You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

675 lines
20KB

  1. /*
  2. * Sierra VMD Audio & Video Decoders
  3. * Copyright (C) 2004 the ffmpeg project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Sierra VMD audio & video decoders
  24. * by Vladimir "VAG" Gneushev (vagsoft at mail.ru)
  25. * for more information on the Sierra VMD format, visit:
  26. * http://www.pcisys.net/~melanson/codecs/
  27. *
  28. * The video decoder outputs PAL8 colorspace data. The decoder expects
  29. * a 0x330-byte VMD file header to be transmitted via extradata during
  30. * codec initialization. Each encoded frame that is sent to this decoder
  31. * is expected to be prepended with the appropriate 16-byte frame
  32. * information record from the VMD file.
  33. *
  34. * The audio decoder, like the video decoder, expects each encoded data
  35. * chunk to be prepended with the appropriate 16-byte frame information
  36. * record from the VMD file. It does not require the 0x330-byte VMD file
  37. * header, but it does need the audio setup parameters passed in through
  38. * normal libavcodec API means.
  39. */
  40. #include <stdio.h>
  41. #include <stdlib.h>
  42. #include <string.h>
  43. #include "libavutil/common.h"
  44. #include "libavutil/intreadwrite.h"
  45. #include "avcodec.h"
  46. #define VMD_HEADER_SIZE 0x330
  47. #define PALETTE_COUNT 256
  48. /*
  49. * Video Decoder
  50. */
  51. typedef struct VmdVideoContext {
  52. AVCodecContext *avctx;
  53. AVFrame frame;
  54. AVFrame prev_frame;
  55. const unsigned char *buf;
  56. int size;
  57. unsigned char palette[PALETTE_COUNT * 4];
  58. unsigned char *unpack_buffer;
  59. int unpack_buffer_size;
  60. int x_off, y_off;
  61. } VmdVideoContext;
  62. #define QUEUE_SIZE 0x1000
  63. #define QUEUE_MASK 0x0FFF
  64. static void lz_unpack(const unsigned char *src, int src_len,
  65. unsigned char *dest, int dest_len)
  66. {
  67. const unsigned char *s;
  68. unsigned int s_len;
  69. unsigned char *d;
  70. unsigned char *d_end;
  71. unsigned char queue[QUEUE_SIZE];
  72. unsigned int qpos;
  73. unsigned int dataleft;
  74. unsigned int chainofs;
  75. unsigned int chainlen;
  76. unsigned int speclen;
  77. unsigned char tag;
  78. unsigned int i, j;
  79. s = src;
  80. s_len = src_len;
  81. d = dest;
  82. d_end = d + dest_len;
  83. dataleft = AV_RL32(s);
  84. s += 4; s_len -= 4;
  85. memset(queue, 0x20, QUEUE_SIZE);
  86. if (s_len < 4)
  87. return;
  88. if (AV_RL32(s) == 0x56781234) {
  89. s += 4; s_len -= 4;
  90. qpos = 0x111;
  91. speclen = 0xF + 3;
  92. } else {
  93. qpos = 0xFEE;
  94. speclen = 100; /* no speclen */
  95. }
  96. while (dataleft > 0 && s_len > 0) {
  97. tag = *s++; s_len--;
  98. if ((tag == 0xFF) && (dataleft > 8)) {
  99. if (d + 8 > d_end || s_len < 8)
  100. return;
  101. for (i = 0; i < 8; i++) {
  102. queue[qpos++] = *d++ = *s++;
  103. qpos &= QUEUE_MASK;
  104. }
  105. s_len -= 8;
  106. dataleft -= 8;
  107. } else {
  108. for (i = 0; i < 8; i++) {
  109. if (dataleft == 0)
  110. break;
  111. if (tag & 0x01) {
  112. if (d + 1 > d_end || s_len < 1)
  113. return;
  114. queue[qpos++] = *d++ = *s++;
  115. qpos &= QUEUE_MASK;
  116. dataleft--;
  117. s_len--;
  118. } else {
  119. if (s_len < 2)
  120. return;
  121. chainofs = *s++;
  122. chainofs |= ((*s & 0xF0) << 4);
  123. chainlen = (*s++ & 0x0F) + 3;
  124. s_len -= 2;
  125. if (chainlen == speclen) {
  126. if (s_len < 1)
  127. return;
  128. chainlen = *s++ + 0xF + 3;
  129. s_len--;
  130. }
  131. if (d + chainlen > d_end)
  132. return;
  133. for (j = 0; j < chainlen; j++) {
  134. *d = queue[chainofs++ & QUEUE_MASK];
  135. queue[qpos++] = *d++;
  136. qpos &= QUEUE_MASK;
  137. }
  138. dataleft -= chainlen;
  139. }
  140. tag >>= 1;
  141. }
  142. }
  143. }
  144. }
  145. static int rle_unpack(const unsigned char *src, unsigned char *dest,
  146. int src_count, int src_size, int dest_len)
  147. {
  148. const unsigned char *ps;
  149. unsigned char *pd;
  150. int i, l;
  151. unsigned char *dest_end = dest + dest_len;
  152. ps = src;
  153. pd = dest;
  154. if (src_count & 1) {
  155. if (src_size < 1)
  156. return 0;
  157. *pd++ = *ps++;
  158. src_size--;
  159. }
  160. src_count >>= 1;
  161. i = 0;
  162. do {
  163. if (src_size < 1)
  164. break;
  165. l = *ps++;
  166. src_size--;
  167. if (l & 0x80) {
  168. l = (l & 0x7F) * 2;
  169. if (pd + l > dest_end || src_size < l)
  170. return ps - src;
  171. memcpy(pd, ps, l);
  172. ps += l;
  173. src_size -= l;
  174. pd += l;
  175. } else {
  176. if (pd + i > dest_end || src_size < 2)
  177. return ps - src;
  178. for (i = 0; i < l; i++) {
  179. *pd++ = ps[0];
  180. *pd++ = ps[1];
  181. }
  182. ps += 2;
  183. src_size -= 2;
  184. }
  185. i += l;
  186. } while (i < src_count);
  187. return ps - src;
  188. }
  189. static void vmd_decode(VmdVideoContext *s)
  190. {
  191. int i;
  192. unsigned int *palette32;
  193. unsigned char r, g, b;
  194. /* point to the start of the encoded data */
  195. const unsigned char *p = s->buf + 16;
  196. const unsigned char *pb;
  197. unsigned int pb_size;
  198. unsigned char meth;
  199. unsigned char *dp; /* pointer to current frame */
  200. unsigned char *pp; /* pointer to previous frame */
  201. unsigned char len;
  202. int ofs;
  203. int frame_x, frame_y;
  204. int frame_width, frame_height;
  205. frame_x = AV_RL16(&s->buf[6]);
  206. frame_y = AV_RL16(&s->buf[8]);
  207. frame_width = AV_RL16(&s->buf[10]) - frame_x + 1;
  208. frame_height = AV_RL16(&s->buf[12]) - frame_y + 1;
  209. if (frame_x < 0 || frame_width < 0 ||
  210. frame_x >= s->avctx->width ||
  211. frame_width > s->avctx->width ||
  212. frame_x + frame_width > s->avctx->width)
  213. return;
  214. if (frame_y < 0 || frame_height < 0 ||
  215. frame_y >= s->avctx->height ||
  216. frame_height > s->avctx->height ||
  217. frame_y + frame_height > s->avctx->height)
  218. return;
  219. if ((frame_width == s->avctx->width && frame_height == s->avctx->height) &&
  220. (frame_x || frame_y)) {
  221. s->x_off = frame_x;
  222. s->y_off = frame_y;
  223. }
  224. frame_x -= s->x_off;
  225. frame_y -= s->y_off;
  226. /* if only a certain region will be updated, copy the entire previous
  227. * frame before the decode */
  228. if (s->prev_frame.data[0] &&
  229. (frame_x || frame_y || (frame_width != s->avctx->width) ||
  230. (frame_height != s->avctx->height))) {
  231. memcpy(s->frame.data[0], s->prev_frame.data[0],
  232. s->avctx->height * s->frame.linesize[0]);
  233. }
  234. /* check if there is a new palette */
  235. if (s->buf[15] & 0x02) {
  236. p += 2;
  237. palette32 = (unsigned int *)s->palette;
  238. for (i = 0; i < PALETTE_COUNT; i++) {
  239. r = *p++ * 4;
  240. g = *p++ * 4;
  241. b = *p++ * 4;
  242. palette32[i] = (r << 16) | (g << 8) | (b);
  243. }
  244. s->size -= (256 * 3 + 2);
  245. }
  246. if (s->size > 0) {
  247. /* originally UnpackFrame in VAG's code */
  248. pb = p;
  249. pb_size = s->buf + s->size - pb;
  250. if (pb_size < 1)
  251. return;
  252. meth = *pb++; pb_size--;
  253. if (meth & 0x80) {
  254. lz_unpack(pb, pb_size,
  255. s->unpack_buffer, s->unpack_buffer_size);
  256. meth &= 0x7F;
  257. pb = s->unpack_buffer;
  258. pb_size = s->unpack_buffer_size;
  259. }
  260. dp = &s->frame.data[0][frame_y * s->frame.linesize[0] + frame_x];
  261. pp = &s->prev_frame.data[0][frame_y * s->prev_frame.linesize[0] + frame_x];
  262. switch (meth) {
  263. case 1:
  264. for (i = 0; i < frame_height; i++) {
  265. ofs = 0;
  266. do {
  267. if (pb_size < 1)
  268. return;
  269. len = *pb++;
  270. pb_size--;
  271. if (len & 0x80) {
  272. len = (len & 0x7F) + 1;
  273. if (ofs + len > frame_width || pb_size < len)
  274. return;
  275. memcpy(&dp[ofs], pb, len);
  276. pb += len;
  277. pb_size -= len;
  278. ofs += len;
  279. } else {
  280. /* interframe pixel copy */
  281. if (ofs + len + 1 > frame_width || !s->prev_frame.data[0])
  282. return;
  283. memcpy(&dp[ofs], &pp[ofs], len + 1);
  284. ofs += len + 1;
  285. }
  286. } while (ofs < frame_width);
  287. if (ofs > frame_width) {
  288. av_log(s->avctx, AV_LOG_ERROR, "VMD video: offset > width (%d > %d)\n",
  289. ofs, frame_width);
  290. break;
  291. }
  292. dp += s->frame.linesize[0];
  293. pp += s->prev_frame.linesize[0];
  294. }
  295. break;
  296. case 2:
  297. for (i = 0; i < frame_height; i++) {
  298. if (pb_size < frame_width)
  299. return;
  300. memcpy(dp, pb, frame_width);
  301. pb += frame_width;
  302. pb_size -= frame_width;
  303. dp += s->frame.linesize[0];
  304. pp += s->prev_frame.linesize[0];
  305. }
  306. break;
  307. case 3:
  308. for (i = 0; i < frame_height; i++) {
  309. ofs = 0;
  310. do {
  311. if (pb_size < 1)
  312. return;
  313. len = *pb++;
  314. pb_size--;
  315. if (len & 0x80) {
  316. len = (len & 0x7F) + 1;
  317. if (pb_size < 1)
  318. return;
  319. if (*pb++ == 0xFF)
  320. len = rle_unpack(pb, &dp[ofs], len, pb_size, frame_width - ofs);
  321. else {
  322. if (pb_size < len)
  323. return;
  324. memcpy(&dp[ofs], pb, len);
  325. }
  326. pb += len;
  327. pb_size -= 1 + len;
  328. ofs += len;
  329. } else {
  330. /* interframe pixel copy */
  331. if (ofs + len + 1 > frame_width || !s->prev_frame.data[0])
  332. return;
  333. memcpy(&dp[ofs], &pp[ofs], len + 1);
  334. ofs += len + 1;
  335. }
  336. } while (ofs < frame_width);
  337. if (ofs > frame_width) {
  338. av_log(s->avctx, AV_LOG_ERROR, "VMD video: offset > width (%d > %d)\n",
  339. ofs, frame_width);
  340. }
  341. dp += s->frame.linesize[0];
  342. pp += s->prev_frame.linesize[0];
  343. }
  344. break;
  345. }
  346. }
  347. }
  348. static av_cold int vmdvideo_decode_init(AVCodecContext *avctx)
  349. {
  350. VmdVideoContext *s = avctx->priv_data;
  351. int i;
  352. unsigned int *palette32;
  353. int palette_index = 0;
  354. unsigned char r, g, b;
  355. unsigned char *vmd_header;
  356. unsigned char *raw_palette;
  357. s->avctx = avctx;
  358. avctx->pix_fmt = AV_PIX_FMT_PAL8;
  359. /* make sure the VMD header made it */
  360. if (s->avctx->extradata_size != VMD_HEADER_SIZE) {
  361. av_log(s->avctx, AV_LOG_ERROR, "VMD video: expected extradata size of %d\n",
  362. VMD_HEADER_SIZE);
  363. return -1;
  364. }
  365. vmd_header = (unsigned char *)avctx->extradata;
  366. s->unpack_buffer_size = AV_RL32(&vmd_header[800]);
  367. s->unpack_buffer = av_malloc(s->unpack_buffer_size);
  368. if (!s->unpack_buffer)
  369. return -1;
  370. /* load up the initial palette */
  371. raw_palette = &vmd_header[28];
  372. palette32 = (unsigned int *)s->palette;
  373. for (i = 0; i < PALETTE_COUNT; i++) {
  374. r = raw_palette[palette_index++] * 4;
  375. g = raw_palette[palette_index++] * 4;
  376. b = raw_palette[palette_index++] * 4;
  377. palette32[i] = (r << 16) | (g << 8) | (b);
  378. }
  379. return 0;
  380. }
  381. static int vmdvideo_decode_frame(AVCodecContext *avctx,
  382. void *data, int *data_size,
  383. AVPacket *avpkt)
  384. {
  385. const uint8_t *buf = avpkt->data;
  386. int buf_size = avpkt->size;
  387. VmdVideoContext *s = avctx->priv_data;
  388. s->buf = buf;
  389. s->size = buf_size;
  390. if (buf_size < 16)
  391. return buf_size;
  392. s->frame.reference = 1;
  393. if (avctx->get_buffer(avctx, &s->frame)) {
  394. av_log(s->avctx, AV_LOG_ERROR, "VMD Video: get_buffer() failed\n");
  395. return -1;
  396. }
  397. vmd_decode(s);
  398. /* make the palette available on the way out */
  399. memcpy(s->frame.data[1], s->palette, PALETTE_COUNT * 4);
  400. /* shuffle frames */
  401. FFSWAP(AVFrame, s->frame, s->prev_frame);
  402. if (s->frame.data[0])
  403. avctx->release_buffer(avctx, &s->frame);
  404. *data_size = sizeof(AVFrame);
  405. *(AVFrame*)data = s->prev_frame;
  406. /* report that the buffer was completely consumed */
  407. return buf_size;
  408. }
  409. static av_cold int vmdvideo_decode_end(AVCodecContext *avctx)
  410. {
  411. VmdVideoContext *s = avctx->priv_data;
  412. if (s->prev_frame.data[0])
  413. avctx->release_buffer(avctx, &s->prev_frame);
  414. av_free(s->unpack_buffer);
  415. return 0;
  416. }
  417. /*
  418. * Audio Decoder
  419. */
  420. #define BLOCK_TYPE_AUDIO 1
  421. #define BLOCK_TYPE_INITIAL 2
  422. #define BLOCK_TYPE_SILENCE 3
  423. typedef struct VmdAudioContext {
  424. AVFrame frame;
  425. int out_bps;
  426. int chunk_size;
  427. } VmdAudioContext;
  428. static const uint16_t vmdaudio_table[128] = {
  429. 0x000, 0x008, 0x010, 0x020, 0x030, 0x040, 0x050, 0x060, 0x070, 0x080,
  430. 0x090, 0x0A0, 0x0B0, 0x0C0, 0x0D0, 0x0E0, 0x0F0, 0x100, 0x110, 0x120,
  431. 0x130, 0x140, 0x150, 0x160, 0x170, 0x180, 0x190, 0x1A0, 0x1B0, 0x1C0,
  432. 0x1D0, 0x1E0, 0x1F0, 0x200, 0x208, 0x210, 0x218, 0x220, 0x228, 0x230,
  433. 0x238, 0x240, 0x248, 0x250, 0x258, 0x260, 0x268, 0x270, 0x278, 0x280,
  434. 0x288, 0x290, 0x298, 0x2A0, 0x2A8, 0x2B0, 0x2B8, 0x2C0, 0x2C8, 0x2D0,
  435. 0x2D8, 0x2E0, 0x2E8, 0x2F0, 0x2F8, 0x300, 0x308, 0x310, 0x318, 0x320,
  436. 0x328, 0x330, 0x338, 0x340, 0x348, 0x350, 0x358, 0x360, 0x368, 0x370,
  437. 0x378, 0x380, 0x388, 0x390, 0x398, 0x3A0, 0x3A8, 0x3B0, 0x3B8, 0x3C0,
  438. 0x3C8, 0x3D0, 0x3D8, 0x3E0, 0x3E8, 0x3F0, 0x3F8, 0x400, 0x440, 0x480,
  439. 0x4C0, 0x500, 0x540, 0x580, 0x5C0, 0x600, 0x640, 0x680, 0x6C0, 0x700,
  440. 0x740, 0x780, 0x7C0, 0x800, 0x900, 0xA00, 0xB00, 0xC00, 0xD00, 0xE00,
  441. 0xF00, 0x1000, 0x1400, 0x1800, 0x1C00, 0x2000, 0x3000, 0x4000
  442. };
  443. static av_cold int vmdaudio_decode_init(AVCodecContext *avctx)
  444. {
  445. VmdAudioContext *s = avctx->priv_data;
  446. if (avctx->channels < 1 || avctx->channels > 2) {
  447. av_log(avctx, AV_LOG_ERROR, "invalid number of channels\n");
  448. return AVERROR(EINVAL);
  449. }
  450. if (avctx->block_align < 1) {
  451. av_log(avctx, AV_LOG_ERROR, "invalid block align\n");
  452. return AVERROR(EINVAL);
  453. }
  454. if (avctx->bits_per_coded_sample == 16)
  455. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  456. else
  457. avctx->sample_fmt = AV_SAMPLE_FMT_U8;
  458. s->out_bps = av_get_bytes_per_sample(avctx->sample_fmt);
  459. s->chunk_size = avctx->block_align + avctx->channels * (s->out_bps == 2);
  460. avcodec_get_frame_defaults(&s->frame);
  461. avctx->coded_frame = &s->frame;
  462. av_log(avctx, AV_LOG_DEBUG, "%d channels, %d bits/sample, "
  463. "block align = %d, sample rate = %d\n",
  464. avctx->channels, avctx->bits_per_coded_sample, avctx->block_align,
  465. avctx->sample_rate);
  466. return 0;
  467. }
  468. static void decode_audio_s16(int16_t *out, const uint8_t *buf, int buf_size,
  469. int channels)
  470. {
  471. int ch;
  472. const uint8_t *buf_end = buf + buf_size;
  473. int predictor[2];
  474. int st = channels - 1;
  475. /* decode initial raw sample */
  476. for (ch = 0; ch < channels; ch++) {
  477. predictor[ch] = (int16_t)AV_RL16(buf);
  478. buf += 2;
  479. *out++ = predictor[ch];
  480. }
  481. /* decode DPCM samples */
  482. ch = 0;
  483. while (buf < buf_end) {
  484. uint8_t b = *buf++;
  485. if (b & 0x80)
  486. predictor[ch] -= vmdaudio_table[b & 0x7F];
  487. else
  488. predictor[ch] += vmdaudio_table[b];
  489. predictor[ch] = av_clip_int16(predictor[ch]);
  490. *out++ = predictor[ch];
  491. ch ^= st;
  492. }
  493. }
  494. static int vmdaudio_decode_frame(AVCodecContext *avctx, void *data,
  495. int *got_frame_ptr, AVPacket *avpkt)
  496. {
  497. const uint8_t *buf = avpkt->data;
  498. const uint8_t *buf_end;
  499. int buf_size = avpkt->size;
  500. VmdAudioContext *s = avctx->priv_data;
  501. int block_type, silent_chunks, audio_chunks;
  502. int ret;
  503. uint8_t *output_samples_u8;
  504. int16_t *output_samples_s16;
  505. if (buf_size < 16) {
  506. av_log(avctx, AV_LOG_WARNING, "skipping small junk packet\n");
  507. *got_frame_ptr = 0;
  508. return buf_size;
  509. }
  510. block_type = buf[6];
  511. if (block_type < BLOCK_TYPE_AUDIO || block_type > BLOCK_TYPE_SILENCE) {
  512. av_log(avctx, AV_LOG_ERROR, "unknown block type: %d\n", block_type);
  513. return AVERROR(EINVAL);
  514. }
  515. buf += 16;
  516. buf_size -= 16;
  517. /* get number of silent chunks */
  518. silent_chunks = 0;
  519. if (block_type == BLOCK_TYPE_INITIAL) {
  520. uint32_t flags;
  521. if (buf_size < 4) {
  522. av_log(avctx, AV_LOG_ERROR, "packet is too small\n");
  523. return AVERROR(EINVAL);
  524. }
  525. flags = AV_RB32(buf);
  526. silent_chunks = av_popcount(flags);
  527. buf += 4;
  528. buf_size -= 4;
  529. } else if (block_type == BLOCK_TYPE_SILENCE) {
  530. silent_chunks = 1;
  531. buf_size = 0; // should already be zero but set it just to be sure
  532. }
  533. /* ensure output buffer is large enough */
  534. audio_chunks = buf_size / s->chunk_size;
  535. /* get output buffer */
  536. s->frame.nb_samples = ((silent_chunks + audio_chunks) * avctx->block_align) / avctx->channels;
  537. if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
  538. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  539. return ret;
  540. }
  541. output_samples_u8 = s->frame.data[0];
  542. output_samples_s16 = (int16_t *)s->frame.data[0];
  543. /* decode silent chunks */
  544. if (silent_chunks > 0) {
  545. int silent_size = avctx->block_align * silent_chunks;
  546. if (s->out_bps == 2) {
  547. memset(output_samples_s16, 0x00, silent_size * 2);
  548. output_samples_s16 += silent_size;
  549. } else {
  550. memset(output_samples_u8, 0x80, silent_size);
  551. output_samples_u8 += silent_size;
  552. }
  553. }
  554. /* decode audio chunks */
  555. if (audio_chunks > 0) {
  556. buf_end = buf + buf_size;
  557. while (buf < buf_end) {
  558. if (s->out_bps == 2) {
  559. decode_audio_s16(output_samples_s16, buf, s->chunk_size,
  560. avctx->channels);
  561. output_samples_s16 += avctx->block_align;
  562. } else {
  563. memcpy(output_samples_u8, buf, s->chunk_size);
  564. output_samples_u8 += avctx->block_align;
  565. }
  566. buf += s->chunk_size;
  567. }
  568. }
  569. *got_frame_ptr = 1;
  570. *(AVFrame *)data = s->frame;
  571. return avpkt->size;
  572. }
  573. /*
  574. * Public Data Structures
  575. */
  576. AVCodec ff_vmdvideo_decoder = {
  577. .name = "vmdvideo",
  578. .type = AVMEDIA_TYPE_VIDEO,
  579. .id = AV_CODEC_ID_VMDVIDEO,
  580. .priv_data_size = sizeof(VmdVideoContext),
  581. .init = vmdvideo_decode_init,
  582. .close = vmdvideo_decode_end,
  583. .decode = vmdvideo_decode_frame,
  584. .capabilities = CODEC_CAP_DR1,
  585. .long_name = NULL_IF_CONFIG_SMALL("Sierra VMD video"),
  586. };
  587. AVCodec ff_vmdaudio_decoder = {
  588. .name = "vmdaudio",
  589. .type = AVMEDIA_TYPE_AUDIO,
  590. .id = AV_CODEC_ID_VMDAUDIO,
  591. .priv_data_size = sizeof(VmdAudioContext),
  592. .init = vmdaudio_decode_init,
  593. .decode = vmdaudio_decode_frame,
  594. .capabilities = CODEC_CAP_DR1,
  595. .long_name = NULL_IF_CONFIG_SMALL("Sierra VMD audio"),
  596. };