You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2979 lines
118KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2011 Mashiat Sarker Shakkhar
  4. * Copyright (c) 2006-2007 Konstantin Shishkov
  5. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * VC-1 and WMV3 block decoding routines
  26. */
  27. #include "avcodec.h"
  28. #include "mpegutils.h"
  29. #include "mpegvideo.h"
  30. #include "msmpeg4data.h"
  31. #include "unary.h"
  32. #include "vc1.h"
  33. #include "vc1_pred.h"
  34. #include "vc1acdata.h"
  35. #include "vc1data.h"
  36. #define MB_INTRA_VLC_BITS 9
  37. #define DC_VLC_BITS 9
  38. // offset tables for interlaced picture MVDATA decoding
  39. static const uint8_t offset_table[2][9] = {
  40. { 0, 1, 2, 4, 8, 16, 32, 64, 128 },
  41. { 0, 1, 3, 7, 15, 31, 63, 127, 255 },
  42. };
  43. /***********************************************************************/
  44. /**
  45. * @name VC-1 Bitplane decoding
  46. * @see 8.7, p56
  47. * @{
  48. */
  49. static inline void init_block_index(VC1Context *v)
  50. {
  51. MpegEncContext *s = &v->s;
  52. ff_init_block_index(s);
  53. if (v->field_mode && !(v->second_field ^ v->tff)) {
  54. s->dest[0] += s->current_picture_ptr->f->linesize[0];
  55. s->dest[1] += s->current_picture_ptr->f->linesize[1];
  56. s->dest[2] += s->current_picture_ptr->f->linesize[2];
  57. }
  58. }
  59. /** @} */ //Bitplane group
  60. static void vc1_put_signed_blocks_clamped(VC1Context *v)
  61. {
  62. MpegEncContext *s = &v->s;
  63. int topleft_mb_pos, top_mb_pos;
  64. int stride_y, fieldtx = 0;
  65. int v_dist;
  66. /* The put pixels loop is always one MB row behind the decoding loop,
  67. * because we can only put pixels when overlap filtering is done, and
  68. * for filtering of the bottom edge of a MB, we need the next MB row
  69. * present as well.
  70. * Within the row, the put pixels loop is also one MB col behind the
  71. * decoding loop. The reason for this is again, because for filtering
  72. * of the right MB edge, we need the next MB present. */
  73. if (!s->first_slice_line) {
  74. if (s->mb_x) {
  75. topleft_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x - 1;
  76. if (v->fcm == ILACE_FRAME)
  77. fieldtx = v->fieldtx_plane[topleft_mb_pos];
  78. stride_y = s->linesize << fieldtx;
  79. v_dist = (16 - fieldtx) >> (fieldtx == 0);
  80. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][0],
  81. s->dest[0] - 16 * s->linesize - 16,
  82. stride_y);
  83. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][1],
  84. s->dest[0] - 16 * s->linesize - 8,
  85. stride_y);
  86. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][2],
  87. s->dest[0] - v_dist * s->linesize - 16,
  88. stride_y);
  89. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][3],
  90. s->dest[0] - v_dist * s->linesize - 8,
  91. stride_y);
  92. if (!CONFIG_GRAY || !(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
  93. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][4],
  94. s->dest[1] - 8 * s->uvlinesize - 8,
  95. s->uvlinesize);
  96. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][5],
  97. s->dest[2] - 8 * s->uvlinesize - 8,
  98. s->uvlinesize);
  99. }
  100. }
  101. if (s->mb_x == s->mb_width - 1) {
  102. top_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x;
  103. if (v->fcm == ILACE_FRAME)
  104. fieldtx = v->fieldtx_plane[top_mb_pos];
  105. stride_y = s->linesize << fieldtx;
  106. v_dist = fieldtx ? 15 : 8;
  107. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][0],
  108. s->dest[0] - 16 * s->linesize,
  109. stride_y);
  110. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][1],
  111. s->dest[0] - 16 * s->linesize + 8,
  112. stride_y);
  113. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][2],
  114. s->dest[0] - v_dist * s->linesize,
  115. stride_y);
  116. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][3],
  117. s->dest[0] - v_dist * s->linesize + 8,
  118. stride_y);
  119. if (!CONFIG_GRAY || !(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
  120. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][4],
  121. s->dest[1] - 8 * s->uvlinesize,
  122. s->uvlinesize);
  123. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][5],
  124. s->dest[2] - 8 * s->uvlinesize,
  125. s->uvlinesize);
  126. }
  127. }
  128. }
  129. }
  130. #define inc_blk_idx(idx) do { \
  131. idx++; \
  132. if (idx >= v->n_allocated_blks) \
  133. idx = 0; \
  134. } while (0)
  135. /***********************************************************************/
  136. /**
  137. * @name VC-1 Block-level functions
  138. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  139. * @{
  140. */
  141. /**
  142. * @def GET_MQUANT
  143. * @brief Get macroblock-level quantizer scale
  144. */
  145. #define GET_MQUANT() \
  146. if (v->dquantfrm) { \
  147. int edges = 0; \
  148. if (v->dqprofile == DQPROFILE_ALL_MBS) { \
  149. if (v->dqbilevel) { \
  150. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  151. } else { \
  152. mqdiff = get_bits(gb, 3); \
  153. if (mqdiff != 7) \
  154. mquant = v->pq + mqdiff; \
  155. else \
  156. mquant = get_bits(gb, 5); \
  157. } \
  158. } \
  159. if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  160. edges = 1 << v->dqsbedge; \
  161. else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  162. edges = (3 << v->dqsbedge) % 15; \
  163. else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
  164. edges = 15; \
  165. if ((edges&1) && !s->mb_x) \
  166. mquant = v->altpq; \
  167. if ((edges&2) && s->first_slice_line) \
  168. mquant = v->altpq; \
  169. if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
  170. mquant = v->altpq; \
  171. if ((edges&8) && s->mb_y == (s->mb_height - 1)) \
  172. mquant = v->altpq; \
  173. if (!mquant || mquant > 31) { \
  174. av_log(v->s.avctx, AV_LOG_ERROR, \
  175. "Overriding invalid mquant %d\n", mquant); \
  176. mquant = 1; \
  177. } \
  178. }
  179. /**
  180. * @def GET_MVDATA(_dmv_x, _dmv_y)
  181. * @brief Get MV differentials
  182. * @see MVDATA decoding from 8.3.5.2, p(1)20
  183. * @param _dmv_x Horizontal differential for decoded MV
  184. * @param _dmv_y Vertical differential for decoded MV
  185. */
  186. #define GET_MVDATA(_dmv_x, _dmv_y) \
  187. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
  188. VC1_MV_DIFF_VLC_BITS, 2); \
  189. if (index > 36) { \
  190. mb_has_coeffs = 1; \
  191. index -= 37; \
  192. } else \
  193. mb_has_coeffs = 0; \
  194. s->mb_intra = 0; \
  195. if (!index) { \
  196. _dmv_x = _dmv_y = 0; \
  197. } else if (index == 35) { \
  198. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  199. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  200. } else if (index == 36) { \
  201. _dmv_x = 0; \
  202. _dmv_y = 0; \
  203. s->mb_intra = 1; \
  204. } else { \
  205. index1 = index % 6; \
  206. _dmv_x = offset_table[1][index1]; \
  207. val = size_table[index1] - (!s->quarter_sample && index1 == 5); \
  208. if (val > 0) { \
  209. val = get_bits(gb, val); \
  210. sign = 0 - (val & 1); \
  211. _dmv_x = (sign ^ ((val >> 1) + _dmv_x)) - sign; \
  212. } \
  213. \
  214. index1 = index / 6; \
  215. _dmv_y = offset_table[1][index1]; \
  216. val = size_table[index1] - (!s->quarter_sample && index1 == 5); \
  217. if (val > 0) { \
  218. val = get_bits(gb, val); \
  219. sign = 0 - (val & 1); \
  220. _dmv_y = (sign ^ ((val >> 1) + _dmv_y)) - sign; \
  221. } \
  222. }
  223. static av_always_inline void get_mvdata_interlaced(VC1Context *v, int *dmv_x,
  224. int *dmv_y, int *pred_flag)
  225. {
  226. int index, index1;
  227. int extend_x, extend_y;
  228. GetBitContext *gb = &v->s.gb;
  229. int bits, esc;
  230. int val, sign;
  231. if (v->numref) {
  232. bits = VC1_2REF_MVDATA_VLC_BITS;
  233. esc = 125;
  234. } else {
  235. bits = VC1_1REF_MVDATA_VLC_BITS;
  236. esc = 71;
  237. }
  238. extend_x = v->dmvrange & 1;
  239. extend_y = (v->dmvrange >> 1) & 1;
  240. index = get_vlc2(gb, v->imv_vlc->table, bits, 3);
  241. if (index == esc) {
  242. *dmv_x = get_bits(gb, v->k_x);
  243. *dmv_y = get_bits(gb, v->k_y);
  244. if (v->numref) {
  245. if (pred_flag)
  246. *pred_flag = *dmv_y & 1;
  247. *dmv_y = (*dmv_y + (*dmv_y & 1)) >> 1;
  248. }
  249. }
  250. else {
  251. av_assert0(index < esc);
  252. index1 = (index + 1) % 9;
  253. if (index1 != 0) {
  254. val = get_bits(gb, index1 + extend_x);
  255. sign = 0 - (val & 1);
  256. *dmv_x = (sign ^ ((val >> 1) + offset_table[extend_x][index1])) - sign;
  257. } else
  258. *dmv_x = 0;
  259. index1 = (index + 1) / 9;
  260. if (index1 > v->numref) {
  261. val = get_bits(gb, (index1 >> v->numref) + extend_y);
  262. sign = 0 - (val & 1);
  263. *dmv_y = (sign ^ ((val >> 1) + offset_table[extend_y][index1 >> v->numref])) - sign;
  264. } else
  265. *dmv_y = 0;
  266. if (v->numref && pred_flag)
  267. *pred_flag = index1 & 1;
  268. }
  269. }
  270. /** Reconstruct motion vector for B-frame and do motion compensation
  271. */
  272. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2],
  273. int direct, int mode)
  274. {
  275. if (direct) {
  276. ff_vc1_mc_1mv(v, 0);
  277. ff_vc1_interp_mc(v);
  278. return;
  279. }
  280. if (mode == BMV_TYPE_INTERPOLATED) {
  281. ff_vc1_mc_1mv(v, 0);
  282. ff_vc1_interp_mc(v);
  283. return;
  284. }
  285. ff_vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  286. }
  287. /** Get predicted DC value for I-frames only
  288. * prediction dir: left=0, top=1
  289. * @param s MpegEncContext
  290. * @param overlap flag indicating that overlap filtering is used
  291. * @param pq integer part of picture quantizer
  292. * @param[in] n block index in the current MB
  293. * @param dc_val_ptr Pointer to DC predictor
  294. * @param dir_ptr Prediction direction for use in AC prediction
  295. */
  296. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  297. int16_t **dc_val_ptr, int *dir_ptr)
  298. {
  299. int a, b, c, wrap, pred, scale;
  300. int16_t *dc_val;
  301. static const uint16_t dcpred[32] = {
  302. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  303. 114, 102, 93, 85, 79, 73, 68, 64,
  304. 60, 57, 54, 51, 49, 47, 45, 43,
  305. 41, 39, 38, 37, 35, 34, 33
  306. };
  307. /* find prediction - wmv3_dc_scale always used here in fact */
  308. if (n < 4) scale = s->y_dc_scale;
  309. else scale = s->c_dc_scale;
  310. wrap = s->block_wrap[n];
  311. dc_val = s->dc_val[0] + s->block_index[n];
  312. /* B A
  313. * C X
  314. */
  315. c = dc_val[ - 1];
  316. b = dc_val[ - 1 - wrap];
  317. a = dc_val[ - wrap];
  318. if (pq < 9 || !overlap) {
  319. /* Set outer values */
  320. if (s->first_slice_line && (n != 2 && n != 3))
  321. b = a = dcpred[scale];
  322. if (s->mb_x == 0 && (n != 1 && n != 3))
  323. b = c = dcpred[scale];
  324. } else {
  325. /* Set outer values */
  326. if (s->first_slice_line && (n != 2 && n != 3))
  327. b = a = 0;
  328. if (s->mb_x == 0 && (n != 1 && n != 3))
  329. b = c = 0;
  330. }
  331. if (abs(a - b) <= abs(b - c)) {
  332. pred = c;
  333. *dir_ptr = 1; // left
  334. } else {
  335. pred = a;
  336. *dir_ptr = 0; // top
  337. }
  338. /* update predictor */
  339. *dc_val_ptr = &dc_val[0];
  340. return pred;
  341. }
  342. /** Get predicted DC value
  343. * prediction dir: left=0, top=1
  344. * @param s MpegEncContext
  345. * @param overlap flag indicating that overlap filtering is used
  346. * @param pq integer part of picture quantizer
  347. * @param[in] n block index in the current MB
  348. * @param a_avail flag indicating top block availability
  349. * @param c_avail flag indicating left block availability
  350. * @param dc_val_ptr Pointer to DC predictor
  351. * @param dir_ptr Prediction direction for use in AC prediction
  352. */
  353. static inline int ff_vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  354. int a_avail, int c_avail,
  355. int16_t **dc_val_ptr, int *dir_ptr)
  356. {
  357. int a, b, c, wrap, pred;
  358. int16_t *dc_val;
  359. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  360. int q1, q2 = 0;
  361. int dqscale_index;
  362. /* scale predictors if needed */
  363. q1 = s->current_picture.qscale_table[mb_pos];
  364. dqscale_index = s->y_dc_scale_table[q1] - 1;
  365. if (dqscale_index < 0)
  366. return 0;
  367. wrap = s->block_wrap[n];
  368. dc_val = s->dc_val[0] + s->block_index[n];
  369. /* B A
  370. * C X
  371. */
  372. c = dc_val[ - 1];
  373. b = dc_val[ - 1 - wrap];
  374. a = dc_val[ - wrap];
  375. if (c_avail && (n != 1 && n != 3)) {
  376. q2 = s->current_picture.qscale_table[mb_pos - 1];
  377. if (q2 && q2 != q1)
  378. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  379. }
  380. if (a_avail && (n != 2 && n != 3)) {
  381. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  382. if (q2 && q2 != q1)
  383. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  384. }
  385. if (a_avail && c_avail && (n != 3)) {
  386. int off = mb_pos;
  387. if (n != 1)
  388. off--;
  389. if (n != 2)
  390. off -= s->mb_stride;
  391. q2 = s->current_picture.qscale_table[off];
  392. if (q2 && q2 != q1)
  393. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  394. }
  395. if (c_avail && (!a_avail || abs(a - b) <= abs(b - c))) {
  396. pred = c;
  397. *dir_ptr = 1; // left
  398. } else if (a_avail) {
  399. pred = a;
  400. *dir_ptr = 0; // top
  401. } else {
  402. pred = 0;
  403. *dir_ptr = 1; // left
  404. }
  405. /* update predictor */
  406. *dc_val_ptr = &dc_val[0];
  407. return pred;
  408. }
  409. /** @} */ // Block group
  410. /**
  411. * @name VC1 Macroblock-level functions in Simple/Main Profiles
  412. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  413. * @{
  414. */
  415. static inline int vc1_coded_block_pred(MpegEncContext * s, int n,
  416. uint8_t **coded_block_ptr)
  417. {
  418. int xy, wrap, pred, a, b, c;
  419. xy = s->block_index[n];
  420. wrap = s->b8_stride;
  421. /* B C
  422. * A X
  423. */
  424. a = s->coded_block[xy - 1 ];
  425. b = s->coded_block[xy - 1 - wrap];
  426. c = s->coded_block[xy - wrap];
  427. if (b == c) {
  428. pred = a;
  429. } else {
  430. pred = c;
  431. }
  432. /* store value */
  433. *coded_block_ptr = &s->coded_block[xy];
  434. return pred;
  435. }
  436. /**
  437. * Decode one AC coefficient
  438. * @param v The VC1 context
  439. * @param last Last coefficient
  440. * @param skip How much zero coefficients to skip
  441. * @param value Decoded AC coefficient value
  442. * @param codingset set of VLC to decode data
  443. * @see 8.1.3.4
  444. */
  445. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip,
  446. int *value, int codingset)
  447. {
  448. GetBitContext *gb = &v->s.gb;
  449. int index, run, level, lst, sign;
  450. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  451. if (index != ff_vc1_ac_sizes[codingset] - 1) {
  452. run = vc1_index_decode_table[codingset][index][0];
  453. level = vc1_index_decode_table[codingset][index][1];
  454. lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
  455. sign = get_bits1(gb);
  456. } else {
  457. int escape = decode210(gb);
  458. if (escape != 2) {
  459. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  460. run = vc1_index_decode_table[codingset][index][0];
  461. level = vc1_index_decode_table[codingset][index][1];
  462. lst = index >= vc1_last_decode_table[codingset];
  463. if (escape == 0) {
  464. if (lst)
  465. level += vc1_last_delta_level_table[codingset][run];
  466. else
  467. level += vc1_delta_level_table[codingset][run];
  468. } else {
  469. if (lst)
  470. run += vc1_last_delta_run_table[codingset][level] + 1;
  471. else
  472. run += vc1_delta_run_table[codingset][level] + 1;
  473. }
  474. sign = get_bits1(gb);
  475. } else {
  476. lst = get_bits1(gb);
  477. if (v->s.esc3_level_length == 0) {
  478. if (v->pq < 8 || v->dquantfrm) { // table 59
  479. v->s.esc3_level_length = get_bits(gb, 3);
  480. if (!v->s.esc3_level_length)
  481. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  482. } else { // table 60
  483. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  484. }
  485. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  486. }
  487. run = get_bits(gb, v->s.esc3_run_length);
  488. sign = get_bits1(gb);
  489. level = get_bits(gb, v->s.esc3_level_length);
  490. }
  491. }
  492. *last = lst;
  493. *skip = run;
  494. *value = (level ^ -sign) + sign;
  495. }
  496. /** Decode intra block in intra frames - should be faster than decode_intra_block
  497. * @param v VC1Context
  498. * @param block block to decode
  499. * @param[in] n subblock index
  500. * @param coded are AC coeffs present or not
  501. * @param codingset set of VLC to decode data
  502. */
  503. static int vc1_decode_i_block(VC1Context *v, int16_t block[64], int n,
  504. int coded, int codingset)
  505. {
  506. GetBitContext *gb = &v->s.gb;
  507. MpegEncContext *s = &v->s;
  508. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  509. int i;
  510. int16_t *dc_val;
  511. int16_t *ac_val, *ac_val2;
  512. int dcdiff, scale;
  513. /* Get DC differential */
  514. if (n < 4) {
  515. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  516. } else {
  517. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  518. }
  519. if (dcdiff < 0) {
  520. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  521. return -1;
  522. }
  523. if (dcdiff) {
  524. const int m = (v->pq == 1 || v->pq == 2) ? 3 - v->pq : 0;
  525. if (dcdiff == 119 /* ESC index value */) {
  526. dcdiff = get_bits(gb, 8 + m);
  527. } else {
  528. if (m)
  529. dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
  530. }
  531. if (get_bits1(gb))
  532. dcdiff = -dcdiff;
  533. }
  534. /* Prediction */
  535. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  536. *dc_val = dcdiff;
  537. /* Store the quantized DC coeff, used for prediction */
  538. if (n < 4)
  539. scale = s->y_dc_scale;
  540. else
  541. scale = s->c_dc_scale;
  542. block[0] = dcdiff * scale;
  543. ac_val = s->ac_val[0][s->block_index[n]];
  544. ac_val2 = ac_val;
  545. if (dc_pred_dir) // left
  546. ac_val -= 16;
  547. else // top
  548. ac_val -= 16 * s->block_wrap[n];
  549. scale = v->pq * 2 + v->halfpq;
  550. //AC Decoding
  551. i = !!coded;
  552. if (coded) {
  553. int last = 0, skip, value;
  554. const uint8_t *zz_table;
  555. int k;
  556. if (v->s.ac_pred) {
  557. if (!dc_pred_dir)
  558. zz_table = v->zz_8x8[2];
  559. else
  560. zz_table = v->zz_8x8[3];
  561. } else
  562. zz_table = v->zz_8x8[1];
  563. while (!last) {
  564. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  565. i += skip;
  566. if (i > 63)
  567. break;
  568. block[zz_table[i++]] = value;
  569. }
  570. /* apply AC prediction if needed */
  571. if (s->ac_pred) {
  572. int sh;
  573. if (dc_pred_dir) { // left
  574. sh = v->left_blk_sh;
  575. } else { // top
  576. sh = v->top_blk_sh;
  577. ac_val += 8;
  578. }
  579. for (k = 1; k < 8; k++)
  580. block[k << sh] += ac_val[k];
  581. }
  582. /* save AC coeffs for further prediction */
  583. for (k = 1; k < 8; k++) {
  584. ac_val2[k] = block[k << v->left_blk_sh];
  585. ac_val2[k + 8] = block[k << v->top_blk_sh];
  586. }
  587. /* scale AC coeffs */
  588. for (k = 1; k < 64; k++)
  589. if (block[k]) {
  590. block[k] *= scale;
  591. if (!v->pquantizer)
  592. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  593. }
  594. } else {
  595. int k;
  596. memset(ac_val2, 0, 16 * 2);
  597. /* apply AC prediction if needed */
  598. if (s->ac_pred) {
  599. int sh;
  600. if (dc_pred_dir) { //left
  601. sh = v->left_blk_sh;
  602. } else { // top
  603. sh = v->top_blk_sh;
  604. ac_val += 8;
  605. ac_val2 += 8;
  606. }
  607. memcpy(ac_val2, ac_val, 8 * 2);
  608. for (k = 1; k < 8; k++) {
  609. block[k << sh] = ac_val[k] * scale;
  610. if (!v->pquantizer && block[k << sh])
  611. block[k << sh] += (block[k << sh] < 0) ? -v->pq : v->pq;
  612. }
  613. }
  614. }
  615. if (s->ac_pred) i = 63;
  616. s->block_last_index[n] = i;
  617. return 0;
  618. }
  619. /** Decode intra block in intra frames - should be faster than decode_intra_block
  620. * @param v VC1Context
  621. * @param block block to decode
  622. * @param[in] n subblock number
  623. * @param coded are AC coeffs present or not
  624. * @param codingset set of VLC to decode data
  625. * @param mquant quantizer value for this macroblock
  626. */
  627. static int vc1_decode_i_block_adv(VC1Context *v, int16_t block[64], int n,
  628. int coded, int codingset, int mquant)
  629. {
  630. GetBitContext *gb = &v->s.gb;
  631. MpegEncContext *s = &v->s;
  632. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  633. int i;
  634. int16_t *dc_val = NULL;
  635. int16_t *ac_val, *ac_val2;
  636. int dcdiff;
  637. int a_avail = v->a_avail, c_avail = v->c_avail;
  638. int use_pred = s->ac_pred;
  639. int scale;
  640. int q1, q2 = 0;
  641. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  642. /* Get DC differential */
  643. if (n < 4) {
  644. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  645. } else {
  646. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  647. }
  648. if (dcdiff < 0) {
  649. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  650. return -1;
  651. }
  652. if (dcdiff) {
  653. const int m = (mquant == 1 || mquant == 2) ? 3 - mquant : 0;
  654. if (dcdiff == 119 /* ESC index value */) {
  655. dcdiff = get_bits(gb, 8 + m);
  656. } else {
  657. if (m)
  658. dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
  659. }
  660. if (get_bits1(gb))
  661. dcdiff = -dcdiff;
  662. }
  663. /* Prediction */
  664. dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  665. *dc_val = dcdiff;
  666. /* Store the quantized DC coeff, used for prediction */
  667. if (n < 4)
  668. scale = s->y_dc_scale;
  669. else
  670. scale = s->c_dc_scale;
  671. block[0] = dcdiff * scale;
  672. /* check if AC is needed at all */
  673. if (!a_avail && !c_avail)
  674. use_pred = 0;
  675. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  676. ac_val = s->ac_val[0][s->block_index[n]];
  677. ac_val2 = ac_val;
  678. if (dc_pred_dir) // left
  679. ac_val -= 16;
  680. else // top
  681. ac_val -= 16 * s->block_wrap[n];
  682. q1 = s->current_picture.qscale_table[mb_pos];
  683. if (n == 3)
  684. q2 = q1;
  685. else if (dc_pred_dir) {
  686. if (n == 1)
  687. q2 = q1;
  688. else if (c_avail && mb_pos)
  689. q2 = s->current_picture.qscale_table[mb_pos - 1];
  690. } else {
  691. if (n == 2)
  692. q2 = q1;
  693. else if (a_avail && mb_pos >= s->mb_stride)
  694. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  695. }
  696. //AC Decoding
  697. i = 1;
  698. if (coded) {
  699. int last = 0, skip, value;
  700. const uint8_t *zz_table;
  701. int k;
  702. if (v->s.ac_pred) {
  703. if (!use_pred && v->fcm == ILACE_FRAME) {
  704. zz_table = v->zzi_8x8;
  705. } else {
  706. if (!dc_pred_dir) // top
  707. zz_table = v->zz_8x8[2];
  708. else // left
  709. zz_table = v->zz_8x8[3];
  710. }
  711. } else {
  712. if (v->fcm != ILACE_FRAME)
  713. zz_table = v->zz_8x8[1];
  714. else
  715. zz_table = v->zzi_8x8;
  716. }
  717. while (!last) {
  718. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  719. i += skip;
  720. if (i > 63)
  721. break;
  722. block[zz_table[i++]] = value;
  723. }
  724. /* apply AC prediction if needed */
  725. if (use_pred) {
  726. int sh;
  727. if (dc_pred_dir) { // left
  728. sh = v->left_blk_sh;
  729. } else { // top
  730. sh = v->top_blk_sh;
  731. ac_val += 8;
  732. }
  733. /* scale predictors if needed*/
  734. if (q2 && q1 != q2) {
  735. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  736. if (q1 < 1)
  737. return AVERROR_INVALIDDATA;
  738. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  739. for (k = 1; k < 8; k++)
  740. block[k << sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  741. } else {
  742. for (k = 1; k < 8; k++)
  743. block[k << sh] += ac_val[k];
  744. }
  745. }
  746. /* save AC coeffs for further prediction */
  747. for (k = 1; k < 8; k++) {
  748. ac_val2[k ] = block[k << v->left_blk_sh];
  749. ac_val2[k + 8] = block[k << v->top_blk_sh];
  750. }
  751. /* scale AC coeffs */
  752. for (k = 1; k < 64; k++)
  753. if (block[k]) {
  754. block[k] *= scale;
  755. if (!v->pquantizer)
  756. block[k] += (block[k] < 0) ? -mquant : mquant;
  757. }
  758. } else { // no AC coeffs
  759. int k;
  760. memset(ac_val2, 0, 16 * 2);
  761. /* apply AC prediction if needed */
  762. if (use_pred) {
  763. int sh;
  764. if (dc_pred_dir) { // left
  765. sh = v->left_blk_sh;
  766. } else { // top
  767. sh = v->top_blk_sh;
  768. ac_val += 8;
  769. ac_val2 += 8;
  770. }
  771. memcpy(ac_val2, ac_val, 8 * 2);
  772. if (q2 && q1 != q2) {
  773. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  774. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  775. if (q1 < 1)
  776. return AVERROR_INVALIDDATA;
  777. for (k = 1; k < 8; k++)
  778. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  779. }
  780. for (k = 1; k < 8; k++) {
  781. block[k << sh] = ac_val2[k] * scale;
  782. if (!v->pquantizer && block[k << sh])
  783. block[k << sh] += (block[k << sh] < 0) ? -mquant : mquant;
  784. }
  785. }
  786. }
  787. if (use_pred) i = 63;
  788. s->block_last_index[n] = i;
  789. return 0;
  790. }
  791. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  792. * @param v VC1Context
  793. * @param block block to decode
  794. * @param[in] n subblock index
  795. * @param coded are AC coeffs present or not
  796. * @param mquant block quantizer
  797. * @param codingset set of VLC to decode data
  798. */
  799. static int vc1_decode_intra_block(VC1Context *v, int16_t block[64], int n,
  800. int coded, int mquant, int codingset)
  801. {
  802. GetBitContext *gb = &v->s.gb;
  803. MpegEncContext *s = &v->s;
  804. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  805. int i;
  806. int16_t *dc_val = NULL;
  807. int16_t *ac_val, *ac_val2;
  808. int dcdiff;
  809. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  810. int a_avail = v->a_avail, c_avail = v->c_avail;
  811. int use_pred = s->ac_pred;
  812. int scale;
  813. int q1, q2 = 0;
  814. s->bdsp.clear_block(block);
  815. /* XXX: Guard against dumb values of mquant */
  816. mquant = av_clip_uintp2(mquant, 5);
  817. /* Set DC scale - y and c use the same */
  818. s->y_dc_scale = s->y_dc_scale_table[mquant];
  819. s->c_dc_scale = s->c_dc_scale_table[mquant];
  820. /* Get DC differential */
  821. if (n < 4) {
  822. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  823. } else {
  824. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  825. }
  826. if (dcdiff < 0) {
  827. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  828. return -1;
  829. }
  830. if (dcdiff) {
  831. const int m = (mquant == 1 || mquant == 2) ? 3 - mquant : 0;
  832. if (dcdiff == 119 /* ESC index value */) {
  833. dcdiff = get_bits(gb, 8 + m);
  834. } else {
  835. if (m)
  836. dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
  837. }
  838. if (get_bits1(gb))
  839. dcdiff = -dcdiff;
  840. }
  841. /* Prediction */
  842. dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  843. *dc_val = dcdiff;
  844. /* Store the quantized DC coeff, used for prediction */
  845. if (n < 4) {
  846. block[0] = dcdiff * s->y_dc_scale;
  847. } else {
  848. block[0] = dcdiff * s->c_dc_scale;
  849. }
  850. //AC Decoding
  851. i = 1;
  852. /* check if AC is needed at all and adjust direction if needed */
  853. if (!a_avail) dc_pred_dir = 1;
  854. if (!c_avail) dc_pred_dir = 0;
  855. if (!a_avail && !c_avail) use_pred = 0;
  856. ac_val = s->ac_val[0][s->block_index[n]];
  857. ac_val2 = ac_val;
  858. scale = mquant * 2 + v->halfpq;
  859. if (dc_pred_dir) //left
  860. ac_val -= 16;
  861. else //top
  862. ac_val -= 16 * s->block_wrap[n];
  863. q1 = s->current_picture.qscale_table[mb_pos];
  864. if (dc_pred_dir && c_avail && mb_pos)
  865. q2 = s->current_picture.qscale_table[mb_pos - 1];
  866. if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
  867. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  868. if (dc_pred_dir && n == 1)
  869. q2 = q1;
  870. if (!dc_pred_dir && n == 2)
  871. q2 = q1;
  872. if (n == 3) q2 = q1;
  873. if (coded) {
  874. int last = 0, skip, value;
  875. int k;
  876. while (!last) {
  877. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  878. i += skip;
  879. if (i > 63)
  880. break;
  881. if (v->fcm == PROGRESSIVE)
  882. block[v->zz_8x8[0][i++]] = value;
  883. else {
  884. if (use_pred && (v->fcm == ILACE_FRAME)) {
  885. if (!dc_pred_dir) // top
  886. block[v->zz_8x8[2][i++]] = value;
  887. else // left
  888. block[v->zz_8x8[3][i++]] = value;
  889. } else {
  890. block[v->zzi_8x8[i++]] = value;
  891. }
  892. }
  893. }
  894. /* apply AC prediction if needed */
  895. if (use_pred) {
  896. /* scale predictors if needed*/
  897. if (q2 && q1 != q2) {
  898. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  899. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  900. if (q1 < 1)
  901. return AVERROR_INVALIDDATA;
  902. if (dc_pred_dir) { // left
  903. for (k = 1; k < 8; k++)
  904. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  905. } else { //top
  906. for (k = 1; k < 8; k++)
  907. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  908. }
  909. } else {
  910. if (dc_pred_dir) { // left
  911. for (k = 1; k < 8; k++)
  912. block[k << v->left_blk_sh] += ac_val[k];
  913. } else { // top
  914. for (k = 1; k < 8; k++)
  915. block[k << v->top_blk_sh] += ac_val[k + 8];
  916. }
  917. }
  918. }
  919. /* save AC coeffs for further prediction */
  920. for (k = 1; k < 8; k++) {
  921. ac_val2[k ] = block[k << v->left_blk_sh];
  922. ac_val2[k + 8] = block[k << v->top_blk_sh];
  923. }
  924. /* scale AC coeffs */
  925. for (k = 1; k < 64; k++)
  926. if (block[k]) {
  927. block[k] *= scale;
  928. if (!v->pquantizer)
  929. block[k] += (block[k] < 0) ? -mquant : mquant;
  930. }
  931. if (use_pred) i = 63;
  932. } else { // no AC coeffs
  933. int k;
  934. memset(ac_val2, 0, 16 * 2);
  935. if (dc_pred_dir) { // left
  936. if (use_pred) {
  937. memcpy(ac_val2, ac_val, 8 * 2);
  938. if (q2 && q1 != q2) {
  939. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  940. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  941. if (q1 < 1)
  942. return AVERROR_INVALIDDATA;
  943. for (k = 1; k < 8; k++)
  944. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  945. }
  946. }
  947. } else { // top
  948. if (use_pred) {
  949. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  950. if (q2 && q1 != q2) {
  951. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  952. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  953. if (q1 < 1)
  954. return AVERROR_INVALIDDATA;
  955. for (k = 1; k < 8; k++)
  956. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  957. }
  958. }
  959. }
  960. /* apply AC prediction if needed */
  961. if (use_pred) {
  962. if (dc_pred_dir) { // left
  963. for (k = 1; k < 8; k++) {
  964. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  965. if (!v->pquantizer && block[k << v->left_blk_sh])
  966. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
  967. }
  968. } else { // top
  969. for (k = 1; k < 8; k++) {
  970. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  971. if (!v->pquantizer && block[k << v->top_blk_sh])
  972. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
  973. }
  974. }
  975. i = 63;
  976. }
  977. }
  978. s->block_last_index[n] = i;
  979. return 0;
  980. }
  981. /** Decode P block
  982. */
  983. static int vc1_decode_p_block(VC1Context *v, int16_t block[64], int n,
  984. int mquant, int ttmb, int first_block,
  985. uint8_t *dst, int linesize, int skip_block,
  986. int *ttmb_out)
  987. {
  988. MpegEncContext *s = &v->s;
  989. GetBitContext *gb = &s->gb;
  990. int i, j;
  991. int subblkpat = 0;
  992. int scale, off, idx, last, skip, value;
  993. int ttblk = ttmb & 7;
  994. int pat = 0;
  995. s->bdsp.clear_block(block);
  996. if (ttmb == -1) {
  997. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  998. }
  999. if (ttblk == TT_4X4) {
  1000. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  1001. }
  1002. if ((ttblk != TT_8X8 && ttblk != TT_4X4)
  1003. && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
  1004. || (!v->res_rtm_flag && !first_block))) {
  1005. subblkpat = decode012(gb);
  1006. if (subblkpat)
  1007. subblkpat ^= 3; // swap decoded pattern bits
  1008. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM)
  1009. ttblk = TT_8X4;
  1010. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT)
  1011. ttblk = TT_4X8;
  1012. }
  1013. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  1014. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  1015. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  1016. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  1017. ttblk = TT_8X4;
  1018. }
  1019. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  1020. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  1021. ttblk = TT_4X8;
  1022. }
  1023. switch (ttblk) {
  1024. case TT_8X8:
  1025. pat = 0xF;
  1026. i = 0;
  1027. last = 0;
  1028. while (!last) {
  1029. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1030. i += skip;
  1031. if (i > 63)
  1032. break;
  1033. if (!v->fcm)
  1034. idx = v->zz_8x8[0][i++];
  1035. else
  1036. idx = v->zzi_8x8[i++];
  1037. block[idx] = value * scale;
  1038. if (!v->pquantizer)
  1039. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1040. }
  1041. if (!skip_block) {
  1042. if (i == 1)
  1043. v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
  1044. else {
  1045. v->vc1dsp.vc1_inv_trans_8x8(block);
  1046. s->idsp.add_pixels_clamped(block, dst, linesize);
  1047. }
  1048. }
  1049. break;
  1050. case TT_4X4:
  1051. pat = ~subblkpat & 0xF;
  1052. for (j = 0; j < 4; j++) {
  1053. last = subblkpat & (1 << (3 - j));
  1054. i = 0;
  1055. off = (j & 1) * 4 + (j & 2) * 16;
  1056. while (!last) {
  1057. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1058. i += skip;
  1059. if (i > 15)
  1060. break;
  1061. if (!v->fcm)
  1062. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  1063. else
  1064. idx = ff_vc1_adv_interlaced_4x4_zz[i++];
  1065. block[idx + off] = value * scale;
  1066. if (!v->pquantizer)
  1067. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  1068. }
  1069. if (!(subblkpat & (1 << (3 - j))) && !skip_block) {
  1070. if (i == 1)
  1071. v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  1072. else
  1073. v->vc1dsp.vc1_inv_trans_4x4(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  1074. }
  1075. }
  1076. break;
  1077. case TT_8X4:
  1078. pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF;
  1079. for (j = 0; j < 2; j++) {
  1080. last = subblkpat & (1 << (1 - j));
  1081. i = 0;
  1082. off = j * 32;
  1083. while (!last) {
  1084. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1085. i += skip;
  1086. if (i > 31)
  1087. break;
  1088. if (!v->fcm)
  1089. idx = v->zz_8x4[i++] + off;
  1090. else
  1091. idx = ff_vc1_adv_interlaced_8x4_zz[i++] + off;
  1092. block[idx] = value * scale;
  1093. if (!v->pquantizer)
  1094. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1095. }
  1096. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  1097. if (i == 1)
  1098. v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j * 4 * linesize, linesize, block + off);
  1099. else
  1100. v->vc1dsp.vc1_inv_trans_8x4(dst + j * 4 * linesize, linesize, block + off);
  1101. }
  1102. }
  1103. break;
  1104. case TT_4X8:
  1105. pat = ~(subblkpat * 5) & 0xF;
  1106. for (j = 0; j < 2; j++) {
  1107. last = subblkpat & (1 << (1 - j));
  1108. i = 0;
  1109. off = j * 4;
  1110. while (!last) {
  1111. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1112. i += skip;
  1113. if (i > 31)
  1114. break;
  1115. if (!v->fcm)
  1116. idx = v->zz_4x8[i++] + off;
  1117. else
  1118. idx = ff_vc1_adv_interlaced_4x8_zz[i++] + off;
  1119. block[idx] = value * scale;
  1120. if (!v->pquantizer)
  1121. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1122. }
  1123. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  1124. if (i == 1)
  1125. v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j * 4, linesize, block + off);
  1126. else
  1127. v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  1128. }
  1129. }
  1130. break;
  1131. }
  1132. if (ttmb_out)
  1133. *ttmb_out |= ttblk << (n * 4);
  1134. return pat;
  1135. }
  1136. /** @} */ // Macroblock group
  1137. static const uint8_t size_table[6] = { 0, 2, 3, 4, 5, 8 };
  1138. /** Decode one P-frame MB
  1139. */
  1140. static int vc1_decode_p_mb(VC1Context *v)
  1141. {
  1142. MpegEncContext *s = &v->s;
  1143. GetBitContext *gb = &s->gb;
  1144. int i, j;
  1145. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1146. int cbp; /* cbp decoding stuff */
  1147. int mqdiff, mquant; /* MB quantization */
  1148. int ttmb = v->ttfrm; /* MB Transform type */
  1149. int mb_has_coeffs = 1; /* last_flag */
  1150. int dmv_x, dmv_y; /* Differential MV components */
  1151. int index, index1; /* LUT indexes */
  1152. int val, sign; /* temp values */
  1153. int first_block = 1;
  1154. int dst_idx, off;
  1155. int skipped, fourmv;
  1156. int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
  1157. mquant = v->pq; /* lossy initialization */
  1158. if (v->mv_type_is_raw)
  1159. fourmv = get_bits1(gb);
  1160. else
  1161. fourmv = v->mv_type_mb_plane[mb_pos];
  1162. if (v->skip_is_raw)
  1163. skipped = get_bits1(gb);
  1164. else
  1165. skipped = v->s.mbskip_table[mb_pos];
  1166. if (!fourmv) { /* 1MV mode */
  1167. if (!skipped) {
  1168. GET_MVDATA(dmv_x, dmv_y);
  1169. if (s->mb_intra) {
  1170. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  1171. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  1172. }
  1173. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  1174. ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1175. /* FIXME Set DC val for inter block ? */
  1176. if (s->mb_intra && !mb_has_coeffs) {
  1177. GET_MQUANT();
  1178. s->ac_pred = get_bits1(gb);
  1179. cbp = 0;
  1180. } else if (mb_has_coeffs) {
  1181. if (s->mb_intra)
  1182. s->ac_pred = get_bits1(gb);
  1183. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1184. GET_MQUANT();
  1185. } else {
  1186. mquant = v->pq;
  1187. cbp = 0;
  1188. }
  1189. s->current_picture.qscale_table[mb_pos] = mquant;
  1190. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  1191. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  1192. VC1_TTMB_VLC_BITS, 2);
  1193. if (!s->mb_intra) ff_vc1_mc_1mv(v, 0);
  1194. dst_idx = 0;
  1195. for (i = 0; i < 6; i++) {
  1196. s->dc_val[0][s->block_index[i]] = 0;
  1197. dst_idx += i >> 2;
  1198. val = ((cbp >> (5 - i)) & 1);
  1199. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1200. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  1201. if (s->mb_intra) {
  1202. /* check if prediction blocks A and C are available */
  1203. v->a_avail = v->c_avail = 0;
  1204. if (i == 2 || i == 3 || !s->first_slice_line)
  1205. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1206. if (i == 1 || i == 3 || s->mb_x)
  1207. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1208. vc1_decode_intra_block(v, v->block[v->cur_blk_idx][i], i, val, mquant,
  1209. (i & 4) ? v->codingset2 : v->codingset);
  1210. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1211. continue;
  1212. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][i]);
  1213. if (v->rangeredfrm)
  1214. for (j = 0; j < 64; j++)
  1215. v->block[v->cur_blk_idx][i][j] <<= 1;
  1216. s->idsp.put_signed_pixels_clamped(v->block[v->cur_blk_idx][i],
  1217. s->dest[dst_idx] + off,
  1218. i & 4 ? s->uvlinesize
  1219. : s->linesize);
  1220. if (v->pq >= 9 && v->overlap) {
  1221. if (v->c_avail)
  1222. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  1223. if (v->a_avail)
  1224. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  1225. }
  1226. block_cbp |= 0xF << (i << 2);
  1227. block_intra |= 1 << i;
  1228. } else if (val) {
  1229. pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][i], i, mquant, ttmb, first_block,
  1230. s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize,
  1231. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
  1232. block_cbp |= pat << (i << 2);
  1233. if (!v->ttmbf && ttmb < 8)
  1234. ttmb = -1;
  1235. first_block = 0;
  1236. }
  1237. }
  1238. } else { // skipped
  1239. s->mb_intra = 0;
  1240. for (i = 0; i < 6; i++) {
  1241. v->mb_type[0][s->block_index[i]] = 0;
  1242. s->dc_val[0][s->block_index[i]] = 0;
  1243. }
  1244. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  1245. s->current_picture.qscale_table[mb_pos] = 0;
  1246. ff_vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1247. ff_vc1_mc_1mv(v, 0);
  1248. }
  1249. } else { // 4MV mode
  1250. if (!skipped /* unskipped MB */) {
  1251. int intra_count = 0, coded_inter = 0;
  1252. int is_intra[6], is_coded[6];
  1253. /* Get CBPCY */
  1254. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1255. for (i = 0; i < 6; i++) {
  1256. val = ((cbp >> (5 - i)) & 1);
  1257. s->dc_val[0][s->block_index[i]] = 0;
  1258. s->mb_intra = 0;
  1259. if (i < 4) {
  1260. dmv_x = dmv_y = 0;
  1261. s->mb_intra = 0;
  1262. mb_has_coeffs = 0;
  1263. if (val) {
  1264. GET_MVDATA(dmv_x, dmv_y);
  1265. }
  1266. ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1267. if (!s->mb_intra)
  1268. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1269. intra_count += s->mb_intra;
  1270. is_intra[i] = s->mb_intra;
  1271. is_coded[i] = mb_has_coeffs;
  1272. }
  1273. if (i & 4) {
  1274. is_intra[i] = (intra_count >= 3);
  1275. is_coded[i] = val;
  1276. }
  1277. if (i == 4)
  1278. ff_vc1_mc_4mv_chroma(v, 0);
  1279. v->mb_type[0][s->block_index[i]] = is_intra[i];
  1280. if (!coded_inter)
  1281. coded_inter = !is_intra[i] & is_coded[i];
  1282. }
  1283. // if there are no coded blocks then don't do anything more
  1284. dst_idx = 0;
  1285. if (!intra_count && !coded_inter)
  1286. goto end;
  1287. GET_MQUANT();
  1288. s->current_picture.qscale_table[mb_pos] = mquant;
  1289. /* test if block is intra and has pred */
  1290. {
  1291. int intrapred = 0;
  1292. for (i = 0; i < 6; i++)
  1293. if (is_intra[i]) {
  1294. if (((!s->first_slice_line || (i == 2 || i == 3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  1295. || ((s->mb_x || (i == 1 || i == 3)) && v->mb_type[0][s->block_index[i] - 1])) {
  1296. intrapred = 1;
  1297. break;
  1298. }
  1299. }
  1300. if (intrapred)
  1301. s->ac_pred = get_bits1(gb);
  1302. else
  1303. s->ac_pred = 0;
  1304. }
  1305. if (!v->ttmbf && coded_inter)
  1306. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1307. for (i = 0; i < 6; i++) {
  1308. dst_idx += i >> 2;
  1309. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1310. s->mb_intra = is_intra[i];
  1311. if (is_intra[i]) {
  1312. /* check if prediction blocks A and C are available */
  1313. v->a_avail = v->c_avail = 0;
  1314. if (i == 2 || i == 3 || !s->first_slice_line)
  1315. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1316. if (i == 1 || i == 3 || s->mb_x)
  1317. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1318. vc1_decode_intra_block(v, v->block[v->cur_blk_idx][i], i, is_coded[i], mquant,
  1319. (i & 4) ? v->codingset2 : v->codingset);
  1320. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1321. continue;
  1322. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][i]);
  1323. if (v->rangeredfrm)
  1324. for (j = 0; j < 64; j++)
  1325. v->block[v->cur_blk_idx][i][j] <<= 1;
  1326. s->idsp.put_signed_pixels_clamped(v->block[v->cur_blk_idx][i],
  1327. s->dest[dst_idx] + off,
  1328. (i & 4) ? s->uvlinesize
  1329. : s->linesize);
  1330. if (v->pq >= 9 && v->overlap) {
  1331. if (v->c_avail)
  1332. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  1333. if (v->a_avail)
  1334. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  1335. }
  1336. block_cbp |= 0xF << (i << 2);
  1337. block_intra |= 1 << i;
  1338. } else if (is_coded[i]) {
  1339. pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][i], i, mquant, ttmb,
  1340. first_block, s->dest[dst_idx] + off,
  1341. (i & 4) ? s->uvlinesize : s->linesize,
  1342. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY),
  1343. &block_tt);
  1344. block_cbp |= pat << (i << 2);
  1345. if (!v->ttmbf && ttmb < 8)
  1346. ttmb = -1;
  1347. first_block = 0;
  1348. }
  1349. }
  1350. } else { // skipped MB
  1351. s->mb_intra = 0;
  1352. s->current_picture.qscale_table[mb_pos] = 0;
  1353. for (i = 0; i < 6; i++) {
  1354. v->mb_type[0][s->block_index[i]] = 0;
  1355. s->dc_val[0][s->block_index[i]] = 0;
  1356. }
  1357. for (i = 0; i < 4; i++) {
  1358. ff_vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1359. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1360. }
  1361. ff_vc1_mc_4mv_chroma(v, 0);
  1362. s->current_picture.qscale_table[mb_pos] = 0;
  1363. }
  1364. }
  1365. end:
  1366. v->cbp[s->mb_x] = block_cbp;
  1367. v->ttblk[s->mb_x] = block_tt;
  1368. v->is_intra[s->mb_x] = block_intra;
  1369. return 0;
  1370. }
  1371. /* Decode one macroblock in an interlaced frame p picture */
  1372. static int vc1_decode_p_mb_intfr(VC1Context *v)
  1373. {
  1374. MpegEncContext *s = &v->s;
  1375. GetBitContext *gb = &s->gb;
  1376. int i;
  1377. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1378. int cbp = 0; /* cbp decoding stuff */
  1379. int mqdiff, mquant; /* MB quantization */
  1380. int ttmb = v->ttfrm; /* MB Transform type */
  1381. int mb_has_coeffs = 1; /* last_flag */
  1382. int dmv_x, dmv_y; /* Differential MV components */
  1383. int val; /* temp value */
  1384. int first_block = 1;
  1385. int dst_idx, off;
  1386. int skipped, fourmv = 0, twomv = 0;
  1387. int block_cbp = 0, pat, block_tt = 0;
  1388. int idx_mbmode = 0, mvbp;
  1389. int stride_y, fieldtx;
  1390. mquant = v->pq; /* Lossy initialization */
  1391. if (v->skip_is_raw)
  1392. skipped = get_bits1(gb);
  1393. else
  1394. skipped = v->s.mbskip_table[mb_pos];
  1395. if (!skipped) {
  1396. if (v->fourmvswitch)
  1397. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done
  1398. else
  1399. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line
  1400. switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) {
  1401. /* store the motion vector type in a flag (useful later) */
  1402. case MV_PMODE_INTFR_4MV:
  1403. fourmv = 1;
  1404. v->blk_mv_type[s->block_index[0]] = 0;
  1405. v->blk_mv_type[s->block_index[1]] = 0;
  1406. v->blk_mv_type[s->block_index[2]] = 0;
  1407. v->blk_mv_type[s->block_index[3]] = 0;
  1408. break;
  1409. case MV_PMODE_INTFR_4MV_FIELD:
  1410. fourmv = 1;
  1411. v->blk_mv_type[s->block_index[0]] = 1;
  1412. v->blk_mv_type[s->block_index[1]] = 1;
  1413. v->blk_mv_type[s->block_index[2]] = 1;
  1414. v->blk_mv_type[s->block_index[3]] = 1;
  1415. break;
  1416. case MV_PMODE_INTFR_2MV_FIELD:
  1417. twomv = 1;
  1418. v->blk_mv_type[s->block_index[0]] = 1;
  1419. v->blk_mv_type[s->block_index[1]] = 1;
  1420. v->blk_mv_type[s->block_index[2]] = 1;
  1421. v->blk_mv_type[s->block_index[3]] = 1;
  1422. break;
  1423. case MV_PMODE_INTFR_1MV:
  1424. v->blk_mv_type[s->block_index[0]] = 0;
  1425. v->blk_mv_type[s->block_index[1]] = 0;
  1426. v->blk_mv_type[s->block_index[2]] = 0;
  1427. v->blk_mv_type[s->block_index[3]] = 0;
  1428. break;
  1429. }
  1430. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
  1431. for (i = 0; i < 4; i++) {
  1432. s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
  1433. s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
  1434. }
  1435. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  1436. s->mb_intra = 1;
  1437. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  1438. fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
  1439. mb_has_coeffs = get_bits1(gb);
  1440. if (mb_has_coeffs)
  1441. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1442. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  1443. GET_MQUANT();
  1444. s->current_picture.qscale_table[mb_pos] = mquant;
  1445. /* Set DC scale - y and c use the same (not sure if necessary here) */
  1446. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1447. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1448. dst_idx = 0;
  1449. for (i = 0; i < 6; i++) {
  1450. v->a_avail = v->c_avail = 0;
  1451. v->mb_type[0][s->block_index[i]] = 1;
  1452. s->dc_val[0][s->block_index[i]] = 0;
  1453. dst_idx += i >> 2;
  1454. val = ((cbp >> (5 - i)) & 1);
  1455. if (i == 2 || i == 3 || !s->first_slice_line)
  1456. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1457. if (i == 1 || i == 3 || s->mb_x)
  1458. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1459. vc1_decode_intra_block(v, v->block[v->cur_blk_idx][i], i, val, mquant,
  1460. (i & 4) ? v->codingset2 : v->codingset);
  1461. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1462. continue;
  1463. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][i]);
  1464. if (i < 4) {
  1465. stride_y = s->linesize << fieldtx;
  1466. off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
  1467. } else {
  1468. stride_y = s->uvlinesize;
  1469. off = 0;
  1470. }
  1471. s->idsp.put_signed_pixels_clamped(v->block[v->cur_blk_idx][i],
  1472. s->dest[dst_idx] + off,
  1473. stride_y);
  1474. //TODO: loop filter
  1475. }
  1476. } else { // inter MB
  1477. mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3];
  1478. if (mb_has_coeffs)
  1479. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1480. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
  1481. v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
  1482. } else {
  1483. if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV)
  1484. || (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) {
  1485. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  1486. }
  1487. }
  1488. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1489. for (i = 0; i < 6; i++)
  1490. v->mb_type[0][s->block_index[i]] = 0;
  1491. fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1];
  1492. /* for all motion vector read MVDATA and motion compensate each block */
  1493. dst_idx = 0;
  1494. if (fourmv) {
  1495. mvbp = v->fourmvbp;
  1496. for (i = 0; i < 4; i++) {
  1497. dmv_x = dmv_y = 0;
  1498. if (mvbp & (8 >> i))
  1499. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1500. ff_vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0);
  1501. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1502. }
  1503. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  1504. } else if (twomv) {
  1505. mvbp = v->twomvbp;
  1506. dmv_x = dmv_y = 0;
  1507. if (mvbp & 2) {
  1508. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1509. }
  1510. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
  1511. ff_vc1_mc_4mv_luma(v, 0, 0, 0);
  1512. ff_vc1_mc_4mv_luma(v, 1, 0, 0);
  1513. dmv_x = dmv_y = 0;
  1514. if (mvbp & 1) {
  1515. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1516. }
  1517. ff_vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
  1518. ff_vc1_mc_4mv_luma(v, 2, 0, 0);
  1519. ff_vc1_mc_4mv_luma(v, 3, 0, 0);
  1520. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  1521. } else {
  1522. mvbp = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][2];
  1523. dmv_x = dmv_y = 0;
  1524. if (mvbp) {
  1525. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1526. }
  1527. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  1528. ff_vc1_mc_1mv(v, 0);
  1529. }
  1530. if (cbp)
  1531. GET_MQUANT(); // p. 227
  1532. s->current_picture.qscale_table[mb_pos] = mquant;
  1533. if (!v->ttmbf && cbp)
  1534. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1535. for (i = 0; i < 6; i++) {
  1536. s->dc_val[0][s->block_index[i]] = 0;
  1537. dst_idx += i >> 2;
  1538. val = ((cbp >> (5 - i)) & 1);
  1539. if (!fieldtx)
  1540. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1541. else
  1542. off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
  1543. if (val) {
  1544. pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][i], i, mquant, ttmb,
  1545. first_block, s->dest[dst_idx] + off,
  1546. (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
  1547. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
  1548. block_cbp |= pat << (i << 2);
  1549. if (!v->ttmbf && ttmb < 8)
  1550. ttmb = -1;
  1551. first_block = 0;
  1552. }
  1553. }
  1554. }
  1555. } else { // skipped
  1556. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1557. for (i = 0; i < 6; i++) {
  1558. v->mb_type[0][s->block_index[i]] = 0;
  1559. s->dc_val[0][s->block_index[i]] = 0;
  1560. }
  1561. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  1562. s->current_picture.qscale_table[mb_pos] = 0;
  1563. v->blk_mv_type[s->block_index[0]] = 0;
  1564. v->blk_mv_type[s->block_index[1]] = 0;
  1565. v->blk_mv_type[s->block_index[2]] = 0;
  1566. v->blk_mv_type[s->block_index[3]] = 0;
  1567. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  1568. ff_vc1_mc_1mv(v, 0);
  1569. }
  1570. if (s->mb_x == s->mb_width - 1)
  1571. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0])*s->mb_stride);
  1572. return 0;
  1573. }
  1574. static int vc1_decode_p_mb_intfi(VC1Context *v)
  1575. {
  1576. MpegEncContext *s = &v->s;
  1577. GetBitContext *gb = &s->gb;
  1578. int i;
  1579. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1580. int cbp = 0; /* cbp decoding stuff */
  1581. int mqdiff, mquant; /* MB quantization */
  1582. int ttmb = v->ttfrm; /* MB Transform type */
  1583. int mb_has_coeffs = 1; /* last_flag */
  1584. int dmv_x, dmv_y; /* Differential MV components */
  1585. int val; /* temp values */
  1586. int first_block = 1;
  1587. int dst_idx, off;
  1588. int pred_flag = 0;
  1589. int block_cbp = 0, pat, block_tt = 0;
  1590. int idx_mbmode = 0;
  1591. mquant = v->pq; /* Lossy initialization */
  1592. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  1593. if (idx_mbmode <= 1) { // intra MB
  1594. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  1595. s->mb_intra = 1;
  1596. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  1597. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  1598. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  1599. GET_MQUANT();
  1600. s->current_picture.qscale_table[mb_pos] = mquant;
  1601. /* Set DC scale - y and c use the same (not sure if necessary here) */
  1602. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1603. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1604. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  1605. mb_has_coeffs = idx_mbmode & 1;
  1606. if (mb_has_coeffs)
  1607. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  1608. dst_idx = 0;
  1609. for (i = 0; i < 6; i++) {
  1610. v->a_avail = v->c_avail = 0;
  1611. v->mb_type[0][s->block_index[i]] = 1;
  1612. s->dc_val[0][s->block_index[i]] = 0;
  1613. dst_idx += i >> 2;
  1614. val = ((cbp >> (5 - i)) & 1);
  1615. if (i == 2 || i == 3 || !s->first_slice_line)
  1616. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1617. if (i == 1 || i == 3 || s->mb_x)
  1618. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1619. vc1_decode_intra_block(v, v->block[v->cur_blk_idx][i], i, val, mquant,
  1620. (i & 4) ? v->codingset2 : v->codingset);
  1621. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1622. continue;
  1623. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][i]);
  1624. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1625. s->idsp.put_signed_pixels_clamped(v->block[v->cur_blk_idx][i],
  1626. s->dest[dst_idx] + off,
  1627. (i & 4) ? s->uvlinesize
  1628. : s->linesize);
  1629. // TODO: loop filter
  1630. }
  1631. } else {
  1632. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1633. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  1634. for (i = 0; i < 6; i++)
  1635. v->mb_type[0][s->block_index[i]] = 0;
  1636. if (idx_mbmode <= 5) { // 1-MV
  1637. dmv_x = dmv_y = pred_flag = 0;
  1638. if (idx_mbmode & 1) {
  1639. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  1640. }
  1641. ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  1642. ff_vc1_mc_1mv(v, 0);
  1643. mb_has_coeffs = !(idx_mbmode & 2);
  1644. } else { // 4-MV
  1645. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  1646. for (i = 0; i < 4; i++) {
  1647. dmv_x = dmv_y = pred_flag = 0;
  1648. if (v->fourmvbp & (8 >> i))
  1649. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  1650. ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  1651. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1652. }
  1653. ff_vc1_mc_4mv_chroma(v, 0);
  1654. mb_has_coeffs = idx_mbmode & 1;
  1655. }
  1656. if (mb_has_coeffs)
  1657. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1658. if (cbp) {
  1659. GET_MQUANT();
  1660. }
  1661. s->current_picture.qscale_table[mb_pos] = mquant;
  1662. if (!v->ttmbf && cbp) {
  1663. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1664. }
  1665. dst_idx = 0;
  1666. for (i = 0; i < 6; i++) {
  1667. s->dc_val[0][s->block_index[i]] = 0;
  1668. dst_idx += i >> 2;
  1669. val = ((cbp >> (5 - i)) & 1);
  1670. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  1671. if (val) {
  1672. pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][i], i, mquant, ttmb,
  1673. first_block, s->dest[dst_idx] + off,
  1674. (i & 4) ? s->uvlinesize : s->linesize,
  1675. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY),
  1676. &block_tt);
  1677. block_cbp |= pat << (i << 2);
  1678. if (!v->ttmbf && ttmb < 8)
  1679. ttmb = -1;
  1680. first_block = 0;
  1681. }
  1682. }
  1683. }
  1684. if (s->mb_x == s->mb_width - 1)
  1685. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  1686. return 0;
  1687. }
  1688. /** Decode one B-frame MB (in Main profile)
  1689. */
  1690. static void vc1_decode_b_mb(VC1Context *v)
  1691. {
  1692. MpegEncContext *s = &v->s;
  1693. GetBitContext *gb = &s->gb;
  1694. int i, j;
  1695. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1696. int cbp = 0; /* cbp decoding stuff */
  1697. int mqdiff, mquant; /* MB quantization */
  1698. int ttmb = v->ttfrm; /* MB Transform type */
  1699. int mb_has_coeffs = 0; /* last_flag */
  1700. int index, index1; /* LUT indexes */
  1701. int val, sign; /* temp values */
  1702. int first_block = 1;
  1703. int dst_idx, off;
  1704. int skipped, direct;
  1705. int dmv_x[2], dmv_y[2];
  1706. int bmvtype = BMV_TYPE_BACKWARD;
  1707. mquant = v->pq; /* lossy initialization */
  1708. s->mb_intra = 0;
  1709. if (v->dmb_is_raw)
  1710. direct = get_bits1(gb);
  1711. else
  1712. direct = v->direct_mb_plane[mb_pos];
  1713. if (v->skip_is_raw)
  1714. skipped = get_bits1(gb);
  1715. else
  1716. skipped = v->s.mbskip_table[mb_pos];
  1717. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  1718. for (i = 0; i < 6; i++) {
  1719. v->mb_type[0][s->block_index[i]] = 0;
  1720. s->dc_val[0][s->block_index[i]] = 0;
  1721. }
  1722. s->current_picture.qscale_table[mb_pos] = 0;
  1723. if (!direct) {
  1724. if (!skipped) {
  1725. GET_MVDATA(dmv_x[0], dmv_y[0]);
  1726. dmv_x[1] = dmv_x[0];
  1727. dmv_y[1] = dmv_y[0];
  1728. }
  1729. if (skipped || !s->mb_intra) {
  1730. bmvtype = decode012(gb);
  1731. switch (bmvtype) {
  1732. case 0:
  1733. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  1734. break;
  1735. case 1:
  1736. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  1737. break;
  1738. case 2:
  1739. bmvtype = BMV_TYPE_INTERPOLATED;
  1740. dmv_x[0] = dmv_y[0] = 0;
  1741. }
  1742. }
  1743. }
  1744. for (i = 0; i < 6; i++)
  1745. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  1746. if (skipped) {
  1747. if (direct)
  1748. bmvtype = BMV_TYPE_INTERPOLATED;
  1749. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1750. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1751. return;
  1752. }
  1753. if (direct) {
  1754. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1755. GET_MQUANT();
  1756. s->mb_intra = 0;
  1757. s->current_picture.qscale_table[mb_pos] = mquant;
  1758. if (!v->ttmbf)
  1759. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1760. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  1761. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1762. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1763. } else {
  1764. if (!mb_has_coeffs && !s->mb_intra) {
  1765. /* no coded blocks - effectively skipped */
  1766. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1767. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1768. return;
  1769. }
  1770. if (s->mb_intra && !mb_has_coeffs) {
  1771. GET_MQUANT();
  1772. s->current_picture.qscale_table[mb_pos] = mquant;
  1773. s->ac_pred = get_bits1(gb);
  1774. cbp = 0;
  1775. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1776. } else {
  1777. if (bmvtype == BMV_TYPE_INTERPOLATED) {
  1778. GET_MVDATA(dmv_x[0], dmv_y[0]);
  1779. if (!mb_has_coeffs) {
  1780. /* interpolated skipped block */
  1781. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1782. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1783. return;
  1784. }
  1785. }
  1786. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1787. if (!s->mb_intra) {
  1788. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1789. }
  1790. if (s->mb_intra)
  1791. s->ac_pred = get_bits1(gb);
  1792. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1793. GET_MQUANT();
  1794. s->current_picture.qscale_table[mb_pos] = mquant;
  1795. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  1796. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1797. }
  1798. }
  1799. dst_idx = 0;
  1800. for (i = 0; i < 6; i++) {
  1801. s->dc_val[0][s->block_index[i]] = 0;
  1802. dst_idx += i >> 2;
  1803. val = ((cbp >> (5 - i)) & 1);
  1804. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1805. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  1806. if (s->mb_intra) {
  1807. /* check if prediction blocks A and C are available */
  1808. v->a_avail = v->c_avail = 0;
  1809. if (i == 2 || i == 3 || !s->first_slice_line)
  1810. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1811. if (i == 1 || i == 3 || s->mb_x)
  1812. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1813. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  1814. (i & 4) ? v->codingset2 : v->codingset);
  1815. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1816. continue;
  1817. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1818. if (v->rangeredfrm)
  1819. for (j = 0; j < 64; j++)
  1820. s->block[i][j] <<= 1;
  1821. s->idsp.put_signed_pixels_clamped(s->block[i],
  1822. s->dest[dst_idx] + off,
  1823. i & 4 ? s->uvlinesize
  1824. : s->linesize);
  1825. } else if (val) {
  1826. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  1827. first_block, s->dest[dst_idx] + off,
  1828. (i & 4) ? s->uvlinesize : s->linesize,
  1829. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), NULL);
  1830. if (!v->ttmbf && ttmb < 8)
  1831. ttmb = -1;
  1832. first_block = 0;
  1833. }
  1834. }
  1835. }
  1836. /** Decode one B-frame MB (in interlaced field B picture)
  1837. */
  1838. static void vc1_decode_b_mb_intfi(VC1Context *v)
  1839. {
  1840. MpegEncContext *s = &v->s;
  1841. GetBitContext *gb = &s->gb;
  1842. int i, j;
  1843. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1844. int cbp = 0; /* cbp decoding stuff */
  1845. int mqdiff, mquant; /* MB quantization */
  1846. int ttmb = v->ttfrm; /* MB Transform type */
  1847. int mb_has_coeffs = 0; /* last_flag */
  1848. int val; /* temp value */
  1849. int first_block = 1;
  1850. int dst_idx, off;
  1851. int fwd;
  1852. int dmv_x[2], dmv_y[2], pred_flag[2];
  1853. int bmvtype = BMV_TYPE_BACKWARD;
  1854. int idx_mbmode;
  1855. mquant = v->pq; /* Lossy initialization */
  1856. s->mb_intra = 0;
  1857. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  1858. if (idx_mbmode <= 1) { // intra MB
  1859. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  1860. s->mb_intra = 1;
  1861. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  1862. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  1863. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  1864. GET_MQUANT();
  1865. s->current_picture.qscale_table[mb_pos] = mquant;
  1866. /* Set DC scale - y and c use the same (not sure if necessary here) */
  1867. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1868. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1869. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  1870. mb_has_coeffs = idx_mbmode & 1;
  1871. if (mb_has_coeffs)
  1872. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  1873. dst_idx = 0;
  1874. for (i = 0; i < 6; i++) {
  1875. v->a_avail = v->c_avail = 0;
  1876. v->mb_type[0][s->block_index[i]] = 1;
  1877. s->dc_val[0][s->block_index[i]] = 0;
  1878. dst_idx += i >> 2;
  1879. val = ((cbp >> (5 - i)) & 1);
  1880. if (i == 2 || i == 3 || !s->first_slice_line)
  1881. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1882. if (i == 1 || i == 3 || s->mb_x)
  1883. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1884. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  1885. (i & 4) ? v->codingset2 : v->codingset);
  1886. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1887. continue;
  1888. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1889. if (v->rangeredfrm)
  1890. for (j = 0; j < 64; j++)
  1891. s->block[i][j] <<= 1;
  1892. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1893. s->idsp.put_signed_pixels_clamped(s->block[i],
  1894. s->dest[dst_idx] + off,
  1895. (i & 4) ? s->uvlinesize
  1896. : s->linesize);
  1897. // TODO: yet to perform loop filter
  1898. }
  1899. } else {
  1900. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1901. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  1902. for (i = 0; i < 6; i++)
  1903. v->mb_type[0][s->block_index[i]] = 0;
  1904. if (v->fmb_is_raw)
  1905. fwd = v->forward_mb_plane[mb_pos] = get_bits1(gb);
  1906. else
  1907. fwd = v->forward_mb_plane[mb_pos];
  1908. if (idx_mbmode <= 5) { // 1-MV
  1909. int interpmvp = 0;
  1910. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  1911. pred_flag[0] = pred_flag[1] = 0;
  1912. if (fwd)
  1913. bmvtype = BMV_TYPE_FORWARD;
  1914. else {
  1915. bmvtype = decode012(gb);
  1916. switch (bmvtype) {
  1917. case 0:
  1918. bmvtype = BMV_TYPE_BACKWARD;
  1919. break;
  1920. case 1:
  1921. bmvtype = BMV_TYPE_DIRECT;
  1922. break;
  1923. case 2:
  1924. bmvtype = BMV_TYPE_INTERPOLATED;
  1925. interpmvp = get_bits1(gb);
  1926. }
  1927. }
  1928. v->bmvtype = bmvtype;
  1929. if (bmvtype != BMV_TYPE_DIRECT && idx_mbmode & 1) {
  1930. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD], &dmv_y[bmvtype == BMV_TYPE_BACKWARD], &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  1931. }
  1932. if (interpmvp) {
  1933. get_mvdata_interlaced(v, &dmv_x[1], &dmv_y[1], &pred_flag[1]);
  1934. }
  1935. if (bmvtype == BMV_TYPE_DIRECT) {
  1936. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  1937. dmv_x[1] = dmv_y[1] = pred_flag[0] = 0;
  1938. if (!s->next_picture_ptr->field_picture) {
  1939. av_log(s->avctx, AV_LOG_ERROR, "Mixed field/frame direct mode not supported\n");
  1940. return;
  1941. }
  1942. }
  1943. ff_vc1_pred_b_mv_intfi(v, 0, dmv_x, dmv_y, 1, pred_flag);
  1944. vc1_b_mc(v, dmv_x, dmv_y, (bmvtype == BMV_TYPE_DIRECT), bmvtype);
  1945. mb_has_coeffs = !(idx_mbmode & 2);
  1946. } else { // 4-MV
  1947. if (fwd)
  1948. bmvtype = BMV_TYPE_FORWARD;
  1949. v->bmvtype = bmvtype;
  1950. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  1951. for (i = 0; i < 4; i++) {
  1952. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  1953. dmv_x[1] = dmv_y[1] = pred_flag[1] = 0;
  1954. if (v->fourmvbp & (8 >> i)) {
  1955. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD],
  1956. &dmv_y[bmvtype == BMV_TYPE_BACKWARD],
  1957. &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  1958. }
  1959. ff_vc1_pred_b_mv_intfi(v, i, dmv_x, dmv_y, 0, pred_flag);
  1960. ff_vc1_mc_4mv_luma(v, i, bmvtype == BMV_TYPE_BACKWARD, 0);
  1961. }
  1962. ff_vc1_mc_4mv_chroma(v, bmvtype == BMV_TYPE_BACKWARD);
  1963. mb_has_coeffs = idx_mbmode & 1;
  1964. }
  1965. if (mb_has_coeffs)
  1966. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1967. if (cbp) {
  1968. GET_MQUANT();
  1969. }
  1970. s->current_picture.qscale_table[mb_pos] = mquant;
  1971. if (!v->ttmbf && cbp) {
  1972. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1973. }
  1974. dst_idx = 0;
  1975. for (i = 0; i < 6; i++) {
  1976. s->dc_val[0][s->block_index[i]] = 0;
  1977. dst_idx += i >> 2;
  1978. val = ((cbp >> (5 - i)) & 1);
  1979. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  1980. if (val) {
  1981. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  1982. first_block, s->dest[dst_idx] + off,
  1983. (i & 4) ? s->uvlinesize : s->linesize,
  1984. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), NULL);
  1985. if (!v->ttmbf && ttmb < 8)
  1986. ttmb = -1;
  1987. first_block = 0;
  1988. }
  1989. }
  1990. }
  1991. }
  1992. /** Decode one B-frame MB (in interlaced frame B picture)
  1993. */
  1994. static int vc1_decode_b_mb_intfr(VC1Context *v)
  1995. {
  1996. MpegEncContext *s = &v->s;
  1997. GetBitContext *gb = &s->gb;
  1998. int i, j;
  1999. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2000. int cbp = 0; /* cbp decoding stuff */
  2001. int mqdiff, mquant; /* MB quantization */
  2002. int ttmb = v->ttfrm; /* MB Transform type */
  2003. int mvsw = 0; /* motion vector switch */
  2004. int mb_has_coeffs = 1; /* last_flag */
  2005. int dmv_x, dmv_y; /* Differential MV components */
  2006. int val; /* temp value */
  2007. int first_block = 1;
  2008. int dst_idx, off;
  2009. int skipped, direct, twomv = 0;
  2010. int block_cbp = 0, pat, block_tt = 0;
  2011. int idx_mbmode = 0, mvbp;
  2012. int stride_y, fieldtx;
  2013. int bmvtype = BMV_TYPE_BACKWARD;
  2014. int dir, dir2;
  2015. mquant = v->pq; /* Lossy initialization */
  2016. s->mb_intra = 0;
  2017. if (v->skip_is_raw)
  2018. skipped = get_bits1(gb);
  2019. else
  2020. skipped = v->s.mbskip_table[mb_pos];
  2021. if (!skipped) {
  2022. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2);
  2023. if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
  2024. twomv = 1;
  2025. v->blk_mv_type[s->block_index[0]] = 1;
  2026. v->blk_mv_type[s->block_index[1]] = 1;
  2027. v->blk_mv_type[s->block_index[2]] = 1;
  2028. v->blk_mv_type[s->block_index[3]] = 1;
  2029. } else {
  2030. v->blk_mv_type[s->block_index[0]] = 0;
  2031. v->blk_mv_type[s->block_index[1]] = 0;
  2032. v->blk_mv_type[s->block_index[2]] = 0;
  2033. v->blk_mv_type[s->block_index[3]] = 0;
  2034. }
  2035. }
  2036. if (v->dmb_is_raw)
  2037. direct = get_bits1(gb);
  2038. else
  2039. direct = v->direct_mb_plane[mb_pos];
  2040. if (direct) {
  2041. if (s->next_picture_ptr->field_picture)
  2042. av_log(s->avctx, AV_LOG_WARNING, "Mixed frame/field direct mode not supported\n");
  2043. s->mv[0][0][0] = s->current_picture.motion_val[0][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 0, s->quarter_sample);
  2044. s->mv[0][0][1] = s->current_picture.motion_val[0][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 0, s->quarter_sample);
  2045. s->mv[1][0][0] = s->current_picture.motion_val[1][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 1, s->quarter_sample);
  2046. s->mv[1][0][1] = s->current_picture.motion_val[1][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 1, s->quarter_sample);
  2047. if (twomv) {
  2048. s->mv[0][2][0] = s->current_picture.motion_val[0][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 0, s->quarter_sample);
  2049. s->mv[0][2][1] = s->current_picture.motion_val[0][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 0, s->quarter_sample);
  2050. s->mv[1][2][0] = s->current_picture.motion_val[1][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 1, s->quarter_sample);
  2051. s->mv[1][2][1] = s->current_picture.motion_val[1][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 1, s->quarter_sample);
  2052. for (i = 1; i < 4; i += 2) {
  2053. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][i-1][0];
  2054. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][i-1][1];
  2055. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][i-1][0];
  2056. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][i-1][1];
  2057. }
  2058. } else {
  2059. for (i = 1; i < 4; i++) {
  2060. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][0][0];
  2061. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][0][1];
  2062. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][0][0];
  2063. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][0][1];
  2064. }
  2065. }
  2066. }
  2067. if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
  2068. for (i = 0; i < 4; i++) {
  2069. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = 0;
  2070. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = 0;
  2071. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
  2072. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
  2073. }
  2074. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  2075. s->mb_intra = 1;
  2076. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2077. fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
  2078. mb_has_coeffs = get_bits1(gb);
  2079. if (mb_has_coeffs)
  2080. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2081. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  2082. GET_MQUANT();
  2083. s->current_picture.qscale_table[mb_pos] = mquant;
  2084. /* Set DC scale - y and c use the same (not sure if necessary here) */
  2085. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2086. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2087. dst_idx = 0;
  2088. for (i = 0; i < 6; i++) {
  2089. v->a_avail = v->c_avail = 0;
  2090. v->mb_type[0][s->block_index[i]] = 1;
  2091. s->dc_val[0][s->block_index[i]] = 0;
  2092. dst_idx += i >> 2;
  2093. val = ((cbp >> (5 - i)) & 1);
  2094. if (i == 2 || i == 3 || !s->first_slice_line)
  2095. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2096. if (i == 1 || i == 3 || s->mb_x)
  2097. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2098. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  2099. (i & 4) ? v->codingset2 : v->codingset);
  2100. if (CONFIG_GRAY && i > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  2101. continue;
  2102. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  2103. if (i < 4) {
  2104. stride_y = s->linesize << fieldtx;
  2105. off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
  2106. } else {
  2107. stride_y = s->uvlinesize;
  2108. off = 0;
  2109. }
  2110. s->idsp.put_signed_pixels_clamped(s->block[i],
  2111. s->dest[dst_idx] + off,
  2112. stride_y);
  2113. }
  2114. } else {
  2115. s->mb_intra = v->is_intra[s->mb_x] = 0;
  2116. if (!direct) {
  2117. if (skipped || !s->mb_intra) {
  2118. bmvtype = decode012(gb);
  2119. switch (bmvtype) {
  2120. case 0:
  2121. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  2122. break;
  2123. case 1:
  2124. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  2125. break;
  2126. case 2:
  2127. bmvtype = BMV_TYPE_INTERPOLATED;
  2128. }
  2129. }
  2130. if (twomv && bmvtype != BMV_TYPE_INTERPOLATED)
  2131. mvsw = get_bits1(gb);
  2132. }
  2133. if (!skipped) { // inter MB
  2134. mb_has_coeffs = ff_vc1_mbmode_intfrp[0][idx_mbmode][3];
  2135. if (mb_has_coeffs)
  2136. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2137. if (!direct) {
  2138. if (bmvtype == BMV_TYPE_INTERPOLATED && twomv) {
  2139. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  2140. } else if (bmvtype == BMV_TYPE_INTERPOLATED || twomv) {
  2141. v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
  2142. }
  2143. }
  2144. for (i = 0; i < 6; i++)
  2145. v->mb_type[0][s->block_index[i]] = 0;
  2146. fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[0][idx_mbmode][1];
  2147. /* for all motion vector read MVDATA and motion compensate each block */
  2148. dst_idx = 0;
  2149. if (direct) {
  2150. if (twomv) {
  2151. for (i = 0; i < 4; i++) {
  2152. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  2153. ff_vc1_mc_4mv_luma(v, i, 1, 1);
  2154. }
  2155. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  2156. ff_vc1_mc_4mv_chroma4(v, 1, 1, 1);
  2157. } else {
  2158. ff_vc1_mc_1mv(v, 0);
  2159. ff_vc1_interp_mc(v);
  2160. }
  2161. } else if (twomv && bmvtype == BMV_TYPE_INTERPOLATED) {
  2162. mvbp = v->fourmvbp;
  2163. for (i = 0; i < 4; i++) {
  2164. dir = i==1 || i==3;
  2165. dmv_x = dmv_y = 0;
  2166. val = ((mvbp >> (3 - i)) & 1);
  2167. if (val)
  2168. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2169. j = i > 1 ? 2 : 0;
  2170. ff_vc1_pred_mv_intfr(v, j, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir);
  2171. ff_vc1_mc_4mv_luma(v, j, dir, dir);
  2172. ff_vc1_mc_4mv_luma(v, j+1, dir, dir);
  2173. }
  2174. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  2175. ff_vc1_mc_4mv_chroma4(v, 1, 1, 1);
  2176. } else if (bmvtype == BMV_TYPE_INTERPOLATED) {
  2177. mvbp = v->twomvbp;
  2178. dmv_x = dmv_y = 0;
  2179. if (mvbp & 2)
  2180. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2181. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  2182. ff_vc1_mc_1mv(v, 0);
  2183. dmv_x = dmv_y = 0;
  2184. if (mvbp & 1)
  2185. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2186. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 1);
  2187. ff_vc1_interp_mc(v);
  2188. } else if (twomv) {
  2189. dir = bmvtype == BMV_TYPE_BACKWARD;
  2190. dir2 = dir;
  2191. if (mvsw)
  2192. dir2 = !dir;
  2193. mvbp = v->twomvbp;
  2194. dmv_x = dmv_y = 0;
  2195. if (mvbp & 2)
  2196. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2197. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir);
  2198. dmv_x = dmv_y = 0;
  2199. if (mvbp & 1)
  2200. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2201. ff_vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir2);
  2202. if (mvsw) {
  2203. for (i = 0; i < 2; i++) {
  2204. s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0];
  2205. s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1];
  2206. s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0];
  2207. s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1];
  2208. }
  2209. } else {
  2210. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir);
  2211. ff_vc1_pred_mv_intfr(v, 2, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir);
  2212. }
  2213. ff_vc1_mc_4mv_luma(v, 0, dir, 0);
  2214. ff_vc1_mc_4mv_luma(v, 1, dir, 0);
  2215. ff_vc1_mc_4mv_luma(v, 2, dir2, 0);
  2216. ff_vc1_mc_4mv_luma(v, 3, dir2, 0);
  2217. ff_vc1_mc_4mv_chroma4(v, dir, dir2, 0);
  2218. } else {
  2219. dir = bmvtype == BMV_TYPE_BACKWARD;
  2220. mvbp = ff_vc1_mbmode_intfrp[0][idx_mbmode][2];
  2221. dmv_x = dmv_y = 0;
  2222. if (mvbp)
  2223. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2224. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], dir);
  2225. v->blk_mv_type[s->block_index[0]] = 1;
  2226. v->blk_mv_type[s->block_index[1]] = 1;
  2227. v->blk_mv_type[s->block_index[2]] = 1;
  2228. v->blk_mv_type[s->block_index[3]] = 1;
  2229. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir);
  2230. for (i = 0; i < 2; i++) {
  2231. s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0];
  2232. s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1];
  2233. }
  2234. ff_vc1_mc_1mv(v, dir);
  2235. }
  2236. if (cbp)
  2237. GET_MQUANT(); // p. 227
  2238. s->current_picture.qscale_table[mb_pos] = mquant;
  2239. if (!v->ttmbf && cbp)
  2240. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2241. for (i = 0; i < 6; i++) {
  2242. s->dc_val[0][s->block_index[i]] = 0;
  2243. dst_idx += i >> 2;
  2244. val = ((cbp >> (5 - i)) & 1);
  2245. if (!fieldtx)
  2246. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2247. else
  2248. off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
  2249. if (val) {
  2250. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  2251. first_block, s->dest[dst_idx] + off,
  2252. (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
  2253. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
  2254. block_cbp |= pat << (i << 2);
  2255. if (!v->ttmbf && ttmb < 8)
  2256. ttmb = -1;
  2257. first_block = 0;
  2258. }
  2259. }
  2260. } else { // skipped
  2261. dir = 0;
  2262. for (i = 0; i < 6; i++) {
  2263. v->mb_type[0][s->block_index[i]] = 0;
  2264. s->dc_val[0][s->block_index[i]] = 0;
  2265. }
  2266. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2267. s->current_picture.qscale_table[mb_pos] = 0;
  2268. v->blk_mv_type[s->block_index[0]] = 0;
  2269. v->blk_mv_type[s->block_index[1]] = 0;
  2270. v->blk_mv_type[s->block_index[2]] = 0;
  2271. v->blk_mv_type[s->block_index[3]] = 0;
  2272. if (!direct) {
  2273. if (bmvtype == BMV_TYPE_INTERPOLATED) {
  2274. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  2275. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 1);
  2276. } else {
  2277. dir = bmvtype == BMV_TYPE_BACKWARD;
  2278. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], dir);
  2279. if (mvsw) {
  2280. int dir2 = dir;
  2281. if (mvsw)
  2282. dir2 = !dir;
  2283. for (i = 0; i < 2; i++) {
  2284. s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0];
  2285. s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1];
  2286. s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0];
  2287. s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1];
  2288. }
  2289. } else {
  2290. v->blk_mv_type[s->block_index[0]] = 1;
  2291. v->blk_mv_type[s->block_index[1]] = 1;
  2292. v->blk_mv_type[s->block_index[2]] = 1;
  2293. v->blk_mv_type[s->block_index[3]] = 1;
  2294. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir);
  2295. for (i = 0; i < 2; i++) {
  2296. s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0];
  2297. s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1];
  2298. }
  2299. }
  2300. }
  2301. }
  2302. ff_vc1_mc_1mv(v, dir);
  2303. if (direct || bmvtype == BMV_TYPE_INTERPOLATED) {
  2304. ff_vc1_interp_mc(v);
  2305. }
  2306. }
  2307. }
  2308. if (s->mb_x == s->mb_width - 1)
  2309. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  2310. v->cbp[s->mb_x] = block_cbp;
  2311. v->ttblk[s->mb_x] = block_tt;
  2312. return 0;
  2313. }
  2314. /** Decode blocks of I-frame
  2315. */
  2316. static void vc1_decode_i_blocks(VC1Context *v)
  2317. {
  2318. int k, j;
  2319. MpegEncContext *s = &v->s;
  2320. int cbp, val;
  2321. uint8_t *coded_val;
  2322. int mb_pos;
  2323. /* select coding mode used for VLC tables selection */
  2324. switch (v->y_ac_table_index) {
  2325. case 0:
  2326. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2327. break;
  2328. case 1:
  2329. v->codingset = CS_HIGH_MOT_INTRA;
  2330. break;
  2331. case 2:
  2332. v->codingset = CS_MID_RATE_INTRA;
  2333. break;
  2334. }
  2335. switch (v->c_ac_table_index) {
  2336. case 0:
  2337. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2338. break;
  2339. case 1:
  2340. v->codingset2 = CS_HIGH_MOT_INTER;
  2341. break;
  2342. case 2:
  2343. v->codingset2 = CS_MID_RATE_INTER;
  2344. break;
  2345. }
  2346. /* Set DC scale - y and c use the same */
  2347. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2348. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2349. //do frame decode
  2350. s->mb_x = s->mb_y = 0;
  2351. s->mb_intra = 1;
  2352. s->first_slice_line = 1;
  2353. for (s->mb_y = 0; s->mb_y < s->end_mb_y; s->mb_y++) {
  2354. s->mb_x = 0;
  2355. init_block_index(v);
  2356. for (; s->mb_x < v->end_mb_x; s->mb_x++) {
  2357. uint8_t *dst[6];
  2358. ff_update_block_index(s);
  2359. dst[0] = s->dest[0];
  2360. dst[1] = dst[0] + 8;
  2361. dst[2] = s->dest[0] + s->linesize * 8;
  2362. dst[3] = dst[2] + 8;
  2363. dst[4] = s->dest[1];
  2364. dst[5] = s->dest[2];
  2365. s->bdsp.clear_blocks(s->block[0]);
  2366. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2367. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2368. s->current_picture.qscale_table[mb_pos] = v->pq;
  2369. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2370. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2371. // do actual MB decoding and displaying
  2372. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2373. v->s.ac_pred = get_bits1(&v->s.gb);
  2374. for (k = 0; k < 6; k++) {
  2375. val = ((cbp >> (5 - k)) & 1);
  2376. if (k < 4) {
  2377. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2378. val = val ^ pred;
  2379. *coded_val = val;
  2380. }
  2381. cbp |= val << (5 - k);
  2382. vc1_decode_i_block(v, s->block[k], k, val, (k < 4) ? v->codingset : v->codingset2);
  2383. if (CONFIG_GRAY && k > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  2384. continue;
  2385. v->vc1dsp.vc1_inv_trans_8x8(s->block[k]);
  2386. if (v->pq >= 9 && v->overlap) {
  2387. if (v->rangeredfrm)
  2388. for (j = 0; j < 64; j++)
  2389. s->block[k][j] <<= 1;
  2390. s->idsp.put_signed_pixels_clamped(s->block[k], dst[k],
  2391. k & 4 ? s->uvlinesize
  2392. : s->linesize);
  2393. } else {
  2394. if (v->rangeredfrm)
  2395. for (j = 0; j < 64; j++)
  2396. s->block[k][j] = (s->block[k][j] - 64) << 1;
  2397. s->idsp.put_pixels_clamped(s->block[k], dst[k],
  2398. k & 4 ? s->uvlinesize
  2399. : s->linesize);
  2400. }
  2401. }
  2402. if (v->pq >= 9 && v->overlap) {
  2403. if (s->mb_x) {
  2404. v->vc1dsp.vc1_h_overlap(s->dest[0], s->linesize);
  2405. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2406. if (!CONFIG_GRAY || !(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
  2407. v->vc1dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  2408. v->vc1dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  2409. }
  2410. }
  2411. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2412. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2413. if (!s->first_slice_line) {
  2414. v->vc1dsp.vc1_v_overlap(s->dest[0], s->linesize);
  2415. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2416. if (!CONFIG_GRAY || !(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
  2417. v->vc1dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  2418. v->vc1dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  2419. }
  2420. }
  2421. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2422. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2423. }
  2424. if (v->s.loop_filter)
  2425. ff_vc1_loop_filter_iblk(v, v->pq);
  2426. if (get_bits_count(&s->gb) > v->bits) {
  2427. ff_er_add_slice(&s->er, 0, 0, s->mb_x, s->mb_y, ER_MB_ERROR);
  2428. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  2429. get_bits_count(&s->gb), v->bits);
  2430. return;
  2431. }
  2432. }
  2433. if (!v->s.loop_filter)
  2434. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2435. else if (s->mb_y)
  2436. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  2437. s->first_slice_line = 0;
  2438. }
  2439. if (v->s.loop_filter)
  2440. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2441. /* This is intentionally mb_height and not end_mb_y - unlike in advanced
  2442. * profile, these only differ are when decoding MSS2 rectangles. */
  2443. ff_er_add_slice(&s->er, 0, 0, s->mb_width - 1, s->mb_height - 1, ER_MB_END);
  2444. }
  2445. /** Decode blocks of I-frame for advanced profile
  2446. */
  2447. static void vc1_decode_i_blocks_adv(VC1Context *v)
  2448. {
  2449. int k;
  2450. MpegEncContext *s = &v->s;
  2451. int cbp, val;
  2452. uint8_t *coded_val;
  2453. int mb_pos;
  2454. int mquant = v->pq;
  2455. int mqdiff;
  2456. GetBitContext *gb = &s->gb;
  2457. /* select coding mode used for VLC tables selection */
  2458. switch (v->y_ac_table_index) {
  2459. case 0:
  2460. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2461. break;
  2462. case 1:
  2463. v->codingset = CS_HIGH_MOT_INTRA;
  2464. break;
  2465. case 2:
  2466. v->codingset = CS_MID_RATE_INTRA;
  2467. break;
  2468. }
  2469. switch (v->c_ac_table_index) {
  2470. case 0:
  2471. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2472. break;
  2473. case 1:
  2474. v->codingset2 = CS_HIGH_MOT_INTER;
  2475. break;
  2476. case 2:
  2477. v->codingset2 = CS_MID_RATE_INTER;
  2478. break;
  2479. }
  2480. // do frame decode
  2481. s->mb_x = s->mb_y = 0;
  2482. s->mb_intra = 1;
  2483. s->first_slice_line = 1;
  2484. s->mb_y = s->start_mb_y;
  2485. if (s->start_mb_y) {
  2486. s->mb_x = 0;
  2487. init_block_index(v);
  2488. memset(&s->coded_block[s->block_index[0] - s->b8_stride], 0,
  2489. (1 + s->b8_stride) * sizeof(*s->coded_block));
  2490. }
  2491. for (; s->mb_y < s->end_mb_y; s->mb_y++) {
  2492. s->mb_x = 0;
  2493. init_block_index(v);
  2494. for (;s->mb_x < s->mb_width; s->mb_x++) {
  2495. int16_t (*block)[64] = v->block[v->cur_blk_idx];
  2496. ff_update_block_index(s);
  2497. s->bdsp.clear_blocks(block[0]);
  2498. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2499. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  2500. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  2501. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  2502. // do actual MB decoding and displaying
  2503. if (v->fieldtx_is_raw)
  2504. v->fieldtx_plane[mb_pos] = get_bits1(&v->s.gb);
  2505. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2506. if (v->acpred_is_raw)
  2507. v->s.ac_pred = get_bits1(&v->s.gb);
  2508. else
  2509. v->s.ac_pred = v->acpred_plane[mb_pos];
  2510. if (v->condover == CONDOVER_SELECT && v->overflg_is_raw)
  2511. v->over_flags_plane[mb_pos] = get_bits1(&v->s.gb);
  2512. GET_MQUANT();
  2513. s->current_picture.qscale_table[mb_pos] = mquant;
  2514. /* Set DC scale - y and c use the same */
  2515. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2516. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2517. for (k = 0; k < 6; k++) {
  2518. val = ((cbp >> (5 - k)) & 1);
  2519. if (k < 4) {
  2520. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2521. val = val ^ pred;
  2522. *coded_val = val;
  2523. }
  2524. cbp |= val << (5 - k);
  2525. v->a_avail = !s->first_slice_line || (k == 2 || k == 3);
  2526. v->c_avail = !!s->mb_x || (k == 1 || k == 3);
  2527. vc1_decode_i_block_adv(v, block[k], k, val,
  2528. (k < 4) ? v->codingset : v->codingset2, mquant);
  2529. if (CONFIG_GRAY && k > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  2530. continue;
  2531. v->vc1dsp.vc1_inv_trans_8x8(block[k]);
  2532. }
  2533. ff_vc1_smooth_overlap_filter_iblk(v);
  2534. vc1_put_signed_blocks_clamped(v);
  2535. if (v->s.loop_filter)
  2536. ff_vc1_loop_filter_iblk_delayed(v, v->pq);
  2537. if (get_bits_count(&s->gb) > v->bits) {
  2538. // TODO: may need modification to handle slice coding
  2539. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  2540. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  2541. get_bits_count(&s->gb), v->bits);
  2542. return;
  2543. }
  2544. inc_blk_idx(v->topleft_blk_idx);
  2545. inc_blk_idx(v->top_blk_idx);
  2546. inc_blk_idx(v->left_blk_idx);
  2547. inc_blk_idx(v->cur_blk_idx);
  2548. }
  2549. if (!v->s.loop_filter)
  2550. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2551. else if (s->mb_y)
  2552. ff_mpeg_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2553. s->first_slice_line = 0;
  2554. }
  2555. /* raw bottom MB row */
  2556. s->mb_x = 0;
  2557. init_block_index(v);
  2558. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2559. ff_update_block_index(s);
  2560. vc1_put_signed_blocks_clamped(v);
  2561. if (v->s.loop_filter)
  2562. ff_vc1_loop_filter_iblk_delayed(v, v->pq);
  2563. inc_blk_idx(v->topleft_blk_idx);
  2564. inc_blk_idx(v->top_blk_idx);
  2565. inc_blk_idx(v->left_blk_idx);
  2566. inc_blk_idx(v->cur_blk_idx);
  2567. }
  2568. if (v->s.loop_filter)
  2569. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2570. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  2571. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  2572. }
  2573. static void vc1_decode_p_blocks(VC1Context *v)
  2574. {
  2575. MpegEncContext *s = &v->s;
  2576. int apply_loop_filter;
  2577. /* select coding mode used for VLC tables selection */
  2578. switch (v->c_ac_table_index) {
  2579. case 0:
  2580. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2581. break;
  2582. case 1:
  2583. v->codingset = CS_HIGH_MOT_INTRA;
  2584. break;
  2585. case 2:
  2586. v->codingset = CS_MID_RATE_INTRA;
  2587. break;
  2588. }
  2589. switch (v->c_ac_table_index) {
  2590. case 0:
  2591. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2592. break;
  2593. case 1:
  2594. v->codingset2 = CS_HIGH_MOT_INTER;
  2595. break;
  2596. case 2:
  2597. v->codingset2 = CS_MID_RATE_INTER;
  2598. break;
  2599. }
  2600. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY) &&
  2601. v->fcm == PROGRESSIVE;
  2602. s->first_slice_line = 1;
  2603. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  2604. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2605. s->mb_x = 0;
  2606. init_block_index(v);
  2607. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2608. ff_update_block_index(s);
  2609. if (v->fcm == ILACE_FIELD)
  2610. vc1_decode_p_mb_intfi(v);
  2611. else if (v->fcm == ILACE_FRAME)
  2612. vc1_decode_p_mb_intfr(v);
  2613. else vc1_decode_p_mb(v);
  2614. if (s->mb_y != s->start_mb_y && apply_loop_filter)
  2615. ff_vc1_apply_p_loop_filter(v);
  2616. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2617. // TODO: may need modification to handle slice coding
  2618. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  2619. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  2620. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  2621. return;
  2622. }
  2623. inc_blk_idx(v->topleft_blk_idx);
  2624. inc_blk_idx(v->top_blk_idx);
  2625. inc_blk_idx(v->left_blk_idx);
  2626. inc_blk_idx(v->cur_blk_idx);
  2627. }
  2628. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0]) * s->mb_stride);
  2629. memmove(v->ttblk_base, v->ttblk, sizeof(v->ttblk_base[0]) * s->mb_stride);
  2630. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  2631. memmove(v->luma_mv_base, v->luma_mv, sizeof(v->luma_mv_base[0]) * s->mb_stride);
  2632. if (s->mb_y != s->start_mb_y)
  2633. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  2634. s->first_slice_line = 0;
  2635. }
  2636. if (apply_loop_filter) {
  2637. s->mb_x = 0;
  2638. init_block_index(v);
  2639. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2640. ff_update_block_index(s);
  2641. ff_vc1_apply_p_loop_filter(v);
  2642. }
  2643. }
  2644. if (s->end_mb_y >= s->start_mb_y)
  2645. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2646. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  2647. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  2648. }
  2649. static void vc1_decode_b_blocks(VC1Context *v)
  2650. {
  2651. MpegEncContext *s = &v->s;
  2652. /* select coding mode used for VLC tables selection */
  2653. switch (v->c_ac_table_index) {
  2654. case 0:
  2655. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2656. break;
  2657. case 1:
  2658. v->codingset = CS_HIGH_MOT_INTRA;
  2659. break;
  2660. case 2:
  2661. v->codingset = CS_MID_RATE_INTRA;
  2662. break;
  2663. }
  2664. switch (v->c_ac_table_index) {
  2665. case 0:
  2666. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2667. break;
  2668. case 1:
  2669. v->codingset2 = CS_HIGH_MOT_INTER;
  2670. break;
  2671. case 2:
  2672. v->codingset2 = CS_MID_RATE_INTER;
  2673. break;
  2674. }
  2675. s->first_slice_line = 1;
  2676. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2677. s->mb_x = 0;
  2678. init_block_index(v);
  2679. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2680. ff_update_block_index(s);
  2681. if (v->fcm == ILACE_FIELD)
  2682. vc1_decode_b_mb_intfi(v);
  2683. else if (v->fcm == ILACE_FRAME)
  2684. vc1_decode_b_mb_intfr(v);
  2685. else
  2686. vc1_decode_b_mb(v);
  2687. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2688. // TODO: may need modification to handle slice coding
  2689. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  2690. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  2691. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  2692. return;
  2693. }
  2694. if (v->s.loop_filter)
  2695. ff_vc1_loop_filter_iblk(v, v->pq);
  2696. }
  2697. if (!v->s.loop_filter)
  2698. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2699. else if (s->mb_y)
  2700. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  2701. s->first_slice_line = 0;
  2702. }
  2703. if (v->s.loop_filter)
  2704. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2705. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  2706. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  2707. }
  2708. static void vc1_decode_skip_blocks(VC1Context *v)
  2709. {
  2710. MpegEncContext *s = &v->s;
  2711. if (!v->s.last_picture.f->data[0])
  2712. return;
  2713. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, ER_MB_END);
  2714. s->first_slice_line = 1;
  2715. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2716. s->mb_x = 0;
  2717. init_block_index(v);
  2718. ff_update_block_index(s);
  2719. memcpy(s->dest[0], s->last_picture.f->data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  2720. memcpy(s->dest[1], s->last_picture.f->data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2721. memcpy(s->dest[2], s->last_picture.f->data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2722. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2723. s->first_slice_line = 0;
  2724. }
  2725. s->pict_type = AV_PICTURE_TYPE_P;
  2726. }
  2727. void ff_vc1_decode_blocks(VC1Context *v)
  2728. {
  2729. v->s.esc3_level_length = 0;
  2730. if (v->x8_type) {
  2731. ff_intrax8_decode_picture(&v->x8, &v->s.current_picture,
  2732. &v->s.gb, &v->s.mb_x, &v->s.mb_y,
  2733. 2 * v->pq + v->halfpq, v->pq * !v->pquantizer,
  2734. v->s.loop_filter, v->s.low_delay);
  2735. ff_er_add_slice(&v->s.er, 0, 0,
  2736. (v->s.mb_x >> 1) - 1, (v->s.mb_y >> 1) - 1,
  2737. ER_MB_END);
  2738. } else {
  2739. v->cur_blk_idx = 0;
  2740. v->left_blk_idx = -1;
  2741. v->topleft_blk_idx = 1;
  2742. v->top_blk_idx = 2;
  2743. switch (v->s.pict_type) {
  2744. case AV_PICTURE_TYPE_I:
  2745. if (v->profile == PROFILE_ADVANCED)
  2746. vc1_decode_i_blocks_adv(v);
  2747. else
  2748. vc1_decode_i_blocks(v);
  2749. break;
  2750. case AV_PICTURE_TYPE_P:
  2751. if (v->p_frame_skipped)
  2752. vc1_decode_skip_blocks(v);
  2753. else
  2754. vc1_decode_p_blocks(v);
  2755. break;
  2756. case AV_PICTURE_TYPE_B:
  2757. if (v->bi_type) {
  2758. if (v->profile == PROFILE_ADVANCED)
  2759. vc1_decode_i_blocks_adv(v);
  2760. else
  2761. vc1_decode_i_blocks(v);
  2762. } else
  2763. vc1_decode_b_blocks(v);
  2764. break;
  2765. }
  2766. }
  2767. }