You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1395 lines
41KB

  1. /*
  2. * The simplest AC-3 encoder
  3. * Copyright (c) 2000 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * The simplest AC-3 encoder.
  24. */
  25. //#define DEBUG
  26. #include "libavcore/audioconvert.h"
  27. #include "libavutil/crc.h"
  28. #include "avcodec.h"
  29. #include "libavutil/common.h" /* for av_reverse */
  30. #include "put_bits.h"
  31. #include "ac3.h"
  32. #include "audioconvert.h"
  33. typedef struct AC3EncodeContext {
  34. PutBitContext pb;
  35. int bitstream_id;
  36. int bitstream_mode;
  37. int bit_rate;
  38. int sample_rate;
  39. int frame_size_min; /* minimum frame size in case rounding is necessary */
  40. int frame_size; /* current frame size in words */
  41. int frame_size_code;
  42. int bits_written;
  43. int samples_written;
  44. int fbw_channels;
  45. int channels;
  46. int lfe_on;
  47. int lfe_channel;
  48. int channel_mode;
  49. const uint8_t *channel_map;
  50. int bandwidth_code[AC3_MAX_CHANNELS];
  51. int nb_coefs[AC3_MAX_CHANNELS];
  52. /* bitrate allocation control */
  53. int slow_gain_code, slow_decay_code, fast_decay_code, db_per_bit_code, floor_code;
  54. AC3BitAllocParameters bit_alloc;
  55. int coarse_snr_offset;
  56. int fast_gain_code[AC3_MAX_CHANNELS];
  57. int fine_snr_offset[AC3_MAX_CHANNELS];
  58. /* mantissa encoding */
  59. int mant1_cnt, mant2_cnt, mant4_cnt;
  60. int16_t last_samples[AC3_MAX_CHANNELS][AC3_BLOCK_SIZE];
  61. } AC3EncodeContext;
  62. static int16_t costab[64];
  63. static int16_t sintab[64];
  64. static int16_t xcos1[128];
  65. static int16_t xsin1[128];
  66. #define MDCT_NBITS 9
  67. #define MDCT_SAMPLES (1 << MDCT_NBITS)
  68. /* new exponents are sent if their Norm 1 exceed this number */
  69. #define EXP_DIFF_THRESHOLD 1000
  70. static inline int16_t fix15(float a)
  71. {
  72. int v;
  73. v = (int)(a * (float)(1 << 15));
  74. if (v < -32767)
  75. v = -32767;
  76. else if (v > 32767)
  77. v = 32767;
  78. return v;
  79. }
  80. typedef struct IComplex {
  81. int16_t re,im;
  82. } IComplex;
  83. static av_cold void fft_init(int ln)
  84. {
  85. int i, n;
  86. float alpha;
  87. n = 1 << ln;
  88. for(i=0;i<(n/2);i++) {
  89. alpha = 2 * M_PI * (float)i / (float)n;
  90. costab[i] = fix15(cos(alpha));
  91. sintab[i] = fix15(sin(alpha));
  92. }
  93. }
  94. /* butter fly op */
  95. #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
  96. {\
  97. int ax, ay, bx, by;\
  98. bx=pre1;\
  99. by=pim1;\
  100. ax=qre1;\
  101. ay=qim1;\
  102. pre = (bx + ax) >> 1;\
  103. pim = (by + ay) >> 1;\
  104. qre = (bx - ax) >> 1;\
  105. qim = (by - ay) >> 1;\
  106. }
  107. #define CMUL(pre, pim, are, aim, bre, bim) \
  108. {\
  109. pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\
  110. pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\
  111. }
  112. /* do a 2^n point complex fft on 2^ln points. */
  113. static void fft(IComplex *z, int ln)
  114. {
  115. int j, l, np, np2;
  116. int nblocks, nloops;
  117. register IComplex *p,*q;
  118. int tmp_re, tmp_im;
  119. np = 1 << ln;
  120. /* reverse */
  121. for(j=0;j<np;j++) {
  122. int k = av_reverse[j] >> (8 - ln);
  123. if (k < j)
  124. FFSWAP(IComplex, z[k], z[j]);
  125. }
  126. /* pass 0 */
  127. p=&z[0];
  128. j=(np >> 1);
  129. do {
  130. BF(p[0].re, p[0].im, p[1].re, p[1].im,
  131. p[0].re, p[0].im, p[1].re, p[1].im);
  132. p+=2;
  133. } while (--j != 0);
  134. /* pass 1 */
  135. p=&z[0];
  136. j=np >> 2;
  137. do {
  138. BF(p[0].re, p[0].im, p[2].re, p[2].im,
  139. p[0].re, p[0].im, p[2].re, p[2].im);
  140. BF(p[1].re, p[1].im, p[3].re, p[3].im,
  141. p[1].re, p[1].im, p[3].im, -p[3].re);
  142. p+=4;
  143. } while (--j != 0);
  144. /* pass 2 .. ln-1 */
  145. nblocks = np >> 3;
  146. nloops = 1 << 2;
  147. np2 = np >> 1;
  148. do {
  149. p = z;
  150. q = z + nloops;
  151. for (j = 0; j < nblocks; ++j) {
  152. BF(p->re, p->im, q->re, q->im,
  153. p->re, p->im, q->re, q->im);
  154. p++;
  155. q++;
  156. for(l = nblocks; l < np2; l += nblocks) {
  157. CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
  158. BF(p->re, p->im, q->re, q->im,
  159. p->re, p->im, tmp_re, tmp_im);
  160. p++;
  161. q++;
  162. }
  163. p += nloops;
  164. q += nloops;
  165. }
  166. nblocks = nblocks >> 1;
  167. nloops = nloops << 1;
  168. } while (nblocks != 0);
  169. }
  170. /* do a 512 point mdct */
  171. static void mdct512(int32_t *out, int16_t *in)
  172. {
  173. int i, re, im, re1, im1;
  174. int16_t rot[MDCT_SAMPLES];
  175. IComplex x[MDCT_SAMPLES/4];
  176. /* shift to simplify computations */
  177. for(i=0;i<MDCT_SAMPLES/4;i++)
  178. rot[i] = -in[i + 3*MDCT_SAMPLES/4];
  179. for(i=MDCT_SAMPLES/4;i<MDCT_SAMPLES;i++)
  180. rot[i] = in[i - MDCT_SAMPLES/4];
  181. /* pre rotation */
  182. for(i=0;i<MDCT_SAMPLES/4;i++) {
  183. re = ((int)rot[2*i] - (int)rot[MDCT_SAMPLES-1-2*i]) >> 1;
  184. im = -((int)rot[MDCT_SAMPLES/2+2*i] - (int)rot[MDCT_SAMPLES/2-1-2*i]) >> 1;
  185. CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
  186. }
  187. fft(x, MDCT_NBITS - 2);
  188. /* post rotation */
  189. for(i=0;i<MDCT_SAMPLES/4;i++) {
  190. re = x[i].re;
  191. im = x[i].im;
  192. CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
  193. out[2*i] = im1;
  194. out[MDCT_SAMPLES/2-1-2*i] = re1;
  195. }
  196. }
  197. /* XXX: use another norm ? */
  198. static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n)
  199. {
  200. int sum, i;
  201. sum = 0;
  202. for(i=0;i<n;i++) {
  203. sum += abs(exp1[i] - exp2[i]);
  204. }
  205. return sum;
  206. }
  207. static void compute_exp_strategy(uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
  208. uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  209. int ch, int is_lfe)
  210. {
  211. int i, j;
  212. int exp_diff;
  213. /* estimate if the exponent variation & decide if they should be
  214. reused in the next frame */
  215. exp_strategy[0][ch] = EXP_NEW;
  216. for(i=1;i<AC3_MAX_BLOCKS;i++) {
  217. exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], AC3_MAX_COEFS);
  218. if (exp_diff > EXP_DIFF_THRESHOLD)
  219. exp_strategy[i][ch] = EXP_NEW;
  220. else
  221. exp_strategy[i][ch] = EXP_REUSE;
  222. }
  223. if (is_lfe)
  224. return;
  225. /* now select the encoding strategy type : if exponents are often
  226. recoded, we use a coarse encoding */
  227. i = 0;
  228. while (i < AC3_MAX_BLOCKS) {
  229. j = i + 1;
  230. while (j < AC3_MAX_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)
  231. j++;
  232. switch(j - i) {
  233. case 1:
  234. exp_strategy[i][ch] = EXP_D45;
  235. break;
  236. case 2:
  237. case 3:
  238. exp_strategy[i][ch] = EXP_D25;
  239. break;
  240. default:
  241. exp_strategy[i][ch] = EXP_D15;
  242. break;
  243. }
  244. i = j;
  245. }
  246. }
  247. /* set exp[i] to min(exp[i], exp1[i]) */
  248. static void exponent_min(uint8_t exp[AC3_MAX_COEFS], uint8_t exp1[AC3_MAX_COEFS], int n)
  249. {
  250. int i;
  251. for(i=0;i<n;i++) {
  252. if (exp1[i] < exp[i])
  253. exp[i] = exp1[i];
  254. }
  255. }
  256. /* update the exponents so that they are the ones the decoder will
  257. decode. Return the number of bits used to code the exponents */
  258. static int encode_exp(uint8_t encoded_exp[AC3_MAX_COEFS],
  259. uint8_t exp[AC3_MAX_COEFS],
  260. int nb_exps,
  261. int exp_strategy)
  262. {
  263. int group_size, nb_groups, i, j, k, exp_min;
  264. uint8_t exp1[AC3_MAX_COEFS];
  265. switch(exp_strategy) {
  266. case EXP_D15:
  267. group_size = 1;
  268. break;
  269. case EXP_D25:
  270. group_size = 2;
  271. break;
  272. default:
  273. case EXP_D45:
  274. group_size = 4;
  275. break;
  276. }
  277. nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3;
  278. /* for each group, compute the minimum exponent */
  279. exp1[0] = exp[0]; /* DC exponent is handled separately */
  280. k = 1;
  281. for(i=1;i<=nb_groups;i++) {
  282. exp_min = exp[k];
  283. assert(exp_min >= 0 && exp_min <= 24);
  284. for(j=1;j<group_size;j++) {
  285. if (exp[k+j] < exp_min)
  286. exp_min = exp[k+j];
  287. }
  288. exp1[i] = exp_min;
  289. k += group_size;
  290. }
  291. /* constraint for DC exponent */
  292. if (exp1[0] > 15)
  293. exp1[0] = 15;
  294. /* Decrease the delta between each groups to within 2
  295. * so that they can be differentially encoded */
  296. for (i=1;i<=nb_groups;i++)
  297. exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2);
  298. for (i=nb_groups-1;i>=0;i--)
  299. exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2);
  300. /* now we have the exponent values the decoder will see */
  301. encoded_exp[0] = exp1[0];
  302. k = 1;
  303. for(i=1;i<=nb_groups;i++) {
  304. for(j=0;j<group_size;j++) {
  305. encoded_exp[k+j] = exp1[i];
  306. }
  307. k += group_size;
  308. }
  309. return 4 + (nb_groups / 3) * 7;
  310. }
  311. /* return the size in bits taken by the mantissa */
  312. static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs)
  313. {
  314. int bits, mant, i;
  315. bits = 0;
  316. for(i=0;i<nb_coefs;i++) {
  317. mant = m[i];
  318. switch(mant) {
  319. case 0:
  320. /* nothing */
  321. break;
  322. case 1:
  323. /* 3 mantissa in 5 bits */
  324. if (s->mant1_cnt == 0)
  325. bits += 5;
  326. if (++s->mant1_cnt == 3)
  327. s->mant1_cnt = 0;
  328. break;
  329. case 2:
  330. /* 3 mantissa in 7 bits */
  331. if (s->mant2_cnt == 0)
  332. bits += 7;
  333. if (++s->mant2_cnt == 3)
  334. s->mant2_cnt = 0;
  335. break;
  336. case 3:
  337. bits += 3;
  338. break;
  339. case 4:
  340. /* 2 mantissa in 7 bits */
  341. if (s->mant4_cnt == 0)
  342. bits += 7;
  343. if (++s->mant4_cnt == 2)
  344. s->mant4_cnt = 0;
  345. break;
  346. case 14:
  347. bits += 14;
  348. break;
  349. case 15:
  350. bits += 16;
  351. break;
  352. default:
  353. bits += mant - 1;
  354. break;
  355. }
  356. }
  357. return bits;
  358. }
  359. static void bit_alloc_masking(AC3EncodeContext *s,
  360. uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  361. uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
  362. int16_t psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  363. int16_t mask[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][50])
  364. {
  365. int blk, ch;
  366. int16_t band_psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][50];
  367. for(blk=0; blk<AC3_MAX_BLOCKS; blk++) {
  368. for(ch=0;ch<s->channels;ch++) {
  369. if(exp_strategy[blk][ch] == EXP_REUSE) {
  370. memcpy(psd[blk][ch], psd[blk-1][ch], AC3_MAX_COEFS*sizeof(int16_t));
  371. memcpy(mask[blk][ch], mask[blk-1][ch], 50*sizeof(int16_t));
  372. } else {
  373. ff_ac3_bit_alloc_calc_psd(encoded_exp[blk][ch], 0,
  374. s->nb_coefs[ch],
  375. psd[blk][ch], band_psd[blk][ch]);
  376. ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, band_psd[blk][ch],
  377. 0, s->nb_coefs[ch],
  378. ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
  379. ch == s->lfe_channel,
  380. DBA_NONE, 0, NULL, NULL, NULL,
  381. mask[blk][ch]);
  382. }
  383. }
  384. }
  385. }
  386. static int bit_alloc(AC3EncodeContext *s,
  387. int16_t mask[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][50],
  388. int16_t psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  389. uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  390. int frame_bits, int coarse_snr_offset, int fine_snr_offset)
  391. {
  392. int i, ch;
  393. int snr_offset;
  394. snr_offset = (((coarse_snr_offset - 15) << 4) + fine_snr_offset) << 2;
  395. /* compute size */
  396. for(i=0;i<AC3_MAX_BLOCKS;i++) {
  397. s->mant1_cnt = 0;
  398. s->mant2_cnt = 0;
  399. s->mant4_cnt = 0;
  400. for(ch=0;ch<s->channels;ch++) {
  401. ff_ac3_bit_alloc_calc_bap(mask[i][ch], psd[i][ch], 0,
  402. s->nb_coefs[ch], snr_offset,
  403. s->bit_alloc.floor, ff_ac3_bap_tab,
  404. bap[i][ch]);
  405. frame_bits += compute_mantissa_size(s, bap[i][ch],
  406. s->nb_coefs[ch]);
  407. }
  408. }
  409. return 16 * s->frame_size - frame_bits;
  410. }
  411. #define SNR_INC1 4
  412. static int compute_bit_allocation(AC3EncodeContext *s,
  413. uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  414. uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  415. uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS],
  416. int frame_bits)
  417. {
  418. int i, ch;
  419. int coarse_snr_offset, fine_snr_offset;
  420. uint8_t bap1[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
  421. int16_t psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
  422. int16_t mask[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][50];
  423. static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
  424. /* init default parameters */
  425. s->slow_decay_code = 2;
  426. s->fast_decay_code = 1;
  427. s->slow_gain_code = 1;
  428. s->db_per_bit_code = 2;
  429. s->floor_code = 4;
  430. for(ch=0;ch<s->channels;ch++)
  431. s->fast_gain_code[ch] = 4;
  432. /* compute real values */
  433. s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift;
  434. s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift;
  435. s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code];
  436. s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
  437. s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code];
  438. /* header size */
  439. frame_bits += 65;
  440. // if (s->channel_mode == 2)
  441. // frame_bits += 2;
  442. frame_bits += frame_bits_inc[s->channel_mode];
  443. /* audio blocks */
  444. for(i=0;i<AC3_MAX_BLOCKS;i++) {
  445. frame_bits += s->fbw_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
  446. if (s->channel_mode == AC3_CHMODE_STEREO) {
  447. frame_bits++; /* rematstr */
  448. if(i==0) frame_bits += 4;
  449. }
  450. frame_bits += 2 * s->fbw_channels; /* chexpstr[2] * c */
  451. if (s->lfe_on)
  452. frame_bits++; /* lfeexpstr */
  453. for(ch=0;ch<s->fbw_channels;ch++) {
  454. if (exp_strategy[i][ch] != EXP_REUSE)
  455. frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
  456. }
  457. frame_bits++; /* baie */
  458. frame_bits++; /* snr */
  459. frame_bits += 2; /* delta / skip */
  460. }
  461. frame_bits++; /* cplinu for block 0 */
  462. /* bit alloc info */
  463. /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
  464. /* csnroffset[6] */
  465. /* (fsnoffset[4] + fgaincod[4]) * c */
  466. frame_bits += 2*4 + 3 + 6 + s->channels * (4 + 3);
  467. /* auxdatae, crcrsv */
  468. frame_bits += 2;
  469. /* CRC */
  470. frame_bits += 16;
  471. /* calculate psd and masking curve before doing bit allocation */
  472. bit_alloc_masking(s, encoded_exp, exp_strategy, psd, mask);
  473. /* now the big work begins : do the bit allocation. Modify the snr
  474. offset until we can pack everything in the requested frame size */
  475. coarse_snr_offset = s->coarse_snr_offset;
  476. while (coarse_snr_offset >= 0 &&
  477. bit_alloc(s, mask, psd, bap, frame_bits, coarse_snr_offset, 0) < 0)
  478. coarse_snr_offset -= SNR_INC1;
  479. if (coarse_snr_offset < 0) {
  480. av_log(NULL, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
  481. return -1;
  482. }
  483. while ((coarse_snr_offset + SNR_INC1) <= 63 &&
  484. bit_alloc(s, mask, psd, bap1, frame_bits,
  485. coarse_snr_offset + SNR_INC1, 0) >= 0) {
  486. coarse_snr_offset += SNR_INC1;
  487. memcpy(bap, bap1, sizeof(bap1));
  488. }
  489. while ((coarse_snr_offset + 1) <= 63 &&
  490. bit_alloc(s, mask, psd, bap1, frame_bits, coarse_snr_offset + 1, 0) >= 0) {
  491. coarse_snr_offset++;
  492. memcpy(bap, bap1, sizeof(bap1));
  493. }
  494. fine_snr_offset = 0;
  495. while ((fine_snr_offset + SNR_INC1) <= 15 &&
  496. bit_alloc(s, mask, psd, bap1, frame_bits,
  497. coarse_snr_offset, fine_snr_offset + SNR_INC1) >= 0) {
  498. fine_snr_offset += SNR_INC1;
  499. memcpy(bap, bap1, sizeof(bap1));
  500. }
  501. while ((fine_snr_offset + 1) <= 15 &&
  502. bit_alloc(s, mask, psd, bap1, frame_bits,
  503. coarse_snr_offset, fine_snr_offset + 1) >= 0) {
  504. fine_snr_offset++;
  505. memcpy(bap, bap1, sizeof(bap1));
  506. }
  507. s->coarse_snr_offset = coarse_snr_offset;
  508. for(ch=0;ch<s->channels;ch++)
  509. s->fine_snr_offset[ch] = fine_snr_offset;
  510. return 0;
  511. }
  512. static av_cold int set_channel_info(AC3EncodeContext *s, int channels,
  513. int64_t *channel_layout)
  514. {
  515. int ch_layout;
  516. if (channels < 1 || channels > AC3_MAX_CHANNELS)
  517. return -1;
  518. if ((uint64_t)*channel_layout > 0x7FF)
  519. return -1;
  520. ch_layout = *channel_layout;
  521. if (!ch_layout)
  522. ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL);
  523. if (av_get_channel_layout_nb_channels(ch_layout) != channels)
  524. return -1;
  525. s->lfe_on = !!(ch_layout & AV_CH_LOW_FREQUENCY);
  526. s->channels = channels;
  527. s->fbw_channels = channels - s->lfe_on;
  528. s->lfe_channel = s->lfe_on ? s->fbw_channels : -1;
  529. if (s->lfe_on)
  530. ch_layout -= AV_CH_LOW_FREQUENCY;
  531. switch (ch_layout) {
  532. case AV_CH_LAYOUT_MONO: s->channel_mode = AC3_CHMODE_MONO; break;
  533. case AV_CH_LAYOUT_STEREO: s->channel_mode = AC3_CHMODE_STEREO; break;
  534. case AV_CH_LAYOUT_SURROUND: s->channel_mode = AC3_CHMODE_3F; break;
  535. case AV_CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break;
  536. case AV_CH_LAYOUT_4POINT0: s->channel_mode = AC3_CHMODE_3F1R; break;
  537. case AV_CH_LAYOUT_QUAD:
  538. case AV_CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break;
  539. case AV_CH_LAYOUT_5POINT0:
  540. case AV_CH_LAYOUT_5POINT0_BACK: s->channel_mode = AC3_CHMODE_3F2R; break;
  541. default:
  542. return -1;
  543. }
  544. s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on];
  545. *channel_layout = ch_layout;
  546. if (s->lfe_on)
  547. *channel_layout |= AV_CH_LOW_FREQUENCY;
  548. return 0;
  549. }
  550. static av_cold int AC3_encode_init(AVCodecContext *avctx)
  551. {
  552. int freq = avctx->sample_rate;
  553. int bitrate = avctx->bit_rate;
  554. AC3EncodeContext *s = avctx->priv_data;
  555. int i, j, ch;
  556. float alpha;
  557. int bw_code;
  558. avctx->frame_size = AC3_FRAME_SIZE;
  559. ac3_common_init();
  560. if (!avctx->channel_layout) {
  561. av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
  562. "encoder will guess the layout, but it "
  563. "might be incorrect.\n");
  564. }
  565. if (set_channel_info(s, avctx->channels, &avctx->channel_layout)) {
  566. av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
  567. return -1;
  568. }
  569. /* frequency */
  570. for(i=0;i<3;i++) {
  571. for(j=0;j<3;j++)
  572. if ((ff_ac3_sample_rate_tab[j] >> i) == freq)
  573. goto found;
  574. }
  575. return -1;
  576. found:
  577. s->sample_rate = freq;
  578. s->bit_alloc.sr_shift = i;
  579. s->bit_alloc.sr_code = j;
  580. s->bitstream_id = 8 + s->bit_alloc.sr_shift;
  581. s->bitstream_mode = 0; /* complete main audio service */
  582. /* bitrate & frame size */
  583. for(i=0;i<19;i++) {
  584. if ((ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift)*1000 == bitrate)
  585. break;
  586. }
  587. if (i == 19)
  588. return -1;
  589. s->bit_rate = bitrate;
  590. s->frame_size_code = i << 1;
  591. s->frame_size_min = ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
  592. s->bits_written = 0;
  593. s->samples_written = 0;
  594. s->frame_size = s->frame_size_min;
  595. /* bit allocation init */
  596. if(avctx->cutoff) {
  597. /* calculate bandwidth based on user-specified cutoff frequency */
  598. int cutoff = av_clip(avctx->cutoff, 1, s->sample_rate >> 1);
  599. int fbw_coeffs = cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
  600. bw_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
  601. } else {
  602. /* use default bandwidth setting */
  603. /* XXX: should compute the bandwidth according to the frame
  604. size, so that we avoid annoying high frequency artifacts */
  605. bw_code = 50;
  606. }
  607. for(ch=0;ch<s->fbw_channels;ch++) {
  608. /* bandwidth for each channel */
  609. s->bandwidth_code[ch] = bw_code;
  610. s->nb_coefs[ch] = bw_code * 3 + 73;
  611. }
  612. if (s->lfe_on) {
  613. s->nb_coefs[s->lfe_channel] = 7; /* fixed */
  614. }
  615. /* initial snr offset */
  616. s->coarse_snr_offset = 40;
  617. /* mdct init */
  618. fft_init(MDCT_NBITS - 2);
  619. for(i=0;i<MDCT_SAMPLES/4;i++) {
  620. alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)MDCT_SAMPLES;
  621. xcos1[i] = fix15(-cos(alpha));
  622. xsin1[i] = fix15(-sin(alpha));
  623. }
  624. avctx->coded_frame= avcodec_alloc_frame();
  625. avctx->coded_frame->key_frame= 1;
  626. return 0;
  627. }
  628. /* output the AC-3 frame header */
  629. static void output_frame_header(AC3EncodeContext *s, unsigned char *frame)
  630. {
  631. init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
  632. put_bits(&s->pb, 16, 0x0b77); /* frame header */
  633. put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
  634. put_bits(&s->pb, 2, s->bit_alloc.sr_code);
  635. put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min));
  636. put_bits(&s->pb, 5, s->bitstream_id);
  637. put_bits(&s->pb, 3, s->bitstream_mode);
  638. put_bits(&s->pb, 3, s->channel_mode);
  639. if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
  640. put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */
  641. if (s->channel_mode & 0x04)
  642. put_bits(&s->pb, 2, 1); /* XXX -6 dB */
  643. if (s->channel_mode == AC3_CHMODE_STEREO)
  644. put_bits(&s->pb, 2, 0); /* surround not indicated */
  645. put_bits(&s->pb, 1, s->lfe_on); /* LFE */
  646. put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */
  647. put_bits(&s->pb, 1, 0); /* no compression control word */
  648. put_bits(&s->pb, 1, 0); /* no lang code */
  649. put_bits(&s->pb, 1, 0); /* no audio production info */
  650. put_bits(&s->pb, 1, 0); /* no copyright */
  651. put_bits(&s->pb, 1, 1); /* original bitstream */
  652. put_bits(&s->pb, 1, 0); /* no time code 1 */
  653. put_bits(&s->pb, 1, 0); /* no time code 2 */
  654. put_bits(&s->pb, 1, 0); /* no additional bit stream info */
  655. }
  656. /* symetric quantization on 'levels' levels */
  657. static inline int sym_quant(int c, int e, int levels)
  658. {
  659. int v;
  660. if (c >= 0) {
  661. v = (levels * (c << e)) >> 24;
  662. v = (v + 1) >> 1;
  663. v = (levels >> 1) + v;
  664. } else {
  665. v = (levels * ((-c) << e)) >> 24;
  666. v = (v + 1) >> 1;
  667. v = (levels >> 1) - v;
  668. }
  669. assert (v >= 0 && v < levels);
  670. return v;
  671. }
  672. /* asymetric quantization on 2^qbits levels */
  673. static inline int asym_quant(int c, int e, int qbits)
  674. {
  675. int lshift, m, v;
  676. lshift = e + qbits - 24;
  677. if (lshift >= 0)
  678. v = c << lshift;
  679. else
  680. v = c >> (-lshift);
  681. /* rounding */
  682. v = (v + 1) >> 1;
  683. m = (1 << (qbits-1));
  684. if (v >= m)
  685. v = m - 1;
  686. assert(v >= -m);
  687. return v & ((1 << qbits)-1);
  688. }
  689. /* Output one audio block. There are AC3_MAX_BLOCKS audio blocks in one AC-3
  690. frame */
  691. static void output_audio_block(AC3EncodeContext *s,
  692. uint8_t exp_strategy[AC3_MAX_CHANNELS],
  693. uint8_t encoded_exp[AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  694. uint8_t bap[AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  695. int32_t mdct_coefs[AC3_MAX_CHANNELS][AC3_MAX_COEFS],
  696. int8_t global_exp[AC3_MAX_CHANNELS],
  697. int block_num)
  698. {
  699. int ch, nb_groups, group_size, i, baie, rbnd;
  700. uint8_t *p;
  701. uint16_t qmant[AC3_MAX_CHANNELS][AC3_MAX_COEFS];
  702. int exp0, exp1;
  703. int mant1_cnt, mant2_cnt, mant4_cnt;
  704. uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr;
  705. int delta0, delta1, delta2;
  706. for(ch=0;ch<s->fbw_channels;ch++)
  707. put_bits(&s->pb, 1, 0); /* 512 point MDCT */
  708. for(ch=0;ch<s->fbw_channels;ch++)
  709. put_bits(&s->pb, 1, 1); /* no dither */
  710. put_bits(&s->pb, 1, 0); /* no dynamic range */
  711. if (block_num == 0) {
  712. /* for block 0, even if no coupling, we must say it. This is a
  713. waste of bit :-) */
  714. put_bits(&s->pb, 1, 1); /* coupling strategy present */
  715. put_bits(&s->pb, 1, 0); /* no coupling strategy */
  716. } else {
  717. put_bits(&s->pb, 1, 0); /* no new coupling strategy */
  718. }
  719. if (s->channel_mode == AC3_CHMODE_STEREO)
  720. {
  721. if(block_num==0)
  722. {
  723. /* first block must define rematrixing (rematstr) */
  724. put_bits(&s->pb, 1, 1);
  725. /* dummy rematrixing rematflg(1:4)=0 */
  726. for (rbnd=0;rbnd<4;rbnd++)
  727. put_bits(&s->pb, 1, 0);
  728. }
  729. else
  730. {
  731. /* no matrixing (but should be used in the future) */
  732. put_bits(&s->pb, 1, 0);
  733. }
  734. }
  735. /* exponent strategy */
  736. for(ch=0;ch<s->fbw_channels;ch++) {
  737. put_bits(&s->pb, 2, exp_strategy[ch]);
  738. }
  739. if (s->lfe_on) {
  740. put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);
  741. }
  742. for(ch=0;ch<s->fbw_channels;ch++) {
  743. if (exp_strategy[ch] != EXP_REUSE)
  744. put_bits(&s->pb, 6, s->bandwidth_code[ch]);
  745. }
  746. /* exponents */
  747. for (ch = 0; ch < s->channels; ch++) {
  748. switch(exp_strategy[ch]) {
  749. case EXP_REUSE:
  750. continue;
  751. case EXP_D15:
  752. group_size = 1;
  753. break;
  754. case EXP_D25:
  755. group_size = 2;
  756. break;
  757. default:
  758. case EXP_D45:
  759. group_size = 4;
  760. break;
  761. }
  762. nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size);
  763. p = encoded_exp[ch];
  764. /* first exponent */
  765. exp1 = *p++;
  766. put_bits(&s->pb, 4, exp1);
  767. /* next ones are delta encoded */
  768. for(i=0;i<nb_groups;i++) {
  769. /* merge three delta in one code */
  770. exp0 = exp1;
  771. exp1 = p[0];
  772. p += group_size;
  773. delta0 = exp1 - exp0 + 2;
  774. exp0 = exp1;
  775. exp1 = p[0];
  776. p += group_size;
  777. delta1 = exp1 - exp0 + 2;
  778. exp0 = exp1;
  779. exp1 = p[0];
  780. p += group_size;
  781. delta2 = exp1 - exp0 + 2;
  782. put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2);
  783. }
  784. if (ch != s->lfe_channel)
  785. put_bits(&s->pb, 2, 0); /* no gain range info */
  786. }
  787. /* bit allocation info */
  788. baie = (block_num == 0);
  789. put_bits(&s->pb, 1, baie);
  790. if (baie) {
  791. put_bits(&s->pb, 2, s->slow_decay_code);
  792. put_bits(&s->pb, 2, s->fast_decay_code);
  793. put_bits(&s->pb, 2, s->slow_gain_code);
  794. put_bits(&s->pb, 2, s->db_per_bit_code);
  795. put_bits(&s->pb, 3, s->floor_code);
  796. }
  797. /* snr offset */
  798. put_bits(&s->pb, 1, baie); /* always present with bai */
  799. if (baie) {
  800. put_bits(&s->pb, 6, s->coarse_snr_offset);
  801. for(ch=0;ch<s->channels;ch++) {
  802. put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
  803. put_bits(&s->pb, 3, s->fast_gain_code[ch]);
  804. }
  805. }
  806. put_bits(&s->pb, 1, 0); /* no delta bit allocation */
  807. put_bits(&s->pb, 1, 0); /* no data to skip */
  808. /* mantissa encoding : we use two passes to handle the grouping. A
  809. one pass method may be faster, but it would necessitate to
  810. modify the output stream. */
  811. /* first pass: quantize */
  812. mant1_cnt = mant2_cnt = mant4_cnt = 0;
  813. qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL;
  814. for (ch = 0; ch < s->channels; ch++) {
  815. int b, c, e, v;
  816. for(i=0;i<s->nb_coefs[ch];i++) {
  817. c = mdct_coefs[ch][i];
  818. e = encoded_exp[ch][i] - global_exp[ch];
  819. b = bap[ch][i];
  820. switch(b) {
  821. case 0:
  822. v = 0;
  823. break;
  824. case 1:
  825. v = sym_quant(c, e, 3);
  826. switch(mant1_cnt) {
  827. case 0:
  828. qmant1_ptr = &qmant[ch][i];
  829. v = 9 * v;
  830. mant1_cnt = 1;
  831. break;
  832. case 1:
  833. *qmant1_ptr += 3 * v;
  834. mant1_cnt = 2;
  835. v = 128;
  836. break;
  837. default:
  838. *qmant1_ptr += v;
  839. mant1_cnt = 0;
  840. v = 128;
  841. break;
  842. }
  843. break;
  844. case 2:
  845. v = sym_quant(c, e, 5);
  846. switch(mant2_cnt) {
  847. case 0:
  848. qmant2_ptr = &qmant[ch][i];
  849. v = 25 * v;
  850. mant2_cnt = 1;
  851. break;
  852. case 1:
  853. *qmant2_ptr += 5 * v;
  854. mant2_cnt = 2;
  855. v = 128;
  856. break;
  857. default:
  858. *qmant2_ptr += v;
  859. mant2_cnt = 0;
  860. v = 128;
  861. break;
  862. }
  863. break;
  864. case 3:
  865. v = sym_quant(c, e, 7);
  866. break;
  867. case 4:
  868. v = sym_quant(c, e, 11);
  869. switch(mant4_cnt) {
  870. case 0:
  871. qmant4_ptr = &qmant[ch][i];
  872. v = 11 * v;
  873. mant4_cnt = 1;
  874. break;
  875. default:
  876. *qmant4_ptr += v;
  877. mant4_cnt = 0;
  878. v = 128;
  879. break;
  880. }
  881. break;
  882. case 5:
  883. v = sym_quant(c, e, 15);
  884. break;
  885. case 14:
  886. v = asym_quant(c, e, 14);
  887. break;
  888. case 15:
  889. v = asym_quant(c, e, 16);
  890. break;
  891. default:
  892. v = asym_quant(c, e, b - 1);
  893. break;
  894. }
  895. qmant[ch][i] = v;
  896. }
  897. }
  898. /* second pass : output the values */
  899. for (ch = 0; ch < s->channels; ch++) {
  900. int b, q;
  901. for(i=0;i<s->nb_coefs[ch];i++) {
  902. q = qmant[ch][i];
  903. b = bap[ch][i];
  904. switch(b) {
  905. case 0:
  906. break;
  907. case 1:
  908. if (q != 128)
  909. put_bits(&s->pb, 5, q);
  910. break;
  911. case 2:
  912. if (q != 128)
  913. put_bits(&s->pb, 7, q);
  914. break;
  915. case 3:
  916. put_bits(&s->pb, 3, q);
  917. break;
  918. case 4:
  919. if (q != 128)
  920. put_bits(&s->pb, 7, q);
  921. break;
  922. case 14:
  923. put_bits(&s->pb, 14, q);
  924. break;
  925. case 15:
  926. put_bits(&s->pb, 16, q);
  927. break;
  928. default:
  929. put_bits(&s->pb, b - 1, q);
  930. break;
  931. }
  932. }
  933. }
  934. }
  935. #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
  936. static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
  937. {
  938. unsigned int c;
  939. c = 0;
  940. while (a) {
  941. if (a & 1)
  942. c ^= b;
  943. a = a >> 1;
  944. b = b << 1;
  945. if (b & (1 << 16))
  946. b ^= poly;
  947. }
  948. return c;
  949. }
  950. static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
  951. {
  952. unsigned int r;
  953. r = 1;
  954. while (n) {
  955. if (n & 1)
  956. r = mul_poly(r, a, poly);
  957. a = mul_poly(a, a, poly);
  958. n >>= 1;
  959. }
  960. return r;
  961. }
  962. /* compute log2(max(abs(tab[]))) */
  963. static int log2_tab(int16_t *tab, int n)
  964. {
  965. int i, v;
  966. v = 0;
  967. for(i=0;i<n;i++) {
  968. v |= abs(tab[i]);
  969. }
  970. return av_log2(v);
  971. }
  972. static void lshift_tab(int16_t *tab, int n, int lshift)
  973. {
  974. int i;
  975. if (lshift > 0) {
  976. for(i=0;i<n;i++) {
  977. tab[i] <<= lshift;
  978. }
  979. } else if (lshift < 0) {
  980. lshift = -lshift;
  981. for(i=0;i<n;i++) {
  982. tab[i] >>= lshift;
  983. }
  984. }
  985. }
  986. /* fill the end of the frame and compute the two crcs */
  987. static int output_frame_end(AC3EncodeContext *s)
  988. {
  989. int frame_size, frame_size_58, n, crc1, crc2, crc_inv;
  990. uint8_t *frame;
  991. frame_size = s->frame_size; /* frame size in words */
  992. /* align to 8 bits */
  993. flush_put_bits(&s->pb);
  994. /* add zero bytes to reach the frame size */
  995. frame = s->pb.buf;
  996. n = 2 * s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
  997. assert(n >= 0);
  998. if(n>0)
  999. memset(put_bits_ptr(&s->pb), 0, n);
  1000. /* Now we must compute both crcs : this is not so easy for crc1
  1001. because it is at the beginning of the data... */
  1002. frame_size_58 = (frame_size >> 1) + (frame_size >> 3);
  1003. crc1 = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
  1004. frame + 4, 2 * frame_size_58 - 4));
  1005. /* XXX: could precompute crc_inv */
  1006. crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY);
  1007. crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
  1008. AV_WB16(frame+2,crc1);
  1009. crc2 = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
  1010. frame + 2 * frame_size_58,
  1011. (frame_size - frame_size_58) * 2 - 2));
  1012. AV_WB16(frame+2*frame_size-2,crc2);
  1013. // printf("n=%d frame_size=%d\n", n, frame_size);
  1014. return frame_size * 2;
  1015. }
  1016. static int AC3_encode_frame(AVCodecContext *avctx,
  1017. unsigned char *frame, int buf_size, void *data)
  1018. {
  1019. AC3EncodeContext *s = avctx->priv_data;
  1020. const int16_t *samples = data;
  1021. int i, j, k, v, ch;
  1022. int16_t input_samples[AC3_WINDOW_SIZE];
  1023. int32_t mdct_coef[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
  1024. uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
  1025. uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS];
  1026. uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
  1027. uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS];
  1028. int8_t exp_samples[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS];
  1029. int frame_bits;
  1030. frame_bits = 0;
  1031. for(ch=0;ch<s->channels;ch++) {
  1032. int ich = s->channel_map[ch];
  1033. /* fixed mdct to the six sub blocks & exponent computation */
  1034. for(i=0;i<AC3_MAX_BLOCKS;i++) {
  1035. const int16_t *sptr;
  1036. int sinc;
  1037. /* compute input samples */
  1038. memcpy(input_samples, s->last_samples[ich], AC3_BLOCK_SIZE * sizeof(int16_t));
  1039. sinc = s->channels;
  1040. sptr = samples + (sinc * AC3_BLOCK_SIZE * i) + ich;
  1041. for(j=0;j<AC3_BLOCK_SIZE;j++) {
  1042. v = *sptr;
  1043. input_samples[j + AC3_BLOCK_SIZE] = v;
  1044. s->last_samples[ich][j] = v;
  1045. sptr += sinc;
  1046. }
  1047. /* apply the MDCT window */
  1048. for(j=0;j<AC3_BLOCK_SIZE;j++) {
  1049. input_samples[j] = MUL16(input_samples[j],
  1050. ff_ac3_window[j]) >> 15;
  1051. input_samples[AC3_WINDOW_SIZE-j-1] = MUL16(input_samples[AC3_WINDOW_SIZE-j-1],
  1052. ff_ac3_window[j]) >> 15;
  1053. }
  1054. /* Normalize the samples to use the maximum available
  1055. precision */
  1056. v = 14 - log2_tab(input_samples, AC3_WINDOW_SIZE);
  1057. if (v < 0)
  1058. v = 0;
  1059. exp_samples[i][ch] = v - 9;
  1060. lshift_tab(input_samples, AC3_WINDOW_SIZE, v);
  1061. /* do the MDCT */
  1062. mdct512(mdct_coef[i][ch], input_samples);
  1063. /* compute "exponents". We take into account the
  1064. normalization there */
  1065. for(j=0;j<AC3_MAX_COEFS;j++) {
  1066. int e;
  1067. v = abs(mdct_coef[i][ch][j]);
  1068. if (v == 0)
  1069. e = 24;
  1070. else {
  1071. e = 23 - av_log2(v) + exp_samples[i][ch];
  1072. if (e >= 24) {
  1073. e = 24;
  1074. mdct_coef[i][ch][j] = 0;
  1075. }
  1076. }
  1077. exp[i][ch][j] = e;
  1078. }
  1079. }
  1080. compute_exp_strategy(exp_strategy, exp, ch, ch == s->lfe_channel);
  1081. /* compute the exponents as the decoder will see them. The
  1082. EXP_REUSE case must be handled carefully : we select the
  1083. min of the exponents */
  1084. i = 0;
  1085. while (i < AC3_MAX_BLOCKS) {
  1086. j = i + 1;
  1087. while (j < AC3_MAX_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) {
  1088. exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]);
  1089. j++;
  1090. }
  1091. frame_bits += encode_exp(encoded_exp[i][ch],
  1092. exp[i][ch], s->nb_coefs[ch],
  1093. exp_strategy[i][ch]);
  1094. /* copy encoded exponents for reuse case */
  1095. for(k=i+1;k<j;k++) {
  1096. memcpy(encoded_exp[k][ch], encoded_exp[i][ch],
  1097. s->nb_coefs[ch] * sizeof(uint8_t));
  1098. }
  1099. i = j;
  1100. }
  1101. }
  1102. /* adjust for fractional frame sizes */
  1103. while(s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
  1104. s->bits_written -= s->bit_rate;
  1105. s->samples_written -= s->sample_rate;
  1106. }
  1107. s->frame_size = s->frame_size_min + (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
  1108. s->bits_written += s->frame_size * 16;
  1109. s->samples_written += AC3_FRAME_SIZE;
  1110. compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits);
  1111. /* everything is known... let's output the frame */
  1112. output_frame_header(s, frame);
  1113. for(i=0;i<AC3_MAX_BLOCKS;i++) {
  1114. output_audio_block(s, exp_strategy[i], encoded_exp[i],
  1115. bap[i], mdct_coef[i], exp_samples[i], i);
  1116. }
  1117. return output_frame_end(s);
  1118. }
  1119. static av_cold int AC3_encode_close(AVCodecContext *avctx)
  1120. {
  1121. av_freep(&avctx->coded_frame);
  1122. return 0;
  1123. }
  1124. #if 0
  1125. /*************************************************************************/
  1126. /* TEST */
  1127. #undef random
  1128. #define FN (N/4)
  1129. void fft_test(void)
  1130. {
  1131. IComplex in[FN], in1[FN];
  1132. int k, n, i;
  1133. float sum_re, sum_im, a;
  1134. /* FFT test */
  1135. for(i=0;i<FN;i++) {
  1136. in[i].re = random() % 65535 - 32767;
  1137. in[i].im = random() % 65535 - 32767;
  1138. in1[i] = in[i];
  1139. }
  1140. fft(in, 7);
  1141. /* do it by hand */
  1142. for(k=0;k<FN;k++) {
  1143. sum_re = 0;
  1144. sum_im = 0;
  1145. for(n=0;n<FN;n++) {
  1146. a = -2 * M_PI * (n * k) / FN;
  1147. sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
  1148. sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
  1149. }
  1150. printf("%3d: %6d,%6d %6.0f,%6.0f\n",
  1151. k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
  1152. }
  1153. }
  1154. void mdct_test(void)
  1155. {
  1156. int16_t input[N];
  1157. int32_t output[N/2];
  1158. float input1[N];
  1159. float output1[N/2];
  1160. float s, a, err, e, emax;
  1161. int i, k, n;
  1162. for(i=0;i<N;i++) {
  1163. input[i] = (random() % 65535 - 32767) * 9 / 10;
  1164. input1[i] = input[i];
  1165. }
  1166. mdct512(output, input);
  1167. /* do it by hand */
  1168. for(k=0;k<N/2;k++) {
  1169. s = 0;
  1170. for(n=0;n<N;n++) {
  1171. a = (2*M_PI*(2*n+1+N/2)*(2*k+1) / (4 * N));
  1172. s += input1[n] * cos(a);
  1173. }
  1174. output1[k] = -2 * s / N;
  1175. }
  1176. err = 0;
  1177. emax = 0;
  1178. for(i=0;i<N/2;i++) {
  1179. printf("%3d: %7d %7.0f\n", i, output[i], output1[i]);
  1180. e = output[i] - output1[i];
  1181. if (e > emax)
  1182. emax = e;
  1183. err += e * e;
  1184. }
  1185. printf("err2=%f emax=%f\n", err / (N/2), emax);
  1186. }
  1187. void test_ac3(void)
  1188. {
  1189. AC3EncodeContext ctx;
  1190. unsigned char frame[AC3_MAX_CODED_FRAME_SIZE];
  1191. int16_t samples[AC3_FRAME_SIZE];
  1192. int ret, i;
  1193. AC3_encode_init(&ctx, 44100, 64000, 1);
  1194. fft_test();
  1195. mdct_test();
  1196. for(i=0;i<AC3_FRAME_SIZE;i++)
  1197. samples[i] = (int)(sin(2*M_PI*i*1000.0/44100) * 10000);
  1198. ret = AC3_encode_frame(&ctx, frame, samples);
  1199. printf("ret=%d\n", ret);
  1200. }
  1201. #endif
  1202. AVCodec ac3_encoder = {
  1203. "ac3",
  1204. AVMEDIA_TYPE_AUDIO,
  1205. CODEC_ID_AC3,
  1206. sizeof(AC3EncodeContext),
  1207. AC3_encode_init,
  1208. AC3_encode_frame,
  1209. AC3_encode_close,
  1210. NULL,
  1211. .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
  1212. .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
  1213. .channel_layouts = (const int64_t[]){
  1214. AV_CH_LAYOUT_MONO,
  1215. AV_CH_LAYOUT_STEREO,
  1216. AV_CH_LAYOUT_2_1,
  1217. AV_CH_LAYOUT_SURROUND,
  1218. AV_CH_LAYOUT_2_2,
  1219. AV_CH_LAYOUT_QUAD,
  1220. AV_CH_LAYOUT_4POINT0,
  1221. AV_CH_LAYOUT_5POINT0,
  1222. AV_CH_LAYOUT_5POINT0_BACK,
  1223. (AV_CH_LAYOUT_MONO | AV_CH_LOW_FREQUENCY),
  1224. (AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY),
  1225. (AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY),
  1226. (AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY),
  1227. (AV_CH_LAYOUT_2_2 | AV_CH_LOW_FREQUENCY),
  1228. (AV_CH_LAYOUT_QUAD | AV_CH_LOW_FREQUENCY),
  1229. (AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY),
  1230. AV_CH_LAYOUT_5POINT1,
  1231. AV_CH_LAYOUT_5POINT1_BACK,
  1232. 0 },
  1233. };