You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2388 lines
84KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _DEFAULT_SOURCE
  22. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  23. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  24. #include <inttypes.h>
  25. #include <math.h>
  26. #include <stdio.h>
  27. #include <string.h>
  28. #if HAVE_SYS_MMAN_H
  29. #include <sys/mman.h>
  30. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  31. #define MAP_ANONYMOUS MAP_ANON
  32. #endif
  33. #endif
  34. #if HAVE_VIRTUALALLOC
  35. #define WIN32_LEAN_AND_MEAN
  36. #include <windows.h>
  37. #endif
  38. #include "libavutil/attributes.h"
  39. #include "libavutil/avassert.h"
  40. #include "libavutil/avutil.h"
  41. #include "libavutil/bswap.h"
  42. #include "libavutil/cpu.h"
  43. #include "libavutil/imgutils.h"
  44. #include "libavutil/intreadwrite.h"
  45. #include "libavutil/libm.h"
  46. #include "libavutil/mathematics.h"
  47. #include "libavutil/opt.h"
  48. #include "libavutil/pixdesc.h"
  49. #include "libavutil/aarch64/cpu.h"
  50. #include "libavutil/ppc/cpu.h"
  51. #include "libavutil/x86/asm.h"
  52. #include "libavutil/x86/cpu.h"
  53. // We have to implement deprecated functions until they are removed, this is the
  54. // simplest way to prevent warnings
  55. #undef attribute_deprecated
  56. #define attribute_deprecated
  57. #include "rgb2rgb.h"
  58. #include "swscale.h"
  59. #include "swscale_internal.h"
  60. #if !FF_API_SWS_VECTOR
  61. static SwsVector *sws_getIdentityVec(void);
  62. static void sws_addVec(SwsVector *a, SwsVector *b);
  63. static void sws_shiftVec(SwsVector *a, int shift);
  64. static void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level);
  65. #endif
  66. static void handle_formats(SwsContext *c);
  67. unsigned swscale_version(void)
  68. {
  69. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  70. return LIBSWSCALE_VERSION_INT;
  71. }
  72. const char *swscale_configuration(void)
  73. {
  74. return FFMPEG_CONFIGURATION;
  75. }
  76. const char *swscale_license(void)
  77. {
  78. #define LICENSE_PREFIX "libswscale license: "
  79. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  80. }
  81. typedef struct FormatEntry {
  82. uint8_t is_supported_in :1;
  83. uint8_t is_supported_out :1;
  84. uint8_t is_supported_endianness :1;
  85. } FormatEntry;
  86. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  87. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  88. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  89. [AV_PIX_FMT_RGB24] = { 1, 1 },
  90. [AV_PIX_FMT_BGR24] = { 1, 1 },
  91. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  92. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  93. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  94. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  95. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  96. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  97. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  98. [AV_PIX_FMT_PAL8] = { 1, 0 },
  99. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  100. [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
  101. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  102. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  103. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  104. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  105. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  106. [AV_PIX_FMT_BGR8] = { 1, 1 },
  107. [AV_PIX_FMT_BGR4] = { 0, 1 },
  108. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  109. [AV_PIX_FMT_RGB8] = { 1, 1 },
  110. [AV_PIX_FMT_RGB4] = { 0, 1 },
  111. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  112. [AV_PIX_FMT_NV12] = { 1, 1 },
  113. [AV_PIX_FMT_NV21] = { 1, 1 },
  114. [AV_PIX_FMT_ARGB] = { 1, 1 },
  115. [AV_PIX_FMT_RGBA] = { 1, 1 },
  116. [AV_PIX_FMT_ABGR] = { 1, 1 },
  117. [AV_PIX_FMT_BGRA] = { 1, 1 },
  118. [AV_PIX_FMT_0RGB] = { 1, 1 },
  119. [AV_PIX_FMT_RGB0] = { 1, 1 },
  120. [AV_PIX_FMT_0BGR] = { 1, 1 },
  121. [AV_PIX_FMT_BGR0] = { 1, 1 },
  122. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  123. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  124. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  125. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  126. [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
  127. [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
  128. [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
  129. [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
  130. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  131. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  132. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  133. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  134. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  135. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  136. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  137. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  138. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  139. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  140. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  141. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  142. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  143. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  144. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  145. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  146. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  147. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  148. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  149. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  150. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  151. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  152. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  153. [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
  154. [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
  155. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  156. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  157. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  158. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  159. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  160. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  161. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  162. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  163. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  164. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  165. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  166. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  167. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  168. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  169. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  170. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  171. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  172. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  173. [AV_PIX_FMT_YA8] = { 1, 1 },
  174. [AV_PIX_FMT_YA16BE] = { 1, 0 },
  175. [AV_PIX_FMT_YA16LE] = { 1, 0 },
  176. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  177. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  178. [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
  179. [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
  180. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  181. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  182. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  183. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  184. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  185. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  186. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  187. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  188. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  189. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  190. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  191. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  192. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  193. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  194. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  195. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  196. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  197. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  198. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  199. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  200. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  201. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  202. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  203. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  204. [AV_PIX_FMT_GBRP] = { 1, 1 },
  205. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  206. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  207. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  208. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  209. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  210. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  211. [AV_PIX_FMT_GBRAP12LE] = { 1, 0 },
  212. [AV_PIX_FMT_GBRAP12BE] = { 1, 0 },
  213. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  214. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  215. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  216. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  217. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  218. [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
  219. [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
  220. [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
  221. [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
  222. [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
  223. [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
  224. [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
  225. [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
  226. [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
  227. [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
  228. [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
  229. [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
  230. [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
  231. [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
  232. [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
  233. [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
  234. [AV_PIX_FMT_AYUV64LE] = { 1, 1},
  235. [AV_PIX_FMT_P010LE] = { 1, 0 },
  236. [AV_PIX_FMT_P010BE] = { 1, 0 },
  237. };
  238. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  239. {
  240. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  241. format_entries[pix_fmt].is_supported_in : 0;
  242. }
  243. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  244. {
  245. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  246. format_entries[pix_fmt].is_supported_out : 0;
  247. }
  248. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  249. {
  250. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  251. format_entries[pix_fmt].is_supported_endianness : 0;
  252. }
  253. static double getSplineCoeff(double a, double b, double c, double d,
  254. double dist)
  255. {
  256. if (dist <= 1.0)
  257. return ((d * dist + c) * dist + b) * dist + a;
  258. else
  259. return getSplineCoeff(0.0,
  260. b + 2.0 * c + 3.0 * d,
  261. c + 3.0 * d,
  262. -b - 3.0 * c - 6.0 * d,
  263. dist - 1.0);
  264. }
  265. static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
  266. {
  267. if (pos == -1 || pos <= -513) {
  268. pos = (128 << chr_subsample) - 128;
  269. }
  270. pos += 128; // relative to ideal left edge
  271. return pos >> chr_subsample;
  272. }
  273. typedef struct {
  274. int flag; ///< flag associated to the algorithm
  275. const char *description; ///< human-readable description
  276. int size_factor; ///< size factor used when initing the filters
  277. } ScaleAlgorithm;
  278. static const ScaleAlgorithm scale_algorithms[] = {
  279. { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
  280. { SWS_BICUBIC, "bicubic", 4 },
  281. { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
  282. { SWS_BILINEAR, "bilinear", 2 },
  283. { SWS_FAST_BILINEAR, "fast bilinear", -1 },
  284. { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
  285. { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
  286. { SWS_POINT, "nearest neighbor / point", -1 },
  287. { SWS_SINC, "sinc", 20 /* infinite ;) */ },
  288. { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
  289. { SWS_X, "experimental", 8 },
  290. };
  291. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  292. int *outFilterSize, int xInc, int srcW,
  293. int dstW, int filterAlign, int one,
  294. int flags, int cpu_flags,
  295. SwsVector *srcFilter, SwsVector *dstFilter,
  296. double param[2], int srcPos, int dstPos)
  297. {
  298. int i;
  299. int filterSize;
  300. int filter2Size;
  301. int minFilterSize;
  302. int64_t *filter = NULL;
  303. int64_t *filter2 = NULL;
  304. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  305. int ret = -1;
  306. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  307. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  308. FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
  309. if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
  310. int i;
  311. filterSize = 1;
  312. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter,
  313. dstW, sizeof(*filter) * filterSize, fail);
  314. for (i = 0; i < dstW; i++) {
  315. filter[i * filterSize] = fone;
  316. (*filterPos)[i] = i;
  317. }
  318. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  319. int i;
  320. int64_t xDstInSrc;
  321. filterSize = 1;
  322. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  323. dstW, sizeof(*filter) * filterSize, fail);
  324. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  325. for (i = 0; i < dstW; i++) {
  326. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  327. (*filterPos)[i] = xx;
  328. filter[i] = fone;
  329. xDstInSrc += xInc;
  330. }
  331. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  332. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  333. int i;
  334. int64_t xDstInSrc;
  335. filterSize = 2;
  336. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  337. dstW, sizeof(*filter) * filterSize, fail);
  338. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  339. for (i = 0; i < dstW; i++) {
  340. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  341. int j;
  342. (*filterPos)[i] = xx;
  343. // bilinear upscale / linear interpolate / area averaging
  344. for (j = 0; j < filterSize; j++) {
  345. int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
  346. if (coeff < 0)
  347. coeff = 0;
  348. filter[i * filterSize + j] = coeff;
  349. xx++;
  350. }
  351. xDstInSrc += xInc;
  352. }
  353. } else {
  354. int64_t xDstInSrc;
  355. int sizeFactor = -1;
  356. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  357. if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
  358. sizeFactor = scale_algorithms[i].size_factor;
  359. break;
  360. }
  361. }
  362. if (flags & SWS_LANCZOS)
  363. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  364. av_assert0(sizeFactor > 0);
  365. if (xInc <= 1 << 16)
  366. filterSize = 1 + sizeFactor; // upscale
  367. else
  368. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  369. filterSize = FFMIN(filterSize, srcW - 2);
  370. filterSize = FFMAX(filterSize, 1);
  371. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  372. dstW, sizeof(*filter) * filterSize, fail);
  373. xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
  374. for (i = 0; i < dstW; i++) {
  375. int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
  376. int j;
  377. (*filterPos)[i] = xx;
  378. for (j = 0; j < filterSize; j++) {
  379. int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
  380. double floatd;
  381. int64_t coeff;
  382. if (xInc > 1 << 16)
  383. d = d * dstW / srcW;
  384. floatd = d * (1.0 / (1 << 30));
  385. if (flags & SWS_BICUBIC) {
  386. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  387. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  388. if (d >= 1LL << 31) {
  389. coeff = 0.0;
  390. } else {
  391. int64_t dd = (d * d) >> 30;
  392. int64_t ddd = (dd * d) >> 30;
  393. if (d < 1LL << 30)
  394. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  395. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  396. (6 * (1 << 24) - 2 * B) * (1 << 30);
  397. else
  398. coeff = (-B - 6 * C) * ddd +
  399. (6 * B + 30 * C) * dd +
  400. (-12 * B - 48 * C) * d +
  401. (8 * B + 24 * C) * (1 << 30);
  402. }
  403. coeff /= (1LL<<54)/fone;
  404. }
  405. #if 0
  406. else if (flags & SWS_X) {
  407. double p = param ? param * 0.01 : 0.3;
  408. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  409. coeff *= pow(2.0, -p * d * d);
  410. }
  411. #endif
  412. else if (flags & SWS_X) {
  413. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  414. double c;
  415. if (floatd < 1.0)
  416. c = cos(floatd * M_PI);
  417. else
  418. c = -1.0;
  419. if (c < 0.0)
  420. c = -pow(-c, A);
  421. else
  422. c = pow(c, A);
  423. coeff = (c * 0.5 + 0.5) * fone;
  424. } else if (flags & SWS_AREA) {
  425. int64_t d2 = d - (1 << 29);
  426. if (d2 * xInc < -(1LL << (29 + 16)))
  427. coeff = 1.0 * (1LL << (30 + 16));
  428. else if (d2 * xInc < (1LL << (29 + 16)))
  429. coeff = -d2 * xInc + (1LL << (29 + 16));
  430. else
  431. coeff = 0.0;
  432. coeff *= fone >> (30 + 16);
  433. } else if (flags & SWS_GAUSS) {
  434. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  435. coeff = exp2(-p * floatd * floatd) * fone;
  436. } else if (flags & SWS_SINC) {
  437. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  438. } else if (flags & SWS_LANCZOS) {
  439. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  440. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  441. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  442. if (floatd > p)
  443. coeff = 0;
  444. } else if (flags & SWS_BILINEAR) {
  445. coeff = (1 << 30) - d;
  446. if (coeff < 0)
  447. coeff = 0;
  448. coeff *= fone >> 30;
  449. } else if (flags & SWS_SPLINE) {
  450. double p = -2.196152422706632;
  451. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  452. } else {
  453. av_assert0(0);
  454. }
  455. filter[i * filterSize + j] = coeff;
  456. xx++;
  457. }
  458. xDstInSrc += 2 * xInc;
  459. }
  460. }
  461. /* apply src & dst Filter to filter -> filter2
  462. * av_free(filter);
  463. */
  464. av_assert0(filterSize > 0);
  465. filter2Size = filterSize;
  466. if (srcFilter)
  467. filter2Size += srcFilter->length - 1;
  468. if (dstFilter)
  469. filter2Size += dstFilter->length - 1;
  470. av_assert0(filter2Size > 0);
  471. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
  472. for (i = 0; i < dstW; i++) {
  473. int j, k;
  474. if (srcFilter) {
  475. for (k = 0; k < srcFilter->length; k++) {
  476. for (j = 0; j < filterSize; j++)
  477. filter2[i * filter2Size + k + j] +=
  478. srcFilter->coeff[k] * filter[i * filterSize + j];
  479. }
  480. } else {
  481. for (j = 0; j < filterSize; j++)
  482. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  483. }
  484. // FIXME dstFilter
  485. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  486. }
  487. av_freep(&filter);
  488. /* try to reduce the filter-size (step1 find size and shift left) */
  489. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  490. minFilterSize = 0;
  491. for (i = dstW - 1; i >= 0; i--) {
  492. int min = filter2Size;
  493. int j;
  494. int64_t cutOff = 0.0;
  495. /* get rid of near zero elements on the left by shifting left */
  496. for (j = 0; j < filter2Size; j++) {
  497. int k;
  498. cutOff += FFABS(filter2[i * filter2Size]);
  499. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  500. break;
  501. /* preserve monotonicity because the core can't handle the
  502. * filter otherwise */
  503. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  504. break;
  505. // move filter coefficients left
  506. for (k = 1; k < filter2Size; k++)
  507. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  508. filter2[i * filter2Size + k - 1] = 0;
  509. (*filterPos)[i]++;
  510. }
  511. cutOff = 0;
  512. /* count near zeros on the right */
  513. for (j = filter2Size - 1; j > 0; j--) {
  514. cutOff += FFABS(filter2[i * filter2Size + j]);
  515. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  516. break;
  517. min--;
  518. }
  519. if (min > minFilterSize)
  520. minFilterSize = min;
  521. }
  522. if (PPC_ALTIVEC(cpu_flags)) {
  523. // we can handle the special case 4, so we don't want to go the full 8
  524. if (minFilterSize < 5)
  525. filterAlign = 4;
  526. /* We really don't want to waste our time doing useless computation, so
  527. * fall back on the scalar C code for very small filters.
  528. * Vectorizing is worth it only if you have a decent-sized vector. */
  529. if (minFilterSize < 3)
  530. filterAlign = 1;
  531. }
  532. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  533. // special case for unscaled vertical filtering
  534. if (minFilterSize == 1 && filterAlign == 2)
  535. filterAlign = 1;
  536. }
  537. av_assert0(minFilterSize > 0);
  538. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  539. av_assert0(filterSize > 0);
  540. filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
  541. if (!filter)
  542. goto fail;
  543. if (filterSize >= MAX_FILTER_SIZE * 16 /
  544. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
  545. ret = RETCODE_USE_CASCADE;
  546. goto fail;
  547. }
  548. *outFilterSize = filterSize;
  549. if (flags & SWS_PRINT_INFO)
  550. av_log(NULL, AV_LOG_VERBOSE,
  551. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  552. filter2Size, filterSize);
  553. /* try to reduce the filter-size (step2 reduce it) */
  554. for (i = 0; i < dstW; i++) {
  555. int j;
  556. for (j = 0; j < filterSize; j++) {
  557. if (j >= filter2Size)
  558. filter[i * filterSize + j] = 0;
  559. else
  560. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  561. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  562. filter[i * filterSize + j] = 0;
  563. }
  564. }
  565. // FIXME try to align filterPos if possible
  566. // fix borders
  567. for (i = 0; i < dstW; i++) {
  568. int j;
  569. if ((*filterPos)[i] < 0) {
  570. // move filter coefficients left to compensate for filterPos
  571. for (j = 1; j < filterSize; j++) {
  572. int left = FFMAX(j + (*filterPos)[i], 0);
  573. filter[i * filterSize + left] += filter[i * filterSize + j];
  574. filter[i * filterSize + j] = 0;
  575. }
  576. (*filterPos)[i]= 0;
  577. }
  578. if ((*filterPos)[i] + filterSize > srcW) {
  579. int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
  580. int64_t acc = 0;
  581. for (j = filterSize - 1; j >= 0; j--) {
  582. if ((*filterPos)[i] + j >= srcW) {
  583. acc += filter[i * filterSize + j];
  584. filter[i * filterSize + j] = 0;
  585. }
  586. }
  587. for (j = filterSize - 1; j >= 0; j--) {
  588. if (j < shift) {
  589. filter[i * filterSize + j] = 0;
  590. } else {
  591. filter[i * filterSize + j] = filter[i * filterSize + j - shift];
  592. }
  593. }
  594. (*filterPos)[i]-= shift;
  595. filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
  596. }
  597. av_assert0((*filterPos)[i] >= 0);
  598. av_assert0((*filterPos)[i] < srcW);
  599. if ((*filterPos)[i] + filterSize > srcW) {
  600. for (j = 0; j < filterSize; j++) {
  601. av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
  602. }
  603. }
  604. }
  605. // Note the +1 is for the MMX scaler which reads over the end
  606. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  607. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
  608. (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
  609. /* normalize & store in outFilter */
  610. for (i = 0; i < dstW; i++) {
  611. int j;
  612. int64_t error = 0;
  613. int64_t sum = 0;
  614. for (j = 0; j < filterSize; j++) {
  615. sum += filter[i * filterSize + j];
  616. }
  617. sum = (sum + one / 2) / one;
  618. if (!sum) {
  619. av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
  620. sum = 1;
  621. }
  622. for (j = 0; j < *outFilterSize; j++) {
  623. int64_t v = filter[i * filterSize + j] + error;
  624. int intV = ROUNDED_DIV(v, sum);
  625. (*outFilter)[i * (*outFilterSize) + j] = intV;
  626. error = v - intV * sum;
  627. }
  628. }
  629. (*filterPos)[dstW + 0] =
  630. (*filterPos)[dstW + 1] =
  631. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  632. * read over the end */
  633. for (i = 0; i < *outFilterSize; i++) {
  634. int k = (dstW - 1) * (*outFilterSize) + i;
  635. (*outFilter)[k + 1 * (*outFilterSize)] =
  636. (*outFilter)[k + 2 * (*outFilterSize)] =
  637. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  638. }
  639. ret = 0;
  640. fail:
  641. if(ret < 0)
  642. av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
  643. av_free(filter);
  644. av_free(filter2);
  645. return ret;
  646. }
  647. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  648. {
  649. int64_t W, V, Z, Cy, Cu, Cv;
  650. int64_t vr = table[0];
  651. int64_t ub = table[1];
  652. int64_t ug = -table[2];
  653. int64_t vg = -table[3];
  654. int64_t ONE = 65536;
  655. int64_t cy = ONE;
  656. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  657. int i;
  658. static const int8_t map[] = {
  659. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  660. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  661. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  662. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  663. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  664. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  665. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  666. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  667. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  668. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  669. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  670. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  671. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  672. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  673. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  674. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  675. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  676. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  677. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  678. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  679. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  680. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  681. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  682. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  683. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  684. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  685. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  686. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  687. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  688. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  689. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  690. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  691. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  692. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  693. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  694. };
  695. dstRange = 0; //FIXME range = 1 is handled elsewhere
  696. if (!dstRange) {
  697. cy = cy * 255 / 219;
  698. } else {
  699. vr = vr * 224 / 255;
  700. ub = ub * 224 / 255;
  701. ug = ug * 224 / 255;
  702. vg = vg * 224 / 255;
  703. }
  704. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  705. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  706. Z = ONE*ONE-W-V;
  707. Cy = ROUNDED_DIV(cy*Z, ONE);
  708. Cu = ROUNDED_DIV(ub*Z, ONE);
  709. Cv = ROUNDED_DIV(vr*Z, ONE);
  710. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  711. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  712. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  713. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  714. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  715. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  716. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  717. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  718. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  719. if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
  720. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  721. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  722. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  723. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  724. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  725. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  726. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  727. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  728. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  729. }
  730. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  731. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  732. }
  733. static void fill_xyztables(struct SwsContext *c)
  734. {
  735. int i;
  736. double xyzgamma = XYZ_GAMMA;
  737. double rgbgamma = 1.0 / RGB_GAMMA;
  738. double xyzgammainv = 1.0 / XYZ_GAMMA;
  739. double rgbgammainv = RGB_GAMMA;
  740. static const int16_t xyz2rgb_matrix[3][4] = {
  741. {13270, -6295, -2041},
  742. {-3969, 7682, 170},
  743. { 228, -835, 4329} };
  744. static const int16_t rgb2xyz_matrix[3][4] = {
  745. {1689, 1464, 739},
  746. { 871, 2929, 296},
  747. { 79, 488, 3891} };
  748. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
  749. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  750. memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
  751. c->xyzgamma = xyzgamma_tab;
  752. c->rgbgamma = rgbgamma_tab;
  753. c->xyzgammainv = xyzgammainv_tab;
  754. c->rgbgammainv = rgbgammainv_tab;
  755. if (rgbgamma_tab[4095])
  756. return;
  757. /* set gamma vectors */
  758. for (i = 0; i < 4096; i++) {
  759. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  760. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  761. xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
  762. rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
  763. }
  764. }
  765. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  766. int srcRange, const int table[4], int dstRange,
  767. int brightness, int contrast, int saturation)
  768. {
  769. const AVPixFmtDescriptor *desc_dst;
  770. const AVPixFmtDescriptor *desc_src;
  771. int need_reinit = 0;
  772. handle_formats(c);
  773. desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  774. desc_src = av_pix_fmt_desc_get(c->srcFormat);
  775. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  776. dstRange = 0;
  777. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  778. srcRange = 0;
  779. if (c->srcRange != srcRange ||
  780. c->dstRange != dstRange ||
  781. c->brightness != brightness ||
  782. c->contrast != contrast ||
  783. c->saturation != saturation ||
  784. memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
  785. memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
  786. )
  787. need_reinit = 1;
  788. memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  789. memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
  790. c->brightness = brightness;
  791. c->contrast = contrast;
  792. c->saturation = saturation;
  793. c->srcRange = srcRange;
  794. c->dstRange = dstRange;
  795. //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
  796. //and what we have in ticket 2939 looks better with this check
  797. if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
  798. ff_sws_init_range_convert(c);
  799. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  800. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  801. if (c->cascaded_context[c->cascaded_mainindex])
  802. return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
  803. if (!need_reinit)
  804. return 0;
  805. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
  806. if (!c->cascaded_context[0] &&
  807. memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
  808. c->srcW && c->srcH && c->dstW && c->dstH) {
  809. enum AVPixelFormat tmp_format;
  810. int tmp_width, tmp_height;
  811. int srcW = c->srcW;
  812. int srcH = c->srcH;
  813. int dstW = c->dstW;
  814. int dstH = c->dstH;
  815. int ret;
  816. av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
  817. if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
  818. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  819. tmp_format = AV_PIX_FMT_BGRA64;
  820. } else {
  821. tmp_format = AV_PIX_FMT_BGR48;
  822. }
  823. } else {
  824. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  825. tmp_format = AV_PIX_FMT_BGRA;
  826. } else {
  827. tmp_format = AV_PIX_FMT_BGR24;
  828. }
  829. }
  830. if (srcW*srcH > dstW*dstH) {
  831. tmp_width = dstW;
  832. tmp_height = dstH;
  833. } else {
  834. tmp_width = srcW;
  835. tmp_height = srcH;
  836. }
  837. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  838. tmp_width, tmp_height, tmp_format, 64);
  839. if (ret < 0)
  840. return ret;
  841. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
  842. tmp_width, tmp_height, tmp_format,
  843. c->flags, c->param);
  844. if (!c->cascaded_context[0])
  845. return -1;
  846. c->cascaded_context[0]->alphablend = c->alphablend;
  847. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  848. if (ret < 0)
  849. return ret;
  850. //we set both src and dst depending on that the RGB side will be ignored
  851. sws_setColorspaceDetails(c->cascaded_context[0], inv_table,
  852. srcRange, table, dstRange,
  853. brightness, contrast, saturation);
  854. c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
  855. dstW, dstH, c->dstFormat,
  856. c->flags, NULL, NULL, c->param);
  857. if (!c->cascaded_context[1])
  858. return -1;
  859. sws_setColorspaceDetails(c->cascaded_context[1], inv_table,
  860. srcRange, table, dstRange,
  861. 0, 1 << 16, 1 << 16);
  862. return 0;
  863. }
  864. return -1;
  865. }
  866. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  867. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  868. contrast, saturation);
  869. // FIXME factorize
  870. if (ARCH_PPC)
  871. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  872. contrast, saturation);
  873. }
  874. fill_rgb2yuv_table(c, table, dstRange);
  875. return 0;
  876. }
  877. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  878. int *srcRange, int **table, int *dstRange,
  879. int *brightness, int *contrast, int *saturation)
  880. {
  881. if (!c )
  882. return -1;
  883. *inv_table = c->srcColorspaceTable;
  884. *table = c->dstColorspaceTable;
  885. *srcRange = c->srcRange;
  886. *dstRange = c->dstRange;
  887. *brightness = c->brightness;
  888. *contrast = c->contrast;
  889. *saturation = c->saturation;
  890. return 0;
  891. }
  892. static int handle_jpeg(enum AVPixelFormat *format)
  893. {
  894. switch (*format) {
  895. case AV_PIX_FMT_YUVJ420P:
  896. *format = AV_PIX_FMT_YUV420P;
  897. return 1;
  898. case AV_PIX_FMT_YUVJ411P:
  899. *format = AV_PIX_FMT_YUV411P;
  900. return 1;
  901. case AV_PIX_FMT_YUVJ422P:
  902. *format = AV_PIX_FMT_YUV422P;
  903. return 1;
  904. case AV_PIX_FMT_YUVJ444P:
  905. *format = AV_PIX_FMT_YUV444P;
  906. return 1;
  907. case AV_PIX_FMT_YUVJ440P:
  908. *format = AV_PIX_FMT_YUV440P;
  909. return 1;
  910. case AV_PIX_FMT_GRAY8:
  911. case AV_PIX_FMT_YA8:
  912. case AV_PIX_FMT_GRAY16LE:
  913. case AV_PIX_FMT_GRAY16BE:
  914. case AV_PIX_FMT_YA16BE:
  915. case AV_PIX_FMT_YA16LE:
  916. return 1;
  917. default:
  918. return 0;
  919. }
  920. }
  921. static int handle_0alpha(enum AVPixelFormat *format)
  922. {
  923. switch (*format) {
  924. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  925. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  926. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  927. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  928. default: return 0;
  929. }
  930. }
  931. static int handle_xyz(enum AVPixelFormat *format)
  932. {
  933. switch (*format) {
  934. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  935. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  936. default: return 0;
  937. }
  938. }
  939. static void handle_formats(SwsContext *c)
  940. {
  941. c->src0Alpha |= handle_0alpha(&c->srcFormat);
  942. c->dst0Alpha |= handle_0alpha(&c->dstFormat);
  943. c->srcXYZ |= handle_xyz(&c->srcFormat);
  944. c->dstXYZ |= handle_xyz(&c->dstFormat);
  945. if (c->srcXYZ || c->dstXYZ)
  946. fill_xyztables(c);
  947. }
  948. SwsContext *sws_alloc_context(void)
  949. {
  950. SwsContext *c = av_mallocz(sizeof(SwsContext));
  951. av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
  952. if (c) {
  953. c->av_class = &ff_sws_context_class;
  954. av_opt_set_defaults(c);
  955. }
  956. return c;
  957. }
  958. static uint16_t * alloc_gamma_tbl(double e)
  959. {
  960. int i = 0;
  961. uint16_t * tbl;
  962. tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
  963. if (!tbl)
  964. return NULL;
  965. for (i = 0; i < 65536; ++i) {
  966. tbl[i] = pow(i / 65535.0, e) * 65535.0;
  967. }
  968. return tbl;
  969. }
  970. static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
  971. {
  972. switch(fmt) {
  973. case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
  974. case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
  975. case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
  976. case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
  977. case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
  978. case AV_PIX_FMT_YUVA420P: return AV_PIX_FMT_YUV420P;
  979. case AV_PIX_FMT_YUVA422P: return AV_PIX_FMT_YUV422P;
  980. case AV_PIX_FMT_YUVA444P: return AV_PIX_FMT_YUV444P;
  981. case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
  982. case AV_PIX_FMT_GBRAP12LE: return AV_PIX_FMT_GBRP12;
  983. case AV_PIX_FMT_GBRAP12BE: return AV_PIX_FMT_GBRP12;
  984. case AV_PIX_FMT_GBRAP16LE: return AV_PIX_FMT_GBRP16;
  985. case AV_PIX_FMT_GBRAP16BE: return AV_PIX_FMT_GBRP16;
  986. case AV_PIX_FMT_RGBA64LE: return AV_PIX_FMT_RGB48;
  987. case AV_PIX_FMT_RGBA64BE: return AV_PIX_FMT_RGB48;
  988. case AV_PIX_FMT_BGRA64LE: return AV_PIX_FMT_BGR48;
  989. case AV_PIX_FMT_BGRA64BE: return AV_PIX_FMT_BGR48;
  990. case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
  991. case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
  992. case AV_PIX_FMT_YUVA420P9BE: return AV_PIX_FMT_YUV420P9;
  993. case AV_PIX_FMT_YUVA422P9BE: return AV_PIX_FMT_YUV422P9;
  994. case AV_PIX_FMT_YUVA444P9BE: return AV_PIX_FMT_YUV444P9;
  995. case AV_PIX_FMT_YUVA420P9LE: return AV_PIX_FMT_YUV420P9;
  996. case AV_PIX_FMT_YUVA422P9LE: return AV_PIX_FMT_YUV422P9;
  997. case AV_PIX_FMT_YUVA444P9LE: return AV_PIX_FMT_YUV444P9;
  998. case AV_PIX_FMT_YUVA420P10BE: return AV_PIX_FMT_YUV420P10;
  999. case AV_PIX_FMT_YUVA422P10BE: return AV_PIX_FMT_YUV422P10;
  1000. case AV_PIX_FMT_YUVA444P10BE: return AV_PIX_FMT_YUV444P10;
  1001. case AV_PIX_FMT_YUVA420P10LE: return AV_PIX_FMT_YUV420P10;
  1002. case AV_PIX_FMT_YUVA422P10LE: return AV_PIX_FMT_YUV422P10;
  1003. case AV_PIX_FMT_YUVA444P10LE: return AV_PIX_FMT_YUV444P10;
  1004. case AV_PIX_FMT_YUVA420P16BE: return AV_PIX_FMT_YUV420P16;
  1005. case AV_PIX_FMT_YUVA422P16BE: return AV_PIX_FMT_YUV422P16;
  1006. case AV_PIX_FMT_YUVA444P16BE: return AV_PIX_FMT_YUV444P16;
  1007. case AV_PIX_FMT_YUVA420P16LE: return AV_PIX_FMT_YUV420P16;
  1008. case AV_PIX_FMT_YUVA422P16LE: return AV_PIX_FMT_YUV422P16;
  1009. case AV_PIX_FMT_YUVA444P16LE: return AV_PIX_FMT_YUV444P16;
  1010. // case AV_PIX_FMT_AYUV64LE:
  1011. // case AV_PIX_FMT_AYUV64BE:
  1012. // case AV_PIX_FMT_PAL8:
  1013. default: return AV_PIX_FMT_NONE;
  1014. }
  1015. }
  1016. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  1017. SwsFilter *dstFilter)
  1018. {
  1019. int i;
  1020. int usesVFilter, usesHFilter;
  1021. int unscaled;
  1022. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  1023. int srcW = c->srcW;
  1024. int srcH = c->srcH;
  1025. int dstW = c->dstW;
  1026. int dstH = c->dstH;
  1027. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  1028. int flags, cpu_flags;
  1029. enum AVPixelFormat srcFormat = c->srcFormat;
  1030. enum AVPixelFormat dstFormat = c->dstFormat;
  1031. const AVPixFmtDescriptor *desc_src;
  1032. const AVPixFmtDescriptor *desc_dst;
  1033. int ret = 0;
  1034. enum AVPixelFormat tmpFmt;
  1035. cpu_flags = av_get_cpu_flags();
  1036. flags = c->flags;
  1037. emms_c();
  1038. if (!rgb15to16)
  1039. ff_sws_rgb2rgb_init();
  1040. unscaled = (srcW == dstW && srcH == dstH);
  1041. c->srcRange |= handle_jpeg(&c->srcFormat);
  1042. c->dstRange |= handle_jpeg(&c->dstFormat);
  1043. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
  1044. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  1045. if (!c->contrast && !c->saturation && !c->dstFormatBpp)
  1046. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1047. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1048. c->dstRange, 0, 1 << 16, 1 << 16);
  1049. handle_formats(c);
  1050. srcFormat = c->srcFormat;
  1051. dstFormat = c->dstFormat;
  1052. desc_src = av_pix_fmt_desc_get(srcFormat);
  1053. desc_dst = av_pix_fmt_desc_get(dstFormat);
  1054. // If the source has no alpha then disable alpha blendaway
  1055. if (c->src0Alpha)
  1056. c->alphablend = SWS_ALPHA_BLEND_NONE;
  1057. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  1058. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  1059. if (!sws_isSupportedInput(srcFormat)) {
  1060. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  1061. av_get_pix_fmt_name(srcFormat));
  1062. return AVERROR(EINVAL);
  1063. }
  1064. if (!sws_isSupportedOutput(dstFormat)) {
  1065. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  1066. av_get_pix_fmt_name(dstFormat));
  1067. return AVERROR(EINVAL);
  1068. }
  1069. }
  1070. av_assert2(desc_src && desc_dst);
  1071. i = flags & (SWS_POINT |
  1072. SWS_AREA |
  1073. SWS_BILINEAR |
  1074. SWS_FAST_BILINEAR |
  1075. SWS_BICUBIC |
  1076. SWS_X |
  1077. SWS_GAUSS |
  1078. SWS_LANCZOS |
  1079. SWS_SINC |
  1080. SWS_SPLINE |
  1081. SWS_BICUBLIN);
  1082. /* provide a default scaler if not set by caller */
  1083. if (!i) {
  1084. if (dstW < srcW && dstH < srcH)
  1085. flags |= SWS_BICUBIC;
  1086. else if (dstW > srcW && dstH > srcH)
  1087. flags |= SWS_BICUBIC;
  1088. else
  1089. flags |= SWS_BICUBIC;
  1090. c->flags = flags;
  1091. } else if (i & (i - 1)) {
  1092. av_log(c, AV_LOG_ERROR,
  1093. "Exactly one scaler algorithm must be chosen, got %X\n", i);
  1094. return AVERROR(EINVAL);
  1095. }
  1096. /* sanity check */
  1097. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  1098. /* FIXME check if these are enough and try to lower them after
  1099. * fixing the relevant parts of the code */
  1100. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  1101. srcW, srcH, dstW, dstH);
  1102. return AVERROR(EINVAL);
  1103. }
  1104. if (flags & SWS_FAST_BILINEAR) {
  1105. if (srcW < 8 || dstW < 8) {
  1106. flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
  1107. c->flags = flags;
  1108. }
  1109. }
  1110. if (!dstFilter)
  1111. dstFilter = &dummyFilter;
  1112. if (!srcFilter)
  1113. srcFilter = &dummyFilter;
  1114. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  1115. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  1116. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  1117. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  1118. c->vRounder = 4 * 0x0001000100010001ULL;
  1119. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  1120. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  1121. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  1122. (dstFilter->chrV && dstFilter->chrV->length > 1);
  1123. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  1124. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  1125. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  1126. (dstFilter->chrH && dstFilter->chrH->length > 1);
  1127. av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample);
  1128. av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample);
  1129. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  1130. if (dstW&1) {
  1131. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  1132. flags |= SWS_FULL_CHR_H_INT;
  1133. c->flags = flags;
  1134. }
  1135. if ( c->chrSrcHSubSample == 0
  1136. && c->chrSrcVSubSample == 0
  1137. && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
  1138. && !(c->flags & SWS_FAST_BILINEAR)
  1139. ) {
  1140. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
  1141. flags |= SWS_FULL_CHR_H_INT;
  1142. c->flags = flags;
  1143. }
  1144. }
  1145. if (c->dither == SWS_DITHER_AUTO) {
  1146. if (flags & SWS_ERROR_DIFFUSION)
  1147. c->dither = SWS_DITHER_ED;
  1148. }
  1149. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  1150. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  1151. dstFormat == AV_PIX_FMT_BGR8 ||
  1152. dstFormat == AV_PIX_FMT_RGB8) {
  1153. if (c->dither == SWS_DITHER_AUTO)
  1154. c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER;
  1155. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1156. if (c->dither == SWS_DITHER_ED || c->dither == SWS_DITHER_A_DITHER || c->dither == SWS_DITHER_X_DITHER) {
  1157. av_log(c, AV_LOG_DEBUG,
  1158. "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
  1159. av_get_pix_fmt_name(dstFormat));
  1160. flags |= SWS_FULL_CHR_H_INT;
  1161. c->flags = flags;
  1162. }
  1163. }
  1164. if (flags & SWS_FULL_CHR_H_INT) {
  1165. if (c->dither == SWS_DITHER_BAYER) {
  1166. av_log(c, AV_LOG_DEBUG,
  1167. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  1168. av_get_pix_fmt_name(dstFormat));
  1169. c->dither = SWS_DITHER_ED;
  1170. }
  1171. }
  1172. }
  1173. if (isPlanarRGB(dstFormat)) {
  1174. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1175. av_log(c, AV_LOG_DEBUG,
  1176. "%s output is not supported with half chroma resolution, switching to full\n",
  1177. av_get_pix_fmt_name(dstFormat));
  1178. flags |= SWS_FULL_CHR_H_INT;
  1179. c->flags = flags;
  1180. }
  1181. }
  1182. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1183. * chroma interpolation */
  1184. if (flags & SWS_FULL_CHR_H_INT &&
  1185. isAnyRGB(dstFormat) &&
  1186. !isPlanarRGB(dstFormat) &&
  1187. dstFormat != AV_PIX_FMT_RGBA64LE &&
  1188. dstFormat != AV_PIX_FMT_RGBA64BE &&
  1189. dstFormat != AV_PIX_FMT_BGRA64LE &&
  1190. dstFormat != AV_PIX_FMT_BGRA64BE &&
  1191. dstFormat != AV_PIX_FMT_RGB48LE &&
  1192. dstFormat != AV_PIX_FMT_RGB48BE &&
  1193. dstFormat != AV_PIX_FMT_BGR48LE &&
  1194. dstFormat != AV_PIX_FMT_BGR48BE &&
  1195. dstFormat != AV_PIX_FMT_RGBA &&
  1196. dstFormat != AV_PIX_FMT_ARGB &&
  1197. dstFormat != AV_PIX_FMT_BGRA &&
  1198. dstFormat != AV_PIX_FMT_ABGR &&
  1199. dstFormat != AV_PIX_FMT_RGB24 &&
  1200. dstFormat != AV_PIX_FMT_BGR24 &&
  1201. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1202. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1203. dstFormat != AV_PIX_FMT_BGR8 &&
  1204. dstFormat != AV_PIX_FMT_RGB8
  1205. ) {
  1206. av_log(c, AV_LOG_WARNING,
  1207. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1208. av_get_pix_fmt_name(dstFormat));
  1209. flags &= ~SWS_FULL_CHR_H_INT;
  1210. c->flags = flags;
  1211. }
  1212. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1213. c->chrDstHSubSample = 1;
  1214. // drop some chroma lines if the user wants it
  1215. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1216. SWS_SRC_V_CHR_DROP_SHIFT;
  1217. c->chrSrcVSubSample += c->vChrDrop;
  1218. /* drop every other pixel for chroma calculation unless user
  1219. * wants full chroma */
  1220. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1221. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1222. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1223. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1224. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1225. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1226. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1227. srcFormat != AV_PIX_FMT_GBRAP12BE && srcFormat != AV_PIX_FMT_GBRAP12LE &&
  1228. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1229. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1230. srcFormat != AV_PIX_FMT_GBRAP16BE && srcFormat != AV_PIX_FMT_GBRAP16LE &&
  1231. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1232. (flags & SWS_FAST_BILINEAR)))
  1233. c->chrSrcHSubSample = 1;
  1234. // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
  1235. c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  1236. c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  1237. c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  1238. c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  1239. FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  1240. c->srcBpc = desc_src->comp[0].depth;
  1241. if (c->srcBpc < 8)
  1242. c->srcBpc = 8;
  1243. c->dstBpc = desc_dst->comp[0].depth;
  1244. if (c->dstBpc < 8)
  1245. c->dstBpc = 8;
  1246. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1247. c->srcBpc = 16;
  1248. if (c->dstBpc == 16)
  1249. dst_stride <<= 1;
  1250. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1251. c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
  1252. c->chrDstW >= c->chrSrcW &&
  1253. (srcW & 15) == 0;
  1254. if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
  1255. && (flags & SWS_FAST_BILINEAR)) {
  1256. if (flags & SWS_PRINT_INFO)
  1257. av_log(c, AV_LOG_INFO,
  1258. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1259. }
  1260. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1261. c->canMMXEXTBeUsed = 0;
  1262. } else
  1263. c->canMMXEXTBeUsed = 0;
  1264. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1265. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1266. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1267. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1268. * correct scaling.
  1269. * n-2 is the last chrominance sample available.
  1270. * This is not perfect, but no one should notice the difference, the more
  1271. * correct variant would be like the vertical one, but that would require
  1272. * some special code for the first and last pixel */
  1273. if (flags & SWS_FAST_BILINEAR) {
  1274. if (c->canMMXEXTBeUsed) {
  1275. c->lumXInc += 20;
  1276. c->chrXInc += 20;
  1277. }
  1278. // we don't use the x86 asm scaler if MMX is available
  1279. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1280. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1281. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1282. }
  1283. }
  1284. // hardcoded for now
  1285. c->gamma_value = 2.2;
  1286. tmpFmt = AV_PIX_FMT_RGBA64LE;
  1287. if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
  1288. SwsContext *c2;
  1289. c->cascaded_context[0] = NULL;
  1290. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1291. srcW, srcH, tmpFmt, 64);
  1292. if (ret < 0)
  1293. return ret;
  1294. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1295. srcW, srcH, tmpFmt,
  1296. flags, NULL, NULL, c->param);
  1297. if (!c->cascaded_context[0]) {
  1298. return -1;
  1299. }
  1300. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
  1301. dstW, dstH, tmpFmt,
  1302. flags, srcFilter, dstFilter, c->param);
  1303. if (!c->cascaded_context[1])
  1304. return -1;
  1305. c2 = c->cascaded_context[1];
  1306. c2->is_internal_gamma = 1;
  1307. c2->gamma = alloc_gamma_tbl( c->gamma_value);
  1308. c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
  1309. if (!c2->gamma || !c2->inv_gamma)
  1310. return AVERROR(ENOMEM);
  1311. // is_internal_flag is set after creating the context
  1312. // to properly create the gamma convert FilterDescriptor
  1313. // we have to re-initialize it
  1314. ff_free_filters(c2);
  1315. if (ff_init_filters(c2) < 0) {
  1316. sws_freeContext(c2);
  1317. return -1;
  1318. }
  1319. c->cascaded_context[2] = NULL;
  1320. if (dstFormat != tmpFmt) {
  1321. ret = av_image_alloc(c->cascaded1_tmp, c->cascaded1_tmpStride,
  1322. dstW, dstH, tmpFmt, 64);
  1323. if (ret < 0)
  1324. return ret;
  1325. c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
  1326. dstW, dstH, dstFormat,
  1327. flags, NULL, NULL, c->param);
  1328. if (!c->cascaded_context[2])
  1329. return -1;
  1330. }
  1331. return 0;
  1332. }
  1333. if (isBayer(srcFormat)) {
  1334. if (!unscaled ||
  1335. (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
  1336. enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
  1337. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1338. srcW, srcH, tmpFormat, 64);
  1339. if (ret < 0)
  1340. return ret;
  1341. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1342. srcW, srcH, tmpFormat,
  1343. flags, srcFilter, NULL, c->param);
  1344. if (!c->cascaded_context[0])
  1345. return -1;
  1346. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
  1347. dstW, dstH, dstFormat,
  1348. flags, NULL, dstFilter, c->param);
  1349. if (!c->cascaded_context[1])
  1350. return -1;
  1351. return 0;
  1352. }
  1353. }
  1354. if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
  1355. enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
  1356. if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
  1357. if (!unscaled ||
  1358. dstFormat != tmpFormat ||
  1359. usesHFilter || usesVFilter ||
  1360. c->srcRange != c->dstRange
  1361. ) {
  1362. c->cascaded_mainindex = 1;
  1363. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1364. srcW, srcH, tmpFormat, 64);
  1365. if (ret < 0)
  1366. return ret;
  1367. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1368. srcW, srcH, tmpFormat,
  1369. flags, c->param);
  1370. if (!c->cascaded_context[0])
  1371. return -1;
  1372. c->cascaded_context[0]->alphablend = c->alphablend;
  1373. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  1374. if (ret < 0)
  1375. return ret;
  1376. c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
  1377. dstW, dstH, dstFormat,
  1378. flags, c->param);
  1379. if (!c->cascaded_context[1])
  1380. return -1;
  1381. c->cascaded_context[1]->srcRange = c->srcRange;
  1382. c->cascaded_context[1]->dstRange = c->dstRange;
  1383. ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
  1384. if (ret < 0)
  1385. return ret;
  1386. return 0;
  1387. }
  1388. }
  1389. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  1390. /* precalculate horizontal scaler filter coefficients */
  1391. {
  1392. #if HAVE_MMXEXT_INLINE
  1393. // can't downscale !!!
  1394. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1395. c->lumMmxextFilterCodeSize = ff_init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1396. NULL, NULL, 8);
  1397. c->chrMmxextFilterCodeSize = ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1398. NULL, NULL, NULL, 4);
  1399. #if USE_MMAP
  1400. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1401. PROT_READ | PROT_WRITE,
  1402. MAP_PRIVATE | MAP_ANONYMOUS,
  1403. -1, 0);
  1404. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1405. PROT_READ | PROT_WRITE,
  1406. MAP_PRIVATE | MAP_ANONYMOUS,
  1407. -1, 0);
  1408. #elif HAVE_VIRTUALALLOC
  1409. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1410. c->lumMmxextFilterCodeSize,
  1411. MEM_COMMIT,
  1412. PAGE_EXECUTE_READWRITE);
  1413. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1414. c->chrMmxextFilterCodeSize,
  1415. MEM_COMMIT,
  1416. PAGE_EXECUTE_READWRITE);
  1417. #else
  1418. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1419. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1420. #endif
  1421. #ifdef MAP_ANONYMOUS
  1422. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1423. #else
  1424. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1425. #endif
  1426. {
  1427. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1428. return AVERROR(ENOMEM);
  1429. }
  1430. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1431. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1432. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1433. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1434. ff_init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1435. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1436. ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1437. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1438. #if USE_MMAP
  1439. if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
  1440. || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
  1441. av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
  1442. goto fail;
  1443. }
  1444. #endif
  1445. } else
  1446. #endif /* HAVE_MMXEXT_INLINE */
  1447. {
  1448. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1449. PPC_ALTIVEC(cpu_flags) ? 8 :
  1450. have_neon(cpu_flags) ? 8 : 1;
  1451. if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1452. &c->hLumFilterSize, c->lumXInc,
  1453. srcW, dstW, filterAlign, 1 << 14,
  1454. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1455. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1456. c->param,
  1457. get_local_pos(c, 0, 0, 0),
  1458. get_local_pos(c, 0, 0, 0))) < 0)
  1459. goto fail;
  1460. if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1461. &c->hChrFilterSize, c->chrXInc,
  1462. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1463. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1464. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1465. c->param,
  1466. get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
  1467. get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
  1468. goto fail;
  1469. }
  1470. } // initialize horizontal stuff
  1471. /* precalculate vertical scaler filter coefficients */
  1472. {
  1473. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1474. PPC_ALTIVEC(cpu_flags) ? 8 :
  1475. have_neon(cpu_flags) ? 2 : 1;
  1476. if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1477. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1478. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1479. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1480. c->param,
  1481. get_local_pos(c, 0, 0, 1),
  1482. get_local_pos(c, 0, 0, 1))) < 0)
  1483. goto fail;
  1484. if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1485. c->chrYInc, c->chrSrcH, c->chrDstH,
  1486. filterAlign, (1 << 12),
  1487. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1488. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1489. c->param,
  1490. get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
  1491. get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
  1492. goto fail;
  1493. #if HAVE_ALTIVEC
  1494. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1495. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1496. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1497. int j;
  1498. short *p = (short *)&c->vYCoeffsBank[i];
  1499. for (j = 0; j < 8; j++)
  1500. p[j] = c->vLumFilter[i];
  1501. }
  1502. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1503. int j;
  1504. short *p = (short *)&c->vCCoeffsBank[i];
  1505. for (j = 0; j < 8; j++)
  1506. p[j] = c->vChrFilter[i];
  1507. }
  1508. #endif
  1509. }
  1510. for (i = 0; i < 4; i++)
  1511. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1512. c->needAlpha = (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) ? 1 : 0;
  1513. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1514. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1515. c->uv_offx2 = dst_stride + 16;
  1516. av_assert0(c->chrDstH <= dstH);
  1517. if (flags & SWS_PRINT_INFO) {
  1518. const char *scaler = NULL, *cpucaps;
  1519. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  1520. if (flags & scale_algorithms[i].flag) {
  1521. scaler = scale_algorithms[i].description;
  1522. break;
  1523. }
  1524. }
  1525. if (!scaler)
  1526. scaler = "ehh flags invalid?!";
  1527. av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
  1528. scaler,
  1529. av_get_pix_fmt_name(srcFormat),
  1530. #ifdef DITHER1XBPP
  1531. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1532. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1533. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1534. "dithered " : "",
  1535. #else
  1536. "",
  1537. #endif
  1538. av_get_pix_fmt_name(dstFormat));
  1539. if (INLINE_MMXEXT(cpu_flags))
  1540. cpucaps = "MMXEXT";
  1541. else if (INLINE_AMD3DNOW(cpu_flags))
  1542. cpucaps = "3DNOW";
  1543. else if (INLINE_MMX(cpu_flags))
  1544. cpucaps = "MMX";
  1545. else if (PPC_ALTIVEC(cpu_flags))
  1546. cpucaps = "AltiVec";
  1547. else
  1548. cpucaps = "C";
  1549. av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
  1550. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1551. av_log(c, AV_LOG_DEBUG,
  1552. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1553. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1554. av_log(c, AV_LOG_DEBUG,
  1555. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1556. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1557. c->chrXInc, c->chrYInc);
  1558. }
  1559. /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
  1560. if (unscaled && !usesHFilter && !usesVFilter &&
  1561. c->alphablend != SWS_ALPHA_BLEND_NONE &&
  1562. isALPHA(srcFormat) &&
  1563. (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
  1564. alphaless_fmt(srcFormat) == dstFormat
  1565. ) {
  1566. c->swscale = ff_sws_alphablendaway;
  1567. if (flags & SWS_PRINT_INFO)
  1568. av_log(c, AV_LOG_INFO,
  1569. "using alpha blendaway %s -> %s special converter\n",
  1570. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1571. return 0;
  1572. }
  1573. /* unscaled special cases */
  1574. if (unscaled && !usesHFilter && !usesVFilter &&
  1575. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  1576. ff_get_unscaled_swscale(c);
  1577. if (c->swscale) {
  1578. if (flags & SWS_PRINT_INFO)
  1579. av_log(c, AV_LOG_INFO,
  1580. "using unscaled %s -> %s special converter\n",
  1581. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1582. return 0;
  1583. }
  1584. }
  1585. c->swscale = ff_getSwsFunc(c);
  1586. return ff_init_filters(c);
  1587. fail: // FIXME replace things by appropriate error codes
  1588. if (ret == RETCODE_USE_CASCADE) {
  1589. int tmpW = sqrt(srcW * (int64_t)dstW);
  1590. int tmpH = sqrt(srcH * (int64_t)dstH);
  1591. enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
  1592. if (isALPHA(srcFormat))
  1593. tmpFormat = AV_PIX_FMT_YUVA420P;
  1594. if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
  1595. return AVERROR(EINVAL);
  1596. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1597. tmpW, tmpH, tmpFormat, 64);
  1598. if (ret < 0)
  1599. return ret;
  1600. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1601. tmpW, tmpH, tmpFormat,
  1602. flags, srcFilter, NULL, c->param);
  1603. if (!c->cascaded_context[0])
  1604. return -1;
  1605. c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
  1606. dstW, dstH, dstFormat,
  1607. flags, NULL, dstFilter, c->param);
  1608. if (!c->cascaded_context[1])
  1609. return -1;
  1610. return 0;
  1611. }
  1612. return -1;
  1613. }
  1614. SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1615. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1616. int flags, const double *param)
  1617. {
  1618. SwsContext *c;
  1619. if (!(c = sws_alloc_context()))
  1620. return NULL;
  1621. c->flags = flags;
  1622. c->srcW = srcW;
  1623. c->srcH = srcH;
  1624. c->dstW = dstW;
  1625. c->dstH = dstH;
  1626. c->srcFormat = srcFormat;
  1627. c->dstFormat = dstFormat;
  1628. if (param) {
  1629. c->param[0] = param[0];
  1630. c->param[1] = param[1];
  1631. }
  1632. return c;
  1633. }
  1634. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1635. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1636. int flags, SwsFilter *srcFilter,
  1637. SwsFilter *dstFilter, const double *param)
  1638. {
  1639. SwsContext *c;
  1640. c = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1641. dstW, dstH, dstFormat,
  1642. flags, param);
  1643. if (!c)
  1644. return NULL;
  1645. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1646. sws_freeContext(c);
  1647. return NULL;
  1648. }
  1649. return c;
  1650. }
  1651. static int isnan_vec(SwsVector *a)
  1652. {
  1653. int i;
  1654. for (i=0; i<a->length; i++)
  1655. if (isnan(a->coeff[i]))
  1656. return 1;
  1657. return 0;
  1658. }
  1659. static void makenan_vec(SwsVector *a)
  1660. {
  1661. int i;
  1662. for (i=0; i<a->length; i++)
  1663. a->coeff[i] = NAN;
  1664. }
  1665. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1666. float lumaSharpen, float chromaSharpen,
  1667. float chromaHShift, float chromaVShift,
  1668. int verbose)
  1669. {
  1670. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1671. if (!filter)
  1672. return NULL;
  1673. if (lumaGBlur != 0.0) {
  1674. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1675. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1676. } else {
  1677. filter->lumH = sws_getIdentityVec();
  1678. filter->lumV = sws_getIdentityVec();
  1679. }
  1680. if (chromaGBlur != 0.0) {
  1681. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1682. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1683. } else {
  1684. filter->chrH = sws_getIdentityVec();
  1685. filter->chrV = sws_getIdentityVec();
  1686. }
  1687. if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
  1688. goto fail;
  1689. if (chromaSharpen != 0.0) {
  1690. SwsVector *id = sws_getIdentityVec();
  1691. if (!id)
  1692. goto fail;
  1693. sws_scaleVec(filter->chrH, -chromaSharpen);
  1694. sws_scaleVec(filter->chrV, -chromaSharpen);
  1695. sws_addVec(filter->chrH, id);
  1696. sws_addVec(filter->chrV, id);
  1697. sws_freeVec(id);
  1698. }
  1699. if (lumaSharpen != 0.0) {
  1700. SwsVector *id = sws_getIdentityVec();
  1701. if (!id)
  1702. goto fail;
  1703. sws_scaleVec(filter->lumH, -lumaSharpen);
  1704. sws_scaleVec(filter->lumV, -lumaSharpen);
  1705. sws_addVec(filter->lumH, id);
  1706. sws_addVec(filter->lumV, id);
  1707. sws_freeVec(id);
  1708. }
  1709. if (chromaHShift != 0.0)
  1710. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1711. if (chromaVShift != 0.0)
  1712. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1713. sws_normalizeVec(filter->chrH, 1.0);
  1714. sws_normalizeVec(filter->chrV, 1.0);
  1715. sws_normalizeVec(filter->lumH, 1.0);
  1716. sws_normalizeVec(filter->lumV, 1.0);
  1717. if (isnan_vec(filter->chrH) ||
  1718. isnan_vec(filter->chrV) ||
  1719. isnan_vec(filter->lumH) ||
  1720. isnan_vec(filter->lumV))
  1721. goto fail;
  1722. if (verbose)
  1723. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1724. if (verbose)
  1725. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1726. return filter;
  1727. fail:
  1728. sws_freeVec(filter->lumH);
  1729. sws_freeVec(filter->lumV);
  1730. sws_freeVec(filter->chrH);
  1731. sws_freeVec(filter->chrV);
  1732. av_freep(&filter);
  1733. return NULL;
  1734. }
  1735. SwsVector *sws_allocVec(int length)
  1736. {
  1737. SwsVector *vec;
  1738. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1739. return NULL;
  1740. vec = av_malloc(sizeof(SwsVector));
  1741. if (!vec)
  1742. return NULL;
  1743. vec->length = length;
  1744. vec->coeff = av_malloc(sizeof(double) * length);
  1745. if (!vec->coeff)
  1746. av_freep(&vec);
  1747. return vec;
  1748. }
  1749. SwsVector *sws_getGaussianVec(double variance, double quality)
  1750. {
  1751. const int length = (int)(variance * quality + 0.5) | 1;
  1752. int i;
  1753. double middle = (length - 1) * 0.5;
  1754. SwsVector *vec;
  1755. if(variance < 0 || quality < 0)
  1756. return NULL;
  1757. vec = sws_allocVec(length);
  1758. if (!vec)
  1759. return NULL;
  1760. for (i = 0; i < length; i++) {
  1761. double dist = i - middle;
  1762. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1763. sqrt(2 * variance * M_PI);
  1764. }
  1765. sws_normalizeVec(vec, 1.0);
  1766. return vec;
  1767. }
  1768. /**
  1769. * Allocate and return a vector with length coefficients, all
  1770. * with the same value c.
  1771. */
  1772. #if !FF_API_SWS_VECTOR
  1773. static
  1774. #endif
  1775. SwsVector *sws_getConstVec(double c, int length)
  1776. {
  1777. int i;
  1778. SwsVector *vec = sws_allocVec(length);
  1779. if (!vec)
  1780. return NULL;
  1781. for (i = 0; i < length; i++)
  1782. vec->coeff[i] = c;
  1783. return vec;
  1784. }
  1785. /**
  1786. * Allocate and return a vector with just one coefficient, with
  1787. * value 1.0.
  1788. */
  1789. #if !FF_API_SWS_VECTOR
  1790. static
  1791. #endif
  1792. SwsVector *sws_getIdentityVec(void)
  1793. {
  1794. return sws_getConstVec(1.0, 1);
  1795. }
  1796. static double sws_dcVec(SwsVector *a)
  1797. {
  1798. int i;
  1799. double sum = 0;
  1800. for (i = 0; i < a->length; i++)
  1801. sum += a->coeff[i];
  1802. return sum;
  1803. }
  1804. void sws_scaleVec(SwsVector *a, double scalar)
  1805. {
  1806. int i;
  1807. for (i = 0; i < a->length; i++)
  1808. a->coeff[i] *= scalar;
  1809. }
  1810. void sws_normalizeVec(SwsVector *a, double height)
  1811. {
  1812. sws_scaleVec(a, height / sws_dcVec(a));
  1813. }
  1814. #if FF_API_SWS_VECTOR
  1815. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1816. {
  1817. int length = a->length + b->length - 1;
  1818. int i, j;
  1819. SwsVector *vec = sws_getConstVec(0.0, length);
  1820. if (!vec)
  1821. return NULL;
  1822. for (i = 0; i < a->length; i++) {
  1823. for (j = 0; j < b->length; j++) {
  1824. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1825. }
  1826. }
  1827. return vec;
  1828. }
  1829. #endif
  1830. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1831. {
  1832. int length = FFMAX(a->length, b->length);
  1833. int i;
  1834. SwsVector *vec = sws_getConstVec(0.0, length);
  1835. if (!vec)
  1836. return NULL;
  1837. for (i = 0; i < a->length; i++)
  1838. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1839. for (i = 0; i < b->length; i++)
  1840. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1841. return vec;
  1842. }
  1843. #if FF_API_SWS_VECTOR
  1844. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1845. {
  1846. int length = FFMAX(a->length, b->length);
  1847. int i;
  1848. SwsVector *vec = sws_getConstVec(0.0, length);
  1849. if (!vec)
  1850. return NULL;
  1851. for (i = 0; i < a->length; i++)
  1852. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1853. for (i = 0; i < b->length; i++)
  1854. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1855. return vec;
  1856. }
  1857. #endif
  1858. /* shift left / or right if "shift" is negative */
  1859. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1860. {
  1861. int length = a->length + FFABS(shift) * 2;
  1862. int i;
  1863. SwsVector *vec = sws_getConstVec(0.0, length);
  1864. if (!vec)
  1865. return NULL;
  1866. for (i = 0; i < a->length; i++) {
  1867. vec->coeff[i + (length - 1) / 2 -
  1868. (a->length - 1) / 2 - shift] = a->coeff[i];
  1869. }
  1870. return vec;
  1871. }
  1872. #if !FF_API_SWS_VECTOR
  1873. static
  1874. #endif
  1875. void sws_shiftVec(SwsVector *a, int shift)
  1876. {
  1877. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1878. if (!shifted) {
  1879. makenan_vec(a);
  1880. return;
  1881. }
  1882. av_free(a->coeff);
  1883. a->coeff = shifted->coeff;
  1884. a->length = shifted->length;
  1885. av_free(shifted);
  1886. }
  1887. #if !FF_API_SWS_VECTOR
  1888. static
  1889. #endif
  1890. void sws_addVec(SwsVector *a, SwsVector *b)
  1891. {
  1892. SwsVector *sum = sws_sumVec(a, b);
  1893. if (!sum) {
  1894. makenan_vec(a);
  1895. return;
  1896. }
  1897. av_free(a->coeff);
  1898. a->coeff = sum->coeff;
  1899. a->length = sum->length;
  1900. av_free(sum);
  1901. }
  1902. #if FF_API_SWS_VECTOR
  1903. void sws_subVec(SwsVector *a, SwsVector *b)
  1904. {
  1905. SwsVector *diff = sws_diffVec(a, b);
  1906. if (!diff) {
  1907. makenan_vec(a);
  1908. return;
  1909. }
  1910. av_free(a->coeff);
  1911. a->coeff = diff->coeff;
  1912. a->length = diff->length;
  1913. av_free(diff);
  1914. }
  1915. void sws_convVec(SwsVector *a, SwsVector *b)
  1916. {
  1917. SwsVector *conv = sws_getConvVec(a, b);
  1918. if (!conv) {
  1919. makenan_vec(a);
  1920. return;
  1921. }
  1922. av_free(a->coeff);
  1923. a->coeff = conv->coeff;
  1924. a->length = conv->length;
  1925. av_free(conv);
  1926. }
  1927. SwsVector *sws_cloneVec(SwsVector *a)
  1928. {
  1929. SwsVector *vec = sws_allocVec(a->length);
  1930. if (!vec)
  1931. return NULL;
  1932. memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
  1933. return vec;
  1934. }
  1935. #endif
  1936. /**
  1937. * Print with av_log() a textual representation of the vector a
  1938. * if log_level <= av_log_level.
  1939. */
  1940. #if !FF_API_SWS_VECTOR
  1941. static
  1942. #endif
  1943. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1944. {
  1945. int i;
  1946. double max = 0;
  1947. double min = 0;
  1948. double range;
  1949. for (i = 0; i < a->length; i++)
  1950. if (a->coeff[i] > max)
  1951. max = a->coeff[i];
  1952. for (i = 0; i < a->length; i++)
  1953. if (a->coeff[i] < min)
  1954. min = a->coeff[i];
  1955. range = max - min;
  1956. for (i = 0; i < a->length; i++) {
  1957. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1958. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1959. for (; x > 0; x--)
  1960. av_log(log_ctx, log_level, " ");
  1961. av_log(log_ctx, log_level, "|\n");
  1962. }
  1963. }
  1964. void sws_freeVec(SwsVector *a)
  1965. {
  1966. if (!a)
  1967. return;
  1968. av_freep(&a->coeff);
  1969. a->length = 0;
  1970. av_free(a);
  1971. }
  1972. void sws_freeFilter(SwsFilter *filter)
  1973. {
  1974. if (!filter)
  1975. return;
  1976. sws_freeVec(filter->lumH);
  1977. sws_freeVec(filter->lumV);
  1978. sws_freeVec(filter->chrH);
  1979. sws_freeVec(filter->chrV);
  1980. av_free(filter);
  1981. }
  1982. void sws_freeContext(SwsContext *c)
  1983. {
  1984. int i;
  1985. if (!c)
  1986. return;
  1987. for (i = 0; i < 4; i++)
  1988. av_freep(&c->dither_error[i]);
  1989. av_freep(&c->vLumFilter);
  1990. av_freep(&c->vChrFilter);
  1991. av_freep(&c->hLumFilter);
  1992. av_freep(&c->hChrFilter);
  1993. #if HAVE_ALTIVEC
  1994. av_freep(&c->vYCoeffsBank);
  1995. av_freep(&c->vCCoeffsBank);
  1996. #endif
  1997. av_freep(&c->vLumFilterPos);
  1998. av_freep(&c->vChrFilterPos);
  1999. av_freep(&c->hLumFilterPos);
  2000. av_freep(&c->hChrFilterPos);
  2001. #if HAVE_MMX_INLINE
  2002. #if USE_MMAP
  2003. if (c->lumMmxextFilterCode)
  2004. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  2005. if (c->chrMmxextFilterCode)
  2006. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  2007. #elif HAVE_VIRTUALALLOC
  2008. if (c->lumMmxextFilterCode)
  2009. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  2010. if (c->chrMmxextFilterCode)
  2011. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  2012. #else
  2013. av_free(c->lumMmxextFilterCode);
  2014. av_free(c->chrMmxextFilterCode);
  2015. #endif
  2016. c->lumMmxextFilterCode = NULL;
  2017. c->chrMmxextFilterCode = NULL;
  2018. #endif /* HAVE_MMX_INLINE */
  2019. av_freep(&c->yuvTable);
  2020. av_freep(&c->formatConvBuffer);
  2021. sws_freeContext(c->cascaded_context[0]);
  2022. sws_freeContext(c->cascaded_context[1]);
  2023. sws_freeContext(c->cascaded_context[2]);
  2024. memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
  2025. av_freep(&c->cascaded_tmp[0]);
  2026. av_freep(&c->cascaded1_tmp[0]);
  2027. av_freep(&c->gamma);
  2028. av_freep(&c->inv_gamma);
  2029. ff_free_filters(c);
  2030. av_free(c);
  2031. }
  2032. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  2033. int srcH, enum AVPixelFormat srcFormat,
  2034. int dstW, int dstH,
  2035. enum AVPixelFormat dstFormat, int flags,
  2036. SwsFilter *srcFilter,
  2037. SwsFilter *dstFilter,
  2038. const double *param)
  2039. {
  2040. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  2041. SWS_PARAM_DEFAULT };
  2042. int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
  2043. src_v_chr_pos = -513, dst_v_chr_pos = -513;
  2044. if (!param)
  2045. param = default_param;
  2046. if (context &&
  2047. (context->srcW != srcW ||
  2048. context->srcH != srcH ||
  2049. context->srcFormat != srcFormat ||
  2050. context->dstW != dstW ||
  2051. context->dstH != dstH ||
  2052. context->dstFormat != dstFormat ||
  2053. context->flags != flags ||
  2054. context->param[0] != param[0] ||
  2055. context->param[1] != param[1])) {
  2056. av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
  2057. av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
  2058. av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
  2059. av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
  2060. sws_freeContext(context);
  2061. context = NULL;
  2062. }
  2063. if (!context) {
  2064. if (!(context = sws_alloc_context()))
  2065. return NULL;
  2066. context->srcW = srcW;
  2067. context->srcH = srcH;
  2068. context->srcFormat = srcFormat;
  2069. context->dstW = dstW;
  2070. context->dstH = dstH;
  2071. context->dstFormat = dstFormat;
  2072. context->flags = flags;
  2073. context->param[0] = param[0];
  2074. context->param[1] = param[1];
  2075. av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
  2076. av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
  2077. av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
  2078. av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
  2079. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  2080. sws_freeContext(context);
  2081. return NULL;
  2082. }
  2083. }
  2084. return context;
  2085. }