i=0;i<s->nb_channels;i++) {
  674. filter(s, i, samples + i, s->nb_channels);
  675. }
  676. for(i=0;i<s->nb_channels;i++) {
  677. compute_scale_factors(s->scale_code[i], s->scale_factors[i],
  678. s->sb_samples[i], s->sblimit);
  679. }
  680. for(i=0;i<s->nb_channels;i++) {
  681. psycho_acoustic_model(s, smr[i]);
  682. }
  683. compute_bit_allocation(s, smr, bit_alloc, &padding);
  684. init_put_bits(&s->pb, frame, MPA_MAX_CODED_FRAME_SIZE, NULL, NULL);
  685. encode_frame(s, bit_alloc, padding);
  686. s->nb_samples += MPA_FRAME_SIZE;
  687. return s->pb.buf_ptr - s->pb.buf;
  688. }
  689. AVCodec mp2_encoder = {
  690. "mp2",
  691. CODEC_TYPE_AUDIO,
  692. CODEC_ID_MP2,
  693. sizeof(MpegAudioContext),
  694. MPA_encode_init,
  695. MPA_encode_frame,
  696. NULL,
  697. };