You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

914 lines
29KB

  1. /*
  2. * RTP input format
  3. * Copyright (c) 2002 Fabrice Bellard
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/mathematics.h"
  22. #include "libavutil/avstring.h"
  23. #include "libavutil/time.h"
  24. #include "libavcodec/get_bits.h"
  25. #include "avformat.h"
  26. #include "network.h"
  27. #include "srtp.h"
  28. #include "url.h"
  29. #include "rtpdec.h"
  30. #include "rtpdec_formats.h"
  31. #define MIN_FEEDBACK_INTERVAL 200000 /* 200 ms in us */
  32. static RTPDynamicProtocolHandler realmedia_mp3_dynamic_handler = {
  33. .enc_name = "X-MP3-draft-00",
  34. .codec_type = AVMEDIA_TYPE_AUDIO,
  35. .codec_id = AV_CODEC_ID_MP3ADU,
  36. };
  37. static RTPDynamicProtocolHandler speex_dynamic_handler = {
  38. .enc_name = "speex",
  39. .codec_type = AVMEDIA_TYPE_AUDIO,
  40. .codec_id = AV_CODEC_ID_SPEEX,
  41. };
  42. static RTPDynamicProtocolHandler opus_dynamic_handler = {
  43. .enc_name = "opus",
  44. .codec_type = AVMEDIA_TYPE_AUDIO,
  45. .codec_id = AV_CODEC_ID_OPUS,
  46. };
  47. static RTPDynamicProtocolHandler *rtp_first_dynamic_payload_handler = NULL;
  48. void ff_register_dynamic_payload_handler(RTPDynamicProtocolHandler *handler)
  49. {
  50. handler->next = rtp_first_dynamic_payload_handler;
  51. rtp_first_dynamic_payload_handler = handler;
  52. }
  53. void av_register_rtp_dynamic_payload_handlers(void)
  54. {
  55. ff_register_dynamic_payload_handler(&ff_amr_nb_dynamic_handler);
  56. ff_register_dynamic_payload_handler(&ff_amr_wb_dynamic_handler);
  57. ff_register_dynamic_payload_handler(&ff_g726_16_dynamic_handler);
  58. ff_register_dynamic_payload_handler(&ff_g726_24_dynamic_handler);
  59. ff_register_dynamic_payload_handler(&ff_g726_32_dynamic_handler);
  60. ff_register_dynamic_payload_handler(&ff_g726_40_dynamic_handler);
  61. ff_register_dynamic_payload_handler(&ff_h263_1998_dynamic_handler);
  62. ff_register_dynamic_payload_handler(&ff_h263_2000_dynamic_handler);
  63. ff_register_dynamic_payload_handler(&ff_h263_rfc2190_dynamic_handler);
  64. ff_register_dynamic_payload_handler(&ff_h264_dynamic_handler);
  65. ff_register_dynamic_payload_handler(&ff_ilbc_dynamic_handler);
  66. ff_register_dynamic_payload_handler(&ff_jpeg_dynamic_handler);
  67. ff_register_dynamic_payload_handler(&ff_mp4a_latm_dynamic_handler);
  68. ff_register_dynamic_payload_handler(&ff_mp4v_es_dynamic_handler);
  69. ff_register_dynamic_payload_handler(&ff_mpeg4_generic_dynamic_handler);
  70. ff_register_dynamic_payload_handler(&ff_mpegts_dynamic_handler);
  71. ff_register_dynamic_payload_handler(&ff_ms_rtp_asf_pfv_handler);
  72. ff_register_dynamic_payload_handler(&ff_ms_rtp_asf_pfa_handler);
  73. ff_register_dynamic_payload_handler(&ff_qcelp_dynamic_handler);
  74. ff_register_dynamic_payload_handler(&ff_qdm2_dynamic_handler);
  75. ff_register_dynamic_payload_handler(&ff_qt_rtp_aud_handler);
  76. ff_register_dynamic_payload_handler(&ff_qt_rtp_vid_handler);
  77. ff_register_dynamic_payload_handler(&ff_quicktime_rtp_aud_handler);
  78. ff_register_dynamic_payload_handler(&ff_quicktime_rtp_vid_handler);
  79. ff_register_dynamic_payload_handler(&ff_svq3_dynamic_handler);
  80. ff_register_dynamic_payload_handler(&ff_theora_dynamic_handler);
  81. ff_register_dynamic_payload_handler(&ff_vorbis_dynamic_handler);
  82. ff_register_dynamic_payload_handler(&ff_vp8_dynamic_handler);
  83. ff_register_dynamic_payload_handler(&opus_dynamic_handler);
  84. ff_register_dynamic_payload_handler(&realmedia_mp3_dynamic_handler);
  85. ff_register_dynamic_payload_handler(&speex_dynamic_handler);
  86. }
  87. RTPDynamicProtocolHandler *ff_rtp_handler_find_by_name(const char *name,
  88. enum AVMediaType codec_type)
  89. {
  90. RTPDynamicProtocolHandler *handler;
  91. for (handler = rtp_first_dynamic_payload_handler;
  92. handler; handler = handler->next)
  93. if (!av_strcasecmp(name, handler->enc_name) &&
  94. codec_type == handler->codec_type)
  95. return handler;
  96. return NULL;
  97. }
  98. RTPDynamicProtocolHandler *ff_rtp_handler_find_by_id(int id,
  99. enum AVMediaType codec_type)
  100. {
  101. RTPDynamicProtocolHandler *handler;
  102. for (handler = rtp_first_dynamic_payload_handler;
  103. handler; handler = handler->next)
  104. if (handler->static_payload_id && handler->static_payload_id == id &&
  105. codec_type == handler->codec_type)
  106. return handler;
  107. return NULL;
  108. }
  109. static int rtcp_parse_packet(RTPDemuxContext *s, const unsigned char *buf,
  110. int len)
  111. {
  112. int payload_len;
  113. while (len >= 4) {
  114. payload_len = FFMIN(len, (AV_RB16(buf + 2) + 1) * 4);
  115. switch (buf[1]) {
  116. case RTCP_SR:
  117. if (payload_len < 20) {
  118. av_log(NULL, AV_LOG_ERROR,
  119. "Invalid length for RTCP SR packet\n");
  120. return AVERROR_INVALIDDATA;
  121. }
  122. s->last_rtcp_reception_time = av_gettime();
  123. s->last_rtcp_ntp_time = AV_RB64(buf + 8);
  124. s->last_rtcp_timestamp = AV_RB32(buf + 16);
  125. if (s->first_rtcp_ntp_time == AV_NOPTS_VALUE) {
  126. s->first_rtcp_ntp_time = s->last_rtcp_ntp_time;
  127. if (!s->base_timestamp)
  128. s->base_timestamp = s->last_rtcp_timestamp;
  129. s->rtcp_ts_offset = s->last_rtcp_timestamp - s->base_timestamp;
  130. }
  131. break;
  132. case RTCP_BYE:
  133. return -RTCP_BYE;
  134. }
  135. buf += payload_len;
  136. len -= payload_len;
  137. }
  138. return -1;
  139. }
  140. #define RTP_SEQ_MOD (1 << 16)
  141. static void rtp_init_statistics(RTPStatistics *s, uint16_t base_sequence)
  142. {
  143. memset(s, 0, sizeof(RTPStatistics));
  144. s->max_seq = base_sequence;
  145. s->probation = 1;
  146. }
  147. /*
  148. * Called whenever there is a large jump in sequence numbers,
  149. * or when they get out of probation...
  150. */
  151. static void rtp_init_sequence(RTPStatistics *s, uint16_t seq)
  152. {
  153. s->max_seq = seq;
  154. s->cycles = 0;
  155. s->base_seq = seq - 1;
  156. s->bad_seq = RTP_SEQ_MOD + 1;
  157. s->received = 0;
  158. s->expected_prior = 0;
  159. s->received_prior = 0;
  160. s->jitter = 0;
  161. s->transit = 0;
  162. }
  163. /* Returns 1 if we should handle this packet. */
  164. static int rtp_valid_packet_in_sequence(RTPStatistics *s, uint16_t seq)
  165. {
  166. uint16_t udelta = seq - s->max_seq;
  167. const int MAX_DROPOUT = 3000;
  168. const int MAX_MISORDER = 100;
  169. const int MIN_SEQUENTIAL = 2;
  170. /* source not valid until MIN_SEQUENTIAL packets with sequence
  171. * seq. numbers have been received */
  172. if (s->probation) {
  173. if (seq == s->max_seq + 1) {
  174. s->probation--;
  175. s->max_seq = seq;
  176. if (s->probation == 0) {
  177. rtp_init_sequence(s, seq);
  178. s->received++;
  179. return 1;
  180. }
  181. } else {
  182. s->probation = MIN_SEQUENTIAL - 1;
  183. s->max_seq = seq;
  184. }
  185. } else if (udelta < MAX_DROPOUT) {
  186. // in order, with permissible gap
  187. if (seq < s->max_seq) {
  188. // sequence number wrapped; count another 64k cycles
  189. s->cycles += RTP_SEQ_MOD;
  190. }
  191. s->max_seq = seq;
  192. } else if (udelta <= RTP_SEQ_MOD - MAX_MISORDER) {
  193. // sequence made a large jump...
  194. if (seq == s->bad_seq) {
  195. /* two sequential packets -- assume that the other side
  196. * restarted without telling us; just resync. */
  197. rtp_init_sequence(s, seq);
  198. } else {
  199. s->bad_seq = (seq + 1) & (RTP_SEQ_MOD - 1);
  200. return 0;
  201. }
  202. } else {
  203. // duplicate or reordered packet...
  204. }
  205. s->received++;
  206. return 1;
  207. }
  208. static void rtcp_update_jitter(RTPStatistics *s, uint32_t sent_timestamp,
  209. uint32_t arrival_timestamp)
  210. {
  211. // Most of this is pretty straight from RFC 3550 appendix A.8
  212. uint32_t transit = arrival_timestamp - sent_timestamp;
  213. uint32_t prev_transit = s->transit;
  214. int32_t d = transit - prev_transit;
  215. // Doing the FFABS() call directly on the "transit - prev_transit"
  216. // expression doesn't work, since it's an unsigned expression. Doing the
  217. // transit calculation in unsigned is desired though, since it most
  218. // probably will need to wrap around.
  219. d = FFABS(d);
  220. s->transit = transit;
  221. if (!prev_transit)
  222. return;
  223. s->jitter += d - (int32_t) ((s->jitter + 8) >> 4);
  224. }
  225. int ff_rtp_check_and_send_back_rr(RTPDemuxContext *s, URLContext *fd,
  226. AVIOContext *avio, int count)
  227. {
  228. AVIOContext *pb;
  229. uint8_t *buf;
  230. int len;
  231. int rtcp_bytes;
  232. RTPStatistics *stats = &s->statistics;
  233. uint32_t lost;
  234. uint32_t extended_max;
  235. uint32_t expected_interval;
  236. uint32_t received_interval;
  237. int32_t lost_interval;
  238. uint32_t expected;
  239. uint32_t fraction;
  240. if ((!fd && !avio) || (count < 1))
  241. return -1;
  242. /* TODO: I think this is way too often; RFC 1889 has algorithm for this */
  243. /* XXX: MPEG pts hardcoded. RTCP send every 0.5 seconds */
  244. s->octet_count += count;
  245. rtcp_bytes = ((s->octet_count - s->last_octet_count) * RTCP_TX_RATIO_NUM) /
  246. RTCP_TX_RATIO_DEN;
  247. rtcp_bytes /= 50; // mmu_man: that's enough for me... VLC sends much less btw !?
  248. if (rtcp_bytes < 28)
  249. return -1;
  250. s->last_octet_count = s->octet_count;
  251. if (!fd)
  252. pb = avio;
  253. else if (avio_open_dyn_buf(&pb) < 0)
  254. return -1;
  255. // Receiver Report
  256. avio_w8(pb, (RTP_VERSION << 6) + 1); /* 1 report block */
  257. avio_w8(pb, RTCP_RR);
  258. avio_wb16(pb, 7); /* length in words - 1 */
  259. // our own SSRC: we use the server's SSRC + 1 to avoid conflicts
  260. avio_wb32(pb, s->ssrc + 1);
  261. avio_wb32(pb, s->ssrc); // server SSRC
  262. // some placeholders we should really fill...
  263. // RFC 1889/p64
  264. extended_max = stats->cycles + stats->max_seq;
  265. expected = extended_max - stats->base_seq;
  266. lost = expected - stats->received;
  267. lost = FFMIN(lost, 0xffffff); // clamp it since it's only 24 bits...
  268. expected_interval = expected - stats->expected_prior;
  269. stats->expected_prior = expected;
  270. received_interval = stats->received - stats->received_prior;
  271. stats->received_prior = stats->received;
  272. lost_interval = expected_interval - received_interval;
  273. if (expected_interval == 0 || lost_interval <= 0)
  274. fraction = 0;
  275. else
  276. fraction = (lost_interval << 8) / expected_interval;
  277. fraction = (fraction << 24) | lost;
  278. avio_wb32(pb, fraction); /* 8 bits of fraction, 24 bits of total packets lost */
  279. avio_wb32(pb, extended_max); /* max sequence received */
  280. avio_wb32(pb, stats->jitter >> 4); /* jitter */
  281. if (s->last_rtcp_ntp_time == AV_NOPTS_VALUE) {
  282. avio_wb32(pb, 0); /* last SR timestamp */
  283. avio_wb32(pb, 0); /* delay since last SR */
  284. } else {
  285. uint32_t middle_32_bits = s->last_rtcp_ntp_time >> 16; // this is valid, right? do we need to handle 64 bit values special?
  286. uint32_t delay_since_last = av_rescale(av_gettime() - s->last_rtcp_reception_time,
  287. 65536, AV_TIME_BASE);
  288. avio_wb32(pb, middle_32_bits); /* last SR timestamp */
  289. avio_wb32(pb, delay_since_last); /* delay since last SR */
  290. }
  291. // CNAME
  292. avio_w8(pb, (RTP_VERSION << 6) + 1); /* 1 report block */
  293. avio_w8(pb, RTCP_SDES);
  294. len = strlen(s->hostname);
  295. avio_wb16(pb, (7 + len + 3) / 4); /* length in words - 1 */
  296. avio_wb32(pb, s->ssrc + 1);
  297. avio_w8(pb, 0x01);
  298. avio_w8(pb, len);
  299. avio_write(pb, s->hostname, len);
  300. avio_w8(pb, 0); /* END */
  301. // padding
  302. for (len = (7 + len) % 4; len % 4; len++)
  303. avio_w8(pb, 0);
  304. avio_flush(pb);
  305. if (!fd)
  306. return 0;
  307. len = avio_close_dyn_buf(pb, &buf);
  308. if ((len > 0) && buf) {
  309. int av_unused result;
  310. av_dlog(s->ic, "sending %d bytes of RR\n", len);
  311. result = ffurl_write(fd, buf, len);
  312. av_dlog(s->ic, "result from ffurl_write: %d\n", result);
  313. av_free(buf);
  314. }
  315. return 0;
  316. }
  317. void ff_rtp_send_punch_packets(URLContext *rtp_handle)
  318. {
  319. AVIOContext *pb;
  320. uint8_t *buf;
  321. int len;
  322. /* Send a small RTP packet */
  323. if (avio_open_dyn_buf(&pb) < 0)
  324. return;
  325. avio_w8(pb, (RTP_VERSION << 6));
  326. avio_w8(pb, 0); /* Payload type */
  327. avio_wb16(pb, 0); /* Seq */
  328. avio_wb32(pb, 0); /* Timestamp */
  329. avio_wb32(pb, 0); /* SSRC */
  330. avio_flush(pb);
  331. len = avio_close_dyn_buf(pb, &buf);
  332. if ((len > 0) && buf)
  333. ffurl_write(rtp_handle, buf, len);
  334. av_free(buf);
  335. /* Send a minimal RTCP RR */
  336. if (avio_open_dyn_buf(&pb) < 0)
  337. return;
  338. avio_w8(pb, (RTP_VERSION << 6));
  339. avio_w8(pb, RTCP_RR); /* receiver report */
  340. avio_wb16(pb, 1); /* length in words - 1 */
  341. avio_wb32(pb, 0); /* our own SSRC */
  342. avio_flush(pb);
  343. len = avio_close_dyn_buf(pb, &buf);
  344. if ((len > 0) && buf)
  345. ffurl_write(rtp_handle, buf, len);
  346. av_free(buf);
  347. }
  348. static int find_missing_packets(RTPDemuxContext *s, uint16_t *first_missing,
  349. uint16_t *missing_mask)
  350. {
  351. int i;
  352. uint16_t next_seq = s->seq + 1;
  353. RTPPacket *pkt = s->queue;
  354. if (!pkt || pkt->seq == next_seq)
  355. return 0;
  356. *missing_mask = 0;
  357. for (i = 1; i <= 16; i++) {
  358. uint16_t missing_seq = next_seq + i;
  359. while (pkt) {
  360. int16_t diff = pkt->seq - missing_seq;
  361. if (diff >= 0)
  362. break;
  363. pkt = pkt->next;
  364. }
  365. if (!pkt)
  366. break;
  367. if (pkt->seq == missing_seq)
  368. continue;
  369. *missing_mask |= 1 << (i - 1);
  370. }
  371. *first_missing = next_seq;
  372. return 1;
  373. }
  374. int ff_rtp_send_rtcp_feedback(RTPDemuxContext *s, URLContext *fd,
  375. AVIOContext *avio)
  376. {
  377. int len, need_keyframe, missing_packets;
  378. AVIOContext *pb;
  379. uint8_t *buf;
  380. int64_t now;
  381. uint16_t first_missing, missing_mask;
  382. if (!fd && !avio)
  383. return -1;
  384. need_keyframe = s->handler && s->handler->need_keyframe &&
  385. s->handler->need_keyframe(s->dynamic_protocol_context);
  386. missing_packets = find_missing_packets(s, &first_missing, &missing_mask);
  387. if (!need_keyframe && !missing_packets)
  388. return 0;
  389. /* Send new feedback if enough time has elapsed since the last
  390. * feedback packet. */
  391. now = av_gettime();
  392. if (s->last_feedback_time &&
  393. (now - s->last_feedback_time) < MIN_FEEDBACK_INTERVAL)
  394. return 0;
  395. s->last_feedback_time = now;
  396. if (!fd)
  397. pb = avio;
  398. else if (avio_open_dyn_buf(&pb) < 0)
  399. return -1;
  400. if (need_keyframe) {
  401. avio_w8(pb, (RTP_VERSION << 6) | 1); /* PLI */
  402. avio_w8(pb, RTCP_PSFB);
  403. avio_wb16(pb, 2); /* length in words - 1 */
  404. // our own SSRC: we use the server's SSRC + 1 to avoid conflicts
  405. avio_wb32(pb, s->ssrc + 1);
  406. avio_wb32(pb, s->ssrc); // server SSRC
  407. }
  408. if (missing_packets) {
  409. avio_w8(pb, (RTP_VERSION << 6) | 1); /* NACK */
  410. avio_w8(pb, RTCP_RTPFB);
  411. avio_wb16(pb, 3); /* length in words - 1 */
  412. avio_wb32(pb, s->ssrc + 1);
  413. avio_wb32(pb, s->ssrc); // server SSRC
  414. avio_wb16(pb, first_missing);
  415. avio_wb16(pb, missing_mask);
  416. }
  417. avio_flush(pb);
  418. if (!fd)
  419. return 0;
  420. len = avio_close_dyn_buf(pb, &buf);
  421. if (len > 0 && buf) {
  422. ffurl_write(fd, buf, len);
  423. av_free(buf);
  424. }
  425. return 0;
  426. }
  427. /**
  428. * open a new RTP parse context for stream 'st'. 'st' can be NULL for
  429. * MPEG2-TS streams.
  430. */
  431. RTPDemuxContext *ff_rtp_parse_open(AVFormatContext *s1, AVStream *st,
  432. int payload_type, int queue_size)
  433. {
  434. RTPDemuxContext *s;
  435. s = av_mallocz(sizeof(RTPDemuxContext));
  436. if (!s)
  437. return NULL;
  438. s->payload_type = payload_type;
  439. s->last_rtcp_ntp_time = AV_NOPTS_VALUE;
  440. s->first_rtcp_ntp_time = AV_NOPTS_VALUE;
  441. s->ic = s1;
  442. s->st = st;
  443. s->queue_size = queue_size;
  444. rtp_init_statistics(&s->statistics, 0);
  445. if (st) {
  446. switch (st->codec->codec_id) {
  447. case AV_CODEC_ID_MPEG1VIDEO:
  448. case AV_CODEC_ID_MPEG2VIDEO:
  449. case AV_CODEC_ID_MP2:
  450. case AV_CODEC_ID_MP3:
  451. case AV_CODEC_ID_MPEG4:
  452. case AV_CODEC_ID_H263:
  453. case AV_CODEC_ID_H264:
  454. st->need_parsing = AVSTREAM_PARSE_FULL;
  455. break;
  456. case AV_CODEC_ID_VORBIS:
  457. st->need_parsing = AVSTREAM_PARSE_HEADERS;
  458. break;
  459. case AV_CODEC_ID_ADPCM_G722:
  460. /* According to RFC 3551, the stream clock rate is 8000
  461. * even if the sample rate is 16000. */
  462. if (st->codec->sample_rate == 8000)
  463. st->codec->sample_rate = 16000;
  464. break;
  465. default:
  466. break;
  467. }
  468. }
  469. // needed to send back RTCP RR in RTSP sessions
  470. gethostname(s->hostname, sizeof(s->hostname));
  471. return s;
  472. }
  473. void ff_rtp_parse_set_dynamic_protocol(RTPDemuxContext *s, PayloadContext *ctx,
  474. RTPDynamicProtocolHandler *handler)
  475. {
  476. s->dynamic_protocol_context = ctx;
  477. s->handler = handler;
  478. }
  479. void ff_rtp_parse_set_crypto(RTPDemuxContext *s, const char *suite,
  480. const char *params)
  481. {
  482. if (!ff_srtp_set_crypto(&s->srtp, suite, params))
  483. s->srtp_enabled = 1;
  484. }
  485. /**
  486. * This was the second switch in rtp_parse packet.
  487. * Normalizes time, if required, sets stream_index, etc.
  488. */
  489. static void finalize_packet(RTPDemuxContext *s, AVPacket *pkt, uint32_t timestamp)
  490. {
  491. if (pkt->pts != AV_NOPTS_VALUE || pkt->dts != AV_NOPTS_VALUE)
  492. return; /* Timestamp already set by depacketizer */
  493. if (timestamp == RTP_NOTS_VALUE)
  494. return;
  495. if (s->last_rtcp_ntp_time != AV_NOPTS_VALUE && s->ic->nb_streams > 1) {
  496. int64_t addend;
  497. int delta_timestamp;
  498. /* compute pts from timestamp with received ntp_time */
  499. delta_timestamp = timestamp - s->last_rtcp_timestamp;
  500. /* convert to the PTS timebase */
  501. addend = av_rescale(s->last_rtcp_ntp_time - s->first_rtcp_ntp_time,
  502. s->st->time_base.den,
  503. (uint64_t) s->st->time_base.num << 32);
  504. pkt->pts = s->range_start_offset + s->rtcp_ts_offset + addend +
  505. delta_timestamp;
  506. return;
  507. }
  508. if (!s->base_timestamp)
  509. s->base_timestamp = timestamp;
  510. /* assume that the difference is INT32_MIN < x < INT32_MAX,
  511. * but allow the first timestamp to exceed INT32_MAX */
  512. if (!s->timestamp)
  513. s->unwrapped_timestamp += timestamp;
  514. else
  515. s->unwrapped_timestamp += (int32_t)(timestamp - s->timestamp);
  516. s->timestamp = timestamp;
  517. pkt->pts = s->unwrapped_timestamp + s->range_start_offset -
  518. s->base_timestamp;
  519. }
  520. static int rtp_parse_packet_internal(RTPDemuxContext *s, AVPacket *pkt,
  521. const uint8_t *buf, int len)
  522. {
  523. unsigned int ssrc, h;
  524. int payload_type, seq, flags = 0;
  525. int ext;
  526. AVStream *st;
  527. uint32_t timestamp;
  528. int rv = 0;
  529. ext = buf[0] & 0x10;
  530. payload_type = buf[1] & 0x7f;
  531. if (buf[1] & 0x80)
  532. flags |= RTP_FLAG_MARKER;
  533. seq = AV_RB16(buf + 2);
  534. timestamp = AV_RB32(buf + 4);
  535. ssrc = AV_RB32(buf + 8);
  536. /* store the ssrc in the RTPDemuxContext */
  537. s->ssrc = ssrc;
  538. /* NOTE: we can handle only one payload type */
  539. if (s->payload_type != payload_type)
  540. return -1;
  541. st = s->st;
  542. // only do something with this if all the rtp checks pass...
  543. if (!rtp_valid_packet_in_sequence(&s->statistics, seq)) {
  544. av_log(st ? st->codec : NULL, AV_LOG_ERROR,
  545. "RTP: PT=%02x: bad cseq %04x expected=%04x\n",
  546. payload_type, seq, ((s->seq + 1) & 0xffff));
  547. return -1;
  548. }
  549. if (buf[0] & 0x20) {
  550. int padding = buf[len - 1];
  551. if (len >= 12 + padding)
  552. len -= padding;
  553. }
  554. s->seq = seq;
  555. len -= 12;
  556. buf += 12;
  557. /* RFC 3550 Section 5.3.1 RTP Header Extension handling */
  558. if (ext) {
  559. if (len < 4)
  560. return -1;
  561. /* calculate the header extension length (stored as number
  562. * of 32-bit words) */
  563. ext = (AV_RB16(buf + 2) + 1) << 2;
  564. if (len < ext)
  565. return -1;
  566. // skip past RTP header extension
  567. len -= ext;
  568. buf += ext;
  569. }
  570. if (s->handler && s->handler->parse_packet) {
  571. rv = s->handler->parse_packet(s->ic, s->dynamic_protocol_context,
  572. s->st, pkt, &timestamp, buf, len, seq,
  573. flags);
  574. } else if (st) {
  575. /* At this point, the RTP header has been stripped;
  576. * This is ASSUMING that there is only 1 CSRC, which isn't wise. */
  577. switch (st->codec->codec_id) {
  578. case AV_CODEC_ID_MP2:
  579. case AV_CODEC_ID_MP3:
  580. /* better than nothing: skip MPEG audio RTP header */
  581. if (len <= 4)
  582. return -1;
  583. h = AV_RB32(buf);
  584. len -= 4;
  585. buf += 4;
  586. av_new_packet(pkt, len);
  587. memcpy(pkt->data, buf, len);
  588. break;
  589. case AV_CODEC_ID_MPEG1VIDEO:
  590. case AV_CODEC_ID_MPEG2VIDEO:
  591. /* better than nothing: skip MPEG video RTP header */
  592. if (len <= 4)
  593. return -1;
  594. h = AV_RB32(buf);
  595. buf += 4;
  596. len -= 4;
  597. if (h & (1 << 26)) {
  598. /* MPEG-2 */
  599. if (len <= 4)
  600. return -1;
  601. buf += 4;
  602. len -= 4;
  603. }
  604. av_new_packet(pkt, len);
  605. memcpy(pkt->data, buf, len);
  606. break;
  607. default:
  608. av_new_packet(pkt, len);
  609. memcpy(pkt->data, buf, len);
  610. break;
  611. }
  612. pkt->stream_index = st->index;
  613. } else {
  614. return AVERROR(EINVAL);
  615. }
  616. // now perform timestamp things....
  617. finalize_packet(s, pkt, timestamp);
  618. return rv;
  619. }
  620. void ff_rtp_reset_packet_queue(RTPDemuxContext *s)
  621. {
  622. while (s->queue) {
  623. RTPPacket *next = s->queue->next;
  624. av_free(s->queue->buf);
  625. av_free(s->queue);
  626. s->queue = next;
  627. }
  628. s->seq = 0;
  629. s->queue_len = 0;
  630. s->prev_ret = 0;
  631. }
  632. static void enqueue_packet(RTPDemuxContext *s, uint8_t *buf, int len)
  633. {
  634. uint16_t seq = AV_RB16(buf + 2);
  635. RTPPacket **cur = &s->queue, *packet;
  636. /* Find the correct place in the queue to insert the packet */
  637. while (*cur) {
  638. int16_t diff = seq - (*cur)->seq;
  639. if (diff < 0)
  640. break;
  641. cur = &(*cur)->next;
  642. }
  643. packet = av_mallocz(sizeof(*packet));
  644. if (!packet)
  645. return;
  646. packet->recvtime = av_gettime();
  647. packet->seq = seq;
  648. packet->len = len;
  649. packet->buf = buf;
  650. packet->next = *cur;
  651. *cur = packet;
  652. s->queue_len++;
  653. }
  654. static int has_next_packet(RTPDemuxContext *s)
  655. {
  656. return s->queue && s->queue->seq == (uint16_t) (s->seq + 1);
  657. }
  658. int64_t ff_rtp_queued_packet_time(RTPDemuxContext *s)
  659. {
  660. return s->queue ? s->queue->recvtime : 0;
  661. }
  662. static int rtp_parse_queued_packet(RTPDemuxContext *s, AVPacket *pkt)
  663. {
  664. int rv;
  665. RTPPacket *next;
  666. if (s->queue_len <= 0)
  667. return -1;
  668. if (!has_next_packet(s))
  669. av_log(s->st ? s->st->codec : NULL, AV_LOG_WARNING,
  670. "RTP: missed %d packets\n", s->queue->seq - s->seq - 1);
  671. /* Parse the first packet in the queue, and dequeue it */
  672. rv = rtp_parse_packet_internal(s, pkt, s->queue->buf, s->queue->len);
  673. next = s->queue->next;
  674. av_free(s->queue->buf);
  675. av_free(s->queue);
  676. s->queue = next;
  677. s->queue_len--;
  678. return rv;
  679. }
  680. static int rtp_parse_one_packet(RTPDemuxContext *s, AVPacket *pkt,
  681. uint8_t **bufptr, int len)
  682. {
  683. uint8_t *buf = bufptr ? *bufptr : NULL;
  684. int flags = 0;
  685. uint32_t timestamp;
  686. int rv = 0;
  687. if (!buf) {
  688. /* If parsing of the previous packet actually returned 0 or an error,
  689. * there's nothing more to be parsed from that packet, but we may have
  690. * indicated that we can return the next enqueued packet. */
  691. if (s->prev_ret <= 0)
  692. return rtp_parse_queued_packet(s, pkt);
  693. /* return the next packets, if any */
  694. if (s->handler && s->handler->parse_packet) {
  695. /* timestamp should be overwritten by parse_packet, if not,
  696. * the packet is left with pts == AV_NOPTS_VALUE */
  697. timestamp = RTP_NOTS_VALUE;
  698. rv = s->handler->parse_packet(s->ic, s->dynamic_protocol_context,
  699. s->st, pkt, &timestamp, NULL, 0, 0,
  700. flags);
  701. finalize_packet(s, pkt, timestamp);
  702. return rv;
  703. }
  704. }
  705. if (len < 12)
  706. return -1;
  707. if ((buf[0] & 0xc0) != (RTP_VERSION << 6))
  708. return -1;
  709. if (RTP_PT_IS_RTCP(buf[1])) {
  710. return rtcp_parse_packet(s, buf, len);
  711. }
  712. if (s->st) {
  713. int64_t received = av_gettime();
  714. uint32_t arrival_ts = av_rescale_q(received, AV_TIME_BASE_Q,
  715. s->st->time_base);
  716. timestamp = AV_RB32(buf + 4);
  717. // Calculate the jitter immediately, before queueing the packet
  718. // into the reordering queue.
  719. rtcp_update_jitter(&s->statistics, timestamp, arrival_ts);
  720. }
  721. if ((s->seq == 0 && !s->queue) || s->queue_size <= 1) {
  722. /* First packet, or no reordering */
  723. return rtp_parse_packet_internal(s, pkt, buf, len);
  724. } else {
  725. uint16_t seq = AV_RB16(buf + 2);
  726. int16_t diff = seq - s->seq;
  727. if (diff < 0) {
  728. /* Packet older than the previously emitted one, drop */
  729. av_log(s->st ? s->st->codec : NULL, AV_LOG_WARNING,
  730. "RTP: dropping old packet received too late\n");
  731. return -1;
  732. } else if (diff <= 1) {
  733. /* Correct packet */
  734. rv = rtp_parse_packet_internal(s, pkt, buf, len);
  735. return rv;
  736. } else {
  737. /* Still missing some packet, enqueue this one. */
  738. enqueue_packet(s, buf, len);
  739. *bufptr = NULL;
  740. /* Return the first enqueued packet if the queue is full,
  741. * even if we're missing something */
  742. if (s->queue_len >= s->queue_size)
  743. return rtp_parse_queued_packet(s, pkt);
  744. return -1;
  745. }
  746. }
  747. }
  748. /**
  749. * Parse an RTP or RTCP packet directly sent as a buffer.
  750. * @param s RTP parse context.
  751. * @param pkt returned packet
  752. * @param bufptr pointer to the input buffer or NULL to read the next packets
  753. * @param len buffer len
  754. * @return 0 if a packet is returned, 1 if a packet is returned and more can follow
  755. * (use buf as NULL to read the next). -1 if no packet (error or no more packet).
  756. */
  757. int ff_rtp_parse_packet(RTPDemuxContext *s, AVPacket *pkt,
  758. uint8_t **bufptr, int len)
  759. {
  760. int rv;
  761. if (s->srtp_enabled && bufptr && ff_srtp_decrypt(&s->srtp, *bufptr, &len) < 0)
  762. return -1;
  763. rv = rtp_parse_one_packet(s, pkt, bufptr, len);
  764. s->prev_ret = rv;
  765. while (rv == AVERROR(EAGAIN) && has_next_packet(s))
  766. rv = rtp_parse_queued_packet(s, pkt);
  767. return rv ? rv : has_next_packet(s);
  768. }
  769. void ff_rtp_parse_close(RTPDemuxContext *s)
  770. {
  771. ff_rtp_reset_packet_queue(s);
  772. ff_srtp_free(&s->srtp);
  773. av_free(s);
  774. }
  775. int ff_parse_fmtp(AVStream *stream, PayloadContext *data, const char *p,
  776. int (*parse_fmtp)(AVStream *stream,
  777. PayloadContext *data,
  778. char *attr, char *value))
  779. {
  780. char attr[256];
  781. char *value;
  782. int res;
  783. int value_size = strlen(p) + 1;
  784. if (!(value = av_malloc(value_size))) {
  785. av_log(NULL, AV_LOG_ERROR, "Failed to allocate data for FMTP.");
  786. return AVERROR(ENOMEM);
  787. }
  788. // remove protocol identifier
  789. while (*p && *p == ' ')
  790. p++; // strip spaces
  791. while (*p && *p != ' ')
  792. p++; // eat protocol identifier
  793. while (*p && *p == ' ')
  794. p++; // strip trailing spaces
  795. while (ff_rtsp_next_attr_and_value(&p,
  796. attr, sizeof(attr),
  797. value, value_size)) {
  798. res = parse_fmtp(stream, data, attr, value);
  799. if (res < 0 && res != AVERROR_PATCHWELCOME) {
  800. av_free(value);
  801. return res;
  802. }
  803. }
  804. av_free(value);
  805. return 0;
  806. }
  807. int ff_rtp_finalize_packet(AVPacket *pkt, AVIOContext **dyn_buf, int stream_idx)
  808. {
  809. av_init_packet(pkt);
  810. pkt->size = avio_close_dyn_buf(*dyn_buf, &pkt->data);
  811. pkt->stream_index = stream_idx;
  812. pkt->destruct = av_destruct_packet;
  813. *dyn_buf = NULL;
  814. return pkt->size;
  815. }