You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2778 lines
75KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} and @code{-af} options of the ff*
  16. tools, and by the @code{avfilter_graph_parse()} function defined in
  17. @file{libavfilter/avfiltergraph.h}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your FFmpeg build, you can disable any of the
  77. existing filters using --disable-filters.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section aconvert
  82. Convert the input audio format to the specified formats.
  83. The filter accepts a string of the form:
  84. "@var{sample_format}:@var{channel_layout}:@var{packing_format}".
  85. @var{sample_format} specifies the sample format, and can be a string or
  86. the corresponding numeric value defined in @file{libavutil/samplefmt.h}.
  87. @var{channel_layout} specifies the channel layout, and can be a string
  88. or the corresponding number value defined in @file{libavutil/chlayout.h}.
  89. @var{packing_format} specifies the type of packing in output, can be one
  90. of "planar" or "packed", or the corresponding numeric values "0" or "1".
  91. The special parameter "auto", signifies that the filter will
  92. automatically select the output format depending on the output filter.
  93. Some examples follow.
  94. @itemize
  95. @item
  96. Convert input to unsigned 8-bit, stereo, packed:
  97. @example
  98. aconvert=u8:stereo:packed
  99. @end example
  100. @item
  101. Convert input to unsigned 8-bit, automatically select out channel layout
  102. and packing format:
  103. @example
  104. aconvert=u8:auto:auto
  105. @end example
  106. @end itemize
  107. @section aformat
  108. Convert the input audio to one of the specified formats. The framework will
  109. negotiate the most appropriate format to minimize conversions.
  110. The filter accepts three lists of formats, separated by ":", in the form:
  111. "@var{sample_formats}:@var{channel_layouts}:@var{packing_formats}".
  112. Elements in each list are separated by "," which has to be escaped in the
  113. filtergraph specification.
  114. The special parameter "all", in place of a list of elements, signifies all
  115. supported formats.
  116. Some examples follow:
  117. @example
  118. aformat=u8\\,s16:mono:packed
  119. aformat=s16:mono\\,stereo:all
  120. @end example
  121. @section anull
  122. Pass the audio source unchanged to the output.
  123. @section aresample
  124. Resample the input audio to the specified sample rate.
  125. The filter accepts exactly one parameter, the output sample rate. If not
  126. specified then the filter will automatically convert between its input
  127. and output sample rates.
  128. For example, to resample the input audio to 44100Hz:
  129. @example
  130. aresample=44100
  131. @end example
  132. @section ashowinfo
  133. Show a line containing various information for each input audio frame.
  134. The input audio is not modified.
  135. The shown line contains a sequence of key/value pairs of the form
  136. @var{key}:@var{value}.
  137. A description of each shown parameter follows:
  138. @table @option
  139. @item n
  140. sequential number of the input frame, starting from 0
  141. @item pts
  142. presentation TimeStamp of the input frame, expressed as a number of
  143. time base units. The time base unit depends on the filter input pad, and
  144. is usually 1/@var{sample_rate}.
  145. @item pts_time
  146. presentation TimeStamp of the input frame, expressed as a number of
  147. seconds
  148. @item pos
  149. position of the frame in the input stream, -1 if this information in
  150. unavailable and/or meaningless (for example in case of synthetic audio)
  151. @item fmt
  152. sample format name
  153. @item chlayout
  154. channel layout description
  155. @item nb_samples
  156. number of samples (per each channel) contained in the filtered frame
  157. @item rate
  158. sample rate for the audio frame
  159. @item planar
  160. if the packing format is planar, 0 if packed
  161. @item checksum
  162. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  163. @item plane_checksum
  164. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  165. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  166. @var{c6} @var{c7}]"
  167. @end table
  168. @section earwax
  169. Make audio easier to listen to on headphones.
  170. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  171. so that when listened to on headphones the stereo image is moved from
  172. inside your head (standard for headphones) to outside and in front of
  173. the listener (standard for speakers).
  174. Ported from SoX.
  175. @section volume
  176. Adjust the input audio volume.
  177. The filter accepts exactly one parameter @var{vol}, which expresses
  178. how the audio volume will be increased or decreased.
  179. Output values are clipped to the maximum value.
  180. If @var{vol} is expressed as a decimal number, and the output audio
  181. volume is given by the relation:
  182. @example
  183. @var{output_volume} = @var{vol} * @var{input_volume}
  184. @end example
  185. If @var{vol} is expressed as a decimal number followed by the string
  186. "dB", the value represents the requested change in decibels of the
  187. input audio power, and the output audio volume is given by the
  188. relation:
  189. @example
  190. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  191. @end example
  192. Otherwise @var{vol} is considered an expression and its evaluated
  193. value is used for computing the output audio volume according to the
  194. first relation.
  195. Default value for @var{vol} is 1.0.
  196. @subsection Examples
  197. @itemize
  198. @item
  199. Half the input audio volume:
  200. @example
  201. volume=0.5
  202. @end example
  203. The above example is equivalent to:
  204. @example
  205. volume=1/2
  206. @end example
  207. @item
  208. Decrease input audio power by 12 decibels:
  209. @example
  210. volume=-12dB
  211. @end example
  212. @end itemize
  213. @c man end AUDIO FILTERS
  214. @chapter Audio Sources
  215. @c man begin AUDIO SOURCES
  216. Below is a description of the currently available audio sources.
  217. @section abuffer
  218. Buffer audio frames, and make them available to the filter chain.
  219. This source is mainly intended for a programmatic use, in particular
  220. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  221. It accepts the following mandatory parameters:
  222. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}:@var{packing}
  223. @table @option
  224. @item sample_rate
  225. The sample rate of the incoming audio buffers.
  226. @item sample_fmt
  227. The sample format of the incoming audio buffers.
  228. Either a sample format name or its corresponging integer representation from
  229. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  230. @item channel_layout
  231. The channel layout of the incoming audio buffers.
  232. Either a channel layout name from channel_layout_map in
  233. @file{libavutil/audioconvert.c} or its corresponding integer representation
  234. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  235. @item packing
  236. Either "packed" or "planar", or their integer representation: 0 or 1
  237. respectively.
  238. @end table
  239. For example:
  240. @example
  241. abuffer=44100:s16:stereo:planar
  242. @end example
  243. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  244. Since the sample format with name "s16" corresponds to the number
  245. 1 and the "stereo" channel layout corresponds to the value 3, this is
  246. equivalent to:
  247. @example
  248. abuffer=44100:1:3:1
  249. @end example
  250. @section aevalsrc
  251. Generate an audio signal specified by an expression.
  252. This source accepts in input one or more expressions (one for each
  253. channel), which are evaluated and used to generate a corresponding
  254. audio signal.
  255. It accepts the syntax: @var{exprs}[::@var{options}].
  256. @var{exprs} is a list of expressions separated by ":", one for each
  257. separate channel. The output channel layout depends on the number of
  258. provided expressions, up to 8 channels are supported.
  259. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  260. separated by ":".
  261. The description of the accepted options follows.
  262. @table @option
  263. @item nb_samples, n
  264. Set the number of samples per channel per each output frame,
  265. default to 1024.
  266. @item sample_rate, s
  267. Specify the sample rate, default to 44100.
  268. @end table
  269. Each expression in @var{exprs} can contain the following constants:
  270. @table @option
  271. @item n
  272. number of the evaluated sample, starting from 0
  273. @item t
  274. time of the evaluated sample expressed in seconds, starting from 0
  275. @item s
  276. sample rate
  277. @end table
  278. @subsection Examples
  279. @itemize
  280. @item
  281. Generate silence:
  282. @example
  283. aevalsrc=0
  284. @end example
  285. @item
  286. Generate a sin signal with frequence of 440 Hz, set sample rate to
  287. 8000 Hz:
  288. @example
  289. aevalsrc="sin(440*2*PI*t)::s=8000"
  290. @end example
  291. @item
  292. Generate white noise:
  293. @example
  294. aevalsrc="-2+random(0)"
  295. @end example
  296. @item
  297. Generate an amplitude modulated signal:
  298. @example
  299. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  300. @end example
  301. @item
  302. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  303. @example
  304. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  305. @end example
  306. @end itemize
  307. @section amovie
  308. Read an audio stream from a movie container.
  309. It accepts the syntax: @var{movie_name}[:@var{options}] where
  310. @var{movie_name} is the name of the resource to read (not necessarily
  311. a file but also a device or a stream accessed through some protocol),
  312. and @var{options} is an optional sequence of @var{key}=@var{value}
  313. pairs, separated by ":".
  314. The description of the accepted options follows.
  315. @table @option
  316. @item format_name, f
  317. Specify the format assumed for the movie to read, and can be either
  318. the name of a container or an input device. If not specified the
  319. format is guessed from @var{movie_name} or by probing.
  320. @item seek_point, sp
  321. Specify the seek point in seconds, the frames will be output
  322. starting from this seek point, the parameter is evaluated with
  323. @code{av_strtod} so the numerical value may be suffixed by an IS
  324. postfix. Default value is "0".
  325. @item stream_index, si
  326. Specify the index of the audio stream to read. If the value is -1,
  327. the best suited audio stream will be automatically selected. Default
  328. value is "-1".
  329. @end table
  330. @section anullsrc
  331. Null audio source, return unprocessed audio frames. It is mainly useful
  332. as a template and to be employed in analysis / debugging tools, or as
  333. the source for filters which ignore the input data (for example the sox
  334. synth filter).
  335. It accepts an optional sequence of @var{key}=@var{value} pairs,
  336. separated by ":".
  337. The description of the accepted options follows.
  338. @table @option
  339. @item sample_rate, s
  340. Specify the sample rate, and defaults to 44100.
  341. @item channel_layout, cl
  342. Specify the channel layout, and can be either an integer or a string
  343. representing a channel layout. The default value of @var{channel_layout}
  344. is "stereo".
  345. Check the channel_layout_map definition in
  346. @file{libavcodec/audioconvert.c} for the mapping between strings and
  347. channel layout values.
  348. @item nb_samples, n
  349. Set the number of samples per requested frames.
  350. @end table
  351. Follow some examples:
  352. @example
  353. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  354. anullsrc=r=48000:cl=4
  355. # same as
  356. anullsrc=r=48000:cl=mono
  357. @end example
  358. @c man end AUDIO SOURCES
  359. @chapter Audio Sinks
  360. @c man begin AUDIO SINKS
  361. Below is a description of the currently available audio sinks.
  362. @section abuffersink
  363. Buffer audio frames, and make them available to the end of filter chain.
  364. This sink is mainly intended for programmatic use, in particular
  365. through the interface defined in @file{libavfilter/buffersink.h}.
  366. It requires a pointer to an AVABufferSinkContext structure, which
  367. defines the incoming buffers' formats, to be passed as the opaque
  368. parameter to @code{avfilter_init_filter} for initialization.
  369. @section anullsink
  370. Null audio sink, do absolutely nothing with the input audio. It is
  371. mainly useful as a template and to be employed in analysis / debugging
  372. tools.
  373. @c man end AUDIO SINKS
  374. @chapter Video Filters
  375. @c man begin VIDEO FILTERS
  376. When you configure your FFmpeg build, you can disable any of the
  377. existing filters using --disable-filters.
  378. The configure output will show the video filters included in your
  379. build.
  380. Below is a description of the currently available video filters.
  381. @section blackframe
  382. Detect frames that are (almost) completely black. Can be useful to
  383. detect chapter transitions or commercials. Output lines consist of
  384. the frame number of the detected frame, the percentage of blackness,
  385. the position in the file if known or -1 and the timestamp in seconds.
  386. In order to display the output lines, you need to set the loglevel at
  387. least to the AV_LOG_INFO value.
  388. The filter accepts the syntax:
  389. @example
  390. blackframe[=@var{amount}:[@var{threshold}]]
  391. @end example
  392. @var{amount} is the percentage of the pixels that have to be below the
  393. threshold, and defaults to 98.
  394. @var{threshold} is the threshold below which a pixel value is
  395. considered black, and defaults to 32.
  396. @section boxblur
  397. Apply boxblur algorithm to the input video.
  398. This filter accepts the parameters:
  399. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  400. Chroma and alpha parameters are optional, if not specified they default
  401. to the corresponding values set for @var{luma_radius} and
  402. @var{luma_power}.
  403. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  404. the radius in pixels of the box used for blurring the corresponding
  405. input plane. They are expressions, and can contain the following
  406. constants:
  407. @table @option
  408. @item w, h
  409. the input width and heigth in pixels
  410. @item cw, ch
  411. the input chroma image width and height in pixels
  412. @item hsub, vsub
  413. horizontal and vertical chroma subsample values. For example for the
  414. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  415. @end table
  416. The radius must be a non-negative number, and must not be greater than
  417. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  418. and of @code{min(cw,ch)/2} for the chroma planes.
  419. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  420. how many times the boxblur filter is applied to the corresponding
  421. plane.
  422. Some examples follow:
  423. @itemize
  424. @item
  425. Apply a boxblur filter with luma, chroma, and alpha radius
  426. set to 2:
  427. @example
  428. boxblur=2:1
  429. @end example
  430. @item
  431. Set luma radius to 2, alpha and chroma radius to 0
  432. @example
  433. boxblur=2:1:0:0:0:0
  434. @end example
  435. @item
  436. Set luma and chroma radius to a fraction of the video dimension
  437. @example
  438. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  439. @end example
  440. @end itemize
  441. @section copy
  442. Copy the input source unchanged to the output. Mainly useful for
  443. testing purposes.
  444. @section crop
  445. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  446. The parameters are expressions containing the following constants:
  447. @table @option
  448. @item x, y
  449. the computed values for @var{x} and @var{y}. They are evaluated for
  450. each new frame.
  451. @item in_w, in_h
  452. the input width and height
  453. @item iw, ih
  454. same as @var{in_w} and @var{in_h}
  455. @item out_w, out_h
  456. the output (cropped) width and height
  457. @item ow, oh
  458. same as @var{out_w} and @var{out_h}
  459. @item a
  460. same as @var{iw} / @var{ih}
  461. @item sar
  462. input sample aspect ratio
  463. @item dar
  464. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  465. @item hsub, vsub
  466. horizontal and vertical chroma subsample values. For example for the
  467. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  468. @item n
  469. the number of input frame, starting from 0
  470. @item pos
  471. the position in the file of the input frame, NAN if unknown
  472. @item t
  473. timestamp expressed in seconds, NAN if the input timestamp is unknown
  474. @end table
  475. The @var{out_w} and @var{out_h} parameters specify the expressions for
  476. the width and height of the output (cropped) video. They are
  477. evaluated just at the configuration of the filter.
  478. The default value of @var{out_w} is "in_w", and the default value of
  479. @var{out_h} is "in_h".
  480. The expression for @var{out_w} may depend on the value of @var{out_h},
  481. and the expression for @var{out_h} may depend on @var{out_w}, but they
  482. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  483. evaluated after @var{out_w} and @var{out_h}.
  484. The @var{x} and @var{y} parameters specify the expressions for the
  485. position of the top-left corner of the output (non-cropped) area. They
  486. are evaluated for each frame. If the evaluated value is not valid, it
  487. is approximated to the nearest valid value.
  488. The default value of @var{x} is "(in_w-out_w)/2", and the default
  489. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  490. the center of the input image.
  491. The expression for @var{x} may depend on @var{y}, and the expression
  492. for @var{y} may depend on @var{x}.
  493. Follow some examples:
  494. @example
  495. # crop the central input area with size 100x100
  496. crop=100:100
  497. # crop the central input area with size 2/3 of the input video
  498. "crop=2/3*in_w:2/3*in_h"
  499. # crop the input video central square
  500. crop=in_h
  501. # delimit the rectangle with the top-left corner placed at position
  502. # 100:100 and the right-bottom corner corresponding to the right-bottom
  503. # corner of the input image.
  504. crop=in_w-100:in_h-100:100:100
  505. # crop 10 pixels from the left and right borders, and 20 pixels from
  506. # the top and bottom borders
  507. "crop=in_w-2*10:in_h-2*20"
  508. # keep only the bottom right quarter of the input image
  509. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  510. # crop height for getting Greek harmony
  511. "crop=in_w:1/PHI*in_w"
  512. # trembling effect
  513. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  514. # erratic camera effect depending on timestamp
  515. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  516. # set x depending on the value of y
  517. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  518. @end example
  519. @section cropdetect
  520. Auto-detect crop size.
  521. Calculate necessary cropping parameters and prints the recommended
  522. parameters through the logging system. The detected dimensions
  523. correspond to the non-black area of the input video.
  524. It accepts the syntax:
  525. @example
  526. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  527. @end example
  528. @table @option
  529. @item limit
  530. Threshold, which can be optionally specified from nothing (0) to
  531. everything (255), defaults to 24.
  532. @item round
  533. Value which the width/height should be divisible by, defaults to
  534. 16. The offset is automatically adjusted to center the video. Use 2 to
  535. get only even dimensions (needed for 4:2:2 video). 16 is best when
  536. encoding to most video codecs.
  537. @item reset
  538. Counter that determines after how many frames cropdetect will reset
  539. the previously detected largest video area and start over to detect
  540. the current optimal crop area. Defaults to 0.
  541. This can be useful when channel logos distort the video area. 0
  542. indicates never reset and return the largest area encountered during
  543. playback.
  544. @end table
  545. @section delogo
  546. Suppress a TV station logo by a simple interpolation of the surrounding
  547. pixels. Just set a rectangle covering the logo and watch it disappear
  548. (and sometimes something even uglier appear - your mileage may vary).
  549. The filter accepts parameters as a string of the form
  550. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  551. @var{key}=@var{value} pairs, separated by ":".
  552. The description of the accepted parameters follows.
  553. @table @option
  554. @item x, y
  555. Specify the top left corner coordinates of the logo. They must be
  556. specified.
  557. @item w, h
  558. Specify the width and height of the logo to clear. They must be
  559. specified.
  560. @item band, t
  561. Specify the thickness of the fuzzy edge of the rectangle (added to
  562. @var{w} and @var{h}). The default value is 4.
  563. @item show
  564. When set to 1, a green rectangle is drawn on the screen to simplify
  565. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  566. @var{band} is set to 4. The default value is 0.
  567. @end table
  568. Some examples follow.
  569. @itemize
  570. @item
  571. Set a rectangle covering the area with top left corner coordinates 0,0
  572. and size 100x77, setting a band of size 10:
  573. @example
  574. delogo=0:0:100:77:10
  575. @end example
  576. @item
  577. As the previous example, but use named options:
  578. @example
  579. delogo=x=0:y=0:w=100:h=77:band=10
  580. @end example
  581. @end itemize
  582. @section deshake
  583. Attempt to fix small changes in horizontal and/or vertical shift. This
  584. filter helps remove camera shake from hand-holding a camera, bumping a
  585. tripod, moving on a vehicle, etc.
  586. The filter accepts parameters as a string of the form
  587. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  588. A description of the accepted parameters follows.
  589. @table @option
  590. @item x, y, w, h
  591. Specify a rectangular area where to limit the search for motion
  592. vectors.
  593. If desired the search for motion vectors can be limited to a
  594. rectangular area of the frame defined by its top left corner, width
  595. and height. These parameters have the same meaning as the drawbox
  596. filter which can be used to visualise the position of the bounding
  597. box.
  598. This is useful when simultaneous movement of subjects within the frame
  599. might be confused for camera motion by the motion vector search.
  600. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  601. then the full frame is used. This allows later options to be set
  602. without specifying the bounding box for the motion vector search.
  603. Default - search the whole frame.
  604. @item rx, ry
  605. Specify the maximum extent of movement in x and y directions in the
  606. range 0-64 pixels. Default 16.
  607. @item edge
  608. Specify how to generate pixels to fill blanks at the edge of the
  609. frame. An integer from 0 to 3 as follows:
  610. @table @option
  611. @item 0
  612. Fill zeroes at blank locations
  613. @item 1
  614. Original image at blank locations
  615. @item 2
  616. Extruded edge value at blank locations
  617. @item 3
  618. Mirrored edge at blank locations
  619. @end table
  620. The default setting is mirror edge at blank locations.
  621. @item blocksize
  622. Specify the blocksize to use for motion search. Range 4-128 pixels,
  623. default 8.
  624. @item contrast
  625. Specify the contrast threshold for blocks. Only blocks with more than
  626. the specified contrast (difference between darkest and lightest
  627. pixels) will be considered. Range 1-255, default 125.
  628. @item search
  629. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  630. search. Default - exhaustive search.
  631. @item filename
  632. If set then a detailed log of the motion search is written to the
  633. specified file.
  634. @end table
  635. @section drawbox
  636. Draw a colored box on the input image.
  637. It accepts the syntax:
  638. @example
  639. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  640. @end example
  641. @table @option
  642. @item x, y
  643. Specify the top left corner coordinates of the box. Default to 0.
  644. @item width, height
  645. Specify the width and height of the box, if 0 they are interpreted as
  646. the input width and height. Default to 0.
  647. @item color
  648. Specify the color of the box to write, it can be the name of a color
  649. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  650. @end table
  651. Follow some examples:
  652. @example
  653. # draw a black box around the edge of the input image
  654. drawbox
  655. # draw a box with color red and an opacity of 50%
  656. drawbox=10:20:200:60:red@@0.5"
  657. @end example
  658. @section drawtext
  659. Draw text string or text from specified file on top of video using the
  660. libfreetype library.
  661. To enable compilation of this filter you need to configure FFmpeg with
  662. @code{--enable-libfreetype}.
  663. The filter also recognizes strftime() sequences in the provided text
  664. and expands them accordingly. Check the documentation of strftime().
  665. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  666. separated by ":".
  667. The description of the accepted parameters follows.
  668. @table @option
  669. @item fontfile
  670. The font file to be used for drawing text. Path must be included.
  671. This parameter is mandatory.
  672. @item text
  673. The text string to be drawn. The text must be a sequence of UTF-8
  674. encoded characters.
  675. This parameter is mandatory if no file is specified with the parameter
  676. @var{textfile}.
  677. @item textfile
  678. A text file containing text to be drawn. The text must be a sequence
  679. of UTF-8 encoded characters.
  680. This parameter is mandatory if no text string is specified with the
  681. parameter @var{text}.
  682. If both text and textfile are specified, an error is thrown.
  683. @item x, y
  684. The expressions which specify the offsets where text will be drawn
  685. within the video frame. They are relative to the top/left border of the
  686. output image.
  687. The default value of @var{x} and @var{y} is "0".
  688. See below for the list of accepted constants.
  689. @item fontsize
  690. The font size to be used for drawing text.
  691. The default value of @var{fontsize} is 16.
  692. @item fontcolor
  693. The color to be used for drawing fonts.
  694. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  695. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  696. The default value of @var{fontcolor} is "black".
  697. @item boxcolor
  698. The color to be used for drawing box around text.
  699. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  700. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  701. The default value of @var{boxcolor} is "white".
  702. @item box
  703. Used to draw a box around text using background color.
  704. Value should be either 1 (enable) or 0 (disable).
  705. The default value of @var{box} is 0.
  706. @item shadowx, shadowy
  707. The x and y offsets for the text shadow position with respect to the
  708. position of the text. They can be either positive or negative
  709. values. Default value for both is "0".
  710. @item shadowcolor
  711. The color to be used for drawing a shadow behind the drawn text. It
  712. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  713. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  714. The default value of @var{shadowcolor} is "black".
  715. @item ft_load_flags
  716. Flags to be used for loading the fonts.
  717. The flags map the corresponding flags supported by libfreetype, and are
  718. a combination of the following values:
  719. @table @var
  720. @item default
  721. @item no_scale
  722. @item no_hinting
  723. @item render
  724. @item no_bitmap
  725. @item vertical_layout
  726. @item force_autohint
  727. @item crop_bitmap
  728. @item pedantic
  729. @item ignore_global_advance_width
  730. @item no_recurse
  731. @item ignore_transform
  732. @item monochrome
  733. @item linear_design
  734. @item no_autohint
  735. @item end table
  736. @end table
  737. Default value is "render".
  738. For more information consult the documentation for the FT_LOAD_*
  739. libfreetype flags.
  740. @item tabsize
  741. The size in number of spaces to use for rendering the tab.
  742. Default value is 4.
  743. @end table
  744. The parameters for @var{x} and @var{y} are expressions containing the
  745. following constants:
  746. @table @option
  747. @item w, h
  748. the input width and heigth
  749. @item tw, text_w
  750. the width of the rendered text
  751. @item th, text_h
  752. the height of the rendered text
  753. @item lh, line_h
  754. the height of each text line
  755. @item sar
  756. input sample aspect ratio
  757. @item dar
  758. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  759. @item hsub, vsub
  760. horizontal and vertical chroma subsample values. For example for the
  761. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  762. @item max_glyph_w
  763. maximum glyph width, that is the maximum width for all the glyphs
  764. contained in the rendered text
  765. @item max_glyph_h
  766. maximum glyph height, that is the maximum height for all the glyphs
  767. contained in the rendered text, it is equivalent to @var{ascent} -
  768. @var{descent}.
  769. @item max_glyph_a, ascent
  770. the maximum distance from the baseline to the highest/upper grid
  771. coordinate used to place a glyph outline point, for all the rendered
  772. glyphs.
  773. It is a positive value, due to the grid's orientation with the Y axis
  774. upwards.
  775. @item max_glyph_d, descent
  776. the maximum distance from the baseline to the lowest grid coordinate
  777. used to place a glyph outline point, for all the rendered glyphs.
  778. This is a negative value, due to the grid's orientation, with the Y axis
  779. upwards.
  780. @item n
  781. the number of input frame, starting from 0
  782. @item t
  783. timestamp expressed in seconds, NAN if the input timestamp is unknown
  784. @end table
  785. Some examples follow.
  786. @itemize
  787. @item
  788. Draw "Test Text" with font FreeSerif, using the default values for the
  789. optional parameters.
  790. @example
  791. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  792. @end example
  793. @item
  794. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  795. and y=50 (counting from the top-left corner of the screen), text is
  796. yellow with a red box around it. Both the text and the box have an
  797. opacity of 20%.
  798. @example
  799. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  800. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  801. @end example
  802. Note that the double quotes are not necessary if spaces are not used
  803. within the parameter list.
  804. @item
  805. Show the text at the center of the video frame:
  806. @example
  807. drawtext=fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  808. @end example
  809. @item
  810. Show a text line sliding from right to left in the last row of the video
  811. frame. The file @file{LONG_LINE} is assumed to contain a single line
  812. with no newlines.
  813. @example
  814. drawtext=fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t
  815. @end example
  816. @item
  817. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  818. @example
  819. drawtext=fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  820. @end example
  821. @item
  822. Draw a single green letter "g", at the center of the input video.
  823. The glyph baseline is placed at half screen height.
  824. @example
  825. drawtext=fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent
  826. @end example
  827. @end itemize
  828. For more information about libfreetype, check:
  829. @url{http://www.freetype.org/}.
  830. @section fade
  831. Apply fade-in/out effect to input video.
  832. It accepts the parameters:
  833. @var{type}:@var{start_frame}:@var{nb_frames}
  834. @var{type} specifies if the effect type, can be either "in" for
  835. fade-in, or "out" for a fade-out effect.
  836. @var{start_frame} specifies the number of the start frame for starting
  837. to apply the fade effect.
  838. @var{nb_frames} specifies the number of frames for which the fade
  839. effect has to last. At the end of the fade-in effect the output video
  840. will have the same intensity as the input video, at the end of the
  841. fade-out transition the output video will be completely black.
  842. A few usage examples follow, usable too as test scenarios.
  843. @example
  844. # fade in first 30 frames of video
  845. fade=in:0:30
  846. # fade out last 45 frames of a 200-frame video
  847. fade=out:155:45
  848. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  849. fade=in:0:25, fade=out:975:25
  850. # make first 5 frames black, then fade in from frame 5-24
  851. fade=in:5:20
  852. @end example
  853. @section fieldorder
  854. Transform the field order of the input video.
  855. It accepts one parameter which specifies the required field order that
  856. the input interlaced video will be transformed to. The parameter can
  857. assume one of the following values:
  858. @table @option
  859. @item 0 or bff
  860. output bottom field first
  861. @item 1 or tff
  862. output top field first
  863. @end table
  864. Default value is "tff".
  865. Transformation is achieved by shifting the picture content up or down
  866. by one line, and filling the remaining line with appropriate picture content.
  867. This method is consistent with most broadcast field order converters.
  868. If the input video is not flagged as being interlaced, or it is already
  869. flagged as being of the required output field order then this filter does
  870. not alter the incoming video.
  871. This filter is very useful when converting to or from PAL DV material,
  872. which is bottom field first.
  873. For example:
  874. @example
  875. ./ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  876. @end example
  877. @section fifo
  878. Buffer input images and send them when they are requested.
  879. This filter is mainly useful when auto-inserted by the libavfilter
  880. framework.
  881. The filter does not take parameters.
  882. @section format
  883. Convert the input video to one of the specified pixel formats.
  884. Libavfilter will try to pick one that is supported for the input to
  885. the next filter.
  886. The filter accepts a list of pixel format names, separated by ":",
  887. for example "yuv420p:monow:rgb24".
  888. Some examples follow:
  889. @example
  890. # convert the input video to the format "yuv420p"
  891. format=yuv420p
  892. # convert the input video to any of the formats in the list
  893. format=yuv420p:yuv444p:yuv410p
  894. @end example
  895. @anchor{frei0r}
  896. @section frei0r
  897. Apply a frei0r effect to the input video.
  898. To enable compilation of this filter you need to install the frei0r
  899. header and configure FFmpeg with --enable-frei0r.
  900. The filter supports the syntax:
  901. @example
  902. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  903. @end example
  904. @var{filter_name} is the name to the frei0r effect to load. If the
  905. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  906. is searched in each one of the directories specified by the colon
  907. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  908. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  909. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  910. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  911. for the frei0r effect.
  912. A frei0r effect parameter can be a boolean (whose values are specified
  913. with "y" and "n"), a double, a color (specified by the syntax
  914. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  915. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  916. description), a position (specified by the syntax @var{X}/@var{Y},
  917. @var{X} and @var{Y} being float numbers) and a string.
  918. The number and kind of parameters depend on the loaded effect. If an
  919. effect parameter is not specified the default value is set.
  920. Some examples follow:
  921. @example
  922. # apply the distort0r effect, set the first two double parameters
  923. frei0r=distort0r:0.5:0.01
  924. # apply the colordistance effect, takes a color as first parameter
  925. frei0r=colordistance:0.2/0.3/0.4
  926. frei0r=colordistance:violet
  927. frei0r=colordistance:0x112233
  928. # apply the perspective effect, specify the top left and top right
  929. # image positions
  930. frei0r=perspective:0.2/0.2:0.8/0.2
  931. @end example
  932. For more information see:
  933. @url{http://piksel.org/frei0r}
  934. @section gradfun
  935. Fix the banding artifacts that are sometimes introduced into nearly flat
  936. regions by truncation to 8bit colordepth.
  937. Interpolate the gradients that should go where the bands are, and
  938. dither them.
  939. This filter is designed for playback only. Do not use it prior to
  940. lossy compression, because compression tends to lose the dither and
  941. bring back the bands.
  942. The filter takes two optional parameters, separated by ':':
  943. @var{strength}:@var{radius}
  944. @var{strength} is the maximum amount by which the filter will change
  945. any one pixel. Also the threshold for detecting nearly flat
  946. regions. Acceptable values range from .51 to 255, default value is
  947. 1.2, out-of-range values will be clipped to the valid range.
  948. @var{radius} is the neighborhood to fit the gradient to. A larger
  949. radius makes for smoother gradients, but also prevents the filter from
  950. modifying the pixels near detailed regions. Acceptable values are
  951. 8-32, default value is 16, out-of-range values will be clipped to the
  952. valid range.
  953. @example
  954. # default parameters
  955. gradfun=1.2:16
  956. # omitting radius
  957. gradfun=1.2
  958. @end example
  959. @section hflip
  960. Flip the input video horizontally.
  961. For example to horizontally flip the video in input with
  962. @file{ffmpeg}:
  963. @example
  964. ffmpeg -i in.avi -vf "hflip" out.avi
  965. @end example
  966. @section hqdn3d
  967. High precision/quality 3d denoise filter. This filter aims to reduce
  968. image noise producing smooth images and making still images really
  969. still. It should enhance compressibility.
  970. It accepts the following optional parameters:
  971. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  972. @table @option
  973. @item luma_spatial
  974. a non-negative float number which specifies spatial luma strength,
  975. defaults to 4.0
  976. @item chroma_spatial
  977. a non-negative float number which specifies spatial chroma strength,
  978. defaults to 3.0*@var{luma_spatial}/4.0
  979. @item luma_tmp
  980. a float number which specifies luma temporal strength, defaults to
  981. 6.0*@var{luma_spatial}/4.0
  982. @item chroma_tmp
  983. a float number which specifies chroma temporal strength, defaults to
  984. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  985. @end table
  986. @section lut, lutrgb, lutyuv
  987. Compute a look-up table for binding each pixel component input value
  988. to an output value, and apply it to input video.
  989. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  990. to an RGB input video.
  991. These filters accept in input a ":"-separated list of options, which
  992. specify the expressions used for computing the lookup table for the
  993. corresponding pixel component values.
  994. The @var{lut} filter requires either YUV or RGB pixel formats in
  995. input, and accepts the options:
  996. @table @option
  997. @item c0
  998. first pixel component
  999. @item c1
  1000. second pixel component
  1001. @item c2
  1002. third pixel component
  1003. @item c3
  1004. fourth pixel component, corresponds to the alpha component
  1005. @end table
  1006. The exact component associated to each option depends on the format in
  1007. input.
  1008. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1009. accepts the options:
  1010. @table @option
  1011. @item r
  1012. red component
  1013. @item g
  1014. green component
  1015. @item b
  1016. blue component
  1017. @item a
  1018. alpha component
  1019. @end table
  1020. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1021. accepts the options:
  1022. @table @option
  1023. @item y
  1024. Y/luminance component
  1025. @item u
  1026. U/Cb component
  1027. @item v
  1028. V/Cr component
  1029. @item a
  1030. alpha component
  1031. @end table
  1032. The expressions can contain the following constants and functions:
  1033. @table @option
  1034. @item w, h
  1035. the input width and heigth
  1036. @item val
  1037. input value for the pixel component
  1038. @item clipval
  1039. the input value clipped in the @var{minval}-@var{maxval} range
  1040. @item maxval
  1041. maximum value for the pixel component
  1042. @item minval
  1043. minimum value for the pixel component
  1044. @item negval
  1045. the negated value for the pixel component value clipped in the
  1046. @var{minval}-@var{maxval} range , it corresponds to the expression
  1047. "maxval-clipval+minval"
  1048. @item clip(val)
  1049. the computed value in @var{val} clipped in the
  1050. @var{minval}-@var{maxval} range
  1051. @item gammaval(gamma)
  1052. the computed gamma correction value of the pixel component value
  1053. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1054. expression
  1055. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1056. @end table
  1057. All expressions default to "val".
  1058. Some examples follow:
  1059. @example
  1060. # negate input video
  1061. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1062. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1063. # the above is the same as
  1064. lutrgb="r=negval:g=negval:b=negval"
  1065. lutyuv="y=negval:u=negval:v=negval"
  1066. # negate luminance
  1067. lutyuv=y=negval
  1068. # remove chroma components, turns the video into a graytone image
  1069. lutyuv="u=128:v=128"
  1070. # apply a luma burning effect
  1071. lutyuv="y=2*val"
  1072. # remove green and blue components
  1073. lutrgb="g=0:b=0"
  1074. # set a constant alpha channel value on input
  1075. format=rgba,lutrgb=a="maxval-minval/2"
  1076. # correct luminance gamma by a 0.5 factor
  1077. lutyuv=y=gammaval(0.5)
  1078. @end example
  1079. @section mp
  1080. Apply an MPlayer filter to the input video.
  1081. This filter provides a wrapper around most of the filters of
  1082. MPlayer/MEncoder.
  1083. This wrapper is considered experimental. Some of the wrapped filters
  1084. may not work properly and we may drop support for them, as they will
  1085. be implemented natively into FFmpeg. Thus you should avoid
  1086. depending on them when writing portable scripts.
  1087. The filters accepts the parameters:
  1088. @var{filter_name}[:=]@var{filter_params}
  1089. @var{filter_name} is the name of a supported MPlayer filter,
  1090. @var{filter_params} is a string containing the parameters accepted by
  1091. the named filter.
  1092. The list of the currently supported filters follows:
  1093. @table @var
  1094. @item 2xsai
  1095. @item decimate
  1096. @item denoise3d
  1097. @item detc
  1098. @item dint
  1099. @item divtc
  1100. @item down3dright
  1101. @item dsize
  1102. @item eq2
  1103. @item eq
  1104. @item field
  1105. @item fil
  1106. @item fixpts
  1107. @item framestep
  1108. @item fspp
  1109. @item geq
  1110. @item harddup
  1111. @item hqdn3d
  1112. @item hue
  1113. @item il
  1114. @item ilpack
  1115. @item ivtc
  1116. @item kerndeint
  1117. @item mcdeint
  1118. @item mirror
  1119. @item noise
  1120. @item ow
  1121. @item palette
  1122. @item perspective
  1123. @item phase
  1124. @item pp7
  1125. @item pullup
  1126. @item qp
  1127. @item rectangle
  1128. @item remove-logo
  1129. @item rotate
  1130. @item sab
  1131. @item screenshot
  1132. @item smartblur
  1133. @item softpulldown
  1134. @item softskip
  1135. @item spp
  1136. @item swapuv
  1137. @item telecine
  1138. @item tile
  1139. @item tinterlace
  1140. @item unsharp
  1141. @item uspp
  1142. @item yuvcsp
  1143. @item yvu9
  1144. @end table
  1145. The parameter syntax and behavior for the listed filters are the same
  1146. of the corresponding MPlayer filters. For detailed instructions check
  1147. the "VIDEO FILTERS" section in the MPlayer manual.
  1148. Some examples follow:
  1149. @example
  1150. # remove a logo by interpolating the surrounding pixels
  1151. mp=delogo=200:200:80:20:1
  1152. # adjust gamma, brightness, contrast
  1153. mp=eq2=1.0:2:0.5
  1154. # tweak hue and saturation
  1155. mp=hue=100:-10
  1156. @end example
  1157. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1158. @section negate
  1159. Negate input video.
  1160. This filter accepts an integer in input, if non-zero it negates the
  1161. alpha component (if available). The default value in input is 0.
  1162. @section noformat
  1163. Force libavfilter not to use any of the specified pixel formats for the
  1164. input to the next filter.
  1165. The filter accepts a list of pixel format names, separated by ":",
  1166. for example "yuv420p:monow:rgb24".
  1167. Some examples follow:
  1168. @example
  1169. # force libavfilter to use a format different from "yuv420p" for the
  1170. # input to the vflip filter
  1171. noformat=yuv420p,vflip
  1172. # convert the input video to any of the formats not contained in the list
  1173. noformat=yuv420p:yuv444p:yuv410p
  1174. @end example
  1175. @section null
  1176. Pass the video source unchanged to the output.
  1177. @section ocv
  1178. Apply video transform using libopencv.
  1179. To enable this filter install libopencv library and headers and
  1180. configure FFmpeg with --enable-libopencv.
  1181. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1182. @var{filter_name} is the name of the libopencv filter to apply.
  1183. @var{filter_params} specifies the parameters to pass to the libopencv
  1184. filter. If not specified the default values are assumed.
  1185. Refer to the official libopencv documentation for more precise
  1186. informations:
  1187. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1188. Follows the list of supported libopencv filters.
  1189. @anchor{dilate}
  1190. @subsection dilate
  1191. Dilate an image by using a specific structuring element.
  1192. This filter corresponds to the libopencv function @code{cvDilate}.
  1193. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1194. @var{struct_el} represents a structuring element, and has the syntax:
  1195. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1196. @var{cols} and @var{rows} represent the number of colums and rows of
  1197. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1198. point, and @var{shape} the shape for the structuring element, and
  1199. can be one of the values "rect", "cross", "ellipse", "custom".
  1200. If the value for @var{shape} is "custom", it must be followed by a
  1201. string of the form "=@var{filename}". The file with name
  1202. @var{filename} is assumed to represent a binary image, with each
  1203. printable character corresponding to a bright pixel. When a custom
  1204. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1205. or columns and rows of the read file are assumed instead.
  1206. The default value for @var{struct_el} is "3x3+0x0/rect".
  1207. @var{nb_iterations} specifies the number of times the transform is
  1208. applied to the image, and defaults to 1.
  1209. Follow some example:
  1210. @example
  1211. # use the default values
  1212. ocv=dilate
  1213. # dilate using a structuring element with a 5x5 cross, iterate two times
  1214. ocv=dilate=5x5+2x2/cross:2
  1215. # read the shape from the file diamond.shape, iterate two times
  1216. # the file diamond.shape may contain a pattern of characters like this:
  1217. # *
  1218. # ***
  1219. # *****
  1220. # ***
  1221. # *
  1222. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1223. ocv=0x0+2x2/custom=diamond.shape:2
  1224. @end example
  1225. @subsection erode
  1226. Erode an image by using a specific structuring element.
  1227. This filter corresponds to the libopencv function @code{cvErode}.
  1228. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1229. with the same syntax and semantics as the @ref{dilate} filter.
  1230. @subsection smooth
  1231. Smooth the input video.
  1232. The filter takes the following parameters:
  1233. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1234. @var{type} is the type of smooth filter to apply, and can be one of
  1235. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1236. "bilateral". The default value is "gaussian".
  1237. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1238. parameters whose meanings depend on smooth type. @var{param1} and
  1239. @var{param2} accept integer positive values or 0, @var{param3} and
  1240. @var{param4} accept float values.
  1241. The default value for @var{param1} is 3, the default value for the
  1242. other parameters is 0.
  1243. These parameters correspond to the parameters assigned to the
  1244. libopencv function @code{cvSmooth}.
  1245. @section overlay
  1246. Overlay one video on top of another.
  1247. It takes two inputs and one output, the first input is the "main"
  1248. video on which the second input is overlayed.
  1249. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  1250. @var{x} is the x coordinate of the overlayed video on the main video,
  1251. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  1252. the following parameters:
  1253. @table @option
  1254. @item main_w, main_h
  1255. main input width and height
  1256. @item W, H
  1257. same as @var{main_w} and @var{main_h}
  1258. @item overlay_w, overlay_h
  1259. overlay input width and height
  1260. @item w, h
  1261. same as @var{overlay_w} and @var{overlay_h}
  1262. @end table
  1263. @var{options} is an optional list of @var{key}=@var{value} pairs,
  1264. separated by ":".
  1265. The description of the accepted options follows.
  1266. @table @option
  1267. @item rgb
  1268. If set to 1, force the filter to accept inputs in the RGB
  1269. colorspace. Default value is 0.
  1270. @end table
  1271. Be aware that frames are taken from each input video in timestamp
  1272. order, hence, if their initial timestamps differ, it is a a good idea
  1273. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1274. have them begin in the same zero timestamp, as it does the example for
  1275. the @var{movie} filter.
  1276. Follow some examples:
  1277. @example
  1278. # draw the overlay at 10 pixels from the bottom right
  1279. # corner of the main video.
  1280. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1281. # insert a transparent PNG logo in the bottom left corner of the input
  1282. movie=logo.png [logo];
  1283. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  1284. # insert 2 different transparent PNG logos (second logo on bottom
  1285. # right corner):
  1286. movie=logo1.png [logo1];
  1287. movie=logo2.png [logo2];
  1288. [in][logo1] overlay=10:H-h-10 [in+logo1];
  1289. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  1290. # add a transparent color layer on top of the main video,
  1291. # WxH specifies the size of the main input to the overlay filter
  1292. color=red@.3:WxH [over]; [in][over] overlay [out]
  1293. @end example
  1294. You can chain together more overlays but the efficiency of such
  1295. approach is yet to be tested.
  1296. @section pad
  1297. Add paddings to the input image, and places the original input at the
  1298. given coordinates @var{x}, @var{y}.
  1299. It accepts the following parameters:
  1300. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1301. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1302. expressions containing the following constants:
  1303. @table @option
  1304. @item in_w, in_h
  1305. the input video width and height
  1306. @item iw, ih
  1307. same as @var{in_w} and @var{in_h}
  1308. @item out_w, out_h
  1309. the output width and height, that is the size of the padded area as
  1310. specified by the @var{width} and @var{height} expressions
  1311. @item ow, oh
  1312. same as @var{out_w} and @var{out_h}
  1313. @item x, y
  1314. x and y offsets as specified by the @var{x} and @var{y}
  1315. expressions, or NAN if not yet specified
  1316. @item a
  1317. same as @var{iw} / @var{ih}
  1318. @item sar
  1319. input sample aspect ratio
  1320. @item dar
  1321. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1322. @item hsub, vsub
  1323. horizontal and vertical chroma subsample values. For example for the
  1324. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1325. @end table
  1326. Follows the description of the accepted parameters.
  1327. @table @option
  1328. @item width, height
  1329. Specify the size of the output image with the paddings added. If the
  1330. value for @var{width} or @var{height} is 0, the corresponding input size
  1331. is used for the output.
  1332. The @var{width} expression can reference the value set by the
  1333. @var{height} expression, and viceversa.
  1334. The default value of @var{width} and @var{height} is 0.
  1335. @item x, y
  1336. Specify the offsets where to place the input image in the padded area
  1337. with respect to the top/left border of the output image.
  1338. The @var{x} expression can reference the value set by the @var{y}
  1339. expression, and viceversa.
  1340. The default value of @var{x} and @var{y} is 0.
  1341. @item color
  1342. Specify the color of the padded area, it can be the name of a color
  1343. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1344. The default value of @var{color} is "black".
  1345. @end table
  1346. Some examples follow:
  1347. @example
  1348. # Add paddings with color "violet" to the input video. Output video
  1349. # size is 640x480, the top-left corner of the input video is placed at
  1350. # column 0, row 40.
  1351. pad=640:480:0:40:violet
  1352. # pad the input to get an output with dimensions increased bt 3/2,
  1353. # and put the input video at the center of the padded area
  1354. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1355. # pad the input to get a squared output with size equal to the maximum
  1356. # value between the input width and height, and put the input video at
  1357. # the center of the padded area
  1358. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1359. # pad the input to get a final w/h ratio of 16:9
  1360. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1361. # for anamorphic video, in order to set the output display aspect ratio,
  1362. # it is necessary to use sar in the expression, according to the relation:
  1363. # (ih * X / ih) * sar = output_dar
  1364. # X = output_dar / sar
  1365. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  1366. # double output size and put the input video in the bottom-right
  1367. # corner of the output padded area
  1368. pad="2*iw:2*ih:ow-iw:oh-ih"
  1369. @end example
  1370. @section pixdesctest
  1371. Pixel format descriptor test filter, mainly useful for internal
  1372. testing. The output video should be equal to the input video.
  1373. For example:
  1374. @example
  1375. format=monow, pixdesctest
  1376. @end example
  1377. can be used to test the monowhite pixel format descriptor definition.
  1378. @section scale
  1379. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  1380. The parameters @var{width} and @var{height} are expressions containing
  1381. the following constants:
  1382. @table @option
  1383. @item in_w, in_h
  1384. the input width and height
  1385. @item iw, ih
  1386. same as @var{in_w} and @var{in_h}
  1387. @item out_w, out_h
  1388. the output (cropped) width and height
  1389. @item ow, oh
  1390. same as @var{out_w} and @var{out_h}
  1391. @item a
  1392. same as @var{iw} / @var{ih}
  1393. @item sar
  1394. input sample aspect ratio
  1395. @item dar
  1396. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1397. @item sar
  1398. input sample aspect ratio
  1399. @item hsub, vsub
  1400. horizontal and vertical chroma subsample values. For example for the
  1401. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1402. @end table
  1403. If the input image format is different from the format requested by
  1404. the next filter, the scale filter will convert the input to the
  1405. requested format.
  1406. If the value for @var{width} or @var{height} is 0, the respective input
  1407. size is used for the output.
  1408. If the value for @var{width} or @var{height} is -1, the scale filter will
  1409. use, for the respective output size, a value that maintains the aspect
  1410. ratio of the input image.
  1411. The default value of @var{width} and @var{height} is 0.
  1412. Valid values for the optional parameter @var{interl} are:
  1413. @table @option
  1414. @item 1
  1415. force interlaced aware scaling
  1416. @item -1
  1417. select interlaced aware scaling depending on whether the source frames
  1418. are flagged as interlaced or not
  1419. @end table
  1420. Some examples follow:
  1421. @example
  1422. # scale the input video to a size of 200x100.
  1423. scale=200:100
  1424. # scale the input to 2x
  1425. scale=2*iw:2*ih
  1426. # the above is the same as
  1427. scale=2*in_w:2*in_h
  1428. # scale the input to half size
  1429. scale=iw/2:ih/2
  1430. # increase the width, and set the height to the same size
  1431. scale=3/2*iw:ow
  1432. # seek for Greek harmony
  1433. scale=iw:1/PHI*iw
  1434. scale=ih*PHI:ih
  1435. # increase the height, and set the width to 3/2 of the height
  1436. scale=3/2*oh:3/5*ih
  1437. # increase the size, but make the size a multiple of the chroma
  1438. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1439. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1440. scale='min(500\, iw*3/2):-1'
  1441. @end example
  1442. @section select
  1443. Select frames to pass in output.
  1444. It accepts in input an expression, which is evaluated for each input
  1445. frame. If the expression is evaluated to a non-zero value, the frame
  1446. is selected and passed to the output, otherwise it is discarded.
  1447. The expression can contain the following constants:
  1448. @table @option
  1449. @item n
  1450. the sequential number of the filtered frame, starting from 0
  1451. @item selected_n
  1452. the sequential number of the selected frame, starting from 0
  1453. @item prev_selected_n
  1454. the sequential number of the last selected frame, NAN if undefined
  1455. @item TB
  1456. timebase of the input timestamps
  1457. @item pts
  1458. the PTS (Presentation TimeStamp) of the filtered video frame,
  1459. expressed in @var{TB} units, NAN if undefined
  1460. @item t
  1461. the PTS (Presentation TimeStamp) of the filtered video frame,
  1462. expressed in seconds, NAN if undefined
  1463. @item prev_pts
  1464. the PTS of the previously filtered video frame, NAN if undefined
  1465. @item prev_selected_pts
  1466. the PTS of the last previously filtered video frame, NAN if undefined
  1467. @item prev_selected_t
  1468. the PTS of the last previously selected video frame, NAN if undefined
  1469. @item start_pts
  1470. the PTS of the first video frame in the video, NAN if undefined
  1471. @item start_t
  1472. the time of the first video frame in the video, NAN if undefined
  1473. @item pict_type
  1474. the type of the filtered frame, can assume one of the following
  1475. values:
  1476. @table @option
  1477. @item I
  1478. @item P
  1479. @item B
  1480. @item S
  1481. @item SI
  1482. @item SP
  1483. @item BI
  1484. @end table
  1485. @item interlace_type
  1486. the frame interlace type, can assume one of the following values:
  1487. @table @option
  1488. @item PROGRESSIVE
  1489. the frame is progressive (not interlaced)
  1490. @item TOPFIRST
  1491. the frame is top-field-first
  1492. @item BOTTOMFIRST
  1493. the frame is bottom-field-first
  1494. @end table
  1495. @item key
  1496. 1 if the filtered frame is a key-frame, 0 otherwise
  1497. @item pos
  1498. the position in the file of the filtered frame, -1 if the information
  1499. is not available (e.g. for synthetic video)
  1500. @end table
  1501. The default value of the select expression is "1".
  1502. Some examples follow:
  1503. @example
  1504. # select all frames in input
  1505. select
  1506. # the above is the same as:
  1507. select=1
  1508. # skip all frames:
  1509. select=0
  1510. # select only I-frames
  1511. select='eq(pict_type\,I)'
  1512. # select one frame every 100
  1513. select='not(mod(n\,100))'
  1514. # select only frames contained in the 10-20 time interval
  1515. select='gte(t\,10)*lte(t\,20)'
  1516. # select only I frames contained in the 10-20 time interval
  1517. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1518. # select frames with a minimum distance of 10 seconds
  1519. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1520. @end example
  1521. @anchor{setdar}
  1522. @section setdar
  1523. Set the Display Aspect Ratio for the filter output video.
  1524. This is done by changing the specified Sample (aka Pixel) Aspect
  1525. Ratio, according to the following equation:
  1526. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1527. Keep in mind that this filter does not modify the pixel dimensions of
  1528. the video frame. Also the display aspect ratio set by this filter may
  1529. be changed by later filters in the filterchain, e.g. in case of
  1530. scaling or if another "setdar" or a "setsar" filter is applied.
  1531. The filter accepts a parameter string which represents the wanted
  1532. display aspect ratio.
  1533. The parameter can be a floating point number string, or an expression
  1534. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1535. numerator and denominator of the aspect ratio.
  1536. If the parameter is not specified, it is assumed the value "0:1".
  1537. For example to change the display aspect ratio to 16:9, specify:
  1538. @example
  1539. setdar=16:9
  1540. # the above is equivalent to
  1541. setdar=1.77777
  1542. @end example
  1543. See also the @ref{setsar} filter documentation.
  1544. @section setpts
  1545. Change the PTS (presentation timestamp) of the input video frames.
  1546. Accept in input an expression evaluated through the eval API, which
  1547. can contain the following constants:
  1548. @table @option
  1549. @item PTS
  1550. the presentation timestamp in input
  1551. @item N
  1552. the count of the input frame, starting from 0.
  1553. @item STARTPTS
  1554. the PTS of the first video frame
  1555. @item INTERLACED
  1556. tell if the current frame is interlaced
  1557. @item POS
  1558. original position in the file of the frame, or undefined if undefined
  1559. for the current frame
  1560. @item PREV_INPTS
  1561. previous input PTS
  1562. @item PREV_OUTPTS
  1563. previous output PTS
  1564. @end table
  1565. Some examples follow:
  1566. @example
  1567. # start counting PTS from zero
  1568. setpts=PTS-STARTPTS
  1569. # fast motion
  1570. setpts=0.5*PTS
  1571. # slow motion
  1572. setpts=2.0*PTS
  1573. # fixed rate 25 fps
  1574. setpts=N/(25*TB)
  1575. # fixed rate 25 fps with some jitter
  1576. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1577. @end example
  1578. @anchor{setsar}
  1579. @section setsar
  1580. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1581. Note that as a consequence of the application of this filter, the
  1582. output display aspect ratio will change according to the following
  1583. equation:
  1584. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1585. Keep in mind that the sample aspect ratio set by this filter may be
  1586. changed by later filters in the filterchain, e.g. if another "setsar"
  1587. or a "setdar" filter is applied.
  1588. The filter accepts a parameter string which represents the wanted
  1589. sample aspect ratio.
  1590. The parameter can be a floating point number string, or an expression
  1591. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1592. numerator and denominator of the aspect ratio.
  1593. If the parameter is not specified, it is assumed the value "0:1".
  1594. For example to change the sample aspect ratio to 10:11, specify:
  1595. @example
  1596. setsar=10:11
  1597. @end example
  1598. @section settb
  1599. Set the timebase to use for the output frames timestamps.
  1600. It is mainly useful for testing timebase configuration.
  1601. It accepts in input an arithmetic expression representing a rational.
  1602. The expression can contain the constants "AVTB" (the
  1603. default timebase), and "intb" (the input timebase).
  1604. The default value for the input is "intb".
  1605. Follow some examples.
  1606. @example
  1607. # set the timebase to 1/25
  1608. settb=1/25
  1609. # set the timebase to 1/10
  1610. settb=0.1
  1611. #set the timebase to 1001/1000
  1612. settb=1+0.001
  1613. #set the timebase to 2*intb
  1614. settb=2*intb
  1615. #set the default timebase value
  1616. settb=AVTB
  1617. @end example
  1618. @section showinfo
  1619. Show a line containing various information for each input video frame.
  1620. The input video is not modified.
  1621. The shown line contains a sequence of key/value pairs of the form
  1622. @var{key}:@var{value}.
  1623. A description of each shown parameter follows:
  1624. @table @option
  1625. @item n
  1626. sequential number of the input frame, starting from 0
  1627. @item pts
  1628. Presentation TimeStamp of the input frame, expressed as a number of
  1629. time base units. The time base unit depends on the filter input pad.
  1630. @item pts_time
  1631. Presentation TimeStamp of the input frame, expressed as a number of
  1632. seconds
  1633. @item pos
  1634. position of the frame in the input stream, -1 if this information in
  1635. unavailable and/or meanigless (for example in case of synthetic video)
  1636. @item fmt
  1637. pixel format name
  1638. @item sar
  1639. sample aspect ratio of the input frame, expressed in the form
  1640. @var{num}/@var{den}
  1641. @item s
  1642. size of the input frame, expressed in the form
  1643. @var{width}x@var{height}
  1644. @item i
  1645. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1646. for bottom field first)
  1647. @item iskey
  1648. 1 if the frame is a key frame, 0 otherwise
  1649. @item type
  1650. picture type of the input frame ("I" for an I-frame, "P" for a
  1651. P-frame, "B" for a B-frame, "?" for unknown type).
  1652. Check also the documentation of the @code{AVPictureType} enum and of
  1653. the @code{av_get_picture_type_char} function defined in
  1654. @file{libavutil/avutil.h}.
  1655. @item checksum
  1656. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  1657. @item plane_checksum
  1658. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  1659. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1660. @end table
  1661. @section slicify
  1662. Pass the images of input video on to next video filter as multiple
  1663. slices.
  1664. @example
  1665. ./ffmpeg -i in.avi -vf "slicify=32" out.avi
  1666. @end example
  1667. The filter accepts the slice height as parameter. If the parameter is
  1668. not specified it will use the default value of 16.
  1669. Adding this in the beginning of filter chains should make filtering
  1670. faster due to better use of the memory cache.
  1671. @section split
  1672. Pass on the input video to two outputs. Both outputs are identical to
  1673. the input video.
  1674. For example:
  1675. @example
  1676. [in] split [splitout1][splitout2];
  1677. [splitout1] crop=100:100:0:0 [cropout];
  1678. [splitout2] pad=200:200:100:100 [padout];
  1679. @end example
  1680. will create two separate outputs from the same input, one cropped and
  1681. one padded.
  1682. @section transpose
  1683. Transpose rows with columns in the input video and optionally flip it.
  1684. It accepts a parameter representing an integer, which can assume the
  1685. values:
  1686. @table @samp
  1687. @item 0
  1688. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1689. @example
  1690. L.R L.l
  1691. . . -> . .
  1692. l.r R.r
  1693. @end example
  1694. @item 1
  1695. Rotate by 90 degrees clockwise, that is:
  1696. @example
  1697. L.R l.L
  1698. . . -> . .
  1699. l.r r.R
  1700. @end example
  1701. @item 2
  1702. Rotate by 90 degrees counterclockwise, that is:
  1703. @example
  1704. L.R R.r
  1705. . . -> . .
  1706. l.r L.l
  1707. @end example
  1708. @item 3
  1709. Rotate by 90 degrees clockwise and vertically flip, that is:
  1710. @example
  1711. L.R r.R
  1712. . . -> . .
  1713. l.r l.L
  1714. @end example
  1715. @end table
  1716. @section unsharp
  1717. Sharpen or blur the input video.
  1718. It accepts the following parameters:
  1719. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1720. Negative values for the amount will blur the input video, while positive
  1721. values will sharpen. All parameters are optional and default to the
  1722. equivalent of the string '5:5:1.0:5:5:0.0'.
  1723. @table @option
  1724. @item luma_msize_x
  1725. Set the luma matrix horizontal size. It can be an integer between 3
  1726. and 13, default value is 5.
  1727. @item luma_msize_y
  1728. Set the luma matrix vertical size. It can be an integer between 3
  1729. and 13, default value is 5.
  1730. @item luma_amount
  1731. Set the luma effect strength. It can be a float number between -2.0
  1732. and 5.0, default value is 1.0.
  1733. @item chroma_msize_x
  1734. Set the chroma matrix horizontal size. It can be an integer between 3
  1735. and 13, default value is 5.
  1736. @item chroma_msize_y
  1737. Set the chroma matrix vertical size. It can be an integer between 3
  1738. and 13, default value is 5.
  1739. @item chroma_amount
  1740. Set the chroma effect strength. It can be a float number between -2.0
  1741. and 5.0, default value is 0.0.
  1742. @end table
  1743. @example
  1744. # Strong luma sharpen effect parameters
  1745. unsharp=7:7:2.5
  1746. # Strong blur of both luma and chroma parameters
  1747. unsharp=7:7:-2:7:7:-2
  1748. # Use the default values with @command{ffmpeg}
  1749. ./ffmpeg -i in.avi -vf "unsharp" out.mp4
  1750. @end example
  1751. @section vflip
  1752. Flip the input video vertically.
  1753. @example
  1754. ./ffmpeg -i in.avi -vf "vflip" out.avi
  1755. @end example
  1756. @section yadif
  1757. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1758. filter").
  1759. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  1760. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  1761. following values:
  1762. @table @option
  1763. @item 0
  1764. output 1 frame for each frame
  1765. @item 1
  1766. output 1 frame for each field
  1767. @item 2
  1768. like 0 but skips spatial interlacing check
  1769. @item 3
  1770. like 1 but skips spatial interlacing check
  1771. @end table
  1772. Default value is 0.
  1773. @var{parity} specifies the picture field parity assumed for the input
  1774. interlaced video, accepts one of the following values:
  1775. @table @option
  1776. @item 0
  1777. assume top field first
  1778. @item 1
  1779. assume bottom field first
  1780. @item -1
  1781. enable automatic detection
  1782. @end table
  1783. Default value is -1.
  1784. If interlacing is unknown or decoder does not export this information,
  1785. top field first will be assumed.
  1786. @var{auto} specifies if deinterlacer should trust the interlaced flag
  1787. and only deinterlace frames marked as interlaced
  1788. @table @option
  1789. @item 0
  1790. deinterlace all frames
  1791. @item 1
  1792. only deinterlace frames marked as interlaced
  1793. @end table
  1794. Default value is 0.
  1795. @c man end VIDEO FILTERS
  1796. @chapter Video Sources
  1797. @c man begin VIDEO SOURCES
  1798. Below is a description of the currently available video sources.
  1799. @section buffer
  1800. Buffer video frames, and make them available to the filter chain.
  1801. This source is mainly intended for a programmatic use, in particular
  1802. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1803. It accepts the following parameters:
  1804. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}:@var{scale_params}
  1805. All the parameters but @var{scale_params} need to be explicitly
  1806. defined.
  1807. Follows the list of the accepted parameters.
  1808. @table @option
  1809. @item width, height
  1810. Specify the width and height of the buffered video frames.
  1811. @item pix_fmt_string
  1812. A string representing the pixel format of the buffered video frames.
  1813. It may be a number corresponding to a pixel format, or a pixel format
  1814. name.
  1815. @item timebase_num, timebase_den
  1816. Specify numerator and denomitor of the timebase assumed by the
  1817. timestamps of the buffered frames.
  1818. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  1819. Specify numerator and denominator of the sample aspect ratio assumed
  1820. by the video frames.
  1821. @item scale_params
  1822. Specify the optional parameters to be used for the scale filter which
  1823. is automatically inserted when an input change is detected in the
  1824. input size or format.
  1825. @end table
  1826. For example:
  1827. @example
  1828. buffer=320:240:yuv410p:1:24:1:1
  1829. @end example
  1830. will instruct the source to accept video frames with size 320x240 and
  1831. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1832. square pixels (1:1 sample aspect ratio).
  1833. Since the pixel format with name "yuv410p" corresponds to the number 6
  1834. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  1835. this example corresponds to:
  1836. @example
  1837. buffer=320:240:6:1:24:1:1
  1838. @end example
  1839. @section color
  1840. Provide an uniformly colored input.
  1841. It accepts the following parameters:
  1842. @var{color}:@var{frame_size}:@var{frame_rate}
  1843. Follows the description of the accepted parameters.
  1844. @table @option
  1845. @item color
  1846. Specify the color of the source. It can be the name of a color (case
  1847. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  1848. alpha specifier. The default value is "black".
  1849. @item frame_size
  1850. Specify the size of the sourced video, it may be a string of the form
  1851. @var{width}x@var{height}, or the name of a size abbreviation. The
  1852. default value is "320x240".
  1853. @item frame_rate
  1854. Specify the frame rate of the sourced video, as the number of frames
  1855. generated per second. It has to be a string in the format
  1856. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1857. number or a valid video frame rate abbreviation. The default value is
  1858. "25".
  1859. @end table
  1860. For example the following graph description will generate a red source
  1861. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  1862. frames per second, which will be overlayed over the source connected
  1863. to the pad with identifier "in".
  1864. @example
  1865. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  1866. @end example
  1867. @section movie
  1868. Read a video stream from a movie container.
  1869. It accepts the syntax: @var{movie_name}[:@var{options}] where
  1870. @var{movie_name} is the name of the resource to read (not necessarily
  1871. a file but also a device or a stream accessed through some protocol),
  1872. and @var{options} is an optional sequence of @var{key}=@var{value}
  1873. pairs, separated by ":".
  1874. The description of the accepted options follows.
  1875. @table @option
  1876. @item format_name, f
  1877. Specifies the format assumed for the movie to read, and can be either
  1878. the name of a container or an input device. If not specified the
  1879. format is guessed from @var{movie_name} or by probing.
  1880. @item seek_point, sp
  1881. Specifies the seek point in seconds, the frames will be output
  1882. starting from this seek point, the parameter is evaluated with
  1883. @code{av_strtod} so the numerical value may be suffixed by an IS
  1884. postfix. Default value is "0".
  1885. @item stream_index, si
  1886. Specifies the index of the video stream to read. If the value is -1,
  1887. the best suited video stream will be automatically selected. Default
  1888. value is "-1".
  1889. @end table
  1890. This filter allows to overlay a second video on top of main input of
  1891. a filtergraph as shown in this graph:
  1892. @example
  1893. input -----------> deltapts0 --> overlay --> output
  1894. ^
  1895. |
  1896. movie --> scale--> deltapts1 -------+
  1897. @end example
  1898. Some examples follow:
  1899. @example
  1900. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  1901. # on top of the input labelled as "in".
  1902. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1903. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1904. # read from a video4linux2 device, and overlay it on top of the input
  1905. # labelled as "in"
  1906. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1907. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1908. @end example
  1909. @section mptestsrc
  1910. Generate various test patterns, as generated by the MPlayer test filter.
  1911. The size of the generated video is fixed, and is 256x256.
  1912. This source is useful in particular for testing encoding features.
  1913. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  1914. separated by ":". The description of the accepted options follows.
  1915. @table @option
  1916. @item rate, r
  1917. Specify the frame rate of the sourced video, as the number of frames
  1918. generated per second. It has to be a string in the format
  1919. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1920. number or a valid video frame rate abbreviation. The default value is
  1921. "25".
  1922. @item duration, d
  1923. Set the video duration of the sourced video. The accepted syntax is:
  1924. @example
  1925. [-]HH[:MM[:SS[.m...]]]
  1926. [-]S+[.m...]
  1927. @end example
  1928. See also the function @code{av_parse_time()}.
  1929. If not specified, or the expressed duration is negative, the video is
  1930. supposed to be generated forever.
  1931. @item test, t
  1932. Set the number or the name of the test to perform. Supported tests are:
  1933. @table @option
  1934. @item dc_luma
  1935. @item dc_chroma
  1936. @item freq_luma
  1937. @item freq_chroma
  1938. @item amp_luma
  1939. @item amp_chroma
  1940. @item cbp
  1941. @item mv
  1942. @item ring1
  1943. @item ring2
  1944. @item all
  1945. @end table
  1946. Default value is "all", which will cycle through the list of all tests.
  1947. @end table
  1948. For example the following:
  1949. @example
  1950. testsrc=t=dc_luma
  1951. @end example
  1952. will generate a "dc_luma" test pattern.
  1953. @section frei0r_src
  1954. Provide a frei0r source.
  1955. To enable compilation of this filter you need to install the frei0r
  1956. header and configure FFmpeg with --enable-frei0r.
  1957. The source supports the syntax:
  1958. @example
  1959. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  1960. @end example
  1961. @var{size} is the size of the video to generate, may be a string of the
  1962. form @var{width}x@var{height} or a frame size abbreviation.
  1963. @var{rate} is the rate of the video to generate, may be a string of
  1964. the form @var{num}/@var{den} or a frame rate abbreviation.
  1965. @var{src_name} is the name to the frei0r source to load. For more
  1966. information regarding frei0r and how to set the parameters read the
  1967. section @ref{frei0r} in the description of the video filters.
  1968. Some examples follow:
  1969. @example
  1970. # generate a frei0r partik0l source with size 200x200 and framerate 10
  1971. # which is overlayed on the overlay filter main input
  1972. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  1973. @end example
  1974. @section nullsrc, rgbtestsrc, testsrc
  1975. The @code{nullsrc} source returns unprocessed video frames. It is
  1976. mainly useful to be employed in analysis / debugging tools, or as the
  1977. source for filters which ignore the input data.
  1978. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  1979. detecting RGB vs BGR issues. You should see a red, green and blue
  1980. stripe from top to bottom.
  1981. The @code{testsrc} source generates a test video pattern, showing a
  1982. color pattern, a scrolling gradient and a timestamp. This is mainly
  1983. intended for testing purposes.
  1984. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  1985. separated by ":". The description of the accepted options follows.
  1986. @table @option
  1987. @item size, s
  1988. Specify the size of the sourced video, it may be a string of the form
  1989. @var{width}x@var{heigth}, or the name of a size abbreviation. The
  1990. default value is "320x240".
  1991. @item rate, r
  1992. Specify the frame rate of the sourced video, as the number of frames
  1993. generated per second. It has to be a string in the format
  1994. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1995. number or a valid video frame rate abbreviation. The default value is
  1996. "25".
  1997. @item sar
  1998. Set the sample aspect ratio of the sourced video.
  1999. @item duration
  2000. Set the video duration of the sourced video. The accepted syntax is:
  2001. @example
  2002. [-]HH[:MM[:SS[.m...]]]
  2003. [-]S+[.m...]
  2004. @end example
  2005. See also the function @code{av_parse_time()}.
  2006. If not specified, or the expressed duration is negative, the video is
  2007. supposed to be generated forever.
  2008. @end table
  2009. For example the following:
  2010. @example
  2011. testsrc=duration=5.3:size=qcif:rate=10
  2012. @end example
  2013. will generate a video with a duration of 5.3 seconds, with size
  2014. 176x144 and a framerate of 10 frames per second.
  2015. If the input content is to be ignored, @code{nullsrc} can be used. The
  2016. following command generates noise in the luminance plane by employing
  2017. the @code{mp=geq} filter:
  2018. @example
  2019. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  2020. @end example
  2021. @c man end VIDEO SOURCES
  2022. @chapter Video Sinks
  2023. @c man begin VIDEO SINKS
  2024. Below is a description of the currently available video sinks.
  2025. @section buffersink
  2026. Buffer video frames, and make them available to the end of the filter
  2027. graph.
  2028. This sink is mainly intended for a programmatic use, in particular
  2029. through the interface defined in @file{libavfilter/buffersink.h}.
  2030. It does not require a string parameter in input, but you need to
  2031. specify a pointer to a list of supported pixel formats terminated by
  2032. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  2033. when initializing this sink.
  2034. @section nullsink
  2035. Null video sink, do absolutely nothing with the input video. It is
  2036. mainly useful as a template and to be employed in analysis / debugging
  2037. tools.
  2038. @c man end VIDEO SINKS