You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1712 lines
60KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #include <assert.h>
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avutil.h"
  39. #include "libavutil/bswap.h"
  40. #include "libavutil/cpu.h"
  41. #include "libavutil/intreadwrite.h"
  42. #include "libavutil/mathematics.h"
  43. #include "libavutil/opt.h"
  44. #include "libavutil/pixdesc.h"
  45. #include "libavutil/x86/asm.h"
  46. #include "libavutil/x86/cpu.h"
  47. #include "rgb2rgb.h"
  48. #include "swscale.h"
  49. #include "swscale_internal.h"
  50. unsigned swscale_version(void)
  51. {
  52. return LIBSWSCALE_VERSION_INT;
  53. }
  54. const char *swscale_configuration(void)
  55. {
  56. return LIBAV_CONFIGURATION;
  57. }
  58. const char *swscale_license(void)
  59. {
  60. #define LICENSE_PREFIX "libswscale license: "
  61. return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  62. }
  63. #define RET 0xC3 // near return opcode for x86
  64. typedef struct FormatEntry {
  65. int is_supported_in, is_supported_out;
  66. } FormatEntry;
  67. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  68. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  69. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  70. [AV_PIX_FMT_RGB24] = { 1, 1 },
  71. [AV_PIX_FMT_BGR24] = { 1, 1 },
  72. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  73. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  74. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  75. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  76. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  77. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  78. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  79. [AV_PIX_FMT_PAL8] = { 1, 0 },
  80. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  81. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  82. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  83. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  84. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  85. [AV_PIX_FMT_BGR8] = { 1, 1 },
  86. [AV_PIX_FMT_BGR4] = { 0, 1 },
  87. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  88. [AV_PIX_FMT_RGB8] = { 1, 1 },
  89. [AV_PIX_FMT_RGB4] = { 0, 1 },
  90. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  91. [AV_PIX_FMT_NV12] = { 1, 1 },
  92. [AV_PIX_FMT_NV21] = { 1, 1 },
  93. [AV_PIX_FMT_ARGB] = { 1, 1 },
  94. [AV_PIX_FMT_RGBA] = { 1, 1 },
  95. [AV_PIX_FMT_ABGR] = { 1, 1 },
  96. [AV_PIX_FMT_BGRA] = { 1, 1 },
  97. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  98. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  99. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  100. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  101. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  102. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  103. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  104. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  105. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  106. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  107. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  108. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  109. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  110. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  111. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  112. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  113. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  114. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  115. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  116. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  117. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  118. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  119. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  120. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  121. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  122. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  123. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  124. [AV_PIX_FMT_Y400A] = { 1, 0 },
  125. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  126. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  127. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  128. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  129. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  130. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  131. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  132. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  133. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  134. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  135. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  136. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  137. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  138. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  139. [AV_PIX_FMT_GBRP] = { 1, 0 },
  140. [AV_PIX_FMT_GBRP9LE] = { 1, 0 },
  141. [AV_PIX_FMT_GBRP9BE] = { 1, 0 },
  142. [AV_PIX_FMT_GBRP10LE] = { 1, 0 },
  143. [AV_PIX_FMT_GBRP10BE] = { 1, 0 },
  144. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  145. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  146. };
  147. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  148. {
  149. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  150. format_entries[pix_fmt].is_supported_in : 0;
  151. }
  152. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  153. {
  154. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  155. format_entries[pix_fmt].is_supported_out : 0;
  156. }
  157. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  158. const char *sws_format_name(enum AVPixelFormat format)
  159. {
  160. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  161. if (desc)
  162. return desc->name;
  163. else
  164. return "Unknown format";
  165. }
  166. static double getSplineCoeff(double a, double b, double c, double d,
  167. double dist)
  168. {
  169. if (dist <= 1.0)
  170. return ((d * dist + c) * dist + b) * dist + a;
  171. else
  172. return getSplineCoeff(0.0,
  173. b + 2.0 * c + 3.0 * d,
  174. c + 3.0 * d,
  175. -b - 3.0 * c - 6.0 * d,
  176. dist - 1.0);
  177. }
  178. static int initFilter(int16_t **outFilter, int32_t **filterPos,
  179. int *outFilterSize, int xInc, int srcW, int dstW,
  180. int filterAlign, int one, int flags, int cpu_flags,
  181. SwsVector *srcFilter, SwsVector *dstFilter,
  182. double param[2], int is_horizontal)
  183. {
  184. int i;
  185. int filterSize;
  186. int filter2Size;
  187. int minFilterSize;
  188. int64_t *filter = NULL;
  189. int64_t *filter2 = NULL;
  190. const int64_t fone = 1LL << 54;
  191. int ret = -1;
  192. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  193. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  194. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  195. if (FFABS(xInc - 0x10000) < 10) { // unscaled
  196. int i;
  197. filterSize = 1;
  198. FF_ALLOCZ_OR_GOTO(NULL, filter,
  199. dstW * sizeof(*filter) * filterSize, fail);
  200. for (i = 0; i < dstW; i++) {
  201. filter[i * filterSize] = fone;
  202. (*filterPos)[i] = i;
  203. }
  204. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  205. int i;
  206. int xDstInSrc;
  207. filterSize = 1;
  208. FF_ALLOC_OR_GOTO(NULL, filter,
  209. dstW * sizeof(*filter) * filterSize, fail);
  210. xDstInSrc = xInc / 2 - 0x8000;
  211. for (i = 0; i < dstW; i++) {
  212. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  213. (*filterPos)[i] = xx;
  214. filter[i] = fone;
  215. xDstInSrc += xInc;
  216. }
  217. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  218. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  219. int i;
  220. int xDstInSrc;
  221. filterSize = 2;
  222. FF_ALLOC_OR_GOTO(NULL, filter,
  223. dstW * sizeof(*filter) * filterSize, fail);
  224. xDstInSrc = xInc / 2 - 0x8000;
  225. for (i = 0; i < dstW; i++) {
  226. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  227. int j;
  228. (*filterPos)[i] = xx;
  229. // bilinear upscale / linear interpolate / area averaging
  230. for (j = 0; j < filterSize; j++) {
  231. int64_t coeff = fone - FFABS((xx << 16) - xDstInSrc) *
  232. (fone >> 16);
  233. if (coeff < 0)
  234. coeff = 0;
  235. filter[i * filterSize + j] = coeff;
  236. xx++;
  237. }
  238. xDstInSrc += xInc;
  239. }
  240. } else {
  241. int64_t xDstInSrc;
  242. int sizeFactor;
  243. if (flags & SWS_BICUBIC)
  244. sizeFactor = 4;
  245. else if (flags & SWS_X)
  246. sizeFactor = 8;
  247. else if (flags & SWS_AREA)
  248. sizeFactor = 1; // downscale only, for upscale it is bilinear
  249. else if (flags & SWS_GAUSS)
  250. sizeFactor = 8; // infinite ;)
  251. else if (flags & SWS_LANCZOS)
  252. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  253. else if (flags & SWS_SINC)
  254. sizeFactor = 20; // infinite ;)
  255. else if (flags & SWS_SPLINE)
  256. sizeFactor = 20; // infinite ;)
  257. else if (flags & SWS_BILINEAR)
  258. sizeFactor = 2;
  259. else {
  260. sizeFactor = 0; // GCC warning killer
  261. assert(0);
  262. }
  263. if (xInc <= 1 << 16)
  264. filterSize = 1 + sizeFactor; // upscale
  265. else
  266. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  267. filterSize = FFMIN(filterSize, srcW - 2);
  268. filterSize = FFMAX(filterSize, 1);
  269. FF_ALLOC_OR_GOTO(NULL, filter,
  270. dstW * sizeof(*filter) * filterSize, fail);
  271. xDstInSrc = xInc - 0x10000;
  272. for (i = 0; i < dstW; i++) {
  273. int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17);
  274. int j;
  275. (*filterPos)[i] = xx;
  276. for (j = 0; j < filterSize; j++) {
  277. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  278. double floatd;
  279. int64_t coeff;
  280. if (xInc > 1 << 16)
  281. d = d * dstW / srcW;
  282. floatd = d * (1.0 / (1 << 30));
  283. if (flags & SWS_BICUBIC) {
  284. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  285. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  286. if (d >= 1LL << 31) {
  287. coeff = 0.0;
  288. } else {
  289. int64_t dd = (d * d) >> 30;
  290. int64_t ddd = (dd * d) >> 30;
  291. if (d < 1LL << 30)
  292. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  293. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  294. (6 * (1 << 24) - 2 * B) * (1 << 30);
  295. else
  296. coeff = (-B - 6 * C) * ddd +
  297. (6 * B + 30 * C) * dd +
  298. (-12 * B - 48 * C) * d +
  299. (8 * B + 24 * C) * (1 << 30);
  300. }
  301. coeff *= fone >> (30 + 24);
  302. }
  303. #if 0
  304. else if (flags & SWS_X) {
  305. double p = param ? param * 0.01 : 0.3;
  306. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  307. coeff *= pow(2.0, -p * d * d);
  308. }
  309. #endif
  310. else if (flags & SWS_X) {
  311. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  312. double c;
  313. if (floatd < 1.0)
  314. c = cos(floatd * M_PI);
  315. else
  316. c = -1.0;
  317. if (c < 0.0)
  318. c = -pow(-c, A);
  319. else
  320. c = pow(c, A);
  321. coeff = (c * 0.5 + 0.5) * fone;
  322. } else if (flags & SWS_AREA) {
  323. int64_t d2 = d - (1 << 29);
  324. if (d2 * xInc < -(1LL << (29 + 16)))
  325. coeff = 1.0 * (1LL << (30 + 16));
  326. else if (d2 * xInc < (1LL << (29 + 16)))
  327. coeff = -d2 * xInc + (1LL << (29 + 16));
  328. else
  329. coeff = 0.0;
  330. coeff *= fone >> (30 + 16);
  331. } else if (flags & SWS_GAUSS) {
  332. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  333. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  334. } else if (flags & SWS_SINC) {
  335. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  336. } else if (flags & SWS_LANCZOS) {
  337. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  338. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  339. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  340. if (floatd > p)
  341. coeff = 0;
  342. } else if (flags & SWS_BILINEAR) {
  343. coeff = (1 << 30) - d;
  344. if (coeff < 0)
  345. coeff = 0;
  346. coeff *= fone >> 30;
  347. } else if (flags & SWS_SPLINE) {
  348. double p = -2.196152422706632;
  349. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  350. } else {
  351. coeff = 0.0; // GCC warning killer
  352. assert(0);
  353. }
  354. filter[i * filterSize + j] = coeff;
  355. xx++;
  356. }
  357. xDstInSrc += 2 * xInc;
  358. }
  359. }
  360. /* apply src & dst Filter to filter -> filter2
  361. * av_free(filter);
  362. */
  363. assert(filterSize > 0);
  364. filter2Size = filterSize;
  365. if (srcFilter)
  366. filter2Size += srcFilter->length - 1;
  367. if (dstFilter)
  368. filter2Size += dstFilter->length - 1;
  369. assert(filter2Size > 0);
  370. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  371. for (i = 0; i < dstW; i++) {
  372. int j, k;
  373. if (srcFilter) {
  374. for (k = 0; k < srcFilter->length; k++) {
  375. for (j = 0; j < filterSize; j++)
  376. filter2[i * filter2Size + k + j] +=
  377. srcFilter->coeff[k] * filter[i * filterSize + j];
  378. }
  379. } else {
  380. for (j = 0; j < filterSize; j++)
  381. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  382. }
  383. // FIXME dstFilter
  384. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  385. }
  386. av_freep(&filter);
  387. /* try to reduce the filter-size (step1 find size and shift left) */
  388. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  389. minFilterSize = 0;
  390. for (i = dstW - 1; i >= 0; i--) {
  391. int min = filter2Size;
  392. int j;
  393. int64_t cutOff = 0.0;
  394. /* get rid of near zero elements on the left by shifting left */
  395. for (j = 0; j < filter2Size; j++) {
  396. int k;
  397. cutOff += FFABS(filter2[i * filter2Size]);
  398. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  399. break;
  400. /* preserve monotonicity because the core can't handle the
  401. * filter otherwise */
  402. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  403. break;
  404. // move filter coefficients left
  405. for (k = 1; k < filter2Size; k++)
  406. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  407. filter2[i * filter2Size + k - 1] = 0;
  408. (*filterPos)[i]++;
  409. }
  410. cutOff = 0;
  411. /* count near zeros on the right */
  412. for (j = filter2Size - 1; j > 0; j--) {
  413. cutOff += FFABS(filter2[i * filter2Size + j]);
  414. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  415. break;
  416. min--;
  417. }
  418. if (min > minFilterSize)
  419. minFilterSize = min;
  420. }
  421. if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
  422. // we can handle the special case 4, so we don't want to go the full 8
  423. if (minFilterSize < 5)
  424. filterAlign = 4;
  425. /* We really don't want to waste our time doing useless computation, so
  426. * fall back on the scalar C code for very small filters.
  427. * Vectorizing is worth it only if you have a decent-sized vector. */
  428. if (minFilterSize < 3)
  429. filterAlign = 1;
  430. }
  431. if (INLINE_MMX(cpu_flags)) {
  432. // special case for unscaled vertical filtering
  433. if (minFilterSize == 1 && filterAlign == 2)
  434. filterAlign = 1;
  435. }
  436. assert(minFilterSize > 0);
  437. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  438. assert(filterSize > 0);
  439. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  440. if (filterSize >= MAX_FILTER_SIZE * 16 /
  441. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  442. goto fail;
  443. *outFilterSize = filterSize;
  444. if (flags & SWS_PRINT_INFO)
  445. av_log(NULL, AV_LOG_VERBOSE,
  446. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  447. filter2Size, filterSize);
  448. /* try to reduce the filter-size (step2 reduce it) */
  449. for (i = 0; i < dstW; i++) {
  450. int j;
  451. for (j = 0; j < filterSize; j++) {
  452. if (j >= filter2Size)
  453. filter[i * filterSize + j] = 0;
  454. else
  455. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  456. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  457. filter[i * filterSize + j] = 0;
  458. }
  459. }
  460. // FIXME try to align filterPos if possible
  461. // fix borders
  462. if (is_horizontal) {
  463. for (i = 0; i < dstW; i++) {
  464. int j;
  465. if ((*filterPos)[i] < 0) {
  466. // move filter coefficients left to compensate for filterPos
  467. for (j = 1; j < filterSize; j++) {
  468. int left = FFMAX(j + (*filterPos)[i], 0);
  469. filter[i * filterSize + left] += filter[i * filterSize + j];
  470. filter[i * filterSize + j] = 0;
  471. }
  472. (*filterPos)[i] = 0;
  473. }
  474. if ((*filterPos)[i] + filterSize > srcW) {
  475. int shift = (*filterPos)[i] + filterSize - srcW;
  476. // move filter coefficients right to compensate for filterPos
  477. for (j = filterSize - 2; j >= 0; j--) {
  478. int right = FFMIN(j + shift, filterSize - 1);
  479. filter[i * filterSize + right] += filter[i * filterSize + j];
  480. filter[i * filterSize + j] = 0;
  481. }
  482. (*filterPos)[i] = srcW - filterSize;
  483. }
  484. }
  485. }
  486. // Note the +1 is for the MMX scaler which reads over the end
  487. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  488. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  489. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  490. /* normalize & store in outFilter */
  491. for (i = 0; i < dstW; i++) {
  492. int j;
  493. int64_t error = 0;
  494. int64_t sum = 0;
  495. for (j = 0; j < filterSize; j++) {
  496. sum += filter[i * filterSize + j];
  497. }
  498. sum = (sum + one / 2) / one;
  499. for (j = 0; j < *outFilterSize; j++) {
  500. int64_t v = filter[i * filterSize + j] + error;
  501. int intV = ROUNDED_DIV(v, sum);
  502. (*outFilter)[i * (*outFilterSize) + j] = intV;
  503. error = v - intV * sum;
  504. }
  505. }
  506. (*filterPos)[dstW + 0] =
  507. (*filterPos)[dstW + 1] =
  508. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  509. * read over the end */
  510. for (i = 0; i < *outFilterSize; i++) {
  511. int k = (dstW - 1) * (*outFilterSize) + i;
  512. (*outFilter)[k + 1 * (*outFilterSize)] =
  513. (*outFilter)[k + 2 * (*outFilterSize)] =
  514. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  515. }
  516. ret = 0;
  517. fail:
  518. av_free(filter);
  519. av_free(filter2);
  520. return ret;
  521. }
  522. #if HAVE_MMXEXT_INLINE
  523. static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode,
  524. int16_t *filter, int32_t *filterPos, int numSplits)
  525. {
  526. uint8_t *fragmentA;
  527. x86_reg imm8OfPShufW1A;
  528. x86_reg imm8OfPShufW2A;
  529. x86_reg fragmentLengthA;
  530. uint8_t *fragmentB;
  531. x86_reg imm8OfPShufW1B;
  532. x86_reg imm8OfPShufW2B;
  533. x86_reg fragmentLengthB;
  534. int fragmentPos;
  535. int xpos, i;
  536. // create an optimized horizontal scaling routine
  537. /* This scaler is made of runtime-generated MMX2 code using specially tuned
  538. * pshufw instructions. For every four output pixels, if four input pixels
  539. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  540. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  541. */
  542. // code fragment
  543. __asm__ volatile (
  544. "jmp 9f \n\t"
  545. // Begin
  546. "0: \n\t"
  547. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  548. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  549. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  550. "punpcklbw %%mm7, %%mm1 \n\t"
  551. "punpcklbw %%mm7, %%mm0 \n\t"
  552. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  553. "1: \n\t"
  554. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  555. "2: \n\t"
  556. "psubw %%mm1, %%mm0 \n\t"
  557. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  558. "pmullw %%mm3, %%mm0 \n\t"
  559. "psllw $7, %%mm1 \n\t"
  560. "paddw %%mm1, %%mm0 \n\t"
  561. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  562. "add $8, %%"REG_a" \n\t"
  563. // End
  564. "9: \n\t"
  565. // "int $3 \n\t"
  566. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  567. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  568. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  569. "dec %1 \n\t"
  570. "dec %2 \n\t"
  571. "sub %0, %1 \n\t"
  572. "sub %0, %2 \n\t"
  573. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  574. "sub %0, %3 \n\t"
  575. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  576. "=r" (fragmentLengthA)
  577. );
  578. __asm__ volatile (
  579. "jmp 9f \n\t"
  580. // Begin
  581. "0: \n\t"
  582. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  583. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  584. "punpcklbw %%mm7, %%mm0 \n\t"
  585. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  586. "1: \n\t"
  587. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  588. "2: \n\t"
  589. "psubw %%mm1, %%mm0 \n\t"
  590. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  591. "pmullw %%mm3, %%mm0 \n\t"
  592. "psllw $7, %%mm1 \n\t"
  593. "paddw %%mm1, %%mm0 \n\t"
  594. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  595. "add $8, %%"REG_a" \n\t"
  596. // End
  597. "9: \n\t"
  598. // "int $3 \n\t"
  599. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  600. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  601. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  602. "dec %1 \n\t"
  603. "dec %2 \n\t"
  604. "sub %0, %1 \n\t"
  605. "sub %0, %2 \n\t"
  606. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  607. "sub %0, %3 \n\t"
  608. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  609. "=r" (fragmentLengthB)
  610. );
  611. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  612. fragmentPos = 0;
  613. for (i = 0; i < dstW / numSplits; i++) {
  614. int xx = xpos >> 16;
  615. if ((i & 3) == 0) {
  616. int a = 0;
  617. int b = ((xpos + xInc) >> 16) - xx;
  618. int c = ((xpos + xInc * 2) >> 16) - xx;
  619. int d = ((xpos + xInc * 3) >> 16) - xx;
  620. int inc = (d + 1 < 4);
  621. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  622. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  623. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  624. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  625. int maxShift = 3 - (d + inc);
  626. int shift = 0;
  627. if (filterCode) {
  628. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  629. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  630. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  631. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  632. filterPos[i / 2] = xx;
  633. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  634. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  635. ((b + inc) << 2) |
  636. ((c + inc) << 4) |
  637. ((d + inc) << 6);
  638. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  639. (c << 4) |
  640. (d << 6);
  641. if (i + 4 - inc >= dstW)
  642. shift = maxShift; // avoid overread
  643. else if ((filterPos[i / 2] & 3) <= maxShift)
  644. shift = filterPos[i / 2] & 3; // align
  645. if (shift && i >= shift) {
  646. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  647. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  648. filterPos[i / 2] -= shift;
  649. }
  650. }
  651. fragmentPos += fragmentLength;
  652. if (filterCode)
  653. filterCode[fragmentPos] = RET;
  654. }
  655. xpos += xInc;
  656. }
  657. if (filterCode)
  658. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  659. return fragmentPos + 1;
  660. }
  661. #endif /* HAVE_MMXEXT_INLINE */
  662. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  663. {
  664. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  665. *h = desc->log2_chroma_w;
  666. *v = desc->log2_chroma_h;
  667. }
  668. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  669. int srcRange, const int table[4], int dstRange,
  670. int brightness, int contrast, int saturation)
  671. {
  672. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  673. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
  674. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  675. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  676. c->brightness = brightness;
  677. c->contrast = contrast;
  678. c->saturation = saturation;
  679. c->srcRange = srcRange;
  680. c->dstRange = dstRange;
  681. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  682. return -1;
  683. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  684. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  685. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  686. contrast, saturation);
  687. // FIXME factorize
  688. if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
  689. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness,
  690. contrast, saturation);
  691. return 0;
  692. }
  693. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  694. int *srcRange, int **table, int *dstRange,
  695. int *brightness, int *contrast, int *saturation)
  696. {
  697. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  698. return -1;
  699. *inv_table = c->srcColorspaceTable;
  700. *table = c->dstColorspaceTable;
  701. *srcRange = c->srcRange;
  702. *dstRange = c->dstRange;
  703. *brightness = c->brightness;
  704. *contrast = c->contrast;
  705. *saturation = c->saturation;
  706. return 0;
  707. }
  708. static int handle_jpeg(enum AVPixelFormat *format)
  709. {
  710. switch (*format) {
  711. case AV_PIX_FMT_YUVJ420P:
  712. *format = AV_PIX_FMT_YUV420P;
  713. return 1;
  714. case AV_PIX_FMT_YUVJ422P:
  715. *format = AV_PIX_FMT_YUV422P;
  716. return 1;
  717. case AV_PIX_FMT_YUVJ444P:
  718. *format = AV_PIX_FMT_YUV444P;
  719. return 1;
  720. case AV_PIX_FMT_YUVJ440P:
  721. *format = AV_PIX_FMT_YUV440P;
  722. return 1;
  723. default:
  724. return 0;
  725. }
  726. }
  727. SwsContext *sws_alloc_context(void)
  728. {
  729. SwsContext *c = av_mallocz(sizeof(SwsContext));
  730. c->av_class = &sws_context_class;
  731. av_opt_set_defaults(c);
  732. return c;
  733. }
  734. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  735. SwsFilter *dstFilter)
  736. {
  737. int i;
  738. int usesVFilter, usesHFilter;
  739. int unscaled;
  740. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  741. int srcW = c->srcW;
  742. int srcH = c->srcH;
  743. int dstW = c->dstW;
  744. int dstH = c->dstH;
  745. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16);
  746. int dst_stride_px = dst_stride >> 1;
  747. int flags, cpu_flags;
  748. enum AVPixelFormat srcFormat = c->srcFormat;
  749. enum AVPixelFormat dstFormat = c->dstFormat;
  750. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
  751. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
  752. cpu_flags = av_get_cpu_flags();
  753. flags = c->flags;
  754. emms_c();
  755. if (!rgb15to16)
  756. sws_rgb2rgb_init();
  757. unscaled = (srcW == dstW && srcH == dstH);
  758. if (!sws_isSupportedInput(srcFormat)) {
  759. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  760. sws_format_name(srcFormat));
  761. return AVERROR(EINVAL);
  762. }
  763. if (!sws_isSupportedOutput(dstFormat)) {
  764. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  765. sws_format_name(dstFormat));
  766. return AVERROR(EINVAL);
  767. }
  768. i = flags & (SWS_POINT |
  769. SWS_AREA |
  770. SWS_BILINEAR |
  771. SWS_FAST_BILINEAR |
  772. SWS_BICUBIC |
  773. SWS_X |
  774. SWS_GAUSS |
  775. SWS_LANCZOS |
  776. SWS_SINC |
  777. SWS_SPLINE |
  778. SWS_BICUBLIN);
  779. if (!i || (i & (i - 1))) {
  780. av_log(c, AV_LOG_ERROR,
  781. "Exactly one scaler algorithm must be chosen\n");
  782. return AVERROR(EINVAL);
  783. }
  784. /* sanity check */
  785. if (srcW < 4 || srcH < 1 || dstW < 8 || dstH < 1) {
  786. /* FIXME check if these are enough and try to lower them after
  787. * fixing the relevant parts of the code */
  788. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  789. srcW, srcH, dstW, dstH);
  790. return AVERROR(EINVAL);
  791. }
  792. if (!dstFilter)
  793. dstFilter = &dummyFilter;
  794. if (!srcFilter)
  795. srcFilter = &dummyFilter;
  796. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  797. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  798. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  799. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  800. c->vRounder = 4 * 0x0001000100010001ULL;
  801. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  802. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  803. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  804. (dstFilter->chrV && dstFilter->chrV->length > 1);
  805. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  806. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  807. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  808. (dstFilter->chrH && dstFilter->chrH->length > 1);
  809. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  810. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  811. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  812. * chroma interpolation */
  813. if (flags & SWS_FULL_CHR_H_INT &&
  814. isAnyRGB(dstFormat) &&
  815. dstFormat != AV_PIX_FMT_RGBA &&
  816. dstFormat != AV_PIX_FMT_ARGB &&
  817. dstFormat != AV_PIX_FMT_BGRA &&
  818. dstFormat != AV_PIX_FMT_ABGR &&
  819. dstFormat != AV_PIX_FMT_RGB24 &&
  820. dstFormat != AV_PIX_FMT_BGR24) {
  821. av_log(c, AV_LOG_ERROR,
  822. "full chroma interpolation for destination format '%s' not yet implemented\n",
  823. sws_format_name(dstFormat));
  824. flags &= ~SWS_FULL_CHR_H_INT;
  825. c->flags = flags;
  826. }
  827. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  828. c->chrDstHSubSample = 1;
  829. // drop some chroma lines if the user wants it
  830. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  831. SWS_SRC_V_CHR_DROP_SHIFT;
  832. c->chrSrcVSubSample += c->vChrDrop;
  833. /* drop every other pixel for chroma calculation unless user
  834. * wants full chroma */
  835. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  836. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  837. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  838. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  839. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  840. (flags & SWS_FAST_BILINEAR)))
  841. c->chrSrcHSubSample = 1;
  842. // Note the -((-x)>>y) is so that we always round toward +inf.
  843. c->chrSrcW = -((-srcW) >> c->chrSrcHSubSample);
  844. c->chrSrcH = -((-srcH) >> c->chrSrcVSubSample);
  845. c->chrDstW = -((-dstW) >> c->chrDstHSubSample);
  846. c->chrDstH = -((-dstH) >> c->chrDstVSubSample);
  847. /* unscaled special cases */
  848. if (unscaled && !usesHFilter && !usesVFilter &&
  849. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  850. ff_get_unscaled_swscale(c);
  851. if (c->swScale) {
  852. if (flags & SWS_PRINT_INFO)
  853. av_log(c, AV_LOG_INFO,
  854. "using unscaled %s -> %s special converter\n",
  855. sws_format_name(srcFormat), sws_format_name(dstFormat));
  856. return 0;
  857. }
  858. }
  859. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  860. if (c->srcBpc < 8)
  861. c->srcBpc = 8;
  862. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  863. if (c->dstBpc < 8)
  864. c->dstBpc = 8;
  865. if (c->dstBpc == 16)
  866. dst_stride <<= 1;
  867. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer,
  868. (FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3) + 16,
  869. fail);
  870. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 10) {
  871. c->canMMX2BeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  872. (srcW & 15) == 0) ? 1 : 0;
  873. if (!c->canMMX2BeUsed && dstW >= srcW && (srcW & 15) == 0
  874. && (flags & SWS_FAST_BILINEAR)) {
  875. if (flags & SWS_PRINT_INFO)
  876. av_log(c, AV_LOG_INFO,
  877. "output width is not a multiple of 32 -> no MMX2 scaler\n");
  878. }
  879. if (usesHFilter)
  880. c->canMMX2BeUsed = 0;
  881. } else
  882. c->canMMX2BeUsed = 0;
  883. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  884. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  885. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  886. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  887. * correct scaling.
  888. * n-2 is the last chrominance sample available.
  889. * This is not perfect, but no one should notice the difference, the more
  890. * correct variant would be like the vertical one, but that would require
  891. * some special code for the first and last pixel */
  892. if (flags & SWS_FAST_BILINEAR) {
  893. if (c->canMMX2BeUsed) {
  894. c->lumXInc += 20;
  895. c->chrXInc += 20;
  896. }
  897. // we don't use the x86 asm scaler if MMX is available
  898. else if (INLINE_MMX(cpu_flags)) {
  899. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  900. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  901. }
  902. }
  903. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  904. /* precalculate horizontal scaler filter coefficients */
  905. {
  906. #if HAVE_MMXEXT_INLINE
  907. // can't downscale !!!
  908. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
  909. c->lumMmx2FilterCodeSize = initMMX2HScaler(dstW, c->lumXInc, NULL,
  910. NULL, NULL, 8);
  911. c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc,
  912. NULL, NULL, NULL, 4);
  913. #if USE_MMAP
  914. c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  915. c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  916. #elif HAVE_VIRTUALALLOC
  917. c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  918. c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  919. #else
  920. c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
  921. c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
  922. #endif
  923. if (!c->lumMmx2FilterCode || !c->chrMmx2FilterCode)
  924. return AVERROR(ENOMEM);
  925. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  926. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  927. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  928. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  929. initMMX2HScaler(dstW, c->lumXInc, c->lumMmx2FilterCode,
  930. c->hLumFilter, c->hLumFilterPos, 8);
  931. initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode,
  932. c->hChrFilter, c->hChrFilterPos, 4);
  933. #if USE_MMAP
  934. mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
  935. mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
  936. #endif
  937. } else
  938. #endif /* HAVE_MMXEXT_INLINE */
  939. {
  940. const int filterAlign =
  941. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
  942. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  943. 1;
  944. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  945. &c->hLumFilterSize, c->lumXInc,
  946. srcW, dstW, filterAlign, 1 << 14,
  947. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  948. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  949. c->param, 1) < 0)
  950. goto fail;
  951. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  952. &c->hChrFilterSize, c->chrXInc,
  953. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  954. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  955. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  956. c->param, 1) < 0)
  957. goto fail;
  958. }
  959. } // initialize horizontal stuff
  960. /* precalculate vertical scaler filter coefficients */
  961. {
  962. const int filterAlign =
  963. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 2 :
  964. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  965. 1;
  966. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  967. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  968. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  969. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  970. c->param, 0) < 0)
  971. goto fail;
  972. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  973. c->chrYInc, c->chrSrcH, c->chrDstH,
  974. filterAlign, (1 << 12),
  975. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  976. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  977. c->param, 0) < 0)
  978. goto fail;
  979. #if HAVE_ALTIVEC
  980. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  981. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  982. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  983. int j;
  984. short *p = (short *)&c->vYCoeffsBank[i];
  985. for (j = 0; j < 8; j++)
  986. p[j] = c->vLumFilter[i];
  987. }
  988. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  989. int j;
  990. short *p = (short *)&c->vCCoeffsBank[i];
  991. for (j = 0; j < 8; j++)
  992. p[j] = c->vChrFilter[i];
  993. }
  994. #endif
  995. }
  996. // calculate buffer sizes so that they won't run out while handling these damn slices
  997. c->vLumBufSize = c->vLumFilterSize;
  998. c->vChrBufSize = c->vChrFilterSize;
  999. for (i = 0; i < dstH; i++) {
  1000. int chrI = (int64_t)i * c->chrDstH / dstH;
  1001. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1002. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1003. << c->chrSrcVSubSample));
  1004. nextSlice >>= c->chrSrcVSubSample;
  1005. nextSlice <<= c->chrSrcVSubSample;
  1006. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1007. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1008. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1009. (nextSlice >> c->chrSrcVSubSample))
  1010. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1011. c->vChrFilterPos[chrI];
  1012. }
  1013. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1014. * need to allocate several megabytes to handle all possible cases) */
  1015. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1016. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1017. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1018. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1019. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1020. /* Note we need at least one pixel more at the end because of the MMX code
  1021. * (just in case someone wants to replace the 4000/8000). */
  1022. /* align at 16 bytes for AltiVec */
  1023. for (i = 0; i < c->vLumBufSize; i++) {
  1024. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1025. dst_stride + 16, fail);
  1026. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1027. }
  1028. // 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate)
  1029. c->uv_off_px = dst_stride_px + 64 / (c->dstBpc & ~7);
  1030. c->uv_off_byte = dst_stride + 16;
  1031. for (i = 0; i < c->vChrBufSize; i++) {
  1032. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1033. dst_stride * 2 + 32, fail);
  1034. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1035. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1036. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1037. }
  1038. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1039. for (i = 0; i < c->vLumBufSize; i++) {
  1040. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1041. dst_stride + 16, fail);
  1042. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1043. }
  1044. // try to avoid drawing green stuff between the right end and the stride end
  1045. for (i = 0; i < c->vChrBufSize; i++)
  1046. memset(c->chrUPixBuf[i], 64, dst_stride * 2 + 1);
  1047. assert(c->chrDstH <= dstH);
  1048. if (flags & SWS_PRINT_INFO) {
  1049. if (flags & SWS_FAST_BILINEAR)
  1050. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1051. else if (flags & SWS_BILINEAR)
  1052. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1053. else if (flags & SWS_BICUBIC)
  1054. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1055. else if (flags & SWS_X)
  1056. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1057. else if (flags & SWS_POINT)
  1058. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1059. else if (flags & SWS_AREA)
  1060. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1061. else if (flags & SWS_BICUBLIN)
  1062. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1063. else if (flags & SWS_GAUSS)
  1064. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1065. else if (flags & SWS_SINC)
  1066. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1067. else if (flags & SWS_LANCZOS)
  1068. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1069. else if (flags & SWS_SPLINE)
  1070. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1071. else
  1072. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1073. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1074. sws_format_name(srcFormat),
  1075. #ifdef DITHER1XBPP
  1076. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1077. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1078. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1079. "dithered " : "",
  1080. #else
  1081. "",
  1082. #endif
  1083. sws_format_name(dstFormat));
  1084. if (INLINE_MMXEXT(cpu_flags))
  1085. av_log(c, AV_LOG_INFO, "using MMX2\n");
  1086. else if (INLINE_AMD3DNOW(cpu_flags))
  1087. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1088. else if (INLINE_MMX(cpu_flags))
  1089. av_log(c, AV_LOG_INFO, "using MMX\n");
  1090. else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC)
  1091. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1092. else
  1093. av_log(c, AV_LOG_INFO, "using C\n");
  1094. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1095. av_log(c, AV_LOG_DEBUG,
  1096. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1097. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1098. av_log(c, AV_LOG_DEBUG,
  1099. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1100. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1101. c->chrXInc, c->chrYInc);
  1102. }
  1103. c->swScale = ff_getSwsFunc(c);
  1104. return 0;
  1105. fail: // FIXME replace things by appropriate error codes
  1106. return -1;
  1107. }
  1108. #if FF_API_SWS_GETCONTEXT
  1109. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1110. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1111. int flags, SwsFilter *srcFilter,
  1112. SwsFilter *dstFilter, const double *param)
  1113. {
  1114. SwsContext *c;
  1115. if (!(c = sws_alloc_context()))
  1116. return NULL;
  1117. c->flags = flags;
  1118. c->srcW = srcW;
  1119. c->srcH = srcH;
  1120. c->dstW = dstW;
  1121. c->dstH = dstH;
  1122. c->srcRange = handle_jpeg(&srcFormat);
  1123. c->dstRange = handle_jpeg(&dstFormat);
  1124. c->srcFormat = srcFormat;
  1125. c->dstFormat = dstFormat;
  1126. if (param) {
  1127. c->param[0] = param[0];
  1128. c->param[1] = param[1];
  1129. }
  1130. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1131. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1132. c->dstRange, 0, 1 << 16, 1 << 16);
  1133. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1134. sws_freeContext(c);
  1135. return NULL;
  1136. }
  1137. return c;
  1138. }
  1139. #endif
  1140. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1141. float lumaSharpen, float chromaSharpen,
  1142. float chromaHShift, float chromaVShift,
  1143. int verbose)
  1144. {
  1145. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1146. if (!filter)
  1147. return NULL;
  1148. if (lumaGBlur != 0.0) {
  1149. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1150. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1151. } else {
  1152. filter->lumH = sws_getIdentityVec();
  1153. filter->lumV = sws_getIdentityVec();
  1154. }
  1155. if (chromaGBlur != 0.0) {
  1156. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1157. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1158. } else {
  1159. filter->chrH = sws_getIdentityVec();
  1160. filter->chrV = sws_getIdentityVec();
  1161. }
  1162. if (chromaSharpen != 0.0) {
  1163. SwsVector *id = sws_getIdentityVec();
  1164. sws_scaleVec(filter->chrH, -chromaSharpen);
  1165. sws_scaleVec(filter->chrV, -chromaSharpen);
  1166. sws_addVec(filter->chrH, id);
  1167. sws_addVec(filter->chrV, id);
  1168. sws_freeVec(id);
  1169. }
  1170. if (lumaSharpen != 0.0) {
  1171. SwsVector *id = sws_getIdentityVec();
  1172. sws_scaleVec(filter->lumH, -lumaSharpen);
  1173. sws_scaleVec(filter->lumV, -lumaSharpen);
  1174. sws_addVec(filter->lumH, id);
  1175. sws_addVec(filter->lumV, id);
  1176. sws_freeVec(id);
  1177. }
  1178. if (chromaHShift != 0.0)
  1179. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1180. if (chromaVShift != 0.0)
  1181. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1182. sws_normalizeVec(filter->chrH, 1.0);
  1183. sws_normalizeVec(filter->chrV, 1.0);
  1184. sws_normalizeVec(filter->lumH, 1.0);
  1185. sws_normalizeVec(filter->lumV, 1.0);
  1186. if (verbose)
  1187. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1188. if (verbose)
  1189. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1190. return filter;
  1191. }
  1192. SwsVector *sws_allocVec(int length)
  1193. {
  1194. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1195. if (!vec)
  1196. return NULL;
  1197. vec->length = length;
  1198. vec->coeff = av_malloc(sizeof(double) * length);
  1199. if (!vec->coeff)
  1200. av_freep(&vec);
  1201. return vec;
  1202. }
  1203. SwsVector *sws_getGaussianVec(double variance, double quality)
  1204. {
  1205. const int length = (int)(variance * quality + 0.5) | 1;
  1206. int i;
  1207. double middle = (length - 1) * 0.5;
  1208. SwsVector *vec = sws_allocVec(length);
  1209. if (!vec)
  1210. return NULL;
  1211. for (i = 0; i < length; i++) {
  1212. double dist = i - middle;
  1213. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1214. sqrt(2 * variance * M_PI);
  1215. }
  1216. sws_normalizeVec(vec, 1.0);
  1217. return vec;
  1218. }
  1219. SwsVector *sws_getConstVec(double c, int length)
  1220. {
  1221. int i;
  1222. SwsVector *vec = sws_allocVec(length);
  1223. if (!vec)
  1224. return NULL;
  1225. for (i = 0; i < length; i++)
  1226. vec->coeff[i] = c;
  1227. return vec;
  1228. }
  1229. SwsVector *sws_getIdentityVec(void)
  1230. {
  1231. return sws_getConstVec(1.0, 1);
  1232. }
  1233. static double sws_dcVec(SwsVector *a)
  1234. {
  1235. int i;
  1236. double sum = 0;
  1237. for (i = 0; i < a->length; i++)
  1238. sum += a->coeff[i];
  1239. return sum;
  1240. }
  1241. void sws_scaleVec(SwsVector *a, double scalar)
  1242. {
  1243. int i;
  1244. for (i = 0; i < a->length; i++)
  1245. a->coeff[i] *= scalar;
  1246. }
  1247. void sws_normalizeVec(SwsVector *a, double height)
  1248. {
  1249. sws_scaleVec(a, height / sws_dcVec(a));
  1250. }
  1251. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1252. {
  1253. int length = a->length + b->length - 1;
  1254. int i, j;
  1255. SwsVector *vec = sws_getConstVec(0.0, length);
  1256. if (!vec)
  1257. return NULL;
  1258. for (i = 0; i < a->length; i++) {
  1259. for (j = 0; j < b->length; j++) {
  1260. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1261. }
  1262. }
  1263. return vec;
  1264. }
  1265. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1266. {
  1267. int length = FFMAX(a->length, b->length);
  1268. int i;
  1269. SwsVector *vec = sws_getConstVec(0.0, length);
  1270. if (!vec)
  1271. return NULL;
  1272. for (i = 0; i < a->length; i++)
  1273. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1274. for (i = 0; i < b->length; i++)
  1275. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1276. return vec;
  1277. }
  1278. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1279. {
  1280. int length = FFMAX(a->length, b->length);
  1281. int i;
  1282. SwsVector *vec = sws_getConstVec(0.0, length);
  1283. if (!vec)
  1284. return NULL;
  1285. for (i = 0; i < a->length; i++)
  1286. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1287. for (i = 0; i < b->length; i++)
  1288. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1289. return vec;
  1290. }
  1291. /* shift left / or right if "shift" is negative */
  1292. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1293. {
  1294. int length = a->length + FFABS(shift) * 2;
  1295. int i;
  1296. SwsVector *vec = sws_getConstVec(0.0, length);
  1297. if (!vec)
  1298. return NULL;
  1299. for (i = 0; i < a->length; i++) {
  1300. vec->coeff[i + (length - 1) / 2 -
  1301. (a->length - 1) / 2 - shift] = a->coeff[i];
  1302. }
  1303. return vec;
  1304. }
  1305. void sws_shiftVec(SwsVector *a, int shift)
  1306. {
  1307. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1308. av_free(a->coeff);
  1309. a->coeff = shifted->coeff;
  1310. a->length = shifted->length;
  1311. av_free(shifted);
  1312. }
  1313. void sws_addVec(SwsVector *a, SwsVector *b)
  1314. {
  1315. SwsVector *sum = sws_sumVec(a, b);
  1316. av_free(a->coeff);
  1317. a->coeff = sum->coeff;
  1318. a->length = sum->length;
  1319. av_free(sum);
  1320. }
  1321. void sws_subVec(SwsVector *a, SwsVector *b)
  1322. {
  1323. SwsVector *diff = sws_diffVec(a, b);
  1324. av_free(a->coeff);
  1325. a->coeff = diff->coeff;
  1326. a->length = diff->length;
  1327. av_free(diff);
  1328. }
  1329. void sws_convVec(SwsVector *a, SwsVector *b)
  1330. {
  1331. SwsVector *conv = sws_getConvVec(a, b);
  1332. av_free(a->coeff);
  1333. a->coeff = conv->coeff;
  1334. a->length = conv->length;
  1335. av_free(conv);
  1336. }
  1337. SwsVector *sws_cloneVec(SwsVector *a)
  1338. {
  1339. int i;
  1340. SwsVector *vec = sws_allocVec(a->length);
  1341. if (!vec)
  1342. return NULL;
  1343. for (i = 0; i < a->length; i++)
  1344. vec->coeff[i] = a->coeff[i];
  1345. return vec;
  1346. }
  1347. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1348. {
  1349. int i;
  1350. double max = 0;
  1351. double min = 0;
  1352. double range;
  1353. for (i = 0; i < a->length; i++)
  1354. if (a->coeff[i] > max)
  1355. max = a->coeff[i];
  1356. for (i = 0; i < a->length; i++)
  1357. if (a->coeff[i] < min)
  1358. min = a->coeff[i];
  1359. range = max - min;
  1360. for (i = 0; i < a->length; i++) {
  1361. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1362. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1363. for (; x > 0; x--)
  1364. av_log(log_ctx, log_level, " ");
  1365. av_log(log_ctx, log_level, "|\n");
  1366. }
  1367. }
  1368. void sws_freeVec(SwsVector *a)
  1369. {
  1370. if (!a)
  1371. return;
  1372. av_freep(&a->coeff);
  1373. a->length = 0;
  1374. av_free(a);
  1375. }
  1376. void sws_freeFilter(SwsFilter *filter)
  1377. {
  1378. if (!filter)
  1379. return;
  1380. if (filter->lumH)
  1381. sws_freeVec(filter->lumH);
  1382. if (filter->lumV)
  1383. sws_freeVec(filter->lumV);
  1384. if (filter->chrH)
  1385. sws_freeVec(filter->chrH);
  1386. if (filter->chrV)
  1387. sws_freeVec(filter->chrV);
  1388. av_free(filter);
  1389. }
  1390. void sws_freeContext(SwsContext *c)
  1391. {
  1392. int i;
  1393. if (!c)
  1394. return;
  1395. if (c->lumPixBuf) {
  1396. for (i = 0; i < c->vLumBufSize; i++)
  1397. av_freep(&c->lumPixBuf[i]);
  1398. av_freep(&c->lumPixBuf);
  1399. }
  1400. if (c->chrUPixBuf) {
  1401. for (i = 0; i < c->vChrBufSize; i++)
  1402. av_freep(&c->chrUPixBuf[i]);
  1403. av_freep(&c->chrUPixBuf);
  1404. av_freep(&c->chrVPixBuf);
  1405. }
  1406. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1407. for (i = 0; i < c->vLumBufSize; i++)
  1408. av_freep(&c->alpPixBuf[i]);
  1409. av_freep(&c->alpPixBuf);
  1410. }
  1411. av_freep(&c->vLumFilter);
  1412. av_freep(&c->vChrFilter);
  1413. av_freep(&c->hLumFilter);
  1414. av_freep(&c->hChrFilter);
  1415. #if HAVE_ALTIVEC
  1416. av_freep(&c->vYCoeffsBank);
  1417. av_freep(&c->vCCoeffsBank);
  1418. #endif
  1419. av_freep(&c->vLumFilterPos);
  1420. av_freep(&c->vChrFilterPos);
  1421. av_freep(&c->hLumFilterPos);
  1422. av_freep(&c->hChrFilterPos);
  1423. #if HAVE_MMX_INLINE
  1424. #if USE_MMAP
  1425. if (c->lumMmx2FilterCode)
  1426. munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize);
  1427. if (c->chrMmx2FilterCode)
  1428. munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize);
  1429. #elif HAVE_VIRTUALALLOC
  1430. if (c->lumMmx2FilterCode)
  1431. VirtualFree(c->lumMmx2FilterCode, 0, MEM_RELEASE);
  1432. if (c->chrMmx2FilterCode)
  1433. VirtualFree(c->chrMmx2FilterCode, 0, MEM_RELEASE);
  1434. #else
  1435. av_free(c->lumMmx2FilterCode);
  1436. av_free(c->chrMmx2FilterCode);
  1437. #endif
  1438. c->lumMmx2FilterCode = NULL;
  1439. c->chrMmx2FilterCode = NULL;
  1440. #endif /* HAVE_MMX_INLINE */
  1441. av_freep(&c->yuvTable);
  1442. av_free(c->formatConvBuffer);
  1443. av_free(c);
  1444. }
  1445. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1446. int srcH, enum AVPixelFormat srcFormat,
  1447. int dstW, int dstH,
  1448. enum AVPixelFormat dstFormat, int flags,
  1449. SwsFilter *srcFilter,
  1450. SwsFilter *dstFilter,
  1451. const double *param)
  1452. {
  1453. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1454. SWS_PARAM_DEFAULT };
  1455. if (!param)
  1456. param = default_param;
  1457. if (context &&
  1458. (context->srcW != srcW ||
  1459. context->srcH != srcH ||
  1460. context->srcFormat != srcFormat ||
  1461. context->dstW != dstW ||
  1462. context->dstH != dstH ||
  1463. context->dstFormat != dstFormat ||
  1464. context->flags != flags ||
  1465. context->param[0] != param[0] ||
  1466. context->param[1] != param[1])) {
  1467. sws_freeContext(context);
  1468. context = NULL;
  1469. }
  1470. if (!context) {
  1471. if (!(context = sws_alloc_context()))
  1472. return NULL;
  1473. context->srcW = srcW;
  1474. context->srcH = srcH;
  1475. context->srcRange = handle_jpeg(&srcFormat);
  1476. context->srcFormat = srcFormat;
  1477. context->dstW = dstW;
  1478. context->dstH = dstH;
  1479. context->dstRange = handle_jpeg(&dstFormat);
  1480. context->dstFormat = dstFormat;
  1481. context->flags = flags;
  1482. context->param[0] = param[0];
  1483. context->param[1] = param[1];
  1484. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1485. context->srcRange,
  1486. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1487. context->dstRange, 0, 1 << 16, 1 << 16);
  1488. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1489. sws_freeContext(context);
  1490. return NULL;
  1491. }
  1492. }
  1493. return context;
  1494. }