You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4202 lines
144KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. /**
  24. * @file vc1.c
  25. * VC-1 and WMV3 decoder
  26. *
  27. */
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "vc1.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #undef NDEBUG
  35. #include <assert.h>
  36. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  37. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  38. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  39. #define MB_INTRA_VLC_BITS 9
  40. extern VLC ff_msmp4_mb_i_vlc;
  41. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  42. #define DC_VLC_BITS 9
  43. #define AC_VLC_BITS 9
  44. static const uint16_t table_mb_intra[64][2];
  45. /**
  46. * Get unary code of limited length
  47. * @fixme FIXME Slow and ugly
  48. * @param gb GetBitContext
  49. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  50. * @param[in] len Maximum length
  51. * @return Unary length/index
  52. */
  53. static int get_prefix(GetBitContext *gb, int stop, int len)
  54. {
  55. #if 1
  56. int i;
  57. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  58. return i;
  59. /* int i = 0, tmp = !stop;
  60. while (i != len && tmp != stop)
  61. {
  62. tmp = get_bits(gb, 1);
  63. i++;
  64. }
  65. if (i == len && tmp != stop) return len+1;
  66. return i;*/
  67. #else
  68. unsigned int buf;
  69. int log;
  70. OPEN_READER(re, gb);
  71. UPDATE_CACHE(re, gb);
  72. buf=GET_CACHE(re, gb); //Still not sure
  73. if (stop) buf = ~buf;
  74. log= av_log2(-buf); //FIXME: -?
  75. if (log < limit){
  76. LAST_SKIP_BITS(re, gb, log+1);
  77. CLOSE_READER(re, gb);
  78. return log;
  79. }
  80. LAST_SKIP_BITS(re, gb, limit);
  81. CLOSE_READER(re, gb);
  82. return limit;
  83. #endif
  84. }
  85. static inline int decode210(GetBitContext *gb){
  86. int n;
  87. n = get_bits1(gb);
  88. if (n == 1)
  89. return 0;
  90. else
  91. return 2 - get_bits1(gb);
  92. }
  93. /**
  94. * Init VC-1 specific tables and VC1Context members
  95. * @param v The VC1Context to initialize
  96. * @return Status
  97. */
  98. static int vc1_init_common(VC1Context *v)
  99. {
  100. static int done = 0;
  101. int i = 0;
  102. v->hrd_rate = v->hrd_buffer = NULL;
  103. /* VLC tables */
  104. if(!done)
  105. {
  106. done = 1;
  107. init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  108. ff_vc1_bfraction_bits, 1, 1,
  109. ff_vc1_bfraction_codes, 1, 1, 1);
  110. init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  111. ff_vc1_norm2_bits, 1, 1,
  112. ff_vc1_norm2_codes, 1, 1, 1);
  113. init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  114. ff_vc1_norm6_bits, 1, 1,
  115. ff_vc1_norm6_codes, 2, 2, 1);
  116. init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  117. ff_vc1_imode_bits, 1, 1,
  118. ff_vc1_imode_codes, 1, 1, 1);
  119. for (i=0; i<3; i++)
  120. {
  121. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  122. ff_vc1_ttmb_bits[i], 1, 1,
  123. ff_vc1_ttmb_codes[i], 2, 2, 1);
  124. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  125. ff_vc1_ttblk_bits[i], 1, 1,
  126. ff_vc1_ttblk_codes[i], 1, 1, 1);
  127. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  128. ff_vc1_subblkpat_bits[i], 1, 1,
  129. ff_vc1_subblkpat_codes[i], 1, 1, 1);
  130. }
  131. for(i=0; i<4; i++)
  132. {
  133. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  134. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  135. ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  136. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  137. ff_vc1_cbpcy_p_bits[i], 1, 1,
  138. ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
  139. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  140. ff_vc1_mv_diff_bits[i], 1, 1,
  141. ff_vc1_mv_diff_codes[i], 2, 2, 1);
  142. }
  143. for(i=0; i<8; i++)
  144. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  145. &vc1_ac_tables[i][0][1], 8, 4,
  146. &vc1_ac_tables[i][0][0], 8, 4, 1);
  147. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  148. &ff_msmp4_mb_i_table[0][1], 4, 2,
  149. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  150. }
  151. /* Other defaults */
  152. v->pq = -1;
  153. v->mvrange = 0; /* 7.1.1.18, p80 */
  154. return 0;
  155. }
  156. /***********************************************************************/
  157. /**
  158. * @defgroup bitplane VC9 Bitplane decoding
  159. * @see 8.7, p56
  160. * @{
  161. */
  162. /** @addtogroup bitplane
  163. * Imode types
  164. * @{
  165. */
  166. enum Imode {
  167. IMODE_RAW,
  168. IMODE_NORM2,
  169. IMODE_DIFF2,
  170. IMODE_NORM6,
  171. IMODE_DIFF6,
  172. IMODE_ROWSKIP,
  173. IMODE_COLSKIP
  174. };
  175. /** @} */ //imode defines
  176. /** Decode rows by checking if they are skipped
  177. * @param plane Buffer to store decoded bits
  178. * @param[in] width Width of this buffer
  179. * @param[in] height Height of this buffer
  180. * @param[in] stride of this buffer
  181. */
  182. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  183. int x, y;
  184. for (y=0; y<height; y++){
  185. if (!get_bits(gb, 1)) //rowskip
  186. memset(plane, 0, width);
  187. else
  188. for (x=0; x<width; x++)
  189. plane[x] = get_bits(gb, 1);
  190. plane += stride;
  191. }
  192. }
  193. /** Decode columns by checking if they are skipped
  194. * @param plane Buffer to store decoded bits
  195. * @param[in] width Width of this buffer
  196. * @param[in] height Height of this buffer
  197. * @param[in] stride of this buffer
  198. * @fixme FIXME: Optimize
  199. */
  200. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  201. int x, y;
  202. for (x=0; x<width; x++){
  203. if (!get_bits(gb, 1)) //colskip
  204. for (y=0; y<height; y++)
  205. plane[y*stride] = 0;
  206. else
  207. for (y=0; y<height; y++)
  208. plane[y*stride] = get_bits(gb, 1);
  209. plane ++;
  210. }
  211. }
  212. /** Decode a bitplane's bits
  213. * @param bp Bitplane where to store the decode bits
  214. * @param v VC-1 context for bit reading and logging
  215. * @return Status
  216. * @fixme FIXME: Optimize
  217. */
  218. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  219. {
  220. GetBitContext *gb = &v->s.gb;
  221. int imode, x, y, code, offset;
  222. uint8_t invert, *planep = data;
  223. int width, height, stride;
  224. width = v->s.mb_width;
  225. height = v->s.mb_height;
  226. stride = v->s.mb_stride;
  227. invert = get_bits(gb, 1);
  228. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  229. *raw_flag = 0;
  230. switch (imode)
  231. {
  232. case IMODE_RAW:
  233. //Data is actually read in the MB layer (same for all tests == "raw")
  234. *raw_flag = 1; //invert ignored
  235. return invert;
  236. case IMODE_DIFF2:
  237. case IMODE_NORM2:
  238. if ((height * width) & 1)
  239. {
  240. *planep++ = get_bits(gb, 1);
  241. offset = 1;
  242. }
  243. else offset = 0;
  244. // decode bitplane as one long line
  245. for (y = offset; y < height * width; y += 2) {
  246. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  247. *planep++ = code & 1;
  248. offset++;
  249. if(offset == width) {
  250. offset = 0;
  251. planep += stride - width;
  252. }
  253. *planep++ = code >> 1;
  254. offset++;
  255. if(offset == width) {
  256. offset = 0;
  257. planep += stride - width;
  258. }
  259. }
  260. break;
  261. case IMODE_DIFF6:
  262. case IMODE_NORM6:
  263. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  264. for(y = 0; y < height; y+= 3) {
  265. for(x = width & 1; x < width; x += 2) {
  266. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  267. if(code < 0){
  268. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  269. return -1;
  270. }
  271. planep[x + 0] = (code >> 0) & 1;
  272. planep[x + 1] = (code >> 1) & 1;
  273. planep[x + 0 + stride] = (code >> 2) & 1;
  274. planep[x + 1 + stride] = (code >> 3) & 1;
  275. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  276. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  277. }
  278. planep += stride * 3;
  279. }
  280. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  281. } else { // 3x2
  282. planep += (height & 1) * stride;
  283. for(y = height & 1; y < height; y += 2) {
  284. for(x = width % 3; x < width; x += 3) {
  285. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  286. if(code < 0){
  287. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  288. return -1;
  289. }
  290. planep[x + 0] = (code >> 0) & 1;
  291. planep[x + 1] = (code >> 1) & 1;
  292. planep[x + 2] = (code >> 2) & 1;
  293. planep[x + 0 + stride] = (code >> 3) & 1;
  294. planep[x + 1 + stride] = (code >> 4) & 1;
  295. planep[x + 2 + stride] = (code >> 5) & 1;
  296. }
  297. planep += stride * 2;
  298. }
  299. x = width % 3;
  300. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  301. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  302. }
  303. break;
  304. case IMODE_ROWSKIP:
  305. decode_rowskip(data, width, height, stride, &v->s.gb);
  306. break;
  307. case IMODE_COLSKIP:
  308. decode_colskip(data, width, height, stride, &v->s.gb);
  309. break;
  310. default: break;
  311. }
  312. /* Applying diff operator */
  313. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  314. {
  315. planep = data;
  316. planep[0] ^= invert;
  317. for (x=1; x<width; x++)
  318. planep[x] ^= planep[x-1];
  319. for (y=1; y<height; y++)
  320. {
  321. planep += stride;
  322. planep[0] ^= planep[-stride];
  323. for (x=1; x<width; x++)
  324. {
  325. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  326. else planep[x] ^= planep[x-1];
  327. }
  328. }
  329. }
  330. else if (invert)
  331. {
  332. planep = data;
  333. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  334. }
  335. return (imode<<1) + invert;
  336. }
  337. /** @} */ //Bitplane group
  338. /***********************************************************************/
  339. /** VOP Dquant decoding
  340. * @param v VC-1 Context
  341. */
  342. static int vop_dquant_decoding(VC1Context *v)
  343. {
  344. GetBitContext *gb = &v->s.gb;
  345. int pqdiff;
  346. //variable size
  347. if (v->dquant == 2)
  348. {
  349. pqdiff = get_bits(gb, 3);
  350. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  351. else v->altpq = v->pq + pqdiff + 1;
  352. }
  353. else
  354. {
  355. v->dquantfrm = get_bits(gb, 1);
  356. if ( v->dquantfrm )
  357. {
  358. v->dqprofile = get_bits(gb, 2);
  359. switch (v->dqprofile)
  360. {
  361. case DQPROFILE_SINGLE_EDGE:
  362. case DQPROFILE_DOUBLE_EDGES:
  363. v->dqsbedge = get_bits(gb, 2);
  364. break;
  365. case DQPROFILE_ALL_MBS:
  366. v->dqbilevel = get_bits(gb, 1);
  367. default: break; //Forbidden ?
  368. }
  369. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  370. {
  371. pqdiff = get_bits(gb, 3);
  372. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  373. else v->altpq = v->pq + pqdiff + 1;
  374. }
  375. }
  376. }
  377. return 0;
  378. }
  379. /** Put block onto picture
  380. */
  381. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  382. {
  383. uint8_t *Y;
  384. int ys, us, vs;
  385. DSPContext *dsp = &v->s.dsp;
  386. if(v->rangeredfrm) {
  387. int i, j, k;
  388. for(k = 0; k < 6; k++)
  389. for(j = 0; j < 8; j++)
  390. for(i = 0; i < 8; i++)
  391. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  392. }
  393. ys = v->s.current_picture.linesize[0];
  394. us = v->s.current_picture.linesize[1];
  395. vs = v->s.current_picture.linesize[2];
  396. Y = v->s.dest[0];
  397. dsp->put_pixels_clamped(block[0], Y, ys);
  398. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  399. Y += ys * 8;
  400. dsp->put_pixels_clamped(block[2], Y, ys);
  401. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  402. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  403. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  404. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  405. }
  406. }
  407. /** Do motion compensation over 1 macroblock
  408. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  409. */
  410. static void vc1_mc_1mv(VC1Context *v, int dir)
  411. {
  412. MpegEncContext *s = &v->s;
  413. DSPContext *dsp = &v->s.dsp;
  414. uint8_t *srcY, *srcU, *srcV;
  415. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  416. if(!v->s.last_picture.data[0])return;
  417. mx = s->mv[dir][0][0];
  418. my = s->mv[dir][0][1];
  419. // store motion vectors for further use in B frames
  420. if(s->pict_type == P_TYPE) {
  421. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  422. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  423. }
  424. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  425. uvmy = (my + ((my & 3) == 3)) >> 1;
  426. if(v->fastuvmc) {
  427. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  428. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  429. }
  430. if(!dir) {
  431. srcY = s->last_picture.data[0];
  432. srcU = s->last_picture.data[1];
  433. srcV = s->last_picture.data[2];
  434. } else {
  435. srcY = s->next_picture.data[0];
  436. srcU = s->next_picture.data[1];
  437. srcV = s->next_picture.data[2];
  438. }
  439. src_x = s->mb_x * 16 + (mx >> 2);
  440. src_y = s->mb_y * 16 + (my >> 2);
  441. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  442. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  443. if(v->profile != PROFILE_ADVANCED){
  444. src_x = av_clip( src_x, -16, s->mb_width * 16);
  445. src_y = av_clip( src_y, -16, s->mb_height * 16);
  446. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  447. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  448. }else{
  449. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  450. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  451. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  452. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  453. }
  454. srcY += src_y * s->linesize + src_x;
  455. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  456. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  457. /* for grayscale we should not try to read from unknown area */
  458. if(s->flags & CODEC_FLAG_GRAY) {
  459. srcU = s->edge_emu_buffer + 18 * s->linesize;
  460. srcV = s->edge_emu_buffer + 18 * s->linesize;
  461. }
  462. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  463. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  464. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  465. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  466. srcY -= s->mspel * (1 + s->linesize);
  467. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  468. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  469. srcY = s->edge_emu_buffer;
  470. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  471. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  472. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  473. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  474. srcU = uvbuf;
  475. srcV = uvbuf + 16;
  476. /* if we deal with range reduction we need to scale source blocks */
  477. if(v->rangeredfrm) {
  478. int i, j;
  479. uint8_t *src, *src2;
  480. src = srcY;
  481. for(j = 0; j < 17 + s->mspel*2; j++) {
  482. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  483. src += s->linesize;
  484. }
  485. src = srcU; src2 = srcV;
  486. for(j = 0; j < 9; j++) {
  487. for(i = 0; i < 9; i++) {
  488. src[i] = ((src[i] - 128) >> 1) + 128;
  489. src2[i] = ((src2[i] - 128) >> 1) + 128;
  490. }
  491. src += s->uvlinesize;
  492. src2 += s->uvlinesize;
  493. }
  494. }
  495. /* if we deal with intensity compensation we need to scale source blocks */
  496. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  497. int i, j;
  498. uint8_t *src, *src2;
  499. src = srcY;
  500. for(j = 0; j < 17 + s->mspel*2; j++) {
  501. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  502. src += s->linesize;
  503. }
  504. src = srcU; src2 = srcV;
  505. for(j = 0; j < 9; j++) {
  506. for(i = 0; i < 9; i++) {
  507. src[i] = v->lutuv[src[i]];
  508. src2[i] = v->lutuv[src2[i]];
  509. }
  510. src += s->uvlinesize;
  511. src2 += s->uvlinesize;
  512. }
  513. }
  514. srcY += s->mspel * (1 + s->linesize);
  515. }
  516. if(s->mspel) {
  517. dxy = ((my & 3) << 2) | (mx & 3);
  518. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  519. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  520. srcY += s->linesize * 8;
  521. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  522. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  523. } else { // hpel mc - always used for luma
  524. dxy = (my & 2) | ((mx & 2) >> 1);
  525. if(!v->rnd)
  526. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  527. else
  528. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  529. }
  530. if(s->flags & CODEC_FLAG_GRAY) return;
  531. /* Chroma MC always uses qpel bilinear */
  532. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  533. uvmx = (uvmx&3)<<1;
  534. uvmy = (uvmy&3)<<1;
  535. if(!v->rnd){
  536. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  537. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  538. }else{
  539. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  540. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  541. }
  542. }
  543. /** Do motion compensation for 4-MV macroblock - luminance block
  544. */
  545. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  546. {
  547. MpegEncContext *s = &v->s;
  548. DSPContext *dsp = &v->s.dsp;
  549. uint8_t *srcY;
  550. int dxy, mx, my, src_x, src_y;
  551. int off;
  552. if(!v->s.last_picture.data[0])return;
  553. mx = s->mv[0][n][0];
  554. my = s->mv[0][n][1];
  555. srcY = s->last_picture.data[0];
  556. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  557. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  558. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  559. if(v->profile != PROFILE_ADVANCED){
  560. src_x = av_clip( src_x, -16, s->mb_width * 16);
  561. src_y = av_clip( src_y, -16, s->mb_height * 16);
  562. }else{
  563. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  564. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  565. }
  566. srcY += src_y * s->linesize + src_x;
  567. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  568. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  569. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  570. srcY -= s->mspel * (1 + s->linesize);
  571. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  572. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  573. srcY = s->edge_emu_buffer;
  574. /* if we deal with range reduction we need to scale source blocks */
  575. if(v->rangeredfrm) {
  576. int i, j;
  577. uint8_t *src;
  578. src = srcY;
  579. for(j = 0; j < 9 + s->mspel*2; j++) {
  580. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  581. src += s->linesize;
  582. }
  583. }
  584. /* if we deal with intensity compensation we need to scale source blocks */
  585. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  586. int i, j;
  587. uint8_t *src;
  588. src = srcY;
  589. for(j = 0; j < 9 + s->mspel*2; j++) {
  590. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  591. src += s->linesize;
  592. }
  593. }
  594. srcY += s->mspel * (1 + s->linesize);
  595. }
  596. if(s->mspel) {
  597. dxy = ((my & 3) << 2) | (mx & 3);
  598. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  599. } else { // hpel mc - always used for luma
  600. dxy = (my & 2) | ((mx & 2) >> 1);
  601. if(!v->rnd)
  602. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  603. else
  604. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  605. }
  606. }
  607. static inline int median4(int a, int b, int c, int d)
  608. {
  609. if(a < b) {
  610. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  611. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  612. } else {
  613. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  614. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  615. }
  616. }
  617. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  618. */
  619. static void vc1_mc_4mv_chroma(VC1Context *v)
  620. {
  621. MpegEncContext *s = &v->s;
  622. DSPContext *dsp = &v->s.dsp;
  623. uint8_t *srcU, *srcV;
  624. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  625. int i, idx, tx = 0, ty = 0;
  626. int mvx[4], mvy[4], intra[4];
  627. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  628. if(!v->s.last_picture.data[0])return;
  629. if(s->flags & CODEC_FLAG_GRAY) return;
  630. for(i = 0; i < 4; i++) {
  631. mvx[i] = s->mv[0][i][0];
  632. mvy[i] = s->mv[0][i][1];
  633. intra[i] = v->mb_type[0][s->block_index[i]];
  634. }
  635. /* calculate chroma MV vector from four luma MVs */
  636. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  637. if(!idx) { // all blocks are inter
  638. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  639. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  640. } else if(count[idx] == 1) { // 3 inter blocks
  641. switch(idx) {
  642. case 0x1:
  643. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  644. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  645. break;
  646. case 0x2:
  647. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  648. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  649. break;
  650. case 0x4:
  651. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  652. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  653. break;
  654. case 0x8:
  655. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  656. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  657. break;
  658. }
  659. } else if(count[idx] == 2) {
  660. int t1 = 0, t2 = 0;
  661. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  662. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  663. tx = (mvx[t1] + mvx[t2]) / 2;
  664. ty = (mvy[t1] + mvy[t2]) / 2;
  665. } else {
  666. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  667. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  668. return; //no need to do MC for inter blocks
  669. }
  670. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  671. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  672. uvmx = (tx + ((tx&3) == 3)) >> 1;
  673. uvmy = (ty + ((ty&3) == 3)) >> 1;
  674. if(v->fastuvmc) {
  675. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  676. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  677. }
  678. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  679. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  680. if(v->profile != PROFILE_ADVANCED){
  681. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  682. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  683. }else{
  684. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  685. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  686. }
  687. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  688. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  689. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  690. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  691. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  692. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  693. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  694. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  695. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  696. srcU = s->edge_emu_buffer;
  697. srcV = s->edge_emu_buffer + 16;
  698. /* if we deal with range reduction we need to scale source blocks */
  699. if(v->rangeredfrm) {
  700. int i, j;
  701. uint8_t *src, *src2;
  702. src = srcU; src2 = srcV;
  703. for(j = 0; j < 9; j++) {
  704. for(i = 0; i < 9; i++) {
  705. src[i] = ((src[i] - 128) >> 1) + 128;
  706. src2[i] = ((src2[i] - 128) >> 1) + 128;
  707. }
  708. src += s->uvlinesize;
  709. src2 += s->uvlinesize;
  710. }
  711. }
  712. /* if we deal with intensity compensation we need to scale source blocks */
  713. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  714. int i, j;
  715. uint8_t *src, *src2;
  716. src = srcU; src2 = srcV;
  717. for(j = 0; j < 9; j++) {
  718. for(i = 0; i < 9; i++) {
  719. src[i] = v->lutuv[src[i]];
  720. src2[i] = v->lutuv[src2[i]];
  721. }
  722. src += s->uvlinesize;
  723. src2 += s->uvlinesize;
  724. }
  725. }
  726. }
  727. /* Chroma MC always uses qpel bilinear */
  728. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  729. uvmx = (uvmx&3)<<1;
  730. uvmy = (uvmy&3)<<1;
  731. if(!v->rnd){
  732. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  733. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  734. }else{
  735. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  736. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  737. }
  738. }
  739. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  740. /**
  741. * Decode Simple/Main Profiles sequence header
  742. * @see Figure 7-8, p16-17
  743. * @param avctx Codec context
  744. * @param gb GetBit context initialized from Codec context extra_data
  745. * @return Status
  746. */
  747. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  748. {
  749. VC1Context *v = avctx->priv_data;
  750. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  751. v->profile = get_bits(gb, 2);
  752. if (v->profile == PROFILE_COMPLEX)
  753. {
  754. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  755. }
  756. if (v->profile == PROFILE_ADVANCED)
  757. {
  758. return decode_sequence_header_adv(v, gb);
  759. }
  760. else
  761. {
  762. v->res_sm = get_bits(gb, 2); //reserved
  763. if (v->res_sm)
  764. {
  765. av_log(avctx, AV_LOG_ERROR,
  766. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  767. return -1;
  768. }
  769. }
  770. // (fps-2)/4 (->30)
  771. v->frmrtq_postproc = get_bits(gb, 3); //common
  772. // (bitrate-32kbps)/64kbps
  773. v->bitrtq_postproc = get_bits(gb, 5); //common
  774. v->s.loop_filter = get_bits(gb, 1); //common
  775. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  776. {
  777. av_log(avctx, AV_LOG_ERROR,
  778. "LOOPFILTER shell not be enabled in simple profile\n");
  779. }
  780. v->res_x8 = get_bits(gb, 1); //reserved
  781. if (v->res_x8)
  782. {
  783. av_log(avctx, AV_LOG_ERROR,
  784. "1 for reserved RES_X8 is forbidden\n");
  785. //return -1;
  786. }
  787. v->multires = get_bits(gb, 1);
  788. v->res_fasttx = get_bits(gb, 1);
  789. if (!v->res_fasttx)
  790. {
  791. av_log(avctx, AV_LOG_ERROR,
  792. "0 for reserved RES_FASTTX is forbidden\n");
  793. //return -1;
  794. }
  795. v->fastuvmc = get_bits(gb, 1); //common
  796. if (!v->profile && !v->fastuvmc)
  797. {
  798. av_log(avctx, AV_LOG_ERROR,
  799. "FASTUVMC unavailable in Simple Profile\n");
  800. return -1;
  801. }
  802. v->extended_mv = get_bits(gb, 1); //common
  803. if (!v->profile && v->extended_mv)
  804. {
  805. av_log(avctx, AV_LOG_ERROR,
  806. "Extended MVs unavailable in Simple Profile\n");
  807. return -1;
  808. }
  809. v->dquant = get_bits(gb, 2); //common
  810. v->vstransform = get_bits(gb, 1); //common
  811. v->res_transtab = get_bits(gb, 1);
  812. if (v->res_transtab)
  813. {
  814. av_log(avctx, AV_LOG_ERROR,
  815. "1 for reserved RES_TRANSTAB is forbidden\n");
  816. return -1;
  817. }
  818. v->overlap = get_bits(gb, 1); //common
  819. v->s.resync_marker = get_bits(gb, 1);
  820. v->rangered = get_bits(gb, 1);
  821. if (v->rangered && v->profile == PROFILE_SIMPLE)
  822. {
  823. av_log(avctx, AV_LOG_INFO,
  824. "RANGERED should be set to 0 in simple profile\n");
  825. }
  826. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  827. v->quantizer_mode = get_bits(gb, 2); //common
  828. v->finterpflag = get_bits(gb, 1); //common
  829. v->res_rtm_flag = get_bits(gb, 1); //reserved
  830. if (!v->res_rtm_flag)
  831. {
  832. // av_log(avctx, AV_LOG_ERROR,
  833. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  834. av_log(avctx, AV_LOG_ERROR,
  835. "Old WMV3 version detected, only I-frames will be decoded\n");
  836. //return -1;
  837. }
  838. //TODO: figure out what they mean (always 0x402F)
  839. if(!v->res_fasttx) skip_bits(gb, 16);
  840. av_log(avctx, AV_LOG_DEBUG,
  841. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  842. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  843. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  844. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  845. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  846. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  847. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  848. v->dquant, v->quantizer_mode, avctx->max_b_frames
  849. );
  850. return 0;
  851. }
  852. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  853. {
  854. v->res_rtm_flag = 1;
  855. v->level = get_bits(gb, 3);
  856. if(v->level >= 5)
  857. {
  858. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  859. }
  860. v->chromaformat = get_bits(gb, 2);
  861. if (v->chromaformat != 1)
  862. {
  863. av_log(v->s.avctx, AV_LOG_ERROR,
  864. "Only 4:2:0 chroma format supported\n");
  865. return -1;
  866. }
  867. // (fps-2)/4 (->30)
  868. v->frmrtq_postproc = get_bits(gb, 3); //common
  869. // (bitrate-32kbps)/64kbps
  870. v->bitrtq_postproc = get_bits(gb, 5); //common
  871. v->postprocflag = get_bits(gb, 1); //common
  872. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  873. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  874. v->s.avctx->width = v->s.avctx->coded_width;
  875. v->s.avctx->height = v->s.avctx->coded_height;
  876. v->broadcast = get_bits1(gb);
  877. v->interlace = get_bits1(gb);
  878. v->tfcntrflag = get_bits1(gb);
  879. v->finterpflag = get_bits1(gb);
  880. get_bits1(gb); // reserved
  881. v->s.h_edge_pos = v->s.avctx->coded_width;
  882. v->s.v_edge_pos = v->s.avctx->coded_height;
  883. av_log(v->s.avctx, AV_LOG_DEBUG,
  884. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  885. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  886. "TFCTRflag=%i, FINTERPflag=%i\n",
  887. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  888. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  889. v->tfcntrflag, v->finterpflag
  890. );
  891. v->psf = get_bits1(gb);
  892. if(v->psf) { //PsF, 6.1.13
  893. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  894. return -1;
  895. }
  896. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  897. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  898. int w, h, ar = 0;
  899. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  900. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  901. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  902. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  903. if(get_bits1(gb))
  904. ar = get_bits(gb, 4);
  905. if(ar && ar < 14){
  906. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  907. }else if(ar == 15){
  908. w = get_bits(gb, 8);
  909. h = get_bits(gb, 8);
  910. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  911. }
  912. if(get_bits1(gb)){ //framerate stuff
  913. if(get_bits1(gb)) {
  914. v->s.avctx->time_base.num = 32;
  915. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  916. } else {
  917. int nr, dr;
  918. nr = get_bits(gb, 8);
  919. dr = get_bits(gb, 4);
  920. if(nr && nr < 8 && dr && dr < 3){
  921. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  922. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  923. }
  924. }
  925. }
  926. if(get_bits1(gb)){
  927. v->color_prim = get_bits(gb, 8);
  928. v->transfer_char = get_bits(gb, 8);
  929. v->matrix_coef = get_bits(gb, 8);
  930. }
  931. }
  932. v->hrd_param_flag = get_bits1(gb);
  933. if(v->hrd_param_flag) {
  934. int i;
  935. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  936. get_bits(gb, 4); //bitrate exponent
  937. get_bits(gb, 4); //buffer size exponent
  938. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  939. get_bits(gb, 16); //hrd_rate[n]
  940. get_bits(gb, 16); //hrd_buffer[n]
  941. }
  942. }
  943. return 0;
  944. }
  945. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  946. {
  947. VC1Context *v = avctx->priv_data;
  948. int i, blink, clentry, refdist;
  949. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  950. blink = get_bits1(gb); // broken link
  951. clentry = get_bits1(gb); // closed entry
  952. v->panscanflag = get_bits1(gb);
  953. refdist = get_bits1(gb); // refdist flag
  954. v->s.loop_filter = get_bits1(gb);
  955. v->fastuvmc = get_bits1(gb);
  956. v->extended_mv = get_bits1(gb);
  957. v->dquant = get_bits(gb, 2);
  958. v->vstransform = get_bits1(gb);
  959. v->overlap = get_bits1(gb);
  960. v->quantizer_mode = get_bits(gb, 2);
  961. if(v->hrd_param_flag){
  962. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  963. get_bits(gb, 8); //hrd_full[n]
  964. }
  965. }
  966. if(get_bits1(gb)){
  967. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  968. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  969. }
  970. if(v->extended_mv)
  971. v->extended_dmv = get_bits1(gb);
  972. if(get_bits1(gb)) {
  973. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  974. skip_bits(gb, 3); // Y range, ignored for now
  975. }
  976. if(get_bits1(gb)) {
  977. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  978. skip_bits(gb, 3); // UV range, ignored for now
  979. }
  980. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  981. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  982. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  983. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  984. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  985. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  986. return 0;
  987. }
  988. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  989. {
  990. int pqindex, lowquant, status;
  991. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  992. skip_bits(gb, 2); //framecnt unused
  993. v->rangeredfrm = 0;
  994. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  995. v->s.pict_type = get_bits(gb, 1);
  996. if (v->s.avctx->max_b_frames) {
  997. if (!v->s.pict_type) {
  998. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  999. else v->s.pict_type = B_TYPE;
  1000. } else v->s.pict_type = P_TYPE;
  1001. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1002. v->bi_type = 0;
  1003. if(v->s.pict_type == B_TYPE) {
  1004. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1005. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1006. if(v->bfraction == 0) {
  1007. v->s.pict_type = BI_TYPE;
  1008. }
  1009. }
  1010. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1011. get_bits(gb, 7); // skip buffer fullness
  1012. /* calculate RND */
  1013. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1014. v->rnd = 1;
  1015. if(v->s.pict_type == P_TYPE)
  1016. v->rnd ^= 1;
  1017. /* Quantizer stuff */
  1018. pqindex = get_bits(gb, 5);
  1019. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1020. v->pq = ff_vc1_pquant_table[0][pqindex];
  1021. else
  1022. v->pq = ff_vc1_pquant_table[1][pqindex];
  1023. v->pquantizer = 1;
  1024. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1025. v->pquantizer = pqindex < 9;
  1026. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1027. v->pquantizer = 0;
  1028. v->pqindex = pqindex;
  1029. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1030. else v->halfpq = 0;
  1031. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1032. v->pquantizer = get_bits(gb, 1);
  1033. v->dquantfrm = 0;
  1034. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1035. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1036. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1037. v->range_x = 1 << (v->k_x - 1);
  1038. v->range_y = 1 << (v->k_y - 1);
  1039. if (v->profile == PROFILE_ADVANCED)
  1040. {
  1041. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1042. }
  1043. else
  1044. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1045. if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
  1046. if(get_bits1(gb))return -1;
  1047. }
  1048. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1049. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1050. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1051. switch(v->s.pict_type) {
  1052. case P_TYPE:
  1053. if (v->pq < 5) v->tt_index = 0;
  1054. else if(v->pq < 13) v->tt_index = 1;
  1055. else v->tt_index = 2;
  1056. lowquant = (v->pq > 12) ? 0 : 1;
  1057. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1058. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1059. {
  1060. int scale, shift, i;
  1061. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1062. v->lumscale = get_bits(gb, 6);
  1063. v->lumshift = get_bits(gb, 6);
  1064. v->use_ic = 1;
  1065. /* fill lookup tables for intensity compensation */
  1066. if(!v->lumscale) {
  1067. scale = -64;
  1068. shift = (255 - v->lumshift * 2) << 6;
  1069. if(v->lumshift > 31)
  1070. shift += 128 << 6;
  1071. } else {
  1072. scale = v->lumscale + 32;
  1073. if(v->lumshift > 31)
  1074. shift = (v->lumshift - 64) << 6;
  1075. else
  1076. shift = v->lumshift << 6;
  1077. }
  1078. for(i = 0; i < 256; i++) {
  1079. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1080. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1081. }
  1082. }
  1083. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1084. v->s.quarter_sample = 0;
  1085. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1086. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1087. v->s.quarter_sample = 0;
  1088. else
  1089. v->s.quarter_sample = 1;
  1090. } else
  1091. v->s.quarter_sample = 1;
  1092. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1093. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1094. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1095. || v->mv_mode == MV_PMODE_MIXED_MV)
  1096. {
  1097. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1098. if (status < 0) return -1;
  1099. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1100. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1101. } else {
  1102. v->mv_type_is_raw = 0;
  1103. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1104. }
  1105. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1106. if (status < 0) return -1;
  1107. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1108. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1109. /* Hopefully this is correct for P frames */
  1110. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1111. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1112. if (v->dquant)
  1113. {
  1114. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1115. vop_dquant_decoding(v);
  1116. }
  1117. v->ttfrm = 0; //FIXME Is that so ?
  1118. if (v->vstransform)
  1119. {
  1120. v->ttmbf = get_bits(gb, 1);
  1121. if (v->ttmbf)
  1122. {
  1123. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1124. }
  1125. } else {
  1126. v->ttmbf = 1;
  1127. v->ttfrm = TT_8X8;
  1128. }
  1129. break;
  1130. case B_TYPE:
  1131. if (v->pq < 5) v->tt_index = 0;
  1132. else if(v->pq < 13) v->tt_index = 1;
  1133. else v->tt_index = 2;
  1134. lowquant = (v->pq > 12) ? 0 : 1;
  1135. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1136. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1137. v->s.mspel = v->s.quarter_sample;
  1138. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1139. if (status < 0) return -1;
  1140. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1141. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1142. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1143. if (status < 0) return -1;
  1144. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1145. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1146. v->s.mv_table_index = get_bits(gb, 2);
  1147. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1148. if (v->dquant)
  1149. {
  1150. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1151. vop_dquant_decoding(v);
  1152. }
  1153. v->ttfrm = 0;
  1154. if (v->vstransform)
  1155. {
  1156. v->ttmbf = get_bits(gb, 1);
  1157. if (v->ttmbf)
  1158. {
  1159. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1160. }
  1161. } else {
  1162. v->ttmbf = 1;
  1163. v->ttfrm = TT_8X8;
  1164. }
  1165. break;
  1166. }
  1167. /* AC Syntax */
  1168. v->c_ac_table_index = decode012(gb);
  1169. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1170. {
  1171. v->y_ac_table_index = decode012(gb);
  1172. }
  1173. /* DC Syntax */
  1174. v->s.dc_table_index = get_bits(gb, 1);
  1175. if(v->s.pict_type == BI_TYPE) {
  1176. v->s.pict_type = B_TYPE;
  1177. v->bi_type = 1;
  1178. }
  1179. return 0;
  1180. }
  1181. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1182. {
  1183. int pqindex, lowquant;
  1184. int status;
  1185. v->p_frame_skipped = 0;
  1186. if(v->interlace){
  1187. v->fcm = decode012(gb);
  1188. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1189. }
  1190. switch(get_prefix(gb, 0, 4)) {
  1191. case 0:
  1192. v->s.pict_type = P_TYPE;
  1193. break;
  1194. case 1:
  1195. v->s.pict_type = B_TYPE;
  1196. break;
  1197. case 2:
  1198. v->s.pict_type = I_TYPE;
  1199. break;
  1200. case 3:
  1201. v->s.pict_type = BI_TYPE;
  1202. break;
  1203. case 4:
  1204. v->s.pict_type = P_TYPE; // skipped pic
  1205. v->p_frame_skipped = 1;
  1206. return 0;
  1207. }
  1208. if(v->tfcntrflag)
  1209. get_bits(gb, 8);
  1210. if(v->broadcast) {
  1211. if(!v->interlace || v->psf) {
  1212. v->rptfrm = get_bits(gb, 2);
  1213. } else {
  1214. v->tff = get_bits1(gb);
  1215. v->rptfrm = get_bits1(gb);
  1216. }
  1217. }
  1218. if(v->panscanflag) {
  1219. //...
  1220. }
  1221. v->rnd = get_bits1(gb);
  1222. if(v->interlace)
  1223. v->uvsamp = get_bits1(gb);
  1224. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1225. if(v->s.pict_type == B_TYPE) {
  1226. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1227. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1228. if(v->bfraction == 0) {
  1229. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1230. }
  1231. }
  1232. pqindex = get_bits(gb, 5);
  1233. v->pqindex = pqindex;
  1234. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1235. v->pq = ff_vc1_pquant_table[0][pqindex];
  1236. else
  1237. v->pq = ff_vc1_pquant_table[1][pqindex];
  1238. v->pquantizer = 1;
  1239. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1240. v->pquantizer = pqindex < 9;
  1241. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1242. v->pquantizer = 0;
  1243. v->pqindex = pqindex;
  1244. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1245. else v->halfpq = 0;
  1246. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1247. v->pquantizer = get_bits(gb, 1);
  1248. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1249. switch(v->s.pict_type) {
  1250. case I_TYPE:
  1251. case BI_TYPE:
  1252. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1253. if (status < 0) return -1;
  1254. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1255. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1256. v->condover = CONDOVER_NONE;
  1257. if(v->overlap && v->pq <= 8) {
  1258. v->condover = decode012(gb);
  1259. if(v->condover == CONDOVER_SELECT) {
  1260. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1261. if (status < 0) return -1;
  1262. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1263. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1264. }
  1265. }
  1266. break;
  1267. case P_TYPE:
  1268. if(v->postprocflag)
  1269. v->postproc = get_bits1(gb);
  1270. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1271. else v->mvrange = 0;
  1272. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1273. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1274. v->range_x = 1 << (v->k_x - 1);
  1275. v->range_y = 1 << (v->k_y - 1);
  1276. if (v->pq < 5) v->tt_index = 0;
  1277. else if(v->pq < 13) v->tt_index = 1;
  1278. else v->tt_index = 2;
  1279. lowquant = (v->pq > 12) ? 0 : 1;
  1280. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1281. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1282. {
  1283. int scale, shift, i;
  1284. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1285. v->lumscale = get_bits(gb, 6);
  1286. v->lumshift = get_bits(gb, 6);
  1287. /* fill lookup tables for intensity compensation */
  1288. if(!v->lumscale) {
  1289. scale = -64;
  1290. shift = (255 - v->lumshift * 2) << 6;
  1291. if(v->lumshift > 31)
  1292. shift += 128 << 6;
  1293. } else {
  1294. scale = v->lumscale + 32;
  1295. if(v->lumshift > 31)
  1296. shift = (v->lumshift - 64) << 6;
  1297. else
  1298. shift = v->lumshift << 6;
  1299. }
  1300. for(i = 0; i < 256; i++) {
  1301. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1302. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1303. }
  1304. v->use_ic = 1;
  1305. }
  1306. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1307. v->s.quarter_sample = 0;
  1308. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1309. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1310. v->s.quarter_sample = 0;
  1311. else
  1312. v->s.quarter_sample = 1;
  1313. } else
  1314. v->s.quarter_sample = 1;
  1315. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1316. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1317. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1318. || v->mv_mode == MV_PMODE_MIXED_MV)
  1319. {
  1320. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1321. if (status < 0) return -1;
  1322. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1323. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1324. } else {
  1325. v->mv_type_is_raw = 0;
  1326. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1327. }
  1328. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1329. if (status < 0) return -1;
  1330. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1331. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1332. /* Hopefully this is correct for P frames */
  1333. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1334. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1335. if (v->dquant)
  1336. {
  1337. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1338. vop_dquant_decoding(v);
  1339. }
  1340. v->ttfrm = 0; //FIXME Is that so ?
  1341. if (v->vstransform)
  1342. {
  1343. v->ttmbf = get_bits(gb, 1);
  1344. if (v->ttmbf)
  1345. {
  1346. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1347. }
  1348. } else {
  1349. v->ttmbf = 1;
  1350. v->ttfrm = TT_8X8;
  1351. }
  1352. break;
  1353. case B_TYPE:
  1354. if(v->postprocflag)
  1355. v->postproc = get_bits1(gb);
  1356. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1357. else v->mvrange = 0;
  1358. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1359. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1360. v->range_x = 1 << (v->k_x - 1);
  1361. v->range_y = 1 << (v->k_y - 1);
  1362. if (v->pq < 5) v->tt_index = 0;
  1363. else if(v->pq < 13) v->tt_index = 1;
  1364. else v->tt_index = 2;
  1365. lowquant = (v->pq > 12) ? 0 : 1;
  1366. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1367. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1368. v->s.mspel = v->s.quarter_sample;
  1369. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1370. if (status < 0) return -1;
  1371. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1372. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1373. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1374. if (status < 0) return -1;
  1375. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1376. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1377. v->s.mv_table_index = get_bits(gb, 2);
  1378. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1379. if (v->dquant)
  1380. {
  1381. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1382. vop_dquant_decoding(v);
  1383. }
  1384. v->ttfrm = 0;
  1385. if (v->vstransform)
  1386. {
  1387. v->ttmbf = get_bits(gb, 1);
  1388. if (v->ttmbf)
  1389. {
  1390. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1391. }
  1392. } else {
  1393. v->ttmbf = 1;
  1394. v->ttfrm = TT_8X8;
  1395. }
  1396. break;
  1397. }
  1398. /* AC Syntax */
  1399. v->c_ac_table_index = decode012(gb);
  1400. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1401. {
  1402. v->y_ac_table_index = decode012(gb);
  1403. }
  1404. /* DC Syntax */
  1405. v->s.dc_table_index = get_bits(gb, 1);
  1406. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1407. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1408. vop_dquant_decoding(v);
  1409. }
  1410. v->bi_type = 0;
  1411. if(v->s.pict_type == BI_TYPE) {
  1412. v->s.pict_type = B_TYPE;
  1413. v->bi_type = 1;
  1414. }
  1415. return 0;
  1416. }
  1417. /***********************************************************************/
  1418. /**
  1419. * @defgroup block VC-1 Block-level functions
  1420. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1421. * @{
  1422. */
  1423. /**
  1424. * @def GET_MQUANT
  1425. * @brief Get macroblock-level quantizer scale
  1426. */
  1427. #define GET_MQUANT() \
  1428. if (v->dquantfrm) \
  1429. { \
  1430. int edges = 0; \
  1431. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1432. { \
  1433. if (v->dqbilevel) \
  1434. { \
  1435. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1436. } \
  1437. else \
  1438. { \
  1439. mqdiff = get_bits(gb, 3); \
  1440. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1441. else mquant = get_bits(gb, 5); \
  1442. } \
  1443. } \
  1444. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1445. edges = 1 << v->dqsbedge; \
  1446. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1447. edges = (3 << v->dqsbedge) % 15; \
  1448. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1449. edges = 15; \
  1450. if((edges&1) && !s->mb_x) \
  1451. mquant = v->altpq; \
  1452. if((edges&2) && s->first_slice_line) \
  1453. mquant = v->altpq; \
  1454. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1455. mquant = v->altpq; \
  1456. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1457. mquant = v->altpq; \
  1458. }
  1459. /**
  1460. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1461. * @brief Get MV differentials
  1462. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1463. * @param _dmv_x Horizontal differential for decoded MV
  1464. * @param _dmv_y Vertical differential for decoded MV
  1465. */
  1466. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1467. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1468. VC1_MV_DIFF_VLC_BITS, 2); \
  1469. if (index > 36) \
  1470. { \
  1471. mb_has_coeffs = 1; \
  1472. index -= 37; \
  1473. } \
  1474. else mb_has_coeffs = 0; \
  1475. s->mb_intra = 0; \
  1476. if (!index) { _dmv_x = _dmv_y = 0; } \
  1477. else if (index == 35) \
  1478. { \
  1479. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1480. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1481. } \
  1482. else if (index == 36) \
  1483. { \
  1484. _dmv_x = 0; \
  1485. _dmv_y = 0; \
  1486. s->mb_intra = 1; \
  1487. } \
  1488. else \
  1489. { \
  1490. index1 = index%6; \
  1491. if (!s->quarter_sample && index1 == 5) val = 1; \
  1492. else val = 0; \
  1493. if(size_table[index1] - val > 0) \
  1494. val = get_bits(gb, size_table[index1] - val); \
  1495. else val = 0; \
  1496. sign = 0 - (val&1); \
  1497. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1498. \
  1499. index1 = index/6; \
  1500. if (!s->quarter_sample && index1 == 5) val = 1; \
  1501. else val = 0; \
  1502. if(size_table[index1] - val > 0) \
  1503. val = get_bits(gb, size_table[index1] - val); \
  1504. else val = 0; \
  1505. sign = 0 - (val&1); \
  1506. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1507. }
  1508. /** Predict and set motion vector
  1509. */
  1510. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1511. {
  1512. int xy, wrap, off = 0;
  1513. int16_t *A, *B, *C;
  1514. int px, py;
  1515. int sum;
  1516. /* scale MV difference to be quad-pel */
  1517. dmv_x <<= 1 - s->quarter_sample;
  1518. dmv_y <<= 1 - s->quarter_sample;
  1519. wrap = s->b8_stride;
  1520. xy = s->block_index[n];
  1521. if(s->mb_intra){
  1522. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1523. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1524. s->current_picture.motion_val[1][xy][0] = 0;
  1525. s->current_picture.motion_val[1][xy][1] = 0;
  1526. if(mv1) { /* duplicate motion data for 1-MV block */
  1527. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1528. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1529. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1530. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1531. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1532. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1533. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1534. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1535. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1536. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1537. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1538. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1539. }
  1540. return;
  1541. }
  1542. C = s->current_picture.motion_val[0][xy - 1];
  1543. A = s->current_picture.motion_val[0][xy - wrap];
  1544. if(mv1)
  1545. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1546. else {
  1547. //in 4-MV mode different blocks have different B predictor position
  1548. switch(n){
  1549. case 0:
  1550. off = (s->mb_x > 0) ? -1 : 1;
  1551. break;
  1552. case 1:
  1553. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1554. break;
  1555. case 2:
  1556. off = 1;
  1557. break;
  1558. case 3:
  1559. off = -1;
  1560. }
  1561. }
  1562. B = s->current_picture.motion_val[0][xy - wrap + off];
  1563. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1564. if(s->mb_width == 1) {
  1565. px = A[0];
  1566. py = A[1];
  1567. } else {
  1568. px = mid_pred(A[0], B[0], C[0]);
  1569. py = mid_pred(A[1], B[1], C[1]);
  1570. }
  1571. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1572. px = C[0];
  1573. py = C[1];
  1574. } else {
  1575. px = py = 0;
  1576. }
  1577. /* Pullback MV as specified in 8.3.5.3.4 */
  1578. {
  1579. int qx, qy, X, Y;
  1580. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1581. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1582. X = (s->mb_width << 6) - 4;
  1583. Y = (s->mb_height << 6) - 4;
  1584. if(mv1) {
  1585. if(qx + px < -60) px = -60 - qx;
  1586. if(qy + py < -60) py = -60 - qy;
  1587. } else {
  1588. if(qx + px < -28) px = -28 - qx;
  1589. if(qy + py < -28) py = -28 - qy;
  1590. }
  1591. if(qx + px > X) px = X - qx;
  1592. if(qy + py > Y) py = Y - qy;
  1593. }
  1594. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1595. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1596. if(is_intra[xy - wrap])
  1597. sum = FFABS(px) + FFABS(py);
  1598. else
  1599. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1600. if(sum > 32) {
  1601. if(get_bits1(&s->gb)) {
  1602. px = A[0];
  1603. py = A[1];
  1604. } else {
  1605. px = C[0];
  1606. py = C[1];
  1607. }
  1608. } else {
  1609. if(is_intra[xy - 1])
  1610. sum = FFABS(px) + FFABS(py);
  1611. else
  1612. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1613. if(sum > 32) {
  1614. if(get_bits1(&s->gb)) {
  1615. px = A[0];
  1616. py = A[1];
  1617. } else {
  1618. px = C[0];
  1619. py = C[1];
  1620. }
  1621. }
  1622. }
  1623. }
  1624. /* store MV using signed modulus of MV range defined in 4.11 */
  1625. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1626. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1627. if(mv1) { /* duplicate motion data for 1-MV block */
  1628. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1629. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1630. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1631. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1632. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1633. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1634. }
  1635. }
  1636. /** Motion compensation for direct or interpolated blocks in B-frames
  1637. */
  1638. static void vc1_interp_mc(VC1Context *v)
  1639. {
  1640. MpegEncContext *s = &v->s;
  1641. DSPContext *dsp = &v->s.dsp;
  1642. uint8_t *srcY, *srcU, *srcV;
  1643. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1644. if(!v->s.next_picture.data[0])return;
  1645. mx = s->mv[1][0][0];
  1646. my = s->mv[1][0][1];
  1647. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1648. uvmy = (my + ((my & 3) == 3)) >> 1;
  1649. if(v->fastuvmc) {
  1650. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1651. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1652. }
  1653. srcY = s->next_picture.data[0];
  1654. srcU = s->next_picture.data[1];
  1655. srcV = s->next_picture.data[2];
  1656. src_x = s->mb_x * 16 + (mx >> 2);
  1657. src_y = s->mb_y * 16 + (my >> 2);
  1658. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1659. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1660. if(v->profile != PROFILE_ADVANCED){
  1661. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1662. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1663. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1664. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1665. }else{
  1666. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1667. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1668. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1669. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1670. }
  1671. srcY += src_y * s->linesize + src_x;
  1672. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1673. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1674. /* for grayscale we should not try to read from unknown area */
  1675. if(s->flags & CODEC_FLAG_GRAY) {
  1676. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1677. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1678. }
  1679. if(v->rangeredfrm
  1680. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1681. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1682. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1683. srcY -= s->mspel * (1 + s->linesize);
  1684. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1685. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1686. srcY = s->edge_emu_buffer;
  1687. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1688. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1689. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1690. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1691. srcU = uvbuf;
  1692. srcV = uvbuf + 16;
  1693. /* if we deal with range reduction we need to scale source blocks */
  1694. if(v->rangeredfrm) {
  1695. int i, j;
  1696. uint8_t *src, *src2;
  1697. src = srcY;
  1698. for(j = 0; j < 17 + s->mspel*2; j++) {
  1699. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1700. src += s->linesize;
  1701. }
  1702. src = srcU; src2 = srcV;
  1703. for(j = 0; j < 9; j++) {
  1704. for(i = 0; i < 9; i++) {
  1705. src[i] = ((src[i] - 128) >> 1) + 128;
  1706. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1707. }
  1708. src += s->uvlinesize;
  1709. src2 += s->uvlinesize;
  1710. }
  1711. }
  1712. srcY += s->mspel * (1 + s->linesize);
  1713. }
  1714. mx >>= 1;
  1715. my >>= 1;
  1716. dxy = ((my & 1) << 1) | (mx & 1);
  1717. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1718. if(s->flags & CODEC_FLAG_GRAY) return;
  1719. /* Chroma MC always uses qpel blilinear */
  1720. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1721. uvmx = (uvmx&3)<<1;
  1722. uvmy = (uvmy&3)<<1;
  1723. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1724. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1725. }
  1726. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1727. {
  1728. int n = bfrac;
  1729. #if B_FRACTION_DEN==256
  1730. if(inv)
  1731. n -= 256;
  1732. if(!qs)
  1733. return 2 * ((value * n + 255) >> 9);
  1734. return (value * n + 128) >> 8;
  1735. #else
  1736. if(inv)
  1737. n -= B_FRACTION_DEN;
  1738. if(!qs)
  1739. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1740. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1741. #endif
  1742. }
  1743. /** Reconstruct motion vector for B-frame and do motion compensation
  1744. */
  1745. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1746. {
  1747. if(v->use_ic) {
  1748. v->mv_mode2 = v->mv_mode;
  1749. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1750. }
  1751. if(direct) {
  1752. vc1_mc_1mv(v, 0);
  1753. vc1_interp_mc(v);
  1754. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1755. return;
  1756. }
  1757. if(mode == BMV_TYPE_INTERPOLATED) {
  1758. vc1_mc_1mv(v, 0);
  1759. vc1_interp_mc(v);
  1760. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1761. return;
  1762. }
  1763. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1764. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1765. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1766. }
  1767. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1768. {
  1769. MpegEncContext *s = &v->s;
  1770. int xy, wrap, off = 0;
  1771. int16_t *A, *B, *C;
  1772. int px, py;
  1773. int sum;
  1774. int r_x, r_y;
  1775. const uint8_t *is_intra = v->mb_type[0];
  1776. r_x = v->range_x;
  1777. r_y = v->range_y;
  1778. /* scale MV difference to be quad-pel */
  1779. dmv_x[0] <<= 1 - s->quarter_sample;
  1780. dmv_y[0] <<= 1 - s->quarter_sample;
  1781. dmv_x[1] <<= 1 - s->quarter_sample;
  1782. dmv_y[1] <<= 1 - s->quarter_sample;
  1783. wrap = s->b8_stride;
  1784. xy = s->block_index[0];
  1785. if(s->mb_intra) {
  1786. s->current_picture.motion_val[0][xy][0] =
  1787. s->current_picture.motion_val[0][xy][1] =
  1788. s->current_picture.motion_val[1][xy][0] =
  1789. s->current_picture.motion_val[1][xy][1] = 0;
  1790. return;
  1791. }
  1792. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1793. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1794. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1795. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1796. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1797. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1798. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1799. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1800. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1801. if(direct) {
  1802. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1803. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1804. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1805. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1806. return;
  1807. }
  1808. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1809. C = s->current_picture.motion_val[0][xy - 2];
  1810. A = s->current_picture.motion_val[0][xy - wrap*2];
  1811. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1812. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1813. if(!s->mb_x) C[0] = C[1] = 0;
  1814. if(!s->first_slice_line) { // predictor A is not out of bounds
  1815. if(s->mb_width == 1) {
  1816. px = A[0];
  1817. py = A[1];
  1818. } else {
  1819. px = mid_pred(A[0], B[0], C[0]);
  1820. py = mid_pred(A[1], B[1], C[1]);
  1821. }
  1822. } else if(s->mb_x) { // predictor C is not out of bounds
  1823. px = C[0];
  1824. py = C[1];
  1825. } else {
  1826. px = py = 0;
  1827. }
  1828. /* Pullback MV as specified in 8.3.5.3.4 */
  1829. {
  1830. int qx, qy, X, Y;
  1831. if(v->profile < PROFILE_ADVANCED) {
  1832. qx = (s->mb_x << 5);
  1833. qy = (s->mb_y << 5);
  1834. X = (s->mb_width << 5) - 4;
  1835. Y = (s->mb_height << 5) - 4;
  1836. if(qx + px < -28) px = -28 - qx;
  1837. if(qy + py < -28) py = -28 - qy;
  1838. if(qx + px > X) px = X - qx;
  1839. if(qy + py > Y) py = Y - qy;
  1840. } else {
  1841. qx = (s->mb_x << 6);
  1842. qy = (s->mb_y << 6);
  1843. X = (s->mb_width << 6) - 4;
  1844. Y = (s->mb_height << 6) - 4;
  1845. if(qx + px < -60) px = -60 - qx;
  1846. if(qy + py < -60) py = -60 - qy;
  1847. if(qx + px > X) px = X - qx;
  1848. if(qy + py > Y) py = Y - qy;
  1849. }
  1850. }
  1851. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1852. if(0 && !s->first_slice_line && s->mb_x) {
  1853. if(is_intra[xy - wrap])
  1854. sum = FFABS(px) + FFABS(py);
  1855. else
  1856. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1857. if(sum > 32) {
  1858. if(get_bits1(&s->gb)) {
  1859. px = A[0];
  1860. py = A[1];
  1861. } else {
  1862. px = C[0];
  1863. py = C[1];
  1864. }
  1865. } else {
  1866. if(is_intra[xy - 2])
  1867. sum = FFABS(px) + FFABS(py);
  1868. else
  1869. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1870. if(sum > 32) {
  1871. if(get_bits1(&s->gb)) {
  1872. px = A[0];
  1873. py = A[1];
  1874. } else {
  1875. px = C[0];
  1876. py = C[1];
  1877. }
  1878. }
  1879. }
  1880. }
  1881. /* store MV using signed modulus of MV range defined in 4.11 */
  1882. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1883. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1884. }
  1885. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1886. C = s->current_picture.motion_val[1][xy - 2];
  1887. A = s->current_picture.motion_val[1][xy - wrap*2];
  1888. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1889. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1890. if(!s->mb_x) C[0] = C[1] = 0;
  1891. if(!s->first_slice_line) { // predictor A is not out of bounds
  1892. if(s->mb_width == 1) {
  1893. px = A[0];
  1894. py = A[1];
  1895. } else {
  1896. px = mid_pred(A[0], B[0], C[0]);
  1897. py = mid_pred(A[1], B[1], C[1]);
  1898. }
  1899. } else if(s->mb_x) { // predictor C is not out of bounds
  1900. px = C[0];
  1901. py = C[1];
  1902. } else {
  1903. px = py = 0;
  1904. }
  1905. /* Pullback MV as specified in 8.3.5.3.4 */
  1906. {
  1907. int qx, qy, X, Y;
  1908. if(v->profile < PROFILE_ADVANCED) {
  1909. qx = (s->mb_x << 5);
  1910. qy = (s->mb_y << 5);
  1911. X = (s->mb_width << 5) - 4;
  1912. Y = (s->mb_height << 5) - 4;
  1913. if(qx + px < -28) px = -28 - qx;
  1914. if(qy + py < -28) py = -28 - qy;
  1915. if(qx + px > X) px = X - qx;
  1916. if(qy + py > Y) py = Y - qy;
  1917. } else {
  1918. qx = (s->mb_x << 6);
  1919. qy = (s->mb_y << 6);
  1920. X = (s->mb_width << 6) - 4;
  1921. Y = (s->mb_height << 6) - 4;
  1922. if(qx + px < -60) px = -60 - qx;
  1923. if(qy + py < -60) py = -60 - qy;
  1924. if(qx + px > X) px = X - qx;
  1925. if(qy + py > Y) py = Y - qy;
  1926. }
  1927. }
  1928. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1929. if(0 && !s->first_slice_line && s->mb_x) {
  1930. if(is_intra[xy - wrap])
  1931. sum = FFABS(px) + FFABS(py);
  1932. else
  1933. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1934. if(sum > 32) {
  1935. if(get_bits1(&s->gb)) {
  1936. px = A[0];
  1937. py = A[1];
  1938. } else {
  1939. px = C[0];
  1940. py = C[1];
  1941. }
  1942. } else {
  1943. if(is_intra[xy - 2])
  1944. sum = FFABS(px) + FFABS(py);
  1945. else
  1946. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1947. if(sum > 32) {
  1948. if(get_bits1(&s->gb)) {
  1949. px = A[0];
  1950. py = A[1];
  1951. } else {
  1952. px = C[0];
  1953. py = C[1];
  1954. }
  1955. }
  1956. }
  1957. }
  1958. /* store MV using signed modulus of MV range defined in 4.11 */
  1959. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1960. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1961. }
  1962. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1963. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1964. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1965. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1966. }
  1967. /** Get predicted DC value for I-frames only
  1968. * prediction dir: left=0, top=1
  1969. * @param s MpegEncContext
  1970. * @param[in] n block index in the current MB
  1971. * @param dc_val_ptr Pointer to DC predictor
  1972. * @param dir_ptr Prediction direction for use in AC prediction
  1973. */
  1974. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1975. int16_t **dc_val_ptr, int *dir_ptr)
  1976. {
  1977. int a, b, c, wrap, pred, scale;
  1978. int16_t *dc_val;
  1979. static const uint16_t dcpred[32] = {
  1980. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1981. 114, 102, 93, 85, 79, 73, 68, 64,
  1982. 60, 57, 54, 51, 49, 47, 45, 43,
  1983. 41, 39, 38, 37, 35, 34, 33
  1984. };
  1985. /* find prediction - wmv3_dc_scale always used here in fact */
  1986. if (n < 4) scale = s->y_dc_scale;
  1987. else scale = s->c_dc_scale;
  1988. wrap = s->block_wrap[n];
  1989. dc_val= s->dc_val[0] + s->block_index[n];
  1990. /* B A
  1991. * C X
  1992. */
  1993. c = dc_val[ - 1];
  1994. b = dc_val[ - 1 - wrap];
  1995. a = dc_val[ - wrap];
  1996. if (pq < 9 || !overlap)
  1997. {
  1998. /* Set outer values */
  1999. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2000. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2001. }
  2002. else
  2003. {
  2004. /* Set outer values */
  2005. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2006. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2007. }
  2008. if (abs(a - b) <= abs(b - c)) {
  2009. pred = c;
  2010. *dir_ptr = 1;//left
  2011. } else {
  2012. pred = a;
  2013. *dir_ptr = 0;//top
  2014. }
  2015. /* update predictor */
  2016. *dc_val_ptr = &dc_val[0];
  2017. return pred;
  2018. }
  2019. /** Get predicted DC value
  2020. * prediction dir: left=0, top=1
  2021. * @param s MpegEncContext
  2022. * @param[in] n block index in the current MB
  2023. * @param dc_val_ptr Pointer to DC predictor
  2024. * @param dir_ptr Prediction direction for use in AC prediction
  2025. */
  2026. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2027. int a_avail, int c_avail,
  2028. int16_t **dc_val_ptr, int *dir_ptr)
  2029. {
  2030. int a, b, c, wrap, pred, scale;
  2031. int16_t *dc_val;
  2032. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2033. int q1, q2 = 0;
  2034. /* find prediction - wmv3_dc_scale always used here in fact */
  2035. if (n < 4) scale = s->y_dc_scale;
  2036. else scale = s->c_dc_scale;
  2037. wrap = s->block_wrap[n];
  2038. dc_val= s->dc_val[0] + s->block_index[n];
  2039. /* B A
  2040. * C X
  2041. */
  2042. c = dc_val[ - 1];
  2043. b = dc_val[ - 1 - wrap];
  2044. a = dc_val[ - wrap];
  2045. /* scale predictors if needed */
  2046. q1 = s->current_picture.qscale_table[mb_pos];
  2047. if(c_avail && (n!= 1 && n!=3)) {
  2048. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2049. if(q2 && q2 != q1)
  2050. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2051. }
  2052. if(a_avail && (n!= 2 && n!=3)) {
  2053. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2054. if(q2 && q2 != q1)
  2055. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2056. }
  2057. if(a_avail && c_avail && (n!=3)) {
  2058. int off = mb_pos;
  2059. if(n != 1) off--;
  2060. if(n != 2) off -= s->mb_stride;
  2061. q2 = s->current_picture.qscale_table[off];
  2062. if(q2 && q2 != q1)
  2063. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2064. }
  2065. if(a_avail && c_avail) {
  2066. if(abs(a - b) <= abs(b - c)) {
  2067. pred = c;
  2068. *dir_ptr = 1;//left
  2069. } else {
  2070. pred = a;
  2071. *dir_ptr = 0;//top
  2072. }
  2073. } else if(a_avail) {
  2074. pred = a;
  2075. *dir_ptr = 0;//top
  2076. } else if(c_avail) {
  2077. pred = c;
  2078. *dir_ptr = 1;//left
  2079. } else {
  2080. pred = 0;
  2081. *dir_ptr = 1;//left
  2082. }
  2083. /* update predictor */
  2084. *dc_val_ptr = &dc_val[0];
  2085. return pred;
  2086. }
  2087. /**
  2088. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2089. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2090. * @{
  2091. */
  2092. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2093. {
  2094. int xy, wrap, pred, a, b, c;
  2095. xy = s->block_index[n];
  2096. wrap = s->b8_stride;
  2097. /* B C
  2098. * A X
  2099. */
  2100. a = s->coded_block[xy - 1 ];
  2101. b = s->coded_block[xy - 1 - wrap];
  2102. c = s->coded_block[xy - wrap];
  2103. if (b == c) {
  2104. pred = a;
  2105. } else {
  2106. pred = c;
  2107. }
  2108. /* store value */
  2109. *coded_block_ptr = &s->coded_block[xy];
  2110. return pred;
  2111. }
  2112. /**
  2113. * Decode one AC coefficient
  2114. * @param v The VC1 context
  2115. * @param last Last coefficient
  2116. * @param skip How much zero coefficients to skip
  2117. * @param value Decoded AC coefficient value
  2118. * @see 8.1.3.4
  2119. */
  2120. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2121. {
  2122. GetBitContext *gb = &v->s.gb;
  2123. int index, escape, run = 0, level = 0, lst = 0;
  2124. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2125. if (index != vc1_ac_sizes[codingset] - 1) {
  2126. run = vc1_index_decode_table[codingset][index][0];
  2127. level = vc1_index_decode_table[codingset][index][1];
  2128. lst = index >= vc1_last_decode_table[codingset];
  2129. if(get_bits(gb, 1))
  2130. level = -level;
  2131. } else {
  2132. escape = decode210(gb);
  2133. if (escape != 2) {
  2134. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2135. run = vc1_index_decode_table[codingset][index][0];
  2136. level = vc1_index_decode_table[codingset][index][1];
  2137. lst = index >= vc1_last_decode_table[codingset];
  2138. if(escape == 0) {
  2139. if(lst)
  2140. level += vc1_last_delta_level_table[codingset][run];
  2141. else
  2142. level += vc1_delta_level_table[codingset][run];
  2143. } else {
  2144. if(lst)
  2145. run += vc1_last_delta_run_table[codingset][level] + 1;
  2146. else
  2147. run += vc1_delta_run_table[codingset][level] + 1;
  2148. }
  2149. if(get_bits(gb, 1))
  2150. level = -level;
  2151. } else {
  2152. int sign;
  2153. lst = get_bits(gb, 1);
  2154. if(v->s.esc3_level_length == 0) {
  2155. if(v->pq < 8 || v->dquantfrm) { // table 59
  2156. v->s.esc3_level_length = get_bits(gb, 3);
  2157. if(!v->s.esc3_level_length)
  2158. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2159. } else { //table 60
  2160. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  2161. }
  2162. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2163. }
  2164. run = get_bits(gb, v->s.esc3_run_length);
  2165. sign = get_bits(gb, 1);
  2166. level = get_bits(gb, v->s.esc3_level_length);
  2167. if(sign)
  2168. level = -level;
  2169. }
  2170. }
  2171. *last = lst;
  2172. *skip = run;
  2173. *value = level;
  2174. }
  2175. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2176. * @param v VC1Context
  2177. * @param block block to decode
  2178. * @param coded are AC coeffs present or not
  2179. * @param codingset set of VLC to decode data
  2180. */
  2181. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2182. {
  2183. GetBitContext *gb = &v->s.gb;
  2184. MpegEncContext *s = &v->s;
  2185. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2186. int run_diff, i;
  2187. int16_t *dc_val;
  2188. int16_t *ac_val, *ac_val2;
  2189. int dcdiff;
  2190. /* Get DC differential */
  2191. if (n < 4) {
  2192. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2193. } else {
  2194. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2195. }
  2196. if (dcdiff < 0){
  2197. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2198. return -1;
  2199. }
  2200. if (dcdiff)
  2201. {
  2202. if (dcdiff == 119 /* ESC index value */)
  2203. {
  2204. /* TODO: Optimize */
  2205. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2206. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2207. else dcdiff = get_bits(gb, 8);
  2208. }
  2209. else
  2210. {
  2211. if (v->pq == 1)
  2212. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2213. else if (v->pq == 2)
  2214. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2215. }
  2216. if (get_bits(gb, 1))
  2217. dcdiff = -dcdiff;
  2218. }
  2219. /* Prediction */
  2220. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2221. *dc_val = dcdiff;
  2222. /* Store the quantized DC coeff, used for prediction */
  2223. if (n < 4) {
  2224. block[0] = dcdiff * s->y_dc_scale;
  2225. } else {
  2226. block[0] = dcdiff * s->c_dc_scale;
  2227. }
  2228. /* Skip ? */
  2229. run_diff = 0;
  2230. i = 0;
  2231. if (!coded) {
  2232. goto not_coded;
  2233. }
  2234. //AC Decoding
  2235. i = 1;
  2236. {
  2237. int last = 0, skip, value;
  2238. const int8_t *zz_table;
  2239. int scale;
  2240. int k;
  2241. scale = v->pq * 2 + v->halfpq;
  2242. if(v->s.ac_pred) {
  2243. if(!dc_pred_dir)
  2244. zz_table = ff_vc1_horizontal_zz;
  2245. else
  2246. zz_table = ff_vc1_vertical_zz;
  2247. } else
  2248. zz_table = ff_vc1_normal_zz;
  2249. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2250. ac_val2 = ac_val;
  2251. if(dc_pred_dir) //left
  2252. ac_val -= 16;
  2253. else //top
  2254. ac_val -= 16 * s->block_wrap[n];
  2255. while (!last) {
  2256. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2257. i += skip;
  2258. if(i > 63)
  2259. break;
  2260. block[zz_table[i++]] = value;
  2261. }
  2262. /* apply AC prediction if needed */
  2263. if(s->ac_pred) {
  2264. if(dc_pred_dir) { //left
  2265. for(k = 1; k < 8; k++)
  2266. block[k << 3] += ac_val[k];
  2267. } else { //top
  2268. for(k = 1; k < 8; k++)
  2269. block[k] += ac_val[k + 8];
  2270. }
  2271. }
  2272. /* save AC coeffs for further prediction */
  2273. for(k = 1; k < 8; k++) {
  2274. ac_val2[k] = block[k << 3];
  2275. ac_val2[k + 8] = block[k];
  2276. }
  2277. /* scale AC coeffs */
  2278. for(k = 1; k < 64; k++)
  2279. if(block[k]) {
  2280. block[k] *= scale;
  2281. if(!v->pquantizer)
  2282. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2283. }
  2284. if(s->ac_pred) i = 63;
  2285. }
  2286. not_coded:
  2287. if(!coded) {
  2288. int k, scale;
  2289. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2290. ac_val2 = ac_val;
  2291. scale = v->pq * 2 + v->halfpq;
  2292. memset(ac_val2, 0, 16 * 2);
  2293. if(dc_pred_dir) {//left
  2294. ac_val -= 16;
  2295. if(s->ac_pred)
  2296. memcpy(ac_val2, ac_val, 8 * 2);
  2297. } else {//top
  2298. ac_val -= 16 * s->block_wrap[n];
  2299. if(s->ac_pred)
  2300. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2301. }
  2302. /* apply AC prediction if needed */
  2303. if(s->ac_pred) {
  2304. if(dc_pred_dir) { //left
  2305. for(k = 1; k < 8; k++) {
  2306. block[k << 3] = ac_val[k] * scale;
  2307. if(!v->pquantizer && block[k << 3])
  2308. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2309. }
  2310. } else { //top
  2311. for(k = 1; k < 8; k++) {
  2312. block[k] = ac_val[k + 8] * scale;
  2313. if(!v->pquantizer && block[k])
  2314. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2315. }
  2316. }
  2317. i = 63;
  2318. }
  2319. }
  2320. s->block_last_index[n] = i;
  2321. return 0;
  2322. }
  2323. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2324. * @param v VC1Context
  2325. * @param block block to decode
  2326. * @param coded are AC coeffs present or not
  2327. * @param codingset set of VLC to decode data
  2328. */
  2329. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2330. {
  2331. GetBitContext *gb = &v->s.gb;
  2332. MpegEncContext *s = &v->s;
  2333. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2334. int run_diff, i;
  2335. int16_t *dc_val;
  2336. int16_t *ac_val, *ac_val2;
  2337. int dcdiff;
  2338. int a_avail = v->a_avail, c_avail = v->c_avail;
  2339. int use_pred = s->ac_pred;
  2340. int scale;
  2341. int q1, q2 = 0;
  2342. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2343. /* Get DC differential */
  2344. if (n < 4) {
  2345. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2346. } else {
  2347. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2348. }
  2349. if (dcdiff < 0){
  2350. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2351. return -1;
  2352. }
  2353. if (dcdiff)
  2354. {
  2355. if (dcdiff == 119 /* ESC index value */)
  2356. {
  2357. /* TODO: Optimize */
  2358. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2359. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2360. else dcdiff = get_bits(gb, 8);
  2361. }
  2362. else
  2363. {
  2364. if (mquant == 1)
  2365. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2366. else if (mquant == 2)
  2367. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2368. }
  2369. if (get_bits(gb, 1))
  2370. dcdiff = -dcdiff;
  2371. }
  2372. /* Prediction */
  2373. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2374. *dc_val = dcdiff;
  2375. /* Store the quantized DC coeff, used for prediction */
  2376. if (n < 4) {
  2377. block[0] = dcdiff * s->y_dc_scale;
  2378. } else {
  2379. block[0] = dcdiff * s->c_dc_scale;
  2380. }
  2381. /* Skip ? */
  2382. run_diff = 0;
  2383. i = 0;
  2384. //AC Decoding
  2385. i = 1;
  2386. /* check if AC is needed at all and adjust direction if needed */
  2387. if(!a_avail) dc_pred_dir = 1;
  2388. if(!c_avail) dc_pred_dir = 0;
  2389. if(!a_avail && !c_avail) use_pred = 0;
  2390. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2391. ac_val2 = ac_val;
  2392. scale = mquant * 2 + v->halfpq;
  2393. if(dc_pred_dir) //left
  2394. ac_val -= 16;
  2395. else //top
  2396. ac_val -= 16 * s->block_wrap[n];
  2397. q1 = s->current_picture.qscale_table[mb_pos];
  2398. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2399. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2400. if(dc_pred_dir && n==1) q2 = q1;
  2401. if(!dc_pred_dir && n==2) q2 = q1;
  2402. if(n==3) q2 = q1;
  2403. if(coded) {
  2404. int last = 0, skip, value;
  2405. const int8_t *zz_table;
  2406. int k;
  2407. if(v->s.ac_pred) {
  2408. if(!dc_pred_dir)
  2409. zz_table = ff_vc1_horizontal_zz;
  2410. else
  2411. zz_table = ff_vc1_vertical_zz;
  2412. } else
  2413. zz_table = ff_vc1_normal_zz;
  2414. while (!last) {
  2415. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2416. i += skip;
  2417. if(i > 63)
  2418. break;
  2419. block[zz_table[i++]] = value;
  2420. }
  2421. /* apply AC prediction if needed */
  2422. if(use_pred) {
  2423. /* scale predictors if needed*/
  2424. if(q2 && q1!=q2) {
  2425. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2426. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2427. if(dc_pred_dir) { //left
  2428. for(k = 1; k < 8; k++)
  2429. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2430. } else { //top
  2431. for(k = 1; k < 8; k++)
  2432. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2433. }
  2434. } else {
  2435. if(dc_pred_dir) { //left
  2436. for(k = 1; k < 8; k++)
  2437. block[k << 3] += ac_val[k];
  2438. } else { //top
  2439. for(k = 1; k < 8; k++)
  2440. block[k] += ac_val[k + 8];
  2441. }
  2442. }
  2443. }
  2444. /* save AC coeffs for further prediction */
  2445. for(k = 1; k < 8; k++) {
  2446. ac_val2[k] = block[k << 3];
  2447. ac_val2[k + 8] = block[k];
  2448. }
  2449. /* scale AC coeffs */
  2450. for(k = 1; k < 64; k++)
  2451. if(block[k]) {
  2452. block[k] *= scale;
  2453. if(!v->pquantizer)
  2454. block[k] += (block[k] < 0) ? -mquant : mquant;
  2455. }
  2456. if(use_pred) i = 63;
  2457. } else { // no AC coeffs
  2458. int k;
  2459. memset(ac_val2, 0, 16 * 2);
  2460. if(dc_pred_dir) {//left
  2461. if(use_pred) {
  2462. memcpy(ac_val2, ac_val, 8 * 2);
  2463. if(q2 && q1!=q2) {
  2464. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2465. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2466. for(k = 1; k < 8; k++)
  2467. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2468. }
  2469. }
  2470. } else {//top
  2471. if(use_pred) {
  2472. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2473. if(q2 && q1!=q2) {
  2474. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2475. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2476. for(k = 1; k < 8; k++)
  2477. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2478. }
  2479. }
  2480. }
  2481. /* apply AC prediction if needed */
  2482. if(use_pred) {
  2483. if(dc_pred_dir) { //left
  2484. for(k = 1; k < 8; k++) {
  2485. block[k << 3] = ac_val2[k] * scale;
  2486. if(!v->pquantizer && block[k << 3])
  2487. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2488. }
  2489. } else { //top
  2490. for(k = 1; k < 8; k++) {
  2491. block[k] = ac_val2[k + 8] * scale;
  2492. if(!v->pquantizer && block[k])
  2493. block[k] += (block[k] < 0) ? -mquant : mquant;
  2494. }
  2495. }
  2496. i = 63;
  2497. }
  2498. }
  2499. s->block_last_index[n] = i;
  2500. return 0;
  2501. }
  2502. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2503. * @param v VC1Context
  2504. * @param block block to decode
  2505. * @param coded are AC coeffs present or not
  2506. * @param mquant block quantizer
  2507. * @param codingset set of VLC to decode data
  2508. */
  2509. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2510. {
  2511. GetBitContext *gb = &v->s.gb;
  2512. MpegEncContext *s = &v->s;
  2513. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2514. int run_diff, i;
  2515. int16_t *dc_val;
  2516. int16_t *ac_val, *ac_val2;
  2517. int dcdiff;
  2518. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2519. int a_avail = v->a_avail, c_avail = v->c_avail;
  2520. int use_pred = s->ac_pred;
  2521. int scale;
  2522. int q1, q2 = 0;
  2523. /* XXX: Guard against dumb values of mquant */
  2524. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2525. /* Set DC scale - y and c use the same */
  2526. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2527. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2528. /* Get DC differential */
  2529. if (n < 4) {
  2530. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2531. } else {
  2532. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2533. }
  2534. if (dcdiff < 0){
  2535. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2536. return -1;
  2537. }
  2538. if (dcdiff)
  2539. {
  2540. if (dcdiff == 119 /* ESC index value */)
  2541. {
  2542. /* TODO: Optimize */
  2543. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2544. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2545. else dcdiff = get_bits(gb, 8);
  2546. }
  2547. else
  2548. {
  2549. if (mquant == 1)
  2550. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2551. else if (mquant == 2)
  2552. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2553. }
  2554. if (get_bits(gb, 1))
  2555. dcdiff = -dcdiff;
  2556. }
  2557. /* Prediction */
  2558. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2559. *dc_val = dcdiff;
  2560. /* Store the quantized DC coeff, used for prediction */
  2561. if (n < 4) {
  2562. block[0] = dcdiff * s->y_dc_scale;
  2563. } else {
  2564. block[0] = dcdiff * s->c_dc_scale;
  2565. }
  2566. /* Skip ? */
  2567. run_diff = 0;
  2568. i = 0;
  2569. //AC Decoding
  2570. i = 1;
  2571. /* check if AC is needed at all and adjust direction if needed */
  2572. if(!a_avail) dc_pred_dir = 1;
  2573. if(!c_avail) dc_pred_dir = 0;
  2574. if(!a_avail && !c_avail) use_pred = 0;
  2575. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2576. ac_val2 = ac_val;
  2577. scale = mquant * 2 + v->halfpq;
  2578. if(dc_pred_dir) //left
  2579. ac_val -= 16;
  2580. else //top
  2581. ac_val -= 16 * s->block_wrap[n];
  2582. q1 = s->current_picture.qscale_table[mb_pos];
  2583. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2584. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2585. if(dc_pred_dir && n==1) q2 = q1;
  2586. if(!dc_pred_dir && n==2) q2 = q1;
  2587. if(n==3) q2 = q1;
  2588. if(coded) {
  2589. int last = 0, skip, value;
  2590. const int8_t *zz_table;
  2591. int k;
  2592. zz_table = ff_vc1_simple_progressive_8x8_zz;
  2593. while (!last) {
  2594. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2595. i += skip;
  2596. if(i > 63)
  2597. break;
  2598. block[zz_table[i++]] = value;
  2599. }
  2600. /* apply AC prediction if needed */
  2601. if(use_pred) {
  2602. /* scale predictors if needed*/
  2603. if(q2 && q1!=q2) {
  2604. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2605. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2606. if(dc_pred_dir) { //left
  2607. for(k = 1; k < 8; k++)
  2608. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2609. } else { //top
  2610. for(k = 1; k < 8; k++)
  2611. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2612. }
  2613. } else {
  2614. if(dc_pred_dir) { //left
  2615. for(k = 1; k < 8; k++)
  2616. block[k << 3] += ac_val[k];
  2617. } else { //top
  2618. for(k = 1; k < 8; k++)
  2619. block[k] += ac_val[k + 8];
  2620. }
  2621. }
  2622. }
  2623. /* save AC coeffs for further prediction */
  2624. for(k = 1; k < 8; k++) {
  2625. ac_val2[k] = block[k << 3];
  2626. ac_val2[k + 8] = block[k];
  2627. }
  2628. /* scale AC coeffs */
  2629. for(k = 1; k < 64; k++)
  2630. if(block[k]) {
  2631. block[k] *= scale;
  2632. if(!v->pquantizer)
  2633. block[k] += (block[k] < 0) ? -mquant : mquant;
  2634. }
  2635. if(use_pred) i = 63;
  2636. } else { // no AC coeffs
  2637. int k;
  2638. memset(ac_val2, 0, 16 * 2);
  2639. if(dc_pred_dir) {//left
  2640. if(use_pred) {
  2641. memcpy(ac_val2, ac_val, 8 * 2);
  2642. if(q2 && q1!=q2) {
  2643. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2644. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2645. for(k = 1; k < 8; k++)
  2646. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2647. }
  2648. }
  2649. } else {//top
  2650. if(use_pred) {
  2651. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2652. if(q2 && q1!=q2) {
  2653. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2654. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2655. for(k = 1; k < 8; k++)
  2656. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2657. }
  2658. }
  2659. }
  2660. /* apply AC prediction if needed */
  2661. if(use_pred) {
  2662. if(dc_pred_dir) { //left
  2663. for(k = 1; k < 8; k++) {
  2664. block[k << 3] = ac_val2[k] * scale;
  2665. if(!v->pquantizer && block[k << 3])
  2666. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2667. }
  2668. } else { //top
  2669. for(k = 1; k < 8; k++) {
  2670. block[k] = ac_val2[k + 8] * scale;
  2671. if(!v->pquantizer && block[k])
  2672. block[k] += (block[k] < 0) ? -mquant : mquant;
  2673. }
  2674. }
  2675. i = 63;
  2676. }
  2677. }
  2678. s->block_last_index[n] = i;
  2679. return 0;
  2680. }
  2681. /** Decode P block
  2682. */
  2683. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2684. {
  2685. MpegEncContext *s = &v->s;
  2686. GetBitContext *gb = &s->gb;
  2687. int i, j;
  2688. int subblkpat = 0;
  2689. int scale, off, idx, last, skip, value;
  2690. int ttblk = ttmb & 7;
  2691. if(ttmb == -1) {
  2692. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2693. }
  2694. if(ttblk == TT_4X4) {
  2695. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2696. }
  2697. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2698. subblkpat = decode012(gb);
  2699. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2700. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2701. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2702. }
  2703. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2704. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2705. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2706. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2707. ttblk = TT_8X4;
  2708. }
  2709. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2710. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2711. ttblk = TT_4X8;
  2712. }
  2713. switch(ttblk) {
  2714. case TT_8X8:
  2715. i = 0;
  2716. last = 0;
  2717. while (!last) {
  2718. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2719. i += skip;
  2720. if(i > 63)
  2721. break;
  2722. idx = ff_vc1_simple_progressive_8x8_zz[i++];
  2723. block[idx] = value * scale;
  2724. if(!v->pquantizer)
  2725. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2726. }
  2727. s->dsp.vc1_inv_trans_8x8(block);
  2728. break;
  2729. case TT_4X4:
  2730. for(j = 0; j < 4; j++) {
  2731. last = subblkpat & (1 << (3 - j));
  2732. i = 0;
  2733. off = (j & 1) * 4 + (j & 2) * 16;
  2734. while (!last) {
  2735. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2736. i += skip;
  2737. if(i > 15)
  2738. break;
  2739. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2740. block[idx + off] = value * scale;
  2741. if(!v->pquantizer)
  2742. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2743. }
  2744. if(!(subblkpat & (1 << (3 - j))))
  2745. s->dsp.vc1_inv_trans_4x4(block, j);
  2746. }
  2747. break;
  2748. case TT_8X4:
  2749. for(j = 0; j < 2; j++) {
  2750. last = subblkpat & (1 << (1 - j));
  2751. i = 0;
  2752. off = j * 32;
  2753. while (!last) {
  2754. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2755. i += skip;
  2756. if(i > 31)
  2757. break;
  2758. if(v->profile < PROFILE_ADVANCED)
  2759. idx = ff_vc1_simple_progressive_8x4_zz[i++];
  2760. else
  2761. idx = ff_vc1_adv_progressive_8x4_zz[i++];
  2762. block[idx + off] = value * scale;
  2763. if(!v->pquantizer)
  2764. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2765. }
  2766. if(!(subblkpat & (1 << (1 - j))))
  2767. s->dsp.vc1_inv_trans_8x4(block, j);
  2768. }
  2769. break;
  2770. case TT_4X8:
  2771. for(j = 0; j < 2; j++) {
  2772. last = subblkpat & (1 << (1 - j));
  2773. i = 0;
  2774. off = j * 4;
  2775. while (!last) {
  2776. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2777. i += skip;
  2778. if(i > 31)
  2779. break;
  2780. if(v->profile < PROFILE_ADVANCED)
  2781. idx = ff_vc1_simple_progressive_4x8_zz[i++];
  2782. else
  2783. idx = ff_vc1_adv_progressive_4x8_zz[i++];
  2784. block[idx + off] = value * scale;
  2785. if(!v->pquantizer)
  2786. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2787. }
  2788. if(!(subblkpat & (1 << (1 - j))))
  2789. s->dsp.vc1_inv_trans_4x8(block, j);
  2790. }
  2791. break;
  2792. }
  2793. return 0;
  2794. }
  2795. /** Decode one P-frame MB (in Simple/Main profile)
  2796. */
  2797. static int vc1_decode_p_mb(VC1Context *v)
  2798. {
  2799. MpegEncContext *s = &v->s;
  2800. GetBitContext *gb = &s->gb;
  2801. int i, j;
  2802. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2803. int cbp; /* cbp decoding stuff */
  2804. int mqdiff, mquant; /* MB quantization */
  2805. int ttmb = v->ttfrm; /* MB Transform type */
  2806. int status;
  2807. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2808. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2809. int mb_has_coeffs = 1; /* last_flag */
  2810. int dmv_x, dmv_y; /* Differential MV components */
  2811. int index, index1; /* LUT indices */
  2812. int val, sign; /* temp values */
  2813. int first_block = 1;
  2814. int dst_idx, off;
  2815. int skipped, fourmv;
  2816. mquant = v->pq; /* Loosy initialization */
  2817. if (v->mv_type_is_raw)
  2818. fourmv = get_bits1(gb);
  2819. else
  2820. fourmv = v->mv_type_mb_plane[mb_pos];
  2821. if (v->skip_is_raw)
  2822. skipped = get_bits1(gb);
  2823. else
  2824. skipped = v->s.mbskip_table[mb_pos];
  2825. s->dsp.clear_blocks(s->block[0]);
  2826. if (!fourmv) /* 1MV mode */
  2827. {
  2828. if (!skipped)
  2829. {
  2830. GET_MVDATA(dmv_x, dmv_y);
  2831. if (s->mb_intra) {
  2832. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2833. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2834. }
  2835. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2836. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2837. /* FIXME Set DC val for inter block ? */
  2838. if (s->mb_intra && !mb_has_coeffs)
  2839. {
  2840. GET_MQUANT();
  2841. s->ac_pred = get_bits(gb, 1);
  2842. cbp = 0;
  2843. }
  2844. else if (mb_has_coeffs)
  2845. {
  2846. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  2847. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2848. GET_MQUANT();
  2849. }
  2850. else
  2851. {
  2852. mquant = v->pq;
  2853. cbp = 0;
  2854. }
  2855. s->current_picture.qscale_table[mb_pos] = mquant;
  2856. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2857. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2858. VC1_TTMB_VLC_BITS, 2);
  2859. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2860. dst_idx = 0;
  2861. for (i=0; i<6; i++)
  2862. {
  2863. s->dc_val[0][s->block_index[i]] = 0;
  2864. dst_idx += i >> 2;
  2865. val = ((cbp >> (5 - i)) & 1);
  2866. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2867. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2868. if(s->mb_intra) {
  2869. /* check if prediction blocks A and C are available */
  2870. v->a_avail = v->c_avail = 0;
  2871. if(i == 2 || i == 3 || !s->first_slice_line)
  2872. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2873. if(i == 1 || i == 3 || s->mb_x)
  2874. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2875. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2876. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2877. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2878. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2879. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2880. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  2881. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2882. if(v->pq >= 9 && v->overlap) {
  2883. if(v->c_avail)
  2884. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2885. if(v->a_avail)
  2886. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2887. }
  2888. } else if(val) {
  2889. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2890. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2891. first_block = 0;
  2892. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2893. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2894. }
  2895. }
  2896. }
  2897. else //Skipped
  2898. {
  2899. s->mb_intra = 0;
  2900. for(i = 0; i < 6; i++) {
  2901. v->mb_type[0][s->block_index[i]] = 0;
  2902. s->dc_val[0][s->block_index[i]] = 0;
  2903. }
  2904. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2905. s->current_picture.qscale_table[mb_pos] = 0;
  2906. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2907. vc1_mc_1mv(v, 0);
  2908. return 0;
  2909. }
  2910. } //1MV mode
  2911. else //4MV mode
  2912. {
  2913. if (!skipped /* unskipped MB */)
  2914. {
  2915. int intra_count = 0, coded_inter = 0;
  2916. int is_intra[6], is_coded[6];
  2917. /* Get CBPCY */
  2918. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2919. for (i=0; i<6; i++)
  2920. {
  2921. val = ((cbp >> (5 - i)) & 1);
  2922. s->dc_val[0][s->block_index[i]] = 0;
  2923. s->mb_intra = 0;
  2924. if(i < 4) {
  2925. dmv_x = dmv_y = 0;
  2926. s->mb_intra = 0;
  2927. mb_has_coeffs = 0;
  2928. if(val) {
  2929. GET_MVDATA(dmv_x, dmv_y);
  2930. }
  2931. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2932. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2933. intra_count += s->mb_intra;
  2934. is_intra[i] = s->mb_intra;
  2935. is_coded[i] = mb_has_coeffs;
  2936. }
  2937. if(i&4){
  2938. is_intra[i] = (intra_count >= 3);
  2939. is_coded[i] = val;
  2940. }
  2941. if(i == 4) vc1_mc_4mv_chroma(v);
  2942. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2943. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2944. }
  2945. // if there are no coded blocks then don't do anything more
  2946. if(!intra_count && !coded_inter) return 0;
  2947. dst_idx = 0;
  2948. GET_MQUANT();
  2949. s->current_picture.qscale_table[mb_pos] = mquant;
  2950. /* test if block is intra and has pred */
  2951. {
  2952. int intrapred = 0;
  2953. for(i=0; i<6; i++)
  2954. if(is_intra[i]) {
  2955. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2956. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2957. intrapred = 1;
  2958. break;
  2959. }
  2960. }
  2961. if(intrapred)s->ac_pred = get_bits(gb, 1);
  2962. else s->ac_pred = 0;
  2963. }
  2964. if (!v->ttmbf && coded_inter)
  2965. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2966. for (i=0; i<6; i++)
  2967. {
  2968. dst_idx += i >> 2;
  2969. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2970. s->mb_intra = is_intra[i];
  2971. if (is_intra[i]) {
  2972. /* check if prediction blocks A and C are available */
  2973. v->a_avail = v->c_avail = 0;
  2974. if(i == 2 || i == 3 || !s->first_slice_line)
  2975. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2976. if(i == 1 || i == 3 || s->mb_x)
  2977. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2978. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2979. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2980. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2981. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2982. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2983. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  2984. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2985. if(v->pq >= 9 && v->overlap) {
  2986. if(v->c_avail)
  2987. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2988. if(v->a_avail)
  2989. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2990. }
  2991. } else if(is_coded[i]) {
  2992. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2993. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2994. first_block = 0;
  2995. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2996. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2997. }
  2998. }
  2999. return status;
  3000. }
  3001. else //Skipped MB
  3002. {
  3003. s->mb_intra = 0;
  3004. s->current_picture.qscale_table[mb_pos] = 0;
  3005. for (i=0; i<6; i++) {
  3006. v->mb_type[0][s->block_index[i]] = 0;
  3007. s->dc_val[0][s->block_index[i]] = 0;
  3008. }
  3009. for (i=0; i<4; i++)
  3010. {
  3011. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3012. vc1_mc_4mv_luma(v, i);
  3013. }
  3014. vc1_mc_4mv_chroma(v);
  3015. s->current_picture.qscale_table[mb_pos] = 0;
  3016. return 0;
  3017. }
  3018. }
  3019. /* Should never happen */
  3020. return -1;
  3021. }
  3022. /** Decode one B-frame MB (in Main profile)
  3023. */
  3024. static void vc1_decode_b_mb(VC1Context *v)
  3025. {
  3026. MpegEncContext *s = &v->s;
  3027. GetBitContext *gb = &s->gb;
  3028. int i, j;
  3029. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3030. int cbp = 0; /* cbp decoding stuff */
  3031. int mqdiff, mquant; /* MB quantization */
  3032. int ttmb = v->ttfrm; /* MB Transform type */
  3033. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3034. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3035. int mb_has_coeffs = 0; /* last_flag */
  3036. int index, index1; /* LUT indices */
  3037. int val, sign; /* temp values */
  3038. int first_block = 1;
  3039. int dst_idx, off;
  3040. int skipped, direct;
  3041. int dmv_x[2], dmv_y[2];
  3042. int bmvtype = BMV_TYPE_BACKWARD;
  3043. mquant = v->pq; /* Loosy initialization */
  3044. s->mb_intra = 0;
  3045. if (v->dmb_is_raw)
  3046. direct = get_bits1(gb);
  3047. else
  3048. direct = v->direct_mb_plane[mb_pos];
  3049. if (v->skip_is_raw)
  3050. skipped = get_bits1(gb);
  3051. else
  3052. skipped = v->s.mbskip_table[mb_pos];
  3053. s->dsp.clear_blocks(s->block[0]);
  3054. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3055. for(i = 0; i < 6; i++) {
  3056. v->mb_type[0][s->block_index[i]] = 0;
  3057. s->dc_val[0][s->block_index[i]] = 0;
  3058. }
  3059. s->current_picture.qscale_table[mb_pos] = 0;
  3060. if (!direct) {
  3061. if (!skipped) {
  3062. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3063. dmv_x[1] = dmv_x[0];
  3064. dmv_y[1] = dmv_y[0];
  3065. }
  3066. if(skipped || !s->mb_intra) {
  3067. bmvtype = decode012(gb);
  3068. switch(bmvtype) {
  3069. case 0:
  3070. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3071. break;
  3072. case 1:
  3073. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3074. break;
  3075. case 2:
  3076. bmvtype = BMV_TYPE_INTERPOLATED;
  3077. dmv_x[0] = dmv_y[0] = 0;
  3078. }
  3079. }
  3080. }
  3081. for(i = 0; i < 6; i++)
  3082. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3083. if (skipped) {
  3084. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3085. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3086. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3087. return;
  3088. }
  3089. if (direct) {
  3090. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3091. GET_MQUANT();
  3092. s->mb_intra = 0;
  3093. mb_has_coeffs = 0;
  3094. s->current_picture.qscale_table[mb_pos] = mquant;
  3095. if(!v->ttmbf)
  3096. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3097. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3098. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3099. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3100. } else {
  3101. if(!mb_has_coeffs && !s->mb_intra) {
  3102. /* no coded blocks - effectively skipped */
  3103. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3104. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3105. return;
  3106. }
  3107. if(s->mb_intra && !mb_has_coeffs) {
  3108. GET_MQUANT();
  3109. s->current_picture.qscale_table[mb_pos] = mquant;
  3110. s->ac_pred = get_bits1(gb);
  3111. cbp = 0;
  3112. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3113. } else {
  3114. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3115. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3116. if(!mb_has_coeffs) {
  3117. /* interpolated skipped block */
  3118. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3119. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3120. return;
  3121. }
  3122. }
  3123. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3124. if(!s->mb_intra) {
  3125. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3126. }
  3127. if(s->mb_intra)
  3128. s->ac_pred = get_bits1(gb);
  3129. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3130. GET_MQUANT();
  3131. s->current_picture.qscale_table[mb_pos] = mquant;
  3132. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3133. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3134. }
  3135. }
  3136. dst_idx = 0;
  3137. for (i=0; i<6; i++)
  3138. {
  3139. s->dc_val[0][s->block_index[i]] = 0;
  3140. dst_idx += i >> 2;
  3141. val = ((cbp >> (5 - i)) & 1);
  3142. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3143. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3144. if(s->mb_intra) {
  3145. /* check if prediction blocks A and C are available */
  3146. v->a_avail = v->c_avail = 0;
  3147. if(i == 2 || i == 3 || !s->first_slice_line)
  3148. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3149. if(i == 1 || i == 3 || s->mb_x)
  3150. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3151. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3152. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3153. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3154. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3155. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3156. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3157. } else if(val) {
  3158. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3159. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3160. first_block = 0;
  3161. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3162. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3163. }
  3164. }
  3165. }
  3166. /** Decode blocks of I-frame
  3167. */
  3168. static void vc1_decode_i_blocks(VC1Context *v)
  3169. {
  3170. int k, j;
  3171. MpegEncContext *s = &v->s;
  3172. int cbp, val;
  3173. uint8_t *coded_val;
  3174. int mb_pos;
  3175. /* select codingmode used for VLC tables selection */
  3176. switch(v->y_ac_table_index){
  3177. case 0:
  3178. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3179. break;
  3180. case 1:
  3181. v->codingset = CS_HIGH_MOT_INTRA;
  3182. break;
  3183. case 2:
  3184. v->codingset = CS_MID_RATE_INTRA;
  3185. break;
  3186. }
  3187. switch(v->c_ac_table_index){
  3188. case 0:
  3189. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3190. break;
  3191. case 1:
  3192. v->codingset2 = CS_HIGH_MOT_INTER;
  3193. break;
  3194. case 2:
  3195. v->codingset2 = CS_MID_RATE_INTER;
  3196. break;
  3197. }
  3198. /* Set DC scale - y and c use the same */
  3199. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3200. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3201. //do frame decode
  3202. s->mb_x = s->mb_y = 0;
  3203. s->mb_intra = 1;
  3204. s->first_slice_line = 1;
  3205. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3206. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3207. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3208. ff_init_block_index(s);
  3209. ff_update_block_index(s);
  3210. s->dsp.clear_blocks(s->block[0]);
  3211. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3212. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3213. s->current_picture.qscale_table[mb_pos] = v->pq;
  3214. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3215. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3216. // do actual MB decoding and displaying
  3217. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3218. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3219. for(k = 0; k < 6; k++) {
  3220. val = ((cbp >> (5 - k)) & 1);
  3221. if (k < 4) {
  3222. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3223. val = val ^ pred;
  3224. *coded_val = val;
  3225. }
  3226. cbp |= val << (5 - k);
  3227. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3228. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3229. if(!v->res_fasttx && !v->res_x8) for(j = 0; j < 64; j++) s->block[k][j] -= 16;
  3230. if(v->pq >= 9 && v->overlap) {
  3231. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3232. }
  3233. }
  3234. vc1_put_block(v, s->block);
  3235. if(v->pq >= 9 && v->overlap) {
  3236. if(s->mb_x) {
  3237. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3238. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3239. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3240. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3241. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3242. }
  3243. }
  3244. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3245. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3246. if(!s->first_slice_line) {
  3247. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3248. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3249. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3250. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3251. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3252. }
  3253. }
  3254. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3255. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3256. }
  3257. if(get_bits_count(&s->gb) > v->bits) {
  3258. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3259. return;
  3260. }
  3261. }
  3262. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3263. s->first_slice_line = 0;
  3264. }
  3265. }
  3266. /** Decode blocks of I-frame for advanced profile
  3267. */
  3268. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3269. {
  3270. int k, j;
  3271. MpegEncContext *s = &v->s;
  3272. int cbp, val;
  3273. uint8_t *coded_val;
  3274. int mb_pos;
  3275. int mquant = v->pq;
  3276. int mqdiff;
  3277. int overlap;
  3278. GetBitContext *gb = &s->gb;
  3279. /* select codingmode used for VLC tables selection */
  3280. switch(v->y_ac_table_index){
  3281. case 0:
  3282. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3283. break;
  3284. case 1:
  3285. v->codingset = CS_HIGH_MOT_INTRA;
  3286. break;
  3287. case 2:
  3288. v->codingset = CS_MID_RATE_INTRA;
  3289. break;
  3290. }
  3291. switch(v->c_ac_table_index){
  3292. case 0:
  3293. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3294. break;
  3295. case 1:
  3296. v->codingset2 = CS_HIGH_MOT_INTER;
  3297. break;
  3298. case 2:
  3299. v->codingset2 = CS_MID_RATE_INTER;
  3300. break;
  3301. }
  3302. //do frame decode
  3303. s->mb_x = s->mb_y = 0;
  3304. s->mb_intra = 1;
  3305. s->first_slice_line = 1;
  3306. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3307. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3308. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3309. ff_init_block_index(s);
  3310. ff_update_block_index(s);
  3311. s->dsp.clear_blocks(s->block[0]);
  3312. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3313. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3314. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3315. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3316. // do actual MB decoding and displaying
  3317. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3318. if(v->acpred_is_raw)
  3319. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3320. else
  3321. v->s.ac_pred = v->acpred_plane[mb_pos];
  3322. if(v->condover == CONDOVER_SELECT) {
  3323. if(v->overflg_is_raw)
  3324. overlap = get_bits(&v->s.gb, 1);
  3325. else
  3326. overlap = v->over_flags_plane[mb_pos];
  3327. } else
  3328. overlap = (v->condover == CONDOVER_ALL);
  3329. GET_MQUANT();
  3330. s->current_picture.qscale_table[mb_pos] = mquant;
  3331. /* Set DC scale - y and c use the same */
  3332. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3333. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3334. for(k = 0; k < 6; k++) {
  3335. val = ((cbp >> (5 - k)) & 1);
  3336. if (k < 4) {
  3337. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3338. val = val ^ pred;
  3339. *coded_val = val;
  3340. }
  3341. cbp |= val << (5 - k);
  3342. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3343. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3344. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3345. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3346. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3347. }
  3348. vc1_put_block(v, s->block);
  3349. if(overlap) {
  3350. if(s->mb_x) {
  3351. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3352. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3353. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3354. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3355. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3356. }
  3357. }
  3358. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3359. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3360. if(!s->first_slice_line) {
  3361. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3362. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3363. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3364. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3365. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3366. }
  3367. }
  3368. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3369. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3370. }
  3371. if(get_bits_count(&s->gb) > v->bits) {
  3372. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3373. return;
  3374. }
  3375. }
  3376. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3377. s->first_slice_line = 0;
  3378. }
  3379. }
  3380. static void vc1_decode_p_blocks(VC1Context *v)
  3381. {
  3382. MpegEncContext *s = &v->s;
  3383. /* select codingmode used for VLC tables selection */
  3384. switch(v->c_ac_table_index){
  3385. case 0:
  3386. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3387. break;
  3388. case 1:
  3389. v->codingset = CS_HIGH_MOT_INTRA;
  3390. break;
  3391. case 2:
  3392. v->codingset = CS_MID_RATE_INTRA;
  3393. break;
  3394. }
  3395. switch(v->c_ac_table_index){
  3396. case 0:
  3397. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3398. break;
  3399. case 1:
  3400. v->codingset2 = CS_HIGH_MOT_INTER;
  3401. break;
  3402. case 2:
  3403. v->codingset2 = CS_MID_RATE_INTER;
  3404. break;
  3405. }
  3406. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3407. s->first_slice_line = 1;
  3408. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3409. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3410. ff_init_block_index(s);
  3411. ff_update_block_index(s);
  3412. s->dsp.clear_blocks(s->block[0]);
  3413. vc1_decode_p_mb(v);
  3414. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3415. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3416. return;
  3417. }
  3418. }
  3419. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3420. s->first_slice_line = 0;
  3421. }
  3422. }
  3423. static void vc1_decode_b_blocks(VC1Context *v)
  3424. {
  3425. MpegEncContext *s = &v->s;
  3426. /* select codingmode used for VLC tables selection */
  3427. switch(v->c_ac_table_index){
  3428. case 0:
  3429. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3430. break;
  3431. case 1:
  3432. v->codingset = CS_HIGH_MOT_INTRA;
  3433. break;
  3434. case 2:
  3435. v->codingset = CS_MID_RATE_INTRA;
  3436. break;
  3437. }
  3438. switch(v->c_ac_table_index){
  3439. case 0:
  3440. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3441. break;
  3442. case 1:
  3443. v->codingset2 = CS_HIGH_MOT_INTER;
  3444. break;
  3445. case 2:
  3446. v->codingset2 = CS_MID_RATE_INTER;
  3447. break;
  3448. }
  3449. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3450. s->first_slice_line = 1;
  3451. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3452. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3453. ff_init_block_index(s);
  3454. ff_update_block_index(s);
  3455. s->dsp.clear_blocks(s->block[0]);
  3456. vc1_decode_b_mb(v);
  3457. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3458. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3459. return;
  3460. }
  3461. }
  3462. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3463. s->first_slice_line = 0;
  3464. }
  3465. }
  3466. static void vc1_decode_skip_blocks(VC1Context *v)
  3467. {
  3468. MpegEncContext *s = &v->s;
  3469. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3470. s->first_slice_line = 1;
  3471. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3472. s->mb_x = 0;
  3473. ff_init_block_index(s);
  3474. ff_update_block_index(s);
  3475. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3476. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3477. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3478. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3479. s->first_slice_line = 0;
  3480. }
  3481. s->pict_type = P_TYPE;
  3482. }
  3483. static void vc1_decode_blocks(VC1Context *v)
  3484. {
  3485. v->s.esc3_level_length = 0;
  3486. switch(v->s.pict_type) {
  3487. case I_TYPE:
  3488. if(v->profile == PROFILE_ADVANCED)
  3489. vc1_decode_i_blocks_adv(v);
  3490. else
  3491. vc1_decode_i_blocks(v);
  3492. break;
  3493. case P_TYPE:
  3494. if(v->p_frame_skipped)
  3495. vc1_decode_skip_blocks(v);
  3496. else
  3497. vc1_decode_p_blocks(v);
  3498. break;
  3499. case B_TYPE:
  3500. if(v->bi_type){
  3501. if(v->profile == PROFILE_ADVANCED)
  3502. vc1_decode_i_blocks_adv(v);
  3503. else
  3504. vc1_decode_i_blocks(v);
  3505. }else
  3506. vc1_decode_b_blocks(v);
  3507. break;
  3508. }
  3509. }
  3510. /** Find VC-1 marker in buffer
  3511. * @return position where next marker starts or end of buffer if no marker found
  3512. */
  3513. static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
  3514. {
  3515. uint32_t mrk = 0xFFFFFFFF;
  3516. if(end-src < 4) return end;
  3517. while(src < end){
  3518. mrk = (mrk << 8) | *src++;
  3519. if(IS_MARKER(mrk))
  3520. return src-4;
  3521. }
  3522. return end;
  3523. }
  3524. static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
  3525. {
  3526. int dsize = 0, i;
  3527. if(size < 4){
  3528. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3529. return size;
  3530. }
  3531. for(i = 0; i < size; i++, src++) {
  3532. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3533. dst[dsize++] = src[1];
  3534. src++;
  3535. i++;
  3536. } else
  3537. dst[dsize++] = *src;
  3538. }
  3539. return dsize;
  3540. }
  3541. /** Initialize a VC1/WMV3 decoder
  3542. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3543. * @todo TODO: Decypher remaining bits in extra_data
  3544. */
  3545. static int vc1_decode_init(AVCodecContext *avctx)
  3546. {
  3547. VC1Context *v = avctx->priv_data;
  3548. MpegEncContext *s = &v->s;
  3549. GetBitContext gb;
  3550. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3551. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3552. avctx->pix_fmt = PIX_FMT_YUV420P;
  3553. else
  3554. avctx->pix_fmt = PIX_FMT_GRAY8;
  3555. v->s.avctx = avctx;
  3556. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3557. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3558. if(ff_h263_decode_init(avctx) < 0)
  3559. return -1;
  3560. if (vc1_init_common(v) < 0) return -1;
  3561. avctx->coded_width = avctx->width;
  3562. avctx->coded_height = avctx->height;
  3563. if (avctx->codec_id == CODEC_ID_WMV3)
  3564. {
  3565. int count = 0;
  3566. // looks like WMV3 has a sequence header stored in the extradata
  3567. // advanced sequence header may be before the first frame
  3568. // the last byte of the extradata is a version number, 1 for the
  3569. // samples we can decode
  3570. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3571. if (decode_sequence_header(avctx, &gb) < 0)
  3572. return -1;
  3573. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3574. if (count>0)
  3575. {
  3576. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3577. count, get_bits(&gb, count));
  3578. }
  3579. else if (count < 0)
  3580. {
  3581. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3582. }
  3583. } else { // VC1/WVC1
  3584. uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
  3585. uint8_t *next; int size, buf2_size;
  3586. uint8_t *buf2 = NULL;
  3587. int seq_inited = 0, ep_inited = 0;
  3588. if(avctx->extradata_size < 16) {
  3589. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3590. return -1;
  3591. }
  3592. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3593. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3594. next = start;
  3595. for(; next < end; start = next){
  3596. next = find_next_marker(start + 4, end);
  3597. size = next - start - 4;
  3598. if(size <= 0) continue;
  3599. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3600. init_get_bits(&gb, buf2, buf2_size * 8);
  3601. switch(AV_RB32(start)){
  3602. case VC1_CODE_SEQHDR:
  3603. if(decode_sequence_header(avctx, &gb) < 0){
  3604. av_free(buf2);
  3605. return -1;
  3606. }
  3607. seq_inited = 1;
  3608. break;
  3609. case VC1_CODE_ENTRYPOINT:
  3610. if(decode_entry_point(avctx, &gb) < 0){
  3611. av_free(buf2);
  3612. return -1;
  3613. }
  3614. ep_inited = 1;
  3615. break;
  3616. }
  3617. }
  3618. av_free(buf2);
  3619. if(!seq_inited || !ep_inited){
  3620. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3621. return -1;
  3622. }
  3623. }
  3624. avctx->has_b_frames= !!(avctx->max_b_frames);
  3625. s->low_delay = !avctx->has_b_frames;
  3626. s->mb_width = (avctx->coded_width+15)>>4;
  3627. s->mb_height = (avctx->coded_height+15)>>4;
  3628. /* Allocate mb bitplanes */
  3629. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3630. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3631. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3632. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3633. /* allocate block type info in that way so it could be used with s->block_index[] */
  3634. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3635. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3636. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3637. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3638. /* Init coded blocks info */
  3639. if (v->profile == PROFILE_ADVANCED)
  3640. {
  3641. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3642. // return -1;
  3643. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3644. // return -1;
  3645. }
  3646. return 0;
  3647. }
  3648. /** Decode a VC1/WMV3 frame
  3649. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3650. */
  3651. static int vc1_decode_frame(AVCodecContext *avctx,
  3652. void *data, int *data_size,
  3653. uint8_t *buf, int buf_size)
  3654. {
  3655. VC1Context *v = avctx->priv_data;
  3656. MpegEncContext *s = &v->s;
  3657. AVFrame *pict = data;
  3658. uint8_t *buf2 = NULL;
  3659. /* no supplementary picture */
  3660. if (buf_size == 0) {
  3661. /* special case for last picture */
  3662. if (s->low_delay==0 && s->next_picture_ptr) {
  3663. *pict= *(AVFrame*)s->next_picture_ptr;
  3664. s->next_picture_ptr= NULL;
  3665. *data_size = sizeof(AVFrame);
  3666. }
  3667. return 0;
  3668. }
  3669. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  3670. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3671. int i= ff_find_unused_picture(s, 0);
  3672. s->current_picture_ptr= &s->picture[i];
  3673. }
  3674. //for advanced profile we may need to parse and unescape data
  3675. if (avctx->codec_id == CODEC_ID_VC1) {
  3676. int buf_size2 = 0;
  3677. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3678. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3679. uint8_t *start, *end, *next;
  3680. int size;
  3681. next = buf;
  3682. for(start = buf, end = buf + buf_size; next < end; start = next){
  3683. next = find_next_marker(start + 4, end);
  3684. size = next - start - 4;
  3685. if(size <= 0) continue;
  3686. switch(AV_RB32(start)){
  3687. case VC1_CODE_FRAME:
  3688. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3689. break;
  3690. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3691. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3692. init_get_bits(&s->gb, buf2, buf_size2*8);
  3693. decode_entry_point(avctx, &s->gb);
  3694. break;
  3695. case VC1_CODE_SLICE:
  3696. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3697. av_free(buf2);
  3698. return -1;
  3699. }
  3700. }
  3701. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3702. uint8_t *divider;
  3703. divider = find_next_marker(buf, buf + buf_size);
  3704. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3705. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3706. return -1;
  3707. }
  3708. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3709. // TODO
  3710. av_free(buf2);return -1;
  3711. }else{
  3712. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3713. }
  3714. init_get_bits(&s->gb, buf2, buf_size2*8);
  3715. } else
  3716. init_get_bits(&s->gb, buf, buf_size*8);
  3717. // do parse frame header
  3718. if(v->profile < PROFILE_ADVANCED) {
  3719. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3720. av_free(buf2);
  3721. return -1;
  3722. }
  3723. } else {
  3724. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3725. av_free(buf2);
  3726. return -1;
  3727. }
  3728. }
  3729. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3730. av_free(buf2);
  3731. return -1;
  3732. }
  3733. // for hurry_up==5
  3734. s->current_picture.pict_type= s->pict_type;
  3735. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3736. /* skip B-frames if we don't have reference frames */
  3737. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3738. av_free(buf2);
  3739. return -1;//buf_size;
  3740. }
  3741. /* skip b frames if we are in a hurry */
  3742. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  3743. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  3744. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  3745. || avctx->skip_frame >= AVDISCARD_ALL) {
  3746. av_free(buf2);
  3747. return buf_size;
  3748. }
  3749. /* skip everything if we are in a hurry>=5 */
  3750. if(avctx->hurry_up>=5) {
  3751. av_free(buf2);
  3752. return -1;//buf_size;
  3753. }
  3754. if(s->next_p_frame_damaged){
  3755. if(s->pict_type==B_TYPE)
  3756. return buf_size;
  3757. else
  3758. s->next_p_frame_damaged=0;
  3759. }
  3760. if(MPV_frame_start(s, avctx) < 0) {
  3761. av_free(buf2);
  3762. return -1;
  3763. }
  3764. ff_er_frame_start(s);
  3765. v->bits = buf_size * 8;
  3766. vc1_decode_blocks(v);
  3767. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3768. // if(get_bits_count(&s->gb) > buf_size * 8)
  3769. // return -1;
  3770. ff_er_frame_end(s);
  3771. MPV_frame_end(s);
  3772. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3773. assert(s->current_picture.pict_type == s->pict_type);
  3774. if (s->pict_type == B_TYPE || s->low_delay) {
  3775. *pict= *(AVFrame*)s->current_picture_ptr;
  3776. } else if (s->last_picture_ptr != NULL) {
  3777. *pict= *(AVFrame*)s->last_picture_ptr;
  3778. }
  3779. if(s->last_picture_ptr || s->low_delay){
  3780. *data_size = sizeof(AVFrame);
  3781. ff_print_debug_info(s, pict);
  3782. }
  3783. /* Return the Picture timestamp as the frame number */
  3784. /* we substract 1 because it is added on utils.c */
  3785. avctx->frame_number = s->picture_number - 1;
  3786. av_free(buf2);
  3787. return buf_size;
  3788. }
  3789. /** Close a VC1/WMV3 decoder
  3790. * @warning Initial try at using MpegEncContext stuff
  3791. */
  3792. static int vc1_decode_end(AVCodecContext *avctx)
  3793. {
  3794. VC1Context *v = avctx->priv_data;
  3795. av_freep(&v->hrd_rate);
  3796. av_freep(&v->hrd_buffer);
  3797. MPV_common_end(&v->s);
  3798. av_freep(&v->mv_type_mb_plane);
  3799. av_freep(&v->direct_mb_plane);
  3800. av_freep(&v->acpred_plane);
  3801. av_freep(&v->over_flags_plane);
  3802. av_freep(&v->mb_type_base);
  3803. return 0;
  3804. }
  3805. AVCodec vc1_decoder = {
  3806. "vc1",
  3807. CODEC_TYPE_VIDEO,
  3808. CODEC_ID_VC1,
  3809. sizeof(VC1Context),
  3810. vc1_decode_init,
  3811. NULL,
  3812. vc1_decode_end,
  3813. vc1_decode_frame,
  3814. CODEC_CAP_DELAY,
  3815. NULL
  3816. };
  3817. AVCodec wmv3_decoder = {
  3818. "wmv3",
  3819. CODEC_TYPE_VIDEO,
  3820. CODEC_ID_WMV3,
  3821. sizeof(VC1Context),
  3822. vc1_decode_init,
  3823. NULL,
  3824. vc1_decode_end,
  3825. vc1_decode_frame,
  3826. CODEC_CAP_DELAY,
  3827. NULL
  3828. };