You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

402 lines
10KB

  1. /*
  2. * Real Audio 1.0 (14.4K)
  3. * Copyright (c) 2003 the ffmpeg project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "bitstream.h"
  23. #include "ra144.h"
  24. #define NBLOCKS 4 /* number of segments within a block */
  25. #define BLOCKSIZE 40 /* (quarter) block size in 16-bit words (80 bytes) */
  26. #define HALFBLOCK 20 /* BLOCKSIZE/2 */
  27. #define BUFFERSIZE 146 /* for do_output */
  28. /* internal globals */
  29. typedef struct {
  30. unsigned int old_energy; ///< previous frame energy
  31. /* the swapped buffers */
  32. unsigned int lpc_tables[4][10];
  33. unsigned int *lpc_refl; ///< LPC reflection coefficients
  34. unsigned int *lpc_coef; ///< LPC coefficients
  35. unsigned int *lpc_refl_old; ///< previous frame LPC reflection coefs
  36. unsigned int *lpc_coef_old; ///< previous frame LPC coefficients
  37. unsigned int buffer[5];
  38. uint16_t adapt_cb[148]; ///< adaptive codebook
  39. } RA144Context;
  40. static int ra144_decode_init(AVCodecContext * avctx)
  41. {
  42. RA144Context *ractx = avctx->priv_data;
  43. ractx->lpc_refl = ractx->lpc_tables[0];
  44. ractx->lpc_coef = ractx->lpc_tables[1];
  45. ractx->lpc_refl_old = ractx->lpc_tables[2];
  46. ractx->lpc_coef_old = ractx->lpc_tables[3];
  47. return 0;
  48. }
  49. /**
  50. * Evaluate sqrt(x << 24). x must fit in 20 bits. This value is evaluated in an
  51. * odd way to make the output identical to the binary decoder.
  52. */
  53. static int t_sqrt(unsigned int x)
  54. {
  55. int s = 0;
  56. while (x > 0xfff) {
  57. s++;
  58. x = x >> 2;
  59. }
  60. return (ff_sqrt(x << 20) << s) << 2;
  61. }
  62. /**
  63. * Evaluate the LPC filter coefficients from the reflection coefficients.
  64. * Does the inverse of the eval_refl() function.
  65. */
  66. static void eval_coefs(const int *refl, int *coefs)
  67. {
  68. int buffer[10];
  69. int *b1 = buffer;
  70. int *b2 = coefs;
  71. int x, y;
  72. for (x=0; x < 10; x++) {
  73. b1[x] = refl[x] << 4;
  74. for (y=0; y < x; y++)
  75. b1[y] = ((refl[x] * b2[x-y-1]) >> 12) + b2[y];
  76. FFSWAP(int *, b1, b2);
  77. }
  78. for (x=0; x < 10; x++)
  79. coefs[x] >>= 4;
  80. }
  81. /* rotate block */
  82. static void rotate_block(const int16_t *source, int16_t *target, int offset)
  83. {
  84. int i=0, k=0;
  85. source += BUFFERSIZE - offset;
  86. while (i<BLOCKSIZE) {
  87. target[i++] = source[k++];
  88. if (k == offset)
  89. k = 0;
  90. }
  91. }
  92. /* inverse root mean square */
  93. static int irms(const int16_t *data, int factor)
  94. {
  95. unsigned int i, sum = 0;
  96. for (i=0; i < BLOCKSIZE; i++)
  97. sum += data[i] * data[i];
  98. if (sum == 0)
  99. return 0; /* OOPS - division by zero */
  100. return (0x20000000 / (t_sqrt(sum) >> 8)) * factor;
  101. }
  102. /* multiply/add wavetable */
  103. static void add_wav(int n, int skip_first, int *m, const int16_t *s1,
  104. const int8_t *s2, const int8_t *s3, int16_t *dest)
  105. {
  106. int i;
  107. int v[3];
  108. v[0] = 0;
  109. for (i=!skip_first; i<3; i++)
  110. v[i] = (wavtable1[n][i] * m[i]) >> (wavtable2[n][i] + 1);
  111. for (i=0; i < BLOCKSIZE; i++)
  112. dest[i] = ((*(s1++))*v[0] + (*(s2++))*v[1] + (*(s3++))*v[2]) >> 12;
  113. }
  114. static void final(const int16_t *i1, const int16_t *i2,
  115. void *out, int *statbuf, int len)
  116. {
  117. int x, i;
  118. uint16_t work[50];
  119. int16_t *ptr = work;
  120. memcpy(work, statbuf,20);
  121. memcpy(work + 10, i2, len * 2);
  122. for (i=0; i<len; i++) {
  123. int sum = 0;
  124. int new_val;
  125. for(x=0; x<10; x++)
  126. sum += i1[9-x] * ptr[x];
  127. sum >>= 12;
  128. new_val = ptr[10] - sum;
  129. if (new_val < -32768 || new_val > 32767) {
  130. memset(out, 0, len * 2);
  131. memset(statbuf, 0, 20);
  132. return;
  133. }
  134. ptr[10] = new_val;
  135. ptr++;
  136. }
  137. memcpy(out, work+10, len * 2);
  138. memcpy(statbuf, work + 40, 20);
  139. }
  140. static unsigned int rms(const int *data, int f, RA144Context *ractx)
  141. {
  142. int x;
  143. unsigned int res = 0x10000;
  144. int b = 0;
  145. for (x=0; x<10; x++) {
  146. res = (((0x1000000 - (*data) * (*data)) >> 12) * res) >> 12;
  147. if (res == 0)
  148. return 0;
  149. if (res > 0x10000) {
  150. av_log(ractx, AV_LOG_ERROR, "Overflow. Broken sample?\n");
  151. return 0;
  152. }
  153. while (res <= 0x3fff) {
  154. b++;
  155. res <<= 2;
  156. }
  157. data++;
  158. }
  159. if (res > 0)
  160. res = t_sqrt(res);
  161. res >>= (b + 10);
  162. res = (res * f) >> 10;
  163. return res;
  164. }
  165. /* do quarter-block output */
  166. static void do_output_subblock(RA144Context *ractx,
  167. const uint16_t *lpc_coefs, unsigned int gval,
  168. int16_t *output_buffer, GetBitContext *gb)
  169. {
  170. uint16_t buffer_a[40];
  171. uint16_t *block;
  172. int cba_idx = get_bits(gb, 7); // index of the adaptive CB, 0 if none
  173. int gain = get_bits(gb, 8);
  174. int cb1_idx = get_bits(gb, 7);
  175. int cb2_idx = get_bits(gb, 7);
  176. int m[3];
  177. if (cba_idx) {
  178. cba_idx += HALFBLOCK - 1;
  179. rotate_block(ractx->adapt_cb, buffer_a, cba_idx);
  180. m[0] = irms(buffer_a, gval) >> 12;
  181. } else {
  182. m[0] = 0;
  183. }
  184. m[1] = ((ftable1[cb1_idx] >> 4) * gval) >> 8;
  185. m[2] = ((ftable2[cb2_idx] >> 4) * gval) >> 8;
  186. memmove(ractx->adapt_cb, ractx->adapt_cb + BLOCKSIZE,
  187. (BUFFERSIZE - BLOCKSIZE) * 2);
  188. block = ractx->adapt_cb + BUFFERSIZE - BLOCKSIZE;
  189. add_wav(gain, cba_idx, m, buffer_a, etable1[cb1_idx], etable2[cb2_idx],
  190. block);
  191. final(lpc_coefs, block, output_buffer, ractx->buffer, BLOCKSIZE);
  192. }
  193. static void int_to_int16(int16_t *decsp, const int *inp)
  194. {
  195. int i;
  196. for (i=0; i<30; i++)
  197. *(decsp++) = *(inp++);
  198. }
  199. /**
  200. * Evaluate the reflection coefficients from the filter coefficients.
  201. * Does the inverse of the eval_coefs() function.
  202. *
  203. * @return 1 if one of the reflection coefficients is of magnitude greater than
  204. * 4095, 0 if not.
  205. */
  206. static int eval_refl(const int16_t *coefs, int *refl, RA144Context *ractx)
  207. {
  208. int retval = 0;
  209. int b, c, i;
  210. unsigned int u;
  211. int buffer1[10];
  212. int buffer2[10];
  213. int *bp1 = buffer1;
  214. int *bp2 = buffer2;
  215. for (i=0; i < 10; i++)
  216. buffer2[i] = coefs[i];
  217. u = refl[9] = bp2[9];
  218. if (u + 0x1000 > 0x1fff) {
  219. av_log(ractx, AV_LOG_ERROR, "Overflow. Broken sample?\n");
  220. return 0;
  221. }
  222. for (c=8; c >= 0; c--) {
  223. if (u == 0x1000)
  224. u++;
  225. if (u == 0xfffff000)
  226. u--;
  227. b = 0x1000-((u * u) >> 12);
  228. if (b == 0)
  229. b++;
  230. for (u=0; u<=c; u++)
  231. bp1[u] = ((bp2[u] - ((refl[c+1] * bp2[c-u]) >> 12)) * (0x1000000 / b)) >> 12;
  232. refl[c] = u = bp1[c];
  233. if ((u + 0x1000) > 0x1fff)
  234. retval = 1;
  235. FFSWAP(int *, bp1, bp2);
  236. }
  237. return retval;
  238. }
  239. static int interp(RA144Context *ractx, int16_t *decsp, int block_num,
  240. int copynew, int energy)
  241. {
  242. int work[10];
  243. int a = block_num + 1;
  244. int b = NBLOCKS - a;
  245. int x;
  246. // Interpolate block coefficients from the this frame forth block and
  247. // last frame forth block
  248. for (x=0; x<30; x++)
  249. decsp[x] = (a * ractx->lpc_coef[x] + b * ractx->lpc_coef_old[x])>> 2;
  250. if (eval_refl(decsp, work, ractx)) {
  251. // The interpolated coefficients are unstable, copy either new or old
  252. // coefficients
  253. if (copynew) {
  254. int_to_int16(decsp, ractx->lpc_coef);
  255. return rms(ractx->lpc_refl, energy, ractx);
  256. } else {
  257. int_to_int16(decsp, ractx->lpc_coef_old);
  258. return rms(ractx->lpc_refl_old, energy, ractx);
  259. }
  260. } else {
  261. return rms(work, energy, ractx);
  262. }
  263. }
  264. /* Uncompress one block (20 bytes -> 160*2 bytes) */
  265. static int ra144_decode_frame(AVCodecContext * avctx,
  266. void *vdata, int *data_size,
  267. const uint8_t * buf, int buf_size)
  268. {
  269. static const uint8_t sizes[10] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
  270. unsigned int refl_rms[4]; // RMS of the reflection coefficients
  271. uint16_t block_coefs[4][30]; // LPC coefficients of each sub-block
  272. int i, c;
  273. int16_t *data = vdata;
  274. unsigned int energy;
  275. RA144Context *ractx = avctx->priv_data;
  276. GetBitContext gb;
  277. if(buf_size < 20) {
  278. av_log(avctx, AV_LOG_ERROR,
  279. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  280. return buf_size;
  281. }
  282. init_get_bits(&gb, buf, 20 * 8);
  283. for (i=0; i<10; i++)
  284. // "<< 1"? Doesn't this make one value out of two of the table useless?
  285. ractx->lpc_refl[i] = decodetable[i][get_bits(&gb, sizes[i]) << 1];
  286. eval_coefs(ractx->lpc_refl, ractx->lpc_coef);
  287. energy = decodeval[get_bits(&gb, 5) << 1]; // Useless table entries?
  288. refl_rms[0] = interp(ractx, block_coefs[0], 0, 0, ractx->old_energy);
  289. refl_rms[1] = interp(ractx, block_coefs[1], 1, energy > ractx->old_energy,
  290. t_sqrt(energy*ractx->old_energy) >> 12);
  291. refl_rms[2] = interp(ractx, block_coefs[2], 2, 1, energy);
  292. refl_rms[3] = rms(ractx->lpc_refl, energy, ractx);
  293. int_to_int16(block_coefs[3], ractx->lpc_coef);
  294. /* do output */
  295. for (c=0; c<4; c++) {
  296. do_output_subblock(ractx, block_coefs[c], refl_rms[c], data, &gb);
  297. for (i=0; i<BLOCKSIZE; i++) {
  298. *data = av_clip_int16(*data << 2);
  299. data++;
  300. }
  301. }
  302. ractx->old_energy = energy;
  303. FFSWAP(unsigned int *, ractx->lpc_refl_old, ractx->lpc_refl);
  304. FFSWAP(unsigned int *, ractx->lpc_coef_old, ractx->lpc_coef);
  305. *data_size = 2*160;
  306. return 20;
  307. }
  308. AVCodec ra_144_decoder =
  309. {
  310. "real_144",
  311. CODEC_TYPE_AUDIO,
  312. CODEC_ID_RA_144,
  313. sizeof(RA144Context),
  314. ra144_decode_init,
  315. NULL,
  316. NULL,
  317. ra144_decode_frame,
  318. .long_name = "RealAudio 1.0 (14.4K)",
  319. };