You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1451 lines
45KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  23. * the algorithm used
  24. */
  25. /**
  26. * @file huffyuv.c
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "bitstream.h"
  31. #include "dsputil.h"
  32. #define VLC_BITS 11
  33. #ifdef WORDS_BIGENDIAN
  34. #define B 3
  35. #define G 2
  36. #define R 1
  37. #else
  38. #define B 0
  39. #define G 1
  40. #define R 2
  41. #endif
  42. typedef enum Predictor{
  43. LEFT= 0,
  44. PLANE,
  45. MEDIAN,
  46. } Predictor;
  47. typedef struct HYuvContext{
  48. AVCodecContext *avctx;
  49. Predictor predictor;
  50. GetBitContext gb;
  51. PutBitContext pb;
  52. int interlaced;
  53. int decorrelate;
  54. int bitstream_bpp;
  55. int version;
  56. int yuy2; //use yuy2 instead of 422P
  57. int bgr32; //use bgr32 instead of bgr24
  58. int width, height;
  59. int flags;
  60. int context;
  61. int picture_number;
  62. int last_slice_end;
  63. uint8_t *temp[3];
  64. uint64_t stats[3][256];
  65. uint8_t len[3][256];
  66. uint32_t bits[3][256];
  67. VLC vlc[6]; //Y,U,V,YY,YU,YV
  68. AVFrame picture;
  69. uint8_t *bitstream_buffer;
  70. unsigned int bitstream_buffer_size;
  71. DSPContext dsp;
  72. }HYuvContext;
  73. static const unsigned char classic_shift_luma[] = {
  74. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  75. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  76. 69,68, 0
  77. };
  78. static const unsigned char classic_shift_chroma[] = {
  79. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  80. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  81. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  82. };
  83. static const unsigned char classic_add_luma[256] = {
  84. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  85. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  86. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  87. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  88. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  89. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  90. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  91. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  92. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  93. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  94. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  95. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  96. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  97. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  98. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  99. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  100. };
  101. static const unsigned char classic_add_chroma[256] = {
  102. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  103. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  104. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  105. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  106. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  107. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  108. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  109. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  110. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  111. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  112. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  113. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  114. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  115. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  116. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  117. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  118. };
  119. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  120. int i;
  121. for(i=0; i<w-1; i++){
  122. acc+= src[i];
  123. dst[i]= acc;
  124. i++;
  125. acc+= src[i];
  126. dst[i]= acc;
  127. }
  128. for(; i<w; i++){
  129. acc+= src[i];
  130. dst[i]= acc;
  131. }
  132. return acc;
  133. }
  134. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  135. int i;
  136. uint8_t l, lt;
  137. l= *left;
  138. lt= *left_top;
  139. for(i=0; i<w; i++){
  140. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  141. lt= src1[i];
  142. dst[i]= l;
  143. }
  144. *left= l;
  145. *left_top= lt;
  146. }
  147. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  148. int i;
  149. int r,g,b;
  150. r= *red;
  151. g= *green;
  152. b= *blue;
  153. for(i=0; i<w; i++){
  154. b+= src[4*i+B];
  155. g+= src[4*i+G];
  156. r+= src[4*i+R];
  157. dst[4*i+B]= b;
  158. dst[4*i+G]= g;
  159. dst[4*i+R]= r;
  160. }
  161. *red= r;
  162. *green= g;
  163. *blue= b;
  164. }
  165. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  166. int i;
  167. if(w<32){
  168. for(i=0; i<w; i++){
  169. const int temp= src[i];
  170. dst[i]= temp - left;
  171. left= temp;
  172. }
  173. return left;
  174. }else{
  175. for(i=0; i<16; i++){
  176. const int temp= src[i];
  177. dst[i]= temp - left;
  178. left= temp;
  179. }
  180. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  181. return src[w-1];
  182. }
  183. }
  184. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  185. int i;
  186. int r,g,b;
  187. r= *red;
  188. g= *green;
  189. b= *blue;
  190. for(i=0; i<FFMIN(w,4); i++){
  191. const int rt= src[i*4+R];
  192. const int gt= src[i*4+G];
  193. const int bt= src[i*4+B];
  194. dst[i*4+R]= rt - r;
  195. dst[i*4+G]= gt - g;
  196. dst[i*4+B]= bt - b;
  197. r = rt;
  198. g = gt;
  199. b = bt;
  200. }
  201. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  202. *red= src[(w-1)*4+R];
  203. *green= src[(w-1)*4+G];
  204. *blue= src[(w-1)*4+B];
  205. }
  206. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  207. int i, val, repeat;
  208. for(i=0; i<256;){
  209. repeat= get_bits(gb, 3);
  210. val = get_bits(gb, 5);
  211. if(repeat==0)
  212. repeat= get_bits(gb, 8);
  213. //printf("%d %d\n", val, repeat);
  214. while (repeat--)
  215. dst[i++] = val;
  216. }
  217. }
  218. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  219. int len, index;
  220. uint32_t bits=0;
  221. for(len=32; len>0; len--){
  222. for(index=0; index<256; index++){
  223. if(len_table[index]==len)
  224. dst[index]= bits++;
  225. }
  226. if(bits & 1){
  227. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  228. return -1;
  229. }
  230. bits >>= 1;
  231. }
  232. return 0;
  233. }
  234. #ifdef CONFIG_ENCODERS
  235. typedef struct {
  236. uint64_t val;
  237. int name;
  238. } heap_elem_t;
  239. static void heap_sift(heap_elem_t *h, int root, int size)
  240. {
  241. while(root*2+1 < size) {
  242. int child = root*2+1;
  243. if(child < size-1 && h[child].val > h[child+1].val)
  244. child++;
  245. if(h[root].val > h[child].val) {
  246. FFSWAP(heap_elem_t, h[root], h[child]);
  247. root = child;
  248. } else
  249. break;
  250. }
  251. }
  252. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  253. heap_elem_t h[size];
  254. int up[2*size];
  255. int len[2*size];
  256. int offset, i, next;
  257. for(offset=1; ; offset<<=1){
  258. for(i=0; i<size; i++){
  259. h[i].name = i;
  260. h[i].val = (stats[i] << 8) + offset;
  261. }
  262. for(i=size/2-1; i>=0; i--)
  263. heap_sift(h, i, size);
  264. for(next=size; next<size*2-1; next++){
  265. // merge the two smallest entries, and put it back in the heap
  266. uint64_t min1v = h[0].val;
  267. up[h[0].name] = next;
  268. h[0].val = INT64_MAX;
  269. heap_sift(h, 0, size);
  270. up[h[0].name] = next;
  271. h[0].name = next;
  272. h[0].val += min1v;
  273. heap_sift(h, 0, size);
  274. }
  275. len[2*size-2] = 0;
  276. for(i=2*size-3; i>=size; i--)
  277. len[i] = len[up[i]] + 1;
  278. for(i=0; i<size; i++) {
  279. dst[i] = len[up[i]] + 1;
  280. if(dst[i] > 32) break;
  281. }
  282. if(i==size) break;
  283. }
  284. }
  285. #endif /* CONFIG_ENCODERS */
  286. static void generate_joint_tables(HYuvContext *s){
  287. // TODO rgb
  288. if(s->bitstream_bpp < 24){
  289. uint16_t symbols[1<<VLC_BITS];
  290. uint16_t bits[1<<VLC_BITS];
  291. uint8_t len[1<<VLC_BITS];
  292. int p, i, y, u;
  293. for(p=0; p<3; p++){
  294. for(i=y=0; y<256; y++){
  295. int len0 = s->len[0][y];
  296. int limit = VLC_BITS - len0;
  297. if(limit <= 0)
  298. continue;
  299. for(u=0; u<256; u++){
  300. int len1 = s->len[p][u];
  301. if(len1 > limit)
  302. continue;
  303. len[i] = len0 + len1;
  304. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  305. symbols[i] = (y<<8) + u;
  306. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  307. i++;
  308. }
  309. }
  310. free_vlc(&s->vlc[3+p]);
  311. init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0);
  312. }
  313. }
  314. }
  315. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  316. GetBitContext gb;
  317. int i;
  318. init_get_bits(&gb, src, length*8);
  319. for(i=0; i<3; i++){
  320. read_len_table(s->len[i], &gb);
  321. if(generate_bits_table(s->bits[i], s->len[i])<0){
  322. return -1;
  323. }
  324. #if 0
  325. for(j=0; j<256; j++){
  326. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  327. }
  328. #endif
  329. free_vlc(&s->vlc[i]);
  330. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  331. }
  332. generate_joint_tables(s);
  333. return (get_bits_count(&gb)+7)/8;
  334. }
  335. static int read_old_huffman_tables(HYuvContext *s){
  336. #if 1
  337. GetBitContext gb;
  338. int i;
  339. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  340. read_len_table(s->len[0], &gb);
  341. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  342. read_len_table(s->len[1], &gb);
  343. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  344. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  345. if(s->bitstream_bpp >= 24){
  346. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  347. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  348. }
  349. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  350. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  351. for(i=0; i<3; i++){
  352. free_vlc(&s->vlc[i]);
  353. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  354. }
  355. generate_joint_tables(s);
  356. return 0;
  357. #else
  358. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  359. return -1;
  360. #endif
  361. }
  362. static void alloc_temp(HYuvContext *s){
  363. int i;
  364. if(s->bitstream_bpp<24){
  365. for(i=0; i<3; i++){
  366. s->temp[i]= av_malloc(s->width + 16);
  367. }
  368. }else{
  369. for(i=0; i<2; i++){
  370. s->temp[i]= av_malloc(4*s->width + 16);
  371. }
  372. }
  373. }
  374. static int common_init(AVCodecContext *avctx){
  375. HYuvContext *s = avctx->priv_data;
  376. s->avctx= avctx;
  377. s->flags= avctx->flags;
  378. dsputil_init(&s->dsp, avctx);
  379. s->width= avctx->width;
  380. s->height= avctx->height;
  381. assert(s->width>0 && s->height>0);
  382. return 0;
  383. }
  384. #ifdef CONFIG_DECODERS
  385. static int decode_init(AVCodecContext *avctx)
  386. {
  387. HYuvContext *s = avctx->priv_data;
  388. common_init(avctx);
  389. memset(s->vlc, 0, 3*sizeof(VLC));
  390. avctx->coded_frame= &s->picture;
  391. s->interlaced= s->height > 288;
  392. s->bgr32=1;
  393. //if(avctx->extradata)
  394. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  395. if(avctx->extradata_size){
  396. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  397. s->version=1; // do such files exist at all?
  398. else
  399. s->version=2;
  400. }else
  401. s->version=0;
  402. if(s->version==2){
  403. int method, interlace;
  404. method= ((uint8_t*)avctx->extradata)[0];
  405. s->decorrelate= method&64 ? 1 : 0;
  406. s->predictor= method&63;
  407. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  408. if(s->bitstream_bpp==0)
  409. s->bitstream_bpp= avctx->bits_per_sample&~7;
  410. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  411. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  412. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  413. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  414. return -1;
  415. }else{
  416. switch(avctx->bits_per_sample&7){
  417. case 1:
  418. s->predictor= LEFT;
  419. s->decorrelate= 0;
  420. break;
  421. case 2:
  422. s->predictor= LEFT;
  423. s->decorrelate= 1;
  424. break;
  425. case 3:
  426. s->predictor= PLANE;
  427. s->decorrelate= avctx->bits_per_sample >= 24;
  428. break;
  429. case 4:
  430. s->predictor= MEDIAN;
  431. s->decorrelate= 0;
  432. break;
  433. default:
  434. s->predictor= LEFT; //OLD
  435. s->decorrelate= 0;
  436. break;
  437. }
  438. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  439. s->context= 0;
  440. if(read_old_huffman_tables(s) < 0)
  441. return -1;
  442. }
  443. switch(s->bitstream_bpp){
  444. case 12:
  445. avctx->pix_fmt = PIX_FMT_YUV420P;
  446. break;
  447. case 16:
  448. if(s->yuy2){
  449. avctx->pix_fmt = PIX_FMT_YUYV422;
  450. }else{
  451. avctx->pix_fmt = PIX_FMT_YUV422P;
  452. }
  453. break;
  454. case 24:
  455. case 32:
  456. if(s->bgr32){
  457. avctx->pix_fmt = PIX_FMT_RGB32;
  458. }else{
  459. avctx->pix_fmt = PIX_FMT_BGR24;
  460. }
  461. break;
  462. default:
  463. assert(0);
  464. }
  465. alloc_temp(s);
  466. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  467. return 0;
  468. }
  469. #endif
  470. #ifdef CONFIG_ENCODERS
  471. static int store_table(HYuvContext *s, uint8_t *len, uint8_t *buf){
  472. int i;
  473. int index= 0;
  474. for(i=0; i<256;){
  475. int val= len[i];
  476. int repeat=0;
  477. for(; i<256 && len[i]==val && repeat<255; i++)
  478. repeat++;
  479. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  480. if(repeat>7){
  481. buf[index++]= val;
  482. buf[index++]= repeat;
  483. }else{
  484. buf[index++]= val | (repeat<<5);
  485. }
  486. }
  487. return index;
  488. }
  489. static int encode_init(AVCodecContext *avctx)
  490. {
  491. HYuvContext *s = avctx->priv_data;
  492. int i, j;
  493. common_init(avctx);
  494. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  495. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  496. s->version=2;
  497. avctx->coded_frame= &s->picture;
  498. switch(avctx->pix_fmt){
  499. case PIX_FMT_YUV420P:
  500. s->bitstream_bpp= 12;
  501. break;
  502. case PIX_FMT_YUV422P:
  503. s->bitstream_bpp= 16;
  504. break;
  505. case PIX_FMT_RGB32:
  506. s->bitstream_bpp= 24;
  507. break;
  508. default:
  509. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  510. return -1;
  511. }
  512. avctx->bits_per_sample= s->bitstream_bpp;
  513. s->decorrelate= s->bitstream_bpp >= 24;
  514. s->predictor= avctx->prediction_method;
  515. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  516. if(avctx->context_model==1){
  517. s->context= avctx->context_model;
  518. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  519. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  520. return -1;
  521. }
  522. }else s->context= 0;
  523. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  524. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  525. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  526. return -1;
  527. }
  528. if(avctx->context_model){
  529. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  530. return -1;
  531. }
  532. if(s->interlaced != ( s->height > 288 ))
  533. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  534. }
  535. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  536. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  537. return -1;
  538. }
  539. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  540. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  541. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  542. if(s->context)
  543. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  544. ((uint8_t*)avctx->extradata)[3]= 0;
  545. s->avctx->extradata_size= 4;
  546. if(avctx->stats_in){
  547. char *p= avctx->stats_in;
  548. for(i=0; i<3; i++)
  549. for(j=0; j<256; j++)
  550. s->stats[i][j]= 1;
  551. for(;;){
  552. for(i=0; i<3; i++){
  553. char *next;
  554. for(j=0; j<256; j++){
  555. s->stats[i][j]+= strtol(p, &next, 0);
  556. if(next==p) return -1;
  557. p=next;
  558. }
  559. }
  560. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  561. }
  562. }else{
  563. for(i=0; i<3; i++)
  564. for(j=0; j<256; j++){
  565. int d= FFMIN(j, 256-j);
  566. s->stats[i][j]= 100000000/(d+1);
  567. }
  568. }
  569. for(i=0; i<3; i++){
  570. generate_len_table(s->len[i], s->stats[i], 256);
  571. if(generate_bits_table(s->bits[i], s->len[i])<0){
  572. return -1;
  573. }
  574. s->avctx->extradata_size+=
  575. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  576. }
  577. if(s->context){
  578. for(i=0; i<3; i++){
  579. int pels = s->width*s->height / (i?40:10);
  580. for(j=0; j<256; j++){
  581. int d= FFMIN(j, 256-j);
  582. s->stats[i][j]= pels/(d+1);
  583. }
  584. }
  585. }else{
  586. for(i=0; i<3; i++)
  587. for(j=0; j<256; j++)
  588. s->stats[i][j]= 0;
  589. }
  590. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  591. alloc_temp(s);
  592. s->picture_number=0;
  593. return 0;
  594. }
  595. #endif /* CONFIG_ENCODERS */
  596. /* TODO instead of restarting the read when the code isn't in the first level
  597. * of the joint table, jump into the 2nd level of the individual table. */
  598. #define READ_2PIX(dst0, dst1, plane1){\
  599. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  600. if(code != 0xffff){\
  601. dst0 = code>>8;\
  602. dst1 = code;\
  603. }else{\
  604. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  605. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  606. }\
  607. }
  608. static void decode_422_bitstream(HYuvContext *s, int count){
  609. int i;
  610. count/=2;
  611. for(i=0; i<count; i++){
  612. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  613. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  614. }
  615. }
  616. static void decode_gray_bitstream(HYuvContext *s, int count){
  617. int i;
  618. count/=2;
  619. for(i=0; i<count; i++){
  620. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  621. }
  622. }
  623. #ifdef CONFIG_ENCODERS
  624. static int encode_422_bitstream(HYuvContext *s, int count){
  625. int i;
  626. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  627. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  628. return -1;
  629. }
  630. #define LOAD4\
  631. int y0 = s->temp[0][2*i];\
  632. int y1 = s->temp[0][2*i+1];\
  633. int u0 = s->temp[1][i];\
  634. int v0 = s->temp[2][i];
  635. count/=2;
  636. if(s->flags&CODEC_FLAG_PASS1){
  637. for(i=0; i<count; i++){
  638. LOAD4;
  639. s->stats[0][y0]++;
  640. s->stats[1][u0]++;
  641. s->stats[0][y1]++;
  642. s->stats[2][v0]++;
  643. }
  644. }
  645. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  646. return 0;
  647. if(s->context){
  648. for(i=0; i<count; i++){
  649. LOAD4;
  650. s->stats[0][y0]++;
  651. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  652. s->stats[1][u0]++;
  653. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  654. s->stats[0][y1]++;
  655. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  656. s->stats[2][v0]++;
  657. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  658. }
  659. }else{
  660. for(i=0; i<count; i++){
  661. LOAD4;
  662. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  663. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  664. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  665. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  666. }
  667. }
  668. return 0;
  669. }
  670. static int encode_gray_bitstream(HYuvContext *s, int count){
  671. int i;
  672. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  673. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  674. return -1;
  675. }
  676. #define LOAD2\
  677. int y0 = s->temp[0][2*i];\
  678. int y1 = s->temp[0][2*i+1];
  679. #define STAT2\
  680. s->stats[0][y0]++;\
  681. s->stats[0][y1]++;
  682. #define WRITE2\
  683. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  684. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  685. count/=2;
  686. if(s->flags&CODEC_FLAG_PASS1){
  687. for(i=0; i<count; i++){
  688. LOAD2;
  689. STAT2;
  690. }
  691. }
  692. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  693. return 0;
  694. if(s->context){
  695. for(i=0; i<count; i++){
  696. LOAD2;
  697. STAT2;
  698. WRITE2;
  699. }
  700. }else{
  701. for(i=0; i<count; i++){
  702. LOAD2;
  703. WRITE2;
  704. }
  705. }
  706. return 0;
  707. }
  708. #endif /* CONFIG_ENCODERS */
  709. static void decode_bgr_bitstream(HYuvContext *s, int count){
  710. int i;
  711. if(s->decorrelate){
  712. if(s->bitstream_bpp==24){
  713. for(i=0; i<count; i++){
  714. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  715. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  716. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  717. }
  718. }else{
  719. for(i=0; i<count; i++){
  720. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  721. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  722. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  723. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  724. }
  725. }
  726. }else{
  727. if(s->bitstream_bpp==24){
  728. for(i=0; i<count; i++){
  729. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  730. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  731. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  732. }
  733. }else{
  734. for(i=0; i<count; i++){
  735. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  736. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  737. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  738. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  739. }
  740. }
  741. }
  742. }
  743. static int encode_bgr_bitstream(HYuvContext *s, int count){
  744. int i;
  745. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3*4*count){
  746. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  747. return -1;
  748. }
  749. #define LOAD3\
  750. int g= s->temp[0][4*i+G];\
  751. int b= (s->temp[0][4*i+B] - g) & 0xff;\
  752. int r= (s->temp[0][4*i+R] - g) & 0xff;
  753. #define STAT3\
  754. s->stats[0][b]++;\
  755. s->stats[1][g]++;\
  756. s->stats[2][r]++;
  757. #define WRITE3\
  758. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  759. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  760. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
  761. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  762. for(i=0; i<count; i++){
  763. LOAD3;
  764. STAT3;
  765. }
  766. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  767. for(i=0; i<count; i++){
  768. LOAD3;
  769. STAT3;
  770. WRITE3;
  771. }
  772. }else{
  773. for(i=0; i<count; i++){
  774. LOAD3;
  775. WRITE3;
  776. }
  777. }
  778. return 0;
  779. }
  780. #ifdef CONFIG_DECODERS
  781. static void draw_slice(HYuvContext *s, int y){
  782. int h, cy;
  783. int offset[4];
  784. if(s->avctx->draw_horiz_band==NULL)
  785. return;
  786. h= y - s->last_slice_end;
  787. y -= h;
  788. if(s->bitstream_bpp==12){
  789. cy= y>>1;
  790. }else{
  791. cy= y;
  792. }
  793. offset[0] = s->picture.linesize[0]*y;
  794. offset[1] = s->picture.linesize[1]*cy;
  795. offset[2] = s->picture.linesize[2]*cy;
  796. offset[3] = 0;
  797. emms_c();
  798. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  799. s->last_slice_end= y + h;
  800. }
  801. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  802. HYuvContext *s = avctx->priv_data;
  803. const int width= s->width;
  804. const int width2= s->width>>1;
  805. const int height= s->height;
  806. int fake_ystride, fake_ustride, fake_vstride;
  807. AVFrame * const p= &s->picture;
  808. int table_size= 0;
  809. AVFrame *picture = data;
  810. s->bitstream_buffer= av_fast_realloc(s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  811. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  812. if(p->data[0])
  813. avctx->release_buffer(avctx, p);
  814. p->reference= 0;
  815. if(avctx->get_buffer(avctx, p) < 0){
  816. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  817. return -1;
  818. }
  819. if(s->context){
  820. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  821. if(table_size < 0)
  822. return -1;
  823. }
  824. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  825. return -1;
  826. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  827. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  828. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  829. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  830. s->last_slice_end= 0;
  831. if(s->bitstream_bpp<24){
  832. int y, cy;
  833. int lefty, leftu, leftv;
  834. int lefttopy, lefttopu, lefttopv;
  835. if(s->yuy2){
  836. p->data[0][3]= get_bits(&s->gb, 8);
  837. p->data[0][2]= get_bits(&s->gb, 8);
  838. p->data[0][1]= get_bits(&s->gb, 8);
  839. p->data[0][0]= get_bits(&s->gb, 8);
  840. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  841. return -1;
  842. }else{
  843. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  844. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  845. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  846. p->data[0][0]= get_bits(&s->gb, 8);
  847. switch(s->predictor){
  848. case LEFT:
  849. case PLANE:
  850. decode_422_bitstream(s, width-2);
  851. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  852. if(!(s->flags&CODEC_FLAG_GRAY)){
  853. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  854. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  855. }
  856. for(cy=y=1; y<s->height; y++,cy++){
  857. uint8_t *ydst, *udst, *vdst;
  858. if(s->bitstream_bpp==12){
  859. decode_gray_bitstream(s, width);
  860. ydst= p->data[0] + p->linesize[0]*y;
  861. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  862. if(s->predictor == PLANE){
  863. if(y>s->interlaced)
  864. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  865. }
  866. y++;
  867. if(y>=s->height) break;
  868. }
  869. draw_slice(s, y);
  870. ydst= p->data[0] + p->linesize[0]*y;
  871. udst= p->data[1] + p->linesize[1]*cy;
  872. vdst= p->data[2] + p->linesize[2]*cy;
  873. decode_422_bitstream(s, width);
  874. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  875. if(!(s->flags&CODEC_FLAG_GRAY)){
  876. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  877. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  878. }
  879. if(s->predictor == PLANE){
  880. if(cy>s->interlaced){
  881. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  882. if(!(s->flags&CODEC_FLAG_GRAY)){
  883. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  884. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  885. }
  886. }
  887. }
  888. }
  889. draw_slice(s, height);
  890. break;
  891. case MEDIAN:
  892. /* first line except first 2 pixels is left predicted */
  893. decode_422_bitstream(s, width-2);
  894. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  895. if(!(s->flags&CODEC_FLAG_GRAY)){
  896. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  897. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  898. }
  899. cy=y=1;
  900. /* second line is left predicted for interlaced case */
  901. if(s->interlaced){
  902. decode_422_bitstream(s, width);
  903. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  904. if(!(s->flags&CODEC_FLAG_GRAY)){
  905. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  906. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  907. }
  908. y++; cy++;
  909. }
  910. /* next 4 pixels are left predicted too */
  911. decode_422_bitstream(s, 4);
  912. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  913. if(!(s->flags&CODEC_FLAG_GRAY)){
  914. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  915. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  916. }
  917. /* next line except the first 4 pixels is median predicted */
  918. lefttopy= p->data[0][3];
  919. decode_422_bitstream(s, width-4);
  920. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  921. if(!(s->flags&CODEC_FLAG_GRAY)){
  922. lefttopu= p->data[1][1];
  923. lefttopv= p->data[2][1];
  924. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  925. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  926. }
  927. y++; cy++;
  928. for(; y<height; y++,cy++){
  929. uint8_t *ydst, *udst, *vdst;
  930. if(s->bitstream_bpp==12){
  931. while(2*cy > y){
  932. decode_gray_bitstream(s, width);
  933. ydst= p->data[0] + p->linesize[0]*y;
  934. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  935. y++;
  936. }
  937. if(y>=height) break;
  938. }
  939. draw_slice(s, y);
  940. decode_422_bitstream(s, width);
  941. ydst= p->data[0] + p->linesize[0]*y;
  942. udst= p->data[1] + p->linesize[1]*cy;
  943. vdst= p->data[2] + p->linesize[2]*cy;
  944. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  945. if(!(s->flags&CODEC_FLAG_GRAY)){
  946. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  947. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  948. }
  949. }
  950. draw_slice(s, height);
  951. break;
  952. }
  953. }
  954. }else{
  955. int y;
  956. int leftr, leftg, leftb;
  957. const int last_line= (height-1)*p->linesize[0];
  958. if(s->bitstream_bpp==32){
  959. skip_bits(&s->gb, 8);
  960. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  961. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  962. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  963. }else{
  964. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  965. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  966. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  967. skip_bits(&s->gb, 8);
  968. }
  969. if(s->bgr32){
  970. switch(s->predictor){
  971. case LEFT:
  972. case PLANE:
  973. decode_bgr_bitstream(s, width-1);
  974. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  975. for(y=s->height-2; y>=0; y--){ //yes its stored upside down
  976. decode_bgr_bitstream(s, width);
  977. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  978. if(s->predictor == PLANE){
  979. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  980. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  981. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  982. }
  983. }
  984. }
  985. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  986. break;
  987. default:
  988. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  989. }
  990. }else{
  991. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  992. return -1;
  993. }
  994. }
  995. emms_c();
  996. *picture= *p;
  997. *data_size = sizeof(AVFrame);
  998. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  999. }
  1000. #endif
  1001. static int common_end(HYuvContext *s){
  1002. int i;
  1003. for(i=0; i<3; i++){
  1004. av_freep(&s->temp[i]);
  1005. }
  1006. return 0;
  1007. }
  1008. #ifdef CONFIG_DECODERS
  1009. static int decode_end(AVCodecContext *avctx)
  1010. {
  1011. HYuvContext *s = avctx->priv_data;
  1012. int i;
  1013. common_end(s);
  1014. av_freep(&s->bitstream_buffer);
  1015. for(i=0; i<3; i++){
  1016. free_vlc(&s->vlc[i]);
  1017. }
  1018. return 0;
  1019. }
  1020. #endif
  1021. #ifdef CONFIG_ENCODERS
  1022. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  1023. HYuvContext *s = avctx->priv_data;
  1024. AVFrame *pict = data;
  1025. const int width= s->width;
  1026. const int width2= s->width>>1;
  1027. const int height= s->height;
  1028. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1029. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1030. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1031. AVFrame * const p= &s->picture;
  1032. int i, j, size=0;
  1033. *p = *pict;
  1034. p->pict_type= FF_I_TYPE;
  1035. p->key_frame= 1;
  1036. if(s->context){
  1037. for(i=0; i<3; i++){
  1038. generate_len_table(s->len[i], s->stats[i], 256);
  1039. if(generate_bits_table(s->bits[i], s->len[i])<0)
  1040. return -1;
  1041. size+= store_table(s, s->len[i], &buf[size]);
  1042. }
  1043. for(i=0; i<3; i++)
  1044. for(j=0; j<256; j++)
  1045. s->stats[i][j] >>= 1;
  1046. }
  1047. init_put_bits(&s->pb, buf+size, buf_size-size);
  1048. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1049. int lefty, leftu, leftv, y, cy;
  1050. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1051. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1052. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1053. put_bits(&s->pb, 8, p->data[0][0]);
  1054. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  1055. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  1056. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  1057. encode_422_bitstream(s, width-2);
  1058. if(s->predictor==MEDIAN){
  1059. int lefttopy, lefttopu, lefttopv;
  1060. cy=y=1;
  1061. if(s->interlaced){
  1062. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1063. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1064. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1065. encode_422_bitstream(s, width);
  1066. y++; cy++;
  1067. }
  1068. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1069. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1070. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1071. encode_422_bitstream(s, 4);
  1072. lefttopy= p->data[0][3];
  1073. lefttopu= p->data[1][1];
  1074. lefttopv= p->data[2][1];
  1075. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1076. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1077. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1078. encode_422_bitstream(s, width-4);
  1079. y++; cy++;
  1080. for(; y<height; y++,cy++){
  1081. uint8_t *ydst, *udst, *vdst;
  1082. if(s->bitstream_bpp==12){
  1083. while(2*cy > y){
  1084. ydst= p->data[0] + p->linesize[0]*y;
  1085. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1086. encode_gray_bitstream(s, width);
  1087. y++;
  1088. }
  1089. if(y>=height) break;
  1090. }
  1091. ydst= p->data[0] + p->linesize[0]*y;
  1092. udst= p->data[1] + p->linesize[1]*cy;
  1093. vdst= p->data[2] + p->linesize[2]*cy;
  1094. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1095. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1096. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1097. encode_422_bitstream(s, width);
  1098. }
  1099. }else{
  1100. for(cy=y=1; y<height; y++,cy++){
  1101. uint8_t *ydst, *udst, *vdst;
  1102. /* encode a luma only line & y++ */
  1103. if(s->bitstream_bpp==12){
  1104. ydst= p->data[0] + p->linesize[0]*y;
  1105. if(s->predictor == PLANE && s->interlaced < y){
  1106. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1107. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1108. }else{
  1109. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1110. }
  1111. encode_gray_bitstream(s, width);
  1112. y++;
  1113. if(y>=height) break;
  1114. }
  1115. ydst= p->data[0] + p->linesize[0]*y;
  1116. udst= p->data[1] + p->linesize[1]*cy;
  1117. vdst= p->data[2] + p->linesize[2]*cy;
  1118. if(s->predictor == PLANE && s->interlaced < cy){
  1119. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1120. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1121. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1122. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1123. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1124. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1125. }else{
  1126. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1127. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1128. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1129. }
  1130. encode_422_bitstream(s, width);
  1131. }
  1132. }
  1133. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1134. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1135. const int stride = -p->linesize[0];
  1136. const int fake_stride = -fake_ystride;
  1137. int y;
  1138. int leftr, leftg, leftb;
  1139. put_bits(&s->pb, 8, leftr= data[R]);
  1140. put_bits(&s->pb, 8, leftg= data[G]);
  1141. put_bits(&s->pb, 8, leftb= data[B]);
  1142. put_bits(&s->pb, 8, 0);
  1143. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb);
  1144. encode_bgr_bitstream(s, width-1);
  1145. for(y=1; y<s->height; y++){
  1146. uint8_t *dst = data + y*stride;
  1147. if(s->predictor == PLANE && s->interlaced < y){
  1148. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1149. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1150. }else{
  1151. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1152. }
  1153. encode_bgr_bitstream(s, width);
  1154. }
  1155. }else{
  1156. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1157. }
  1158. emms_c();
  1159. size+= (put_bits_count(&s->pb)+31)/8;
  1160. size/= 4;
  1161. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1162. int j;
  1163. char *p= avctx->stats_out;
  1164. char *end= p + 1024*30;
  1165. for(i=0; i<3; i++){
  1166. for(j=0; j<256; j++){
  1167. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1168. p+= strlen(p);
  1169. s->stats[i][j]= 0;
  1170. }
  1171. snprintf(p, end-p, "\n");
  1172. p++;
  1173. }
  1174. } else
  1175. avctx->stats_out[0] = '\0';
  1176. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1177. flush_put_bits(&s->pb);
  1178. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1179. }
  1180. s->picture_number++;
  1181. return size*4;
  1182. }
  1183. static int encode_end(AVCodecContext *avctx)
  1184. {
  1185. HYuvContext *s = avctx->priv_data;
  1186. common_end(s);
  1187. av_freep(&avctx->extradata);
  1188. av_freep(&avctx->stats_out);
  1189. return 0;
  1190. }
  1191. #endif /* CONFIG_ENCODERS */
  1192. #ifdef CONFIG_DECODERS
  1193. AVCodec huffyuv_decoder = {
  1194. "huffyuv",
  1195. CODEC_TYPE_VIDEO,
  1196. CODEC_ID_HUFFYUV,
  1197. sizeof(HYuvContext),
  1198. decode_init,
  1199. NULL,
  1200. decode_end,
  1201. decode_frame,
  1202. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1203. NULL
  1204. };
  1205. AVCodec ffvhuff_decoder = {
  1206. "ffvhuff",
  1207. CODEC_TYPE_VIDEO,
  1208. CODEC_ID_FFVHUFF,
  1209. sizeof(HYuvContext),
  1210. decode_init,
  1211. NULL,
  1212. decode_end,
  1213. decode_frame,
  1214. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1215. NULL
  1216. };
  1217. #endif
  1218. #ifdef CONFIG_ENCODERS
  1219. AVCodec huffyuv_encoder = {
  1220. "huffyuv",
  1221. CODEC_TYPE_VIDEO,
  1222. CODEC_ID_HUFFYUV,
  1223. sizeof(HYuvContext),
  1224. encode_init,
  1225. encode_frame,
  1226. encode_end,
  1227. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB32, -1},
  1228. };
  1229. AVCodec ffvhuff_encoder = {
  1230. "ffvhuff",
  1231. CODEC_TYPE_VIDEO,
  1232. CODEC_ID_FFVHUFF,
  1233. sizeof(HYuvContext),
  1234. encode_init,
  1235. encode_frame,
  1236. encode_end,
  1237. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB32, -1},
  1238. };
  1239. #endif //CONFIG_ENCODERS