You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1708 lines
60KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #include <assert.h>
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avutil.h"
  39. #include "libavutil/bswap.h"
  40. #include "libavutil/cpu.h"
  41. #include "libavutil/intreadwrite.h"
  42. #include "libavutil/mathematics.h"
  43. #include "libavutil/opt.h"
  44. #include "libavutil/pixdesc.h"
  45. #include "libavutil/x86/asm.h"
  46. #include "libavutil/x86/cpu.h"
  47. #include "rgb2rgb.h"
  48. #include "swscale.h"
  49. #include "swscale_internal.h"
  50. unsigned swscale_version(void)
  51. {
  52. return LIBSWSCALE_VERSION_INT;
  53. }
  54. const char *swscale_configuration(void)
  55. {
  56. return LIBAV_CONFIGURATION;
  57. }
  58. const char *swscale_license(void)
  59. {
  60. #define LICENSE_PREFIX "libswscale license: "
  61. return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  62. }
  63. #define RET 0xC3 // near return opcode for x86
  64. typedef struct FormatEntry {
  65. int is_supported_in, is_supported_out;
  66. } FormatEntry;
  67. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  68. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  69. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  70. [AV_PIX_FMT_RGB24] = { 1, 1 },
  71. [AV_PIX_FMT_BGR24] = { 1, 1 },
  72. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  73. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  74. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  75. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  76. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  77. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  78. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  79. [AV_PIX_FMT_PAL8] = { 1, 0 },
  80. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  81. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  82. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  83. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  84. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  85. [AV_PIX_FMT_BGR8] = { 1, 1 },
  86. [AV_PIX_FMT_BGR4] = { 0, 1 },
  87. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  88. [AV_PIX_FMT_RGB8] = { 1, 1 },
  89. [AV_PIX_FMT_RGB4] = { 0, 1 },
  90. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  91. [AV_PIX_FMT_NV12] = { 1, 1 },
  92. [AV_PIX_FMT_NV21] = { 1, 1 },
  93. [AV_PIX_FMT_ARGB] = { 1, 1 },
  94. [AV_PIX_FMT_RGBA] = { 1, 1 },
  95. [AV_PIX_FMT_ABGR] = { 1, 1 },
  96. [AV_PIX_FMT_BGRA] = { 1, 1 },
  97. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  98. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  99. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  100. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  101. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  102. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  103. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  104. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  105. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  106. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  107. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  108. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  109. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  110. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  111. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  112. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  113. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  114. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  115. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  116. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  117. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  118. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  119. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  120. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  121. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  122. [AV_PIX_FMT_Y400A] = { 1, 0 },
  123. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  124. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  125. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  126. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  127. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  128. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  129. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  130. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  131. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  132. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  133. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  134. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  135. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  136. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  137. [AV_PIX_FMT_GBRP] = { 1, 0 },
  138. [AV_PIX_FMT_GBRP9LE] = { 1, 0 },
  139. [AV_PIX_FMT_GBRP9BE] = { 1, 0 },
  140. [AV_PIX_FMT_GBRP10LE] = { 1, 0 },
  141. [AV_PIX_FMT_GBRP10BE] = { 1, 0 },
  142. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  143. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  144. };
  145. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  146. {
  147. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  148. format_entries[pix_fmt].is_supported_in : 0;
  149. }
  150. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  151. {
  152. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  153. format_entries[pix_fmt].is_supported_out : 0;
  154. }
  155. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  156. const char *sws_format_name(enum AVPixelFormat format)
  157. {
  158. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  159. if (desc)
  160. return desc->name;
  161. else
  162. return "Unknown format";
  163. }
  164. static double getSplineCoeff(double a, double b, double c, double d,
  165. double dist)
  166. {
  167. if (dist <= 1.0)
  168. return ((d * dist + c) * dist + b) * dist + a;
  169. else
  170. return getSplineCoeff(0.0,
  171. b + 2.0 * c + 3.0 * d,
  172. c + 3.0 * d,
  173. -b - 3.0 * c - 6.0 * d,
  174. dist - 1.0);
  175. }
  176. static int initFilter(int16_t **outFilter, int32_t **filterPos,
  177. int *outFilterSize, int xInc, int srcW, int dstW,
  178. int filterAlign, int one, int flags, int cpu_flags,
  179. SwsVector *srcFilter, SwsVector *dstFilter,
  180. double param[2], int is_horizontal)
  181. {
  182. int i;
  183. int filterSize;
  184. int filter2Size;
  185. int minFilterSize;
  186. int64_t *filter = NULL;
  187. int64_t *filter2 = NULL;
  188. const int64_t fone = 1LL << 54;
  189. int ret = -1;
  190. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  191. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  192. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  193. if (FFABS(xInc - 0x10000) < 10) { // unscaled
  194. int i;
  195. filterSize = 1;
  196. FF_ALLOCZ_OR_GOTO(NULL, filter,
  197. dstW * sizeof(*filter) * filterSize, fail);
  198. for (i = 0; i < dstW; i++) {
  199. filter[i * filterSize] = fone;
  200. (*filterPos)[i] = i;
  201. }
  202. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  203. int i;
  204. int xDstInSrc;
  205. filterSize = 1;
  206. FF_ALLOC_OR_GOTO(NULL, filter,
  207. dstW * sizeof(*filter) * filterSize, fail);
  208. xDstInSrc = xInc / 2 - 0x8000;
  209. for (i = 0; i < dstW; i++) {
  210. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  211. (*filterPos)[i] = xx;
  212. filter[i] = fone;
  213. xDstInSrc += xInc;
  214. }
  215. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  216. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  217. int i;
  218. int xDstInSrc;
  219. filterSize = 2;
  220. FF_ALLOC_OR_GOTO(NULL, filter,
  221. dstW * sizeof(*filter) * filterSize, fail);
  222. xDstInSrc = xInc / 2 - 0x8000;
  223. for (i = 0; i < dstW; i++) {
  224. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  225. int j;
  226. (*filterPos)[i] = xx;
  227. // bilinear upscale / linear interpolate / area averaging
  228. for (j = 0; j < filterSize; j++) {
  229. int64_t coeff = fone - FFABS((xx << 16) - xDstInSrc) *
  230. (fone >> 16);
  231. if (coeff < 0)
  232. coeff = 0;
  233. filter[i * filterSize + j] = coeff;
  234. xx++;
  235. }
  236. xDstInSrc += xInc;
  237. }
  238. } else {
  239. int64_t xDstInSrc;
  240. int sizeFactor;
  241. if (flags & SWS_BICUBIC)
  242. sizeFactor = 4;
  243. else if (flags & SWS_X)
  244. sizeFactor = 8;
  245. else if (flags & SWS_AREA)
  246. sizeFactor = 1; // downscale only, for upscale it is bilinear
  247. else if (flags & SWS_GAUSS)
  248. sizeFactor = 8; // infinite ;)
  249. else if (flags & SWS_LANCZOS)
  250. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  251. else if (flags & SWS_SINC)
  252. sizeFactor = 20; // infinite ;)
  253. else if (flags & SWS_SPLINE)
  254. sizeFactor = 20; // infinite ;)
  255. else if (flags & SWS_BILINEAR)
  256. sizeFactor = 2;
  257. else {
  258. sizeFactor = 0; // GCC warning killer
  259. assert(0);
  260. }
  261. if (xInc <= 1 << 16)
  262. filterSize = 1 + sizeFactor; // upscale
  263. else
  264. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  265. filterSize = FFMIN(filterSize, srcW - 2);
  266. filterSize = FFMAX(filterSize, 1);
  267. FF_ALLOC_OR_GOTO(NULL, filter,
  268. dstW * sizeof(*filter) * filterSize, fail);
  269. xDstInSrc = xInc - 0x10000;
  270. for (i = 0; i < dstW; i++) {
  271. int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17);
  272. int j;
  273. (*filterPos)[i] = xx;
  274. for (j = 0; j < filterSize; j++) {
  275. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  276. double floatd;
  277. int64_t coeff;
  278. if (xInc > 1 << 16)
  279. d = d * dstW / srcW;
  280. floatd = d * (1.0 / (1 << 30));
  281. if (flags & SWS_BICUBIC) {
  282. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  283. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  284. if (d >= 1LL << 31) {
  285. coeff = 0.0;
  286. } else {
  287. int64_t dd = (d * d) >> 30;
  288. int64_t ddd = (dd * d) >> 30;
  289. if (d < 1LL << 30)
  290. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  291. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  292. (6 * (1 << 24) - 2 * B) * (1 << 30);
  293. else
  294. coeff = (-B - 6 * C) * ddd +
  295. (6 * B + 30 * C) * dd +
  296. (-12 * B - 48 * C) * d +
  297. (8 * B + 24 * C) * (1 << 30);
  298. }
  299. coeff *= fone >> (30 + 24);
  300. }
  301. #if 0
  302. else if (flags & SWS_X) {
  303. double p = param ? param * 0.01 : 0.3;
  304. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  305. coeff *= pow(2.0, -p * d * d);
  306. }
  307. #endif
  308. else if (flags & SWS_X) {
  309. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  310. double c;
  311. if (floatd < 1.0)
  312. c = cos(floatd * M_PI);
  313. else
  314. c = -1.0;
  315. if (c < 0.0)
  316. c = -pow(-c, A);
  317. else
  318. c = pow(c, A);
  319. coeff = (c * 0.5 + 0.5) * fone;
  320. } else if (flags & SWS_AREA) {
  321. int64_t d2 = d - (1 << 29);
  322. if (d2 * xInc < -(1LL << (29 + 16)))
  323. coeff = 1.0 * (1LL << (30 + 16));
  324. else if (d2 * xInc < (1LL << (29 + 16)))
  325. coeff = -d2 * xInc + (1LL << (29 + 16));
  326. else
  327. coeff = 0.0;
  328. coeff *= fone >> (30 + 16);
  329. } else if (flags & SWS_GAUSS) {
  330. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  331. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  332. } else if (flags & SWS_SINC) {
  333. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  334. } else if (flags & SWS_LANCZOS) {
  335. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  336. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  337. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  338. if (floatd > p)
  339. coeff = 0;
  340. } else if (flags & SWS_BILINEAR) {
  341. coeff = (1 << 30) - d;
  342. if (coeff < 0)
  343. coeff = 0;
  344. coeff *= fone >> 30;
  345. } else if (flags & SWS_SPLINE) {
  346. double p = -2.196152422706632;
  347. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  348. } else {
  349. coeff = 0.0; // GCC warning killer
  350. assert(0);
  351. }
  352. filter[i * filterSize + j] = coeff;
  353. xx++;
  354. }
  355. xDstInSrc += 2 * xInc;
  356. }
  357. }
  358. /* apply src & dst Filter to filter -> filter2
  359. * av_free(filter);
  360. */
  361. assert(filterSize > 0);
  362. filter2Size = filterSize;
  363. if (srcFilter)
  364. filter2Size += srcFilter->length - 1;
  365. if (dstFilter)
  366. filter2Size += dstFilter->length - 1;
  367. assert(filter2Size > 0);
  368. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  369. for (i = 0; i < dstW; i++) {
  370. int j, k;
  371. if (srcFilter) {
  372. for (k = 0; k < srcFilter->length; k++) {
  373. for (j = 0; j < filterSize; j++)
  374. filter2[i * filter2Size + k + j] +=
  375. srcFilter->coeff[k] * filter[i * filterSize + j];
  376. }
  377. } else {
  378. for (j = 0; j < filterSize; j++)
  379. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  380. }
  381. // FIXME dstFilter
  382. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  383. }
  384. av_freep(&filter);
  385. /* try to reduce the filter-size (step1 find size and shift left) */
  386. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  387. minFilterSize = 0;
  388. for (i = dstW - 1; i >= 0; i--) {
  389. int min = filter2Size;
  390. int j;
  391. int64_t cutOff = 0.0;
  392. /* get rid of near zero elements on the left by shifting left */
  393. for (j = 0; j < filter2Size; j++) {
  394. int k;
  395. cutOff += FFABS(filter2[i * filter2Size]);
  396. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  397. break;
  398. /* preserve monotonicity because the core can't handle the
  399. * filter otherwise */
  400. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  401. break;
  402. // move filter coefficients left
  403. for (k = 1; k < filter2Size; k++)
  404. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  405. filter2[i * filter2Size + k - 1] = 0;
  406. (*filterPos)[i]++;
  407. }
  408. cutOff = 0;
  409. /* count near zeros on the right */
  410. for (j = filter2Size - 1; j > 0; j--) {
  411. cutOff += FFABS(filter2[i * filter2Size + j]);
  412. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  413. break;
  414. min--;
  415. }
  416. if (min > minFilterSize)
  417. minFilterSize = min;
  418. }
  419. if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
  420. // we can handle the special case 4, so we don't want to go the full 8
  421. if (minFilterSize < 5)
  422. filterAlign = 4;
  423. /* We really don't want to waste our time doing useless computation, so
  424. * fall back on the scalar C code for very small filters.
  425. * Vectorizing is worth it only if you have a decent-sized vector. */
  426. if (minFilterSize < 3)
  427. filterAlign = 1;
  428. }
  429. if (INLINE_MMX(cpu_flags)) {
  430. // special case for unscaled vertical filtering
  431. if (minFilterSize == 1 && filterAlign == 2)
  432. filterAlign = 1;
  433. }
  434. assert(minFilterSize > 0);
  435. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  436. assert(filterSize > 0);
  437. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  438. if (filterSize >= MAX_FILTER_SIZE * 16 /
  439. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  440. goto fail;
  441. *outFilterSize = filterSize;
  442. if (flags & SWS_PRINT_INFO)
  443. av_log(NULL, AV_LOG_VERBOSE,
  444. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  445. filter2Size, filterSize);
  446. /* try to reduce the filter-size (step2 reduce it) */
  447. for (i = 0; i < dstW; i++) {
  448. int j;
  449. for (j = 0; j < filterSize; j++) {
  450. if (j >= filter2Size)
  451. filter[i * filterSize + j] = 0;
  452. else
  453. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  454. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  455. filter[i * filterSize + j] = 0;
  456. }
  457. }
  458. // FIXME try to align filterPos if possible
  459. // fix borders
  460. if (is_horizontal) {
  461. for (i = 0; i < dstW; i++) {
  462. int j;
  463. if ((*filterPos)[i] < 0) {
  464. // move filter coefficients left to compensate for filterPos
  465. for (j = 1; j < filterSize; j++) {
  466. int left = FFMAX(j + (*filterPos)[i], 0);
  467. filter[i * filterSize + left] += filter[i * filterSize + j];
  468. filter[i * filterSize + j] = 0;
  469. }
  470. (*filterPos)[i] = 0;
  471. }
  472. if ((*filterPos)[i] + filterSize > srcW) {
  473. int shift = (*filterPos)[i] + filterSize - srcW;
  474. // move filter coefficients right to compensate for filterPos
  475. for (j = filterSize - 2; j >= 0; j--) {
  476. int right = FFMIN(j + shift, filterSize - 1);
  477. filter[i * filterSize + right] += filter[i * filterSize + j];
  478. filter[i * filterSize + j] = 0;
  479. }
  480. (*filterPos)[i] = srcW - filterSize;
  481. }
  482. }
  483. }
  484. // Note the +1 is for the MMX scaler which reads over the end
  485. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  486. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  487. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  488. /* normalize & store in outFilter */
  489. for (i = 0; i < dstW; i++) {
  490. int j;
  491. int64_t error = 0;
  492. int64_t sum = 0;
  493. for (j = 0; j < filterSize; j++) {
  494. sum += filter[i * filterSize + j];
  495. }
  496. sum = (sum + one / 2) / one;
  497. for (j = 0; j < *outFilterSize; j++) {
  498. int64_t v = filter[i * filterSize + j] + error;
  499. int intV = ROUNDED_DIV(v, sum);
  500. (*outFilter)[i * (*outFilterSize) + j] = intV;
  501. error = v - intV * sum;
  502. }
  503. }
  504. (*filterPos)[dstW + 0] =
  505. (*filterPos)[dstW + 1] =
  506. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  507. * read over the end */
  508. for (i = 0; i < *outFilterSize; i++) {
  509. int k = (dstW - 1) * (*outFilterSize) + i;
  510. (*outFilter)[k + 1 * (*outFilterSize)] =
  511. (*outFilter)[k + 2 * (*outFilterSize)] =
  512. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  513. }
  514. ret = 0;
  515. fail:
  516. av_free(filter);
  517. av_free(filter2);
  518. return ret;
  519. }
  520. #if HAVE_MMXEXT_INLINE
  521. static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode,
  522. int16_t *filter, int32_t *filterPos, int numSplits)
  523. {
  524. uint8_t *fragmentA;
  525. x86_reg imm8OfPShufW1A;
  526. x86_reg imm8OfPShufW2A;
  527. x86_reg fragmentLengthA;
  528. uint8_t *fragmentB;
  529. x86_reg imm8OfPShufW1B;
  530. x86_reg imm8OfPShufW2B;
  531. x86_reg fragmentLengthB;
  532. int fragmentPos;
  533. int xpos, i;
  534. // create an optimized horizontal scaling routine
  535. /* This scaler is made of runtime-generated MMX2 code using specially tuned
  536. * pshufw instructions. For every four output pixels, if four input pixels
  537. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  538. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  539. */
  540. // code fragment
  541. __asm__ volatile (
  542. "jmp 9f \n\t"
  543. // Begin
  544. "0: \n\t"
  545. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  546. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  547. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  548. "punpcklbw %%mm7, %%mm1 \n\t"
  549. "punpcklbw %%mm7, %%mm0 \n\t"
  550. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  551. "1: \n\t"
  552. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  553. "2: \n\t"
  554. "psubw %%mm1, %%mm0 \n\t"
  555. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  556. "pmullw %%mm3, %%mm0 \n\t"
  557. "psllw $7, %%mm1 \n\t"
  558. "paddw %%mm1, %%mm0 \n\t"
  559. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  560. "add $8, %%"REG_a" \n\t"
  561. // End
  562. "9: \n\t"
  563. // "int $3 \n\t"
  564. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  565. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  566. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  567. "dec %1 \n\t"
  568. "dec %2 \n\t"
  569. "sub %0, %1 \n\t"
  570. "sub %0, %2 \n\t"
  571. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  572. "sub %0, %3 \n\t"
  573. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  574. "=r" (fragmentLengthA)
  575. );
  576. __asm__ volatile (
  577. "jmp 9f \n\t"
  578. // Begin
  579. "0: \n\t"
  580. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  581. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  582. "punpcklbw %%mm7, %%mm0 \n\t"
  583. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  584. "1: \n\t"
  585. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  586. "2: \n\t"
  587. "psubw %%mm1, %%mm0 \n\t"
  588. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  589. "pmullw %%mm3, %%mm0 \n\t"
  590. "psllw $7, %%mm1 \n\t"
  591. "paddw %%mm1, %%mm0 \n\t"
  592. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  593. "add $8, %%"REG_a" \n\t"
  594. // End
  595. "9: \n\t"
  596. // "int $3 \n\t"
  597. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  598. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  599. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  600. "dec %1 \n\t"
  601. "dec %2 \n\t"
  602. "sub %0, %1 \n\t"
  603. "sub %0, %2 \n\t"
  604. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  605. "sub %0, %3 \n\t"
  606. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  607. "=r" (fragmentLengthB)
  608. );
  609. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  610. fragmentPos = 0;
  611. for (i = 0; i < dstW / numSplits; i++) {
  612. int xx = xpos >> 16;
  613. if ((i & 3) == 0) {
  614. int a = 0;
  615. int b = ((xpos + xInc) >> 16) - xx;
  616. int c = ((xpos + xInc * 2) >> 16) - xx;
  617. int d = ((xpos + xInc * 3) >> 16) - xx;
  618. int inc = (d + 1 < 4);
  619. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  620. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  621. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  622. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  623. int maxShift = 3 - (d + inc);
  624. int shift = 0;
  625. if (filterCode) {
  626. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  627. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  628. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  629. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  630. filterPos[i / 2] = xx;
  631. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  632. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  633. ((b + inc) << 2) |
  634. ((c + inc) << 4) |
  635. ((d + inc) << 6);
  636. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  637. (c << 4) |
  638. (d << 6);
  639. if (i + 4 - inc >= dstW)
  640. shift = maxShift; // avoid overread
  641. else if ((filterPos[i / 2] & 3) <= maxShift)
  642. shift = filterPos[i / 2] & 3; // align
  643. if (shift && i >= shift) {
  644. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  645. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  646. filterPos[i / 2] -= shift;
  647. }
  648. }
  649. fragmentPos += fragmentLength;
  650. if (filterCode)
  651. filterCode[fragmentPos] = RET;
  652. }
  653. xpos += xInc;
  654. }
  655. if (filterCode)
  656. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  657. return fragmentPos + 1;
  658. }
  659. #endif /* HAVE_MMXEXT_INLINE */
  660. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  661. {
  662. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  663. *h = desc->log2_chroma_w;
  664. *v = desc->log2_chroma_h;
  665. }
  666. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  667. int srcRange, const int table[4], int dstRange,
  668. int brightness, int contrast, int saturation)
  669. {
  670. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  671. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
  672. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  673. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  674. c->brightness = brightness;
  675. c->contrast = contrast;
  676. c->saturation = saturation;
  677. c->srcRange = srcRange;
  678. c->dstRange = dstRange;
  679. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  680. return -1;
  681. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  682. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  683. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  684. contrast, saturation);
  685. // FIXME factorize
  686. if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
  687. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness,
  688. contrast, saturation);
  689. return 0;
  690. }
  691. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  692. int *srcRange, int **table, int *dstRange,
  693. int *brightness, int *contrast, int *saturation)
  694. {
  695. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  696. return -1;
  697. *inv_table = c->srcColorspaceTable;
  698. *table = c->dstColorspaceTable;
  699. *srcRange = c->srcRange;
  700. *dstRange = c->dstRange;
  701. *brightness = c->brightness;
  702. *contrast = c->contrast;
  703. *saturation = c->saturation;
  704. return 0;
  705. }
  706. static int handle_jpeg(enum AVPixelFormat *format)
  707. {
  708. switch (*format) {
  709. case AV_PIX_FMT_YUVJ420P:
  710. *format = AV_PIX_FMT_YUV420P;
  711. return 1;
  712. case AV_PIX_FMT_YUVJ422P:
  713. *format = AV_PIX_FMT_YUV422P;
  714. return 1;
  715. case AV_PIX_FMT_YUVJ444P:
  716. *format = AV_PIX_FMT_YUV444P;
  717. return 1;
  718. case AV_PIX_FMT_YUVJ440P:
  719. *format = AV_PIX_FMT_YUV440P;
  720. return 1;
  721. default:
  722. return 0;
  723. }
  724. }
  725. SwsContext *sws_alloc_context(void)
  726. {
  727. SwsContext *c = av_mallocz(sizeof(SwsContext));
  728. c->av_class = &sws_context_class;
  729. av_opt_set_defaults(c);
  730. return c;
  731. }
  732. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  733. SwsFilter *dstFilter)
  734. {
  735. int i;
  736. int usesVFilter, usesHFilter;
  737. int unscaled;
  738. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  739. int srcW = c->srcW;
  740. int srcH = c->srcH;
  741. int dstW = c->dstW;
  742. int dstH = c->dstH;
  743. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16);
  744. int dst_stride_px = dst_stride >> 1;
  745. int flags, cpu_flags;
  746. enum AVPixelFormat srcFormat = c->srcFormat;
  747. enum AVPixelFormat dstFormat = c->dstFormat;
  748. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
  749. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
  750. cpu_flags = av_get_cpu_flags();
  751. flags = c->flags;
  752. emms_c();
  753. if (!rgb15to16)
  754. sws_rgb2rgb_init();
  755. unscaled = (srcW == dstW && srcH == dstH);
  756. if (!sws_isSupportedInput(srcFormat)) {
  757. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  758. sws_format_name(srcFormat));
  759. return AVERROR(EINVAL);
  760. }
  761. if (!sws_isSupportedOutput(dstFormat)) {
  762. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  763. sws_format_name(dstFormat));
  764. return AVERROR(EINVAL);
  765. }
  766. i = flags & (SWS_POINT |
  767. SWS_AREA |
  768. SWS_BILINEAR |
  769. SWS_FAST_BILINEAR |
  770. SWS_BICUBIC |
  771. SWS_X |
  772. SWS_GAUSS |
  773. SWS_LANCZOS |
  774. SWS_SINC |
  775. SWS_SPLINE |
  776. SWS_BICUBLIN);
  777. if (!i || (i & (i - 1))) {
  778. av_log(c, AV_LOG_ERROR,
  779. "Exactly one scaler algorithm must be chosen\n");
  780. return AVERROR(EINVAL);
  781. }
  782. /* sanity check */
  783. if (srcW < 4 || srcH < 1 || dstW < 8 || dstH < 1) {
  784. /* FIXME check if these are enough and try to lower them after
  785. * fixing the relevant parts of the code */
  786. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  787. srcW, srcH, dstW, dstH);
  788. return AVERROR(EINVAL);
  789. }
  790. if (!dstFilter)
  791. dstFilter = &dummyFilter;
  792. if (!srcFilter)
  793. srcFilter = &dummyFilter;
  794. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  795. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  796. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  797. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  798. c->vRounder = 4 * 0x0001000100010001ULL;
  799. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  800. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  801. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  802. (dstFilter->chrV && dstFilter->chrV->length > 1);
  803. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  804. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  805. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  806. (dstFilter->chrH && dstFilter->chrH->length > 1);
  807. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  808. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  809. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  810. * chroma interpolation */
  811. if (flags & SWS_FULL_CHR_H_INT &&
  812. isAnyRGB(dstFormat) &&
  813. dstFormat != AV_PIX_FMT_RGBA &&
  814. dstFormat != AV_PIX_FMT_ARGB &&
  815. dstFormat != AV_PIX_FMT_BGRA &&
  816. dstFormat != AV_PIX_FMT_ABGR &&
  817. dstFormat != AV_PIX_FMT_RGB24 &&
  818. dstFormat != AV_PIX_FMT_BGR24) {
  819. av_log(c, AV_LOG_ERROR,
  820. "full chroma interpolation for destination format '%s' not yet implemented\n",
  821. sws_format_name(dstFormat));
  822. flags &= ~SWS_FULL_CHR_H_INT;
  823. c->flags = flags;
  824. }
  825. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  826. c->chrDstHSubSample = 1;
  827. // drop some chroma lines if the user wants it
  828. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  829. SWS_SRC_V_CHR_DROP_SHIFT;
  830. c->chrSrcVSubSample += c->vChrDrop;
  831. /* drop every other pixel for chroma calculation unless user
  832. * wants full chroma */
  833. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  834. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  835. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  836. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  837. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  838. (flags & SWS_FAST_BILINEAR)))
  839. c->chrSrcHSubSample = 1;
  840. // Note the -((-x)>>y) is so that we always round toward +inf.
  841. c->chrSrcW = -((-srcW) >> c->chrSrcHSubSample);
  842. c->chrSrcH = -((-srcH) >> c->chrSrcVSubSample);
  843. c->chrDstW = -((-dstW) >> c->chrDstHSubSample);
  844. c->chrDstH = -((-dstH) >> c->chrDstVSubSample);
  845. /* unscaled special cases */
  846. if (unscaled && !usesHFilter && !usesVFilter &&
  847. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  848. ff_get_unscaled_swscale(c);
  849. if (c->swScale) {
  850. if (flags & SWS_PRINT_INFO)
  851. av_log(c, AV_LOG_INFO,
  852. "using unscaled %s -> %s special converter\n",
  853. sws_format_name(srcFormat), sws_format_name(dstFormat));
  854. return 0;
  855. }
  856. }
  857. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  858. if (c->srcBpc < 8)
  859. c->srcBpc = 8;
  860. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  861. if (c->dstBpc < 8)
  862. c->dstBpc = 8;
  863. if (c->dstBpc == 16)
  864. dst_stride <<= 1;
  865. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer,
  866. (FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3) + 16,
  867. fail);
  868. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 10) {
  869. c->canMMX2BeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  870. (srcW & 15) == 0) ? 1 : 0;
  871. if (!c->canMMX2BeUsed && dstW >= srcW && (srcW & 15) == 0
  872. && (flags & SWS_FAST_BILINEAR)) {
  873. if (flags & SWS_PRINT_INFO)
  874. av_log(c, AV_LOG_INFO,
  875. "output width is not a multiple of 32 -> no MMX2 scaler\n");
  876. }
  877. if (usesHFilter)
  878. c->canMMX2BeUsed = 0;
  879. } else
  880. c->canMMX2BeUsed = 0;
  881. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  882. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  883. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  884. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  885. * correct scaling.
  886. * n-2 is the last chrominance sample available.
  887. * This is not perfect, but no one should notice the difference, the more
  888. * correct variant would be like the vertical one, but that would require
  889. * some special code for the first and last pixel */
  890. if (flags & SWS_FAST_BILINEAR) {
  891. if (c->canMMX2BeUsed) {
  892. c->lumXInc += 20;
  893. c->chrXInc += 20;
  894. }
  895. // we don't use the x86 asm scaler if MMX is available
  896. else if (INLINE_MMX(cpu_flags)) {
  897. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  898. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  899. }
  900. }
  901. /* precalculate horizontal scaler filter coefficients */
  902. {
  903. #if HAVE_MMXEXT_INLINE
  904. // can't downscale !!!
  905. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
  906. c->lumMmx2FilterCodeSize = initMMX2HScaler(dstW, c->lumXInc, NULL,
  907. NULL, NULL, 8);
  908. c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc,
  909. NULL, NULL, NULL, 4);
  910. #ifdef MAP_ANONYMOUS
  911. c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  912. c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  913. #elif HAVE_VIRTUALALLOC
  914. c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  915. c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  916. #else
  917. c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
  918. c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
  919. #endif
  920. if (!c->lumMmx2FilterCode || !c->chrMmx2FilterCode)
  921. return AVERROR(ENOMEM);
  922. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  923. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  924. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  925. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  926. initMMX2HScaler(dstW, c->lumXInc, c->lumMmx2FilterCode,
  927. c->hLumFilter, c->hLumFilterPos, 8);
  928. initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode,
  929. c->hChrFilter, c->hChrFilterPos, 4);
  930. #ifdef MAP_ANONYMOUS
  931. mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
  932. mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
  933. #endif
  934. } else
  935. #endif /* HAVE_MMXEXT_INLINE */
  936. {
  937. const int filterAlign =
  938. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
  939. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  940. 1;
  941. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  942. &c->hLumFilterSize, c->lumXInc,
  943. srcW, dstW, filterAlign, 1 << 14,
  944. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  945. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  946. c->param, 1) < 0)
  947. goto fail;
  948. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  949. &c->hChrFilterSize, c->chrXInc,
  950. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  951. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  952. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  953. c->param, 1) < 0)
  954. goto fail;
  955. }
  956. } // initialize horizontal stuff
  957. /* precalculate vertical scaler filter coefficients */
  958. {
  959. const int filterAlign =
  960. (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? 2 :
  961. (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
  962. 1;
  963. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  964. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  965. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  966. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  967. c->param, 0) < 0)
  968. goto fail;
  969. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  970. c->chrYInc, c->chrSrcH, c->chrDstH,
  971. filterAlign, (1 << 12),
  972. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  973. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  974. c->param, 0) < 0)
  975. goto fail;
  976. #if HAVE_ALTIVEC
  977. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  978. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  979. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  980. int j;
  981. short *p = (short *)&c->vYCoeffsBank[i];
  982. for (j = 0; j < 8; j++)
  983. p[j] = c->vLumFilter[i];
  984. }
  985. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  986. int j;
  987. short *p = (short *)&c->vCCoeffsBank[i];
  988. for (j = 0; j < 8; j++)
  989. p[j] = c->vChrFilter[i];
  990. }
  991. #endif
  992. }
  993. // calculate buffer sizes so that they won't run out while handling these damn slices
  994. c->vLumBufSize = c->vLumFilterSize;
  995. c->vChrBufSize = c->vChrFilterSize;
  996. for (i = 0; i < dstH; i++) {
  997. int chrI = (int64_t)i * c->chrDstH / dstH;
  998. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  999. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1000. << c->chrSrcVSubSample));
  1001. nextSlice >>= c->chrSrcVSubSample;
  1002. nextSlice <<= c->chrSrcVSubSample;
  1003. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1004. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1005. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1006. (nextSlice >> c->chrSrcVSubSample))
  1007. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1008. c->vChrFilterPos[chrI];
  1009. }
  1010. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1011. * need to allocate several megabytes to handle all possible cases) */
  1012. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1013. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1014. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1015. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1016. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1017. /* Note we need at least one pixel more at the end because of the MMX code
  1018. * (just in case someone wants to replace the 4000/8000). */
  1019. /* align at 16 bytes for AltiVec */
  1020. for (i = 0; i < c->vLumBufSize; i++) {
  1021. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1022. dst_stride + 16, fail);
  1023. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1024. }
  1025. // 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate)
  1026. c->uv_off_px = dst_stride_px + 64 / (c->dstBpc & ~7);
  1027. c->uv_off_byte = dst_stride + 16;
  1028. for (i = 0; i < c->vChrBufSize; i++) {
  1029. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1030. dst_stride * 2 + 32, fail);
  1031. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1032. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1033. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1034. }
  1035. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1036. for (i = 0; i < c->vLumBufSize; i++) {
  1037. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1038. dst_stride + 16, fail);
  1039. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1040. }
  1041. // try to avoid drawing green stuff between the right end and the stride end
  1042. for (i = 0; i < c->vChrBufSize; i++)
  1043. memset(c->chrUPixBuf[i], 64, dst_stride * 2 + 1);
  1044. assert(c->chrDstH <= dstH);
  1045. if (flags & SWS_PRINT_INFO) {
  1046. if (flags & SWS_FAST_BILINEAR)
  1047. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1048. else if (flags & SWS_BILINEAR)
  1049. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1050. else if (flags & SWS_BICUBIC)
  1051. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1052. else if (flags & SWS_X)
  1053. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1054. else if (flags & SWS_POINT)
  1055. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1056. else if (flags & SWS_AREA)
  1057. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1058. else if (flags & SWS_BICUBLIN)
  1059. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1060. else if (flags & SWS_GAUSS)
  1061. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1062. else if (flags & SWS_SINC)
  1063. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1064. else if (flags & SWS_LANCZOS)
  1065. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1066. else if (flags & SWS_SPLINE)
  1067. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1068. else
  1069. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1070. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1071. sws_format_name(srcFormat),
  1072. #ifdef DITHER1XBPP
  1073. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1074. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1075. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1076. "dithered " : "",
  1077. #else
  1078. "",
  1079. #endif
  1080. sws_format_name(dstFormat));
  1081. if (INLINE_MMXEXT(cpu_flags))
  1082. av_log(c, AV_LOG_INFO, "using MMX2\n");
  1083. else if (INLINE_AMD3DNOW(cpu_flags))
  1084. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1085. else if (INLINE_MMX(cpu_flags))
  1086. av_log(c, AV_LOG_INFO, "using MMX\n");
  1087. else if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC)
  1088. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1089. else
  1090. av_log(c, AV_LOG_INFO, "using C\n");
  1091. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1092. av_log(c, AV_LOG_DEBUG,
  1093. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1094. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1095. av_log(c, AV_LOG_DEBUG,
  1096. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1097. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1098. c->chrXInc, c->chrYInc);
  1099. }
  1100. c->swScale = ff_getSwsFunc(c);
  1101. return 0;
  1102. fail: // FIXME replace things by appropriate error codes
  1103. return -1;
  1104. }
  1105. #if FF_API_SWS_GETCONTEXT
  1106. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1107. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1108. int flags, SwsFilter *srcFilter,
  1109. SwsFilter *dstFilter, const double *param)
  1110. {
  1111. SwsContext *c;
  1112. if (!(c = sws_alloc_context()))
  1113. return NULL;
  1114. c->flags = flags;
  1115. c->srcW = srcW;
  1116. c->srcH = srcH;
  1117. c->dstW = dstW;
  1118. c->dstH = dstH;
  1119. c->srcRange = handle_jpeg(&srcFormat);
  1120. c->dstRange = handle_jpeg(&dstFormat);
  1121. c->srcFormat = srcFormat;
  1122. c->dstFormat = dstFormat;
  1123. if (param) {
  1124. c->param[0] = param[0];
  1125. c->param[1] = param[1];
  1126. }
  1127. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1128. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1129. c->dstRange, 0, 1 << 16, 1 << 16);
  1130. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1131. sws_freeContext(c);
  1132. return NULL;
  1133. }
  1134. return c;
  1135. }
  1136. #endif
  1137. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1138. float lumaSharpen, float chromaSharpen,
  1139. float chromaHShift, float chromaVShift,
  1140. int verbose)
  1141. {
  1142. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1143. if (!filter)
  1144. return NULL;
  1145. if (lumaGBlur != 0.0) {
  1146. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1147. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1148. } else {
  1149. filter->lumH = sws_getIdentityVec();
  1150. filter->lumV = sws_getIdentityVec();
  1151. }
  1152. if (chromaGBlur != 0.0) {
  1153. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1154. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1155. } else {
  1156. filter->chrH = sws_getIdentityVec();
  1157. filter->chrV = sws_getIdentityVec();
  1158. }
  1159. if (chromaSharpen != 0.0) {
  1160. SwsVector *id = sws_getIdentityVec();
  1161. sws_scaleVec(filter->chrH, -chromaSharpen);
  1162. sws_scaleVec(filter->chrV, -chromaSharpen);
  1163. sws_addVec(filter->chrH, id);
  1164. sws_addVec(filter->chrV, id);
  1165. sws_freeVec(id);
  1166. }
  1167. if (lumaSharpen != 0.0) {
  1168. SwsVector *id = sws_getIdentityVec();
  1169. sws_scaleVec(filter->lumH, -lumaSharpen);
  1170. sws_scaleVec(filter->lumV, -lumaSharpen);
  1171. sws_addVec(filter->lumH, id);
  1172. sws_addVec(filter->lumV, id);
  1173. sws_freeVec(id);
  1174. }
  1175. if (chromaHShift != 0.0)
  1176. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1177. if (chromaVShift != 0.0)
  1178. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1179. sws_normalizeVec(filter->chrH, 1.0);
  1180. sws_normalizeVec(filter->chrV, 1.0);
  1181. sws_normalizeVec(filter->lumH, 1.0);
  1182. sws_normalizeVec(filter->lumV, 1.0);
  1183. if (verbose)
  1184. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1185. if (verbose)
  1186. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1187. return filter;
  1188. }
  1189. SwsVector *sws_allocVec(int length)
  1190. {
  1191. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1192. if (!vec)
  1193. return NULL;
  1194. vec->length = length;
  1195. vec->coeff = av_malloc(sizeof(double) * length);
  1196. if (!vec->coeff)
  1197. av_freep(&vec);
  1198. return vec;
  1199. }
  1200. SwsVector *sws_getGaussianVec(double variance, double quality)
  1201. {
  1202. const int length = (int)(variance * quality + 0.5) | 1;
  1203. int i;
  1204. double middle = (length - 1) * 0.5;
  1205. SwsVector *vec = sws_allocVec(length);
  1206. if (!vec)
  1207. return NULL;
  1208. for (i = 0; i < length; i++) {
  1209. double dist = i - middle;
  1210. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1211. sqrt(2 * variance * M_PI);
  1212. }
  1213. sws_normalizeVec(vec, 1.0);
  1214. return vec;
  1215. }
  1216. SwsVector *sws_getConstVec(double c, int length)
  1217. {
  1218. int i;
  1219. SwsVector *vec = sws_allocVec(length);
  1220. if (!vec)
  1221. return NULL;
  1222. for (i = 0; i < length; i++)
  1223. vec->coeff[i] = c;
  1224. return vec;
  1225. }
  1226. SwsVector *sws_getIdentityVec(void)
  1227. {
  1228. return sws_getConstVec(1.0, 1);
  1229. }
  1230. static double sws_dcVec(SwsVector *a)
  1231. {
  1232. int i;
  1233. double sum = 0;
  1234. for (i = 0; i < a->length; i++)
  1235. sum += a->coeff[i];
  1236. return sum;
  1237. }
  1238. void sws_scaleVec(SwsVector *a, double scalar)
  1239. {
  1240. int i;
  1241. for (i = 0; i < a->length; i++)
  1242. a->coeff[i] *= scalar;
  1243. }
  1244. void sws_normalizeVec(SwsVector *a, double height)
  1245. {
  1246. sws_scaleVec(a, height / sws_dcVec(a));
  1247. }
  1248. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1249. {
  1250. int length = a->length + b->length - 1;
  1251. int i, j;
  1252. SwsVector *vec = sws_getConstVec(0.0, length);
  1253. if (!vec)
  1254. return NULL;
  1255. for (i = 0; i < a->length; i++) {
  1256. for (j = 0; j < b->length; j++) {
  1257. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1258. }
  1259. }
  1260. return vec;
  1261. }
  1262. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1263. {
  1264. int length = FFMAX(a->length, b->length);
  1265. int i;
  1266. SwsVector *vec = sws_getConstVec(0.0, length);
  1267. if (!vec)
  1268. return NULL;
  1269. for (i = 0; i < a->length; i++)
  1270. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1271. for (i = 0; i < b->length; i++)
  1272. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1273. return vec;
  1274. }
  1275. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1276. {
  1277. int length = FFMAX(a->length, b->length);
  1278. int i;
  1279. SwsVector *vec = sws_getConstVec(0.0, length);
  1280. if (!vec)
  1281. return NULL;
  1282. for (i = 0; i < a->length; i++)
  1283. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1284. for (i = 0; i < b->length; i++)
  1285. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1286. return vec;
  1287. }
  1288. /* shift left / or right if "shift" is negative */
  1289. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1290. {
  1291. int length = a->length + FFABS(shift) * 2;
  1292. int i;
  1293. SwsVector *vec = sws_getConstVec(0.0, length);
  1294. if (!vec)
  1295. return NULL;
  1296. for (i = 0; i < a->length; i++) {
  1297. vec->coeff[i + (length - 1) / 2 -
  1298. (a->length - 1) / 2 - shift] = a->coeff[i];
  1299. }
  1300. return vec;
  1301. }
  1302. void sws_shiftVec(SwsVector *a, int shift)
  1303. {
  1304. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1305. av_free(a->coeff);
  1306. a->coeff = shifted->coeff;
  1307. a->length = shifted->length;
  1308. av_free(shifted);
  1309. }
  1310. void sws_addVec(SwsVector *a, SwsVector *b)
  1311. {
  1312. SwsVector *sum = sws_sumVec(a, b);
  1313. av_free(a->coeff);
  1314. a->coeff = sum->coeff;
  1315. a->length = sum->length;
  1316. av_free(sum);
  1317. }
  1318. void sws_subVec(SwsVector *a, SwsVector *b)
  1319. {
  1320. SwsVector *diff = sws_diffVec(a, b);
  1321. av_free(a->coeff);
  1322. a->coeff = diff->coeff;
  1323. a->length = diff->length;
  1324. av_free(diff);
  1325. }
  1326. void sws_convVec(SwsVector *a, SwsVector *b)
  1327. {
  1328. SwsVector *conv = sws_getConvVec(a, b);
  1329. av_free(a->coeff);
  1330. a->coeff = conv->coeff;
  1331. a->length = conv->length;
  1332. av_free(conv);
  1333. }
  1334. SwsVector *sws_cloneVec(SwsVector *a)
  1335. {
  1336. int i;
  1337. SwsVector *vec = sws_allocVec(a->length);
  1338. if (!vec)
  1339. return NULL;
  1340. for (i = 0; i < a->length; i++)
  1341. vec->coeff[i] = a->coeff[i];
  1342. return vec;
  1343. }
  1344. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1345. {
  1346. int i;
  1347. double max = 0;
  1348. double min = 0;
  1349. double range;
  1350. for (i = 0; i < a->length; i++)
  1351. if (a->coeff[i] > max)
  1352. max = a->coeff[i];
  1353. for (i = 0; i < a->length; i++)
  1354. if (a->coeff[i] < min)
  1355. min = a->coeff[i];
  1356. range = max - min;
  1357. for (i = 0; i < a->length; i++) {
  1358. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1359. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1360. for (; x > 0; x--)
  1361. av_log(log_ctx, log_level, " ");
  1362. av_log(log_ctx, log_level, "|\n");
  1363. }
  1364. }
  1365. void sws_freeVec(SwsVector *a)
  1366. {
  1367. if (!a)
  1368. return;
  1369. av_freep(&a->coeff);
  1370. a->length = 0;
  1371. av_free(a);
  1372. }
  1373. void sws_freeFilter(SwsFilter *filter)
  1374. {
  1375. if (!filter)
  1376. return;
  1377. if (filter->lumH)
  1378. sws_freeVec(filter->lumH);
  1379. if (filter->lumV)
  1380. sws_freeVec(filter->lumV);
  1381. if (filter->chrH)
  1382. sws_freeVec(filter->chrH);
  1383. if (filter->chrV)
  1384. sws_freeVec(filter->chrV);
  1385. av_free(filter);
  1386. }
  1387. void sws_freeContext(SwsContext *c)
  1388. {
  1389. int i;
  1390. if (!c)
  1391. return;
  1392. if (c->lumPixBuf) {
  1393. for (i = 0; i < c->vLumBufSize; i++)
  1394. av_freep(&c->lumPixBuf[i]);
  1395. av_freep(&c->lumPixBuf);
  1396. }
  1397. if (c->chrUPixBuf) {
  1398. for (i = 0; i < c->vChrBufSize; i++)
  1399. av_freep(&c->chrUPixBuf[i]);
  1400. av_freep(&c->chrUPixBuf);
  1401. av_freep(&c->chrVPixBuf);
  1402. }
  1403. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1404. for (i = 0; i < c->vLumBufSize; i++)
  1405. av_freep(&c->alpPixBuf[i]);
  1406. av_freep(&c->alpPixBuf);
  1407. }
  1408. av_freep(&c->vLumFilter);
  1409. av_freep(&c->vChrFilter);
  1410. av_freep(&c->hLumFilter);
  1411. av_freep(&c->hChrFilter);
  1412. #if HAVE_ALTIVEC
  1413. av_freep(&c->vYCoeffsBank);
  1414. av_freep(&c->vCCoeffsBank);
  1415. #endif
  1416. av_freep(&c->vLumFilterPos);
  1417. av_freep(&c->vChrFilterPos);
  1418. av_freep(&c->hLumFilterPos);
  1419. av_freep(&c->hChrFilterPos);
  1420. #if HAVE_MMX_INLINE
  1421. #ifdef MAP_ANONYMOUS
  1422. if (c->lumMmx2FilterCode)
  1423. munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize);
  1424. if (c->chrMmx2FilterCode)
  1425. munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize);
  1426. #elif HAVE_VIRTUALALLOC
  1427. if (c->lumMmx2FilterCode)
  1428. VirtualFree(c->lumMmx2FilterCode, 0, MEM_RELEASE);
  1429. if (c->chrMmx2FilterCode)
  1430. VirtualFree(c->chrMmx2FilterCode, 0, MEM_RELEASE);
  1431. #else
  1432. av_free(c->lumMmx2FilterCode);
  1433. av_free(c->chrMmx2FilterCode);
  1434. #endif
  1435. c->lumMmx2FilterCode = NULL;
  1436. c->chrMmx2FilterCode = NULL;
  1437. #endif /* HAVE_MMX_INLINE */
  1438. av_freep(&c->yuvTable);
  1439. av_free(c->formatConvBuffer);
  1440. av_free(c);
  1441. }
  1442. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1443. int srcH, enum AVPixelFormat srcFormat,
  1444. int dstW, int dstH,
  1445. enum AVPixelFormat dstFormat, int flags,
  1446. SwsFilter *srcFilter,
  1447. SwsFilter *dstFilter,
  1448. const double *param)
  1449. {
  1450. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1451. SWS_PARAM_DEFAULT };
  1452. if (!param)
  1453. param = default_param;
  1454. if (context &&
  1455. (context->srcW != srcW ||
  1456. context->srcH != srcH ||
  1457. context->srcFormat != srcFormat ||
  1458. context->dstW != dstW ||
  1459. context->dstH != dstH ||
  1460. context->dstFormat != dstFormat ||
  1461. context->flags != flags ||
  1462. context->param[0] != param[0] ||
  1463. context->param[1] != param[1])) {
  1464. sws_freeContext(context);
  1465. context = NULL;
  1466. }
  1467. if (!context) {
  1468. if (!(context = sws_alloc_context()))
  1469. return NULL;
  1470. context->srcW = srcW;
  1471. context->srcH = srcH;
  1472. context->srcRange = handle_jpeg(&srcFormat);
  1473. context->srcFormat = srcFormat;
  1474. context->dstW = dstW;
  1475. context->dstH = dstH;
  1476. context->dstRange = handle_jpeg(&dstFormat);
  1477. context->dstFormat = dstFormat;
  1478. context->flags = flags;
  1479. context->param[0] = param[0];
  1480. context->param[1] = param[1];
  1481. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1482. context->srcRange,
  1483. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1484. context->dstRange, 0, 1 << 16, 1 << 16);
  1485. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1486. sws_freeContext(context);
  1487. return NULL;
  1488. }
  1489. }
  1490. return context;
  1491. }