You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1609 lines
58KB

  1. /*
  2. * AAC decoder
  3. * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
  4. * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file aac.c
  24. * AAC decoder
  25. * @author Oded Shimon ( ods15 ods15 dyndns org )
  26. * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
  27. */
  28. /*
  29. * supported tools
  30. *
  31. * Support? Name
  32. * N (code in SoC repo) gain control
  33. * Y block switching
  34. * Y window shapes - standard
  35. * N window shapes - Low Delay
  36. * Y filterbank - standard
  37. * N (code in SoC repo) filterbank - Scalable Sample Rate
  38. * Y Temporal Noise Shaping
  39. * N (code in SoC repo) Long Term Prediction
  40. * Y intensity stereo
  41. * Y channel coupling
  42. * Y frequency domain prediction
  43. * Y Perceptual Noise Substitution
  44. * Y Mid/Side stereo
  45. * N Scalable Inverse AAC Quantization
  46. * N Frequency Selective Switch
  47. * N upsampling filter
  48. * Y quantization & coding - AAC
  49. * N quantization & coding - TwinVQ
  50. * N quantization & coding - BSAC
  51. * N AAC Error Resilience tools
  52. * N Error Resilience payload syntax
  53. * N Error Protection tool
  54. * N CELP
  55. * N Silence Compression
  56. * N HVXC
  57. * N HVXC 4kbits/s VR
  58. * N Structured Audio tools
  59. * N Structured Audio Sample Bank Format
  60. * N MIDI
  61. * N Harmonic and Individual Lines plus Noise
  62. * N Text-To-Speech Interface
  63. * N (in progress) Spectral Band Replication
  64. * Y (not in this code) Layer-1
  65. * Y (not in this code) Layer-2
  66. * Y (not in this code) Layer-3
  67. * N SinuSoidal Coding (Transient, Sinusoid, Noise)
  68. * N (planned) Parametric Stereo
  69. * N Direct Stream Transfer
  70. *
  71. * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
  72. * - HE AAC v2 comprises LC AAC with Spectral Band Replication and
  73. Parametric Stereo.
  74. */
  75. #include "avcodec.h"
  76. #include "bitstream.h"
  77. #include "dsputil.h"
  78. #include "lpc.h"
  79. #include "aac.h"
  80. #include "aactab.h"
  81. #include "aacdectab.h"
  82. #include "mpeg4audio.h"
  83. #include <assert.h>
  84. #include <errno.h>
  85. #include <math.h>
  86. #include <string.h>
  87. static VLC vlc_scalefactors;
  88. static VLC vlc_spectral[11];
  89. /**
  90. * Configure output channel order based on the current program configuration element.
  91. *
  92. * @param che_pos current channel position configuration
  93. * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
  94. *
  95. * @return Returns error status. 0 - OK, !0 - error
  96. */
  97. static int output_configure(AACContext *ac, enum ChannelPosition che_pos[4][MAX_ELEM_ID],
  98. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID]) {
  99. AVCodecContext *avctx = ac->avccontext;
  100. int i, type, channels = 0;
  101. if(!memcmp(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])))
  102. return 0; /* no change */
  103. memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  104. /* Allocate or free elements depending on if they are in the
  105. * current program configuration.
  106. *
  107. * Set up default 1:1 output mapping.
  108. *
  109. * For a 5.1 stream the output order will be:
  110. * [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
  111. */
  112. for(i = 0; i < MAX_ELEM_ID; i++) {
  113. for(type = 0; type < 4; type++) {
  114. if(che_pos[type][i]) {
  115. if(!ac->che[type][i] && !(ac->che[type][i] = av_mallocz(sizeof(ChannelElement))))
  116. return AVERROR(ENOMEM);
  117. if(type != TYPE_CCE) {
  118. ac->output_data[channels++] = ac->che[type][i]->ch[0].ret;
  119. if(type == TYPE_CPE) {
  120. ac->output_data[channels++] = ac->che[type][i]->ch[1].ret;
  121. }
  122. }
  123. } else
  124. av_freep(&ac->che[type][i]);
  125. }
  126. }
  127. avctx->channels = channels;
  128. return 0;
  129. }
  130. /**
  131. * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
  132. *
  133. * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
  134. * @param sce_map mono (Single Channel Element) map
  135. * @param type speaker type/position for these channels
  136. */
  137. static void decode_channel_map(enum ChannelPosition *cpe_map,
  138. enum ChannelPosition *sce_map, enum ChannelPosition type, GetBitContext * gb, int n) {
  139. while(n--) {
  140. enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
  141. map[get_bits(gb, 4)] = type;
  142. }
  143. }
  144. /**
  145. * Decode program configuration element; reference: table 4.2.
  146. *
  147. * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
  148. *
  149. * @return Returns error status. 0 - OK, !0 - error
  150. */
  151. static int decode_pce(AACContext * ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
  152. GetBitContext * gb) {
  153. int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc;
  154. skip_bits(gb, 2); // object_type
  155. ac->m4ac.sampling_index = get_bits(gb, 4);
  156. if(ac->m4ac.sampling_index > 11) {
  157. av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
  158. return -1;
  159. }
  160. ac->m4ac.sample_rate = ff_mpeg4audio_sample_rates[ac->m4ac.sampling_index];
  161. num_front = get_bits(gb, 4);
  162. num_side = get_bits(gb, 4);
  163. num_back = get_bits(gb, 4);
  164. num_lfe = get_bits(gb, 2);
  165. num_assoc_data = get_bits(gb, 3);
  166. num_cc = get_bits(gb, 4);
  167. if (get_bits1(gb))
  168. skip_bits(gb, 4); // mono_mixdown_tag
  169. if (get_bits1(gb))
  170. skip_bits(gb, 4); // stereo_mixdown_tag
  171. if (get_bits1(gb))
  172. skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
  173. decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
  174. decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE, gb, num_side );
  175. decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK, gb, num_back );
  176. decode_channel_map(NULL, new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE, gb, num_lfe );
  177. skip_bits_long(gb, 4 * num_assoc_data);
  178. decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC, gb, num_cc );
  179. align_get_bits(gb);
  180. /* comment field, first byte is length */
  181. skip_bits_long(gb, 8 * get_bits(gb, 8));
  182. return 0;
  183. }
  184. /**
  185. * Set up channel positions based on a default channel configuration
  186. * as specified in table 1.17.
  187. *
  188. * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
  189. *
  190. * @return Returns error status. 0 - OK, !0 - error
  191. */
  192. static int set_default_channel_config(AACContext *ac, enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
  193. int channel_config)
  194. {
  195. if(channel_config < 1 || channel_config > 7) {
  196. av_log(ac->avccontext, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
  197. channel_config);
  198. return -1;
  199. }
  200. /* default channel configurations:
  201. *
  202. * 1ch : front center (mono)
  203. * 2ch : L + R (stereo)
  204. * 3ch : front center + L + R
  205. * 4ch : front center + L + R + back center
  206. * 5ch : front center + L + R + back stereo
  207. * 6ch : front center + L + R + back stereo + LFE
  208. * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
  209. */
  210. if(channel_config != 2)
  211. new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
  212. if(channel_config > 1)
  213. new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
  214. if(channel_config == 4)
  215. new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK; // back center
  216. if(channel_config > 4)
  217. new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
  218. = AAC_CHANNEL_BACK; // back stereo
  219. if(channel_config > 5)
  220. new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE; // LFE
  221. if(channel_config == 7)
  222. new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
  223. return 0;
  224. }
  225. /**
  226. * Decode GA "General Audio" specific configuration; reference: table 4.1.
  227. *
  228. * @return Returns error status. 0 - OK, !0 - error
  229. */
  230. static int decode_ga_specific_config(AACContext * ac, GetBitContext * gb, int channel_config) {
  231. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
  232. int extension_flag, ret;
  233. if(get_bits1(gb)) { // frameLengthFlag
  234. av_log_missing_feature(ac->avccontext, "960/120 MDCT window is", 1);
  235. return -1;
  236. }
  237. if (get_bits1(gb)) // dependsOnCoreCoder
  238. skip_bits(gb, 14); // coreCoderDelay
  239. extension_flag = get_bits1(gb);
  240. if(ac->m4ac.object_type == AOT_AAC_SCALABLE ||
  241. ac->m4ac.object_type == AOT_ER_AAC_SCALABLE)
  242. skip_bits(gb, 3); // layerNr
  243. memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  244. if (channel_config == 0) {
  245. skip_bits(gb, 4); // element_instance_tag
  246. if((ret = decode_pce(ac, new_che_pos, gb)))
  247. return ret;
  248. } else {
  249. if((ret = set_default_channel_config(ac, new_che_pos, channel_config)))
  250. return ret;
  251. }
  252. if((ret = output_configure(ac, ac->che_pos, new_che_pos)))
  253. return ret;
  254. if (extension_flag) {
  255. switch (ac->m4ac.object_type) {
  256. case AOT_ER_BSAC:
  257. skip_bits(gb, 5); // numOfSubFrame
  258. skip_bits(gb, 11); // layer_length
  259. break;
  260. case AOT_ER_AAC_LC:
  261. case AOT_ER_AAC_LTP:
  262. case AOT_ER_AAC_SCALABLE:
  263. case AOT_ER_AAC_LD:
  264. skip_bits(gb, 3); /* aacSectionDataResilienceFlag
  265. * aacScalefactorDataResilienceFlag
  266. * aacSpectralDataResilienceFlag
  267. */
  268. break;
  269. }
  270. skip_bits1(gb); // extensionFlag3 (TBD in version 3)
  271. }
  272. return 0;
  273. }
  274. /**
  275. * Decode audio specific configuration; reference: table 1.13.
  276. *
  277. * @param data pointer to AVCodecContext extradata
  278. * @param data_size size of AVCCodecContext extradata
  279. *
  280. * @return Returns error status. 0 - OK, !0 - error
  281. */
  282. static int decode_audio_specific_config(AACContext * ac, void *data, int data_size) {
  283. GetBitContext gb;
  284. int i;
  285. init_get_bits(&gb, data, data_size * 8);
  286. if((i = ff_mpeg4audio_get_config(&ac->m4ac, data, data_size)) < 0)
  287. return -1;
  288. if(ac->m4ac.sampling_index > 11) {
  289. av_log(ac->avccontext, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
  290. return -1;
  291. }
  292. skip_bits_long(&gb, i);
  293. switch (ac->m4ac.object_type) {
  294. case AOT_AAC_MAIN:
  295. case AOT_AAC_LC:
  296. if (decode_ga_specific_config(ac, &gb, ac->m4ac.chan_config))
  297. return -1;
  298. break;
  299. default:
  300. av_log(ac->avccontext, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
  301. ac->m4ac.sbr == 1? "SBR+" : "", ac->m4ac.object_type);
  302. return -1;
  303. }
  304. return 0;
  305. }
  306. /**
  307. * linear congruential pseudorandom number generator
  308. *
  309. * @param previous_val pointer to the current state of the generator
  310. *
  311. * @return Returns a 32-bit pseudorandom integer
  312. */
  313. static av_always_inline int lcg_random(int previous_val) {
  314. return previous_val * 1664525 + 1013904223;
  315. }
  316. static void reset_predict_state(PredictorState * ps) {
  317. ps->r0 = 0.0f;
  318. ps->r1 = 0.0f;
  319. ps->cor0 = 0.0f;
  320. ps->cor1 = 0.0f;
  321. ps->var0 = 1.0f;
  322. ps->var1 = 1.0f;
  323. }
  324. static void reset_all_predictors(PredictorState * ps) {
  325. int i;
  326. for (i = 0; i < MAX_PREDICTORS; i++)
  327. reset_predict_state(&ps[i]);
  328. }
  329. static void reset_predictor_group(PredictorState * ps, int group_num) {
  330. int i;
  331. for (i = group_num-1; i < MAX_PREDICTORS; i+=30)
  332. reset_predict_state(&ps[i]);
  333. }
  334. static av_cold int aac_decode_init(AVCodecContext * avccontext) {
  335. AACContext * ac = avccontext->priv_data;
  336. int i;
  337. ac->avccontext = avccontext;
  338. if (avccontext->extradata_size <= 0 ||
  339. decode_audio_specific_config(ac, avccontext->extradata, avccontext->extradata_size))
  340. return -1;
  341. avccontext->sample_fmt = SAMPLE_FMT_S16;
  342. avccontext->sample_rate = ac->m4ac.sample_rate;
  343. avccontext->frame_size = 1024;
  344. AAC_INIT_VLC_STATIC( 0, 144);
  345. AAC_INIT_VLC_STATIC( 1, 114);
  346. AAC_INIT_VLC_STATIC( 2, 188);
  347. AAC_INIT_VLC_STATIC( 3, 180);
  348. AAC_INIT_VLC_STATIC( 4, 172);
  349. AAC_INIT_VLC_STATIC( 5, 140);
  350. AAC_INIT_VLC_STATIC( 6, 168);
  351. AAC_INIT_VLC_STATIC( 7, 114);
  352. AAC_INIT_VLC_STATIC( 8, 262);
  353. AAC_INIT_VLC_STATIC( 9, 248);
  354. AAC_INIT_VLC_STATIC(10, 384);
  355. dsputil_init(&ac->dsp, avccontext);
  356. ac->random_state = 0x1f2e3d4c;
  357. // -1024 - Compensate wrong IMDCT method.
  358. // 32768 - Required to scale values to the correct range for the bias method
  359. // for float to int16 conversion.
  360. if(ac->dsp.float_to_int16 == ff_float_to_int16_c) {
  361. ac->add_bias = 385.0f;
  362. ac->sf_scale = 1. / (-1024. * 32768.);
  363. ac->sf_offset = 0;
  364. } else {
  365. ac->add_bias = 0.0f;
  366. ac->sf_scale = 1. / -1024.;
  367. ac->sf_offset = 60;
  368. }
  369. #ifndef CONFIG_HARDCODED_TABLES
  370. for (i = 0; i < 428; i++)
  371. ff_aac_pow2sf_tab[i] = pow(2, (i - 200)/4.);
  372. #endif /* CONFIG_HARDCODED_TABLES */
  373. INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
  374. ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
  375. ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
  376. 352);
  377. ff_mdct_init(&ac->mdct, 11, 1);
  378. ff_mdct_init(&ac->mdct_small, 8, 1);
  379. // window initialization
  380. ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
  381. ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
  382. ff_sine_window_init(ff_sine_1024, 1024);
  383. ff_sine_window_init(ff_sine_128, 128);
  384. return 0;
  385. }
  386. /**
  387. * Skip data_stream_element; reference: table 4.10.
  388. */
  389. static void skip_data_stream_element(GetBitContext * gb) {
  390. int byte_align = get_bits1(gb);
  391. int count = get_bits(gb, 8);
  392. if (count == 255)
  393. count += get_bits(gb, 8);
  394. if (byte_align)
  395. align_get_bits(gb);
  396. skip_bits_long(gb, 8 * count);
  397. }
  398. static int decode_prediction(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb) {
  399. int sfb;
  400. if (get_bits1(gb)) {
  401. ics->predictor_reset_group = get_bits(gb, 5);
  402. if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
  403. av_log(ac->avccontext, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
  404. return -1;
  405. }
  406. }
  407. for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
  408. ics->prediction_used[sfb] = get_bits1(gb);
  409. }
  410. return 0;
  411. }
  412. /**
  413. * Decode Individual Channel Stream info; reference: table 4.6.
  414. *
  415. * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
  416. */
  417. static int decode_ics_info(AACContext * ac, IndividualChannelStream * ics, GetBitContext * gb, int common_window) {
  418. if (get_bits1(gb)) {
  419. av_log(ac->avccontext, AV_LOG_ERROR, "Reserved bit set.\n");
  420. memset(ics, 0, sizeof(IndividualChannelStream));
  421. return -1;
  422. }
  423. ics->window_sequence[1] = ics->window_sequence[0];
  424. ics->window_sequence[0] = get_bits(gb, 2);
  425. ics->use_kb_window[1] = ics->use_kb_window[0];
  426. ics->use_kb_window[0] = get_bits1(gb);
  427. ics->num_window_groups = 1;
  428. ics->group_len[0] = 1;
  429. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  430. int i;
  431. ics->max_sfb = get_bits(gb, 4);
  432. for (i = 0; i < 7; i++) {
  433. if (get_bits1(gb)) {
  434. ics->group_len[ics->num_window_groups-1]++;
  435. } else {
  436. ics->num_window_groups++;
  437. ics->group_len[ics->num_window_groups-1] = 1;
  438. }
  439. }
  440. ics->num_windows = 8;
  441. ics->swb_offset = swb_offset_128[ac->m4ac.sampling_index];
  442. ics->num_swb = ff_aac_num_swb_128[ac->m4ac.sampling_index];
  443. ics->tns_max_bands = tns_max_bands_128[ac->m4ac.sampling_index];
  444. ics->predictor_present = 0;
  445. } else {
  446. ics->max_sfb = get_bits(gb, 6);
  447. ics->num_windows = 1;
  448. ics->swb_offset = swb_offset_1024[ac->m4ac.sampling_index];
  449. ics->num_swb = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
  450. ics->tns_max_bands = tns_max_bands_1024[ac->m4ac.sampling_index];
  451. ics->predictor_present = get_bits1(gb);
  452. ics->predictor_reset_group = 0;
  453. if (ics->predictor_present) {
  454. if (ac->m4ac.object_type == AOT_AAC_MAIN) {
  455. if (decode_prediction(ac, ics, gb)) {
  456. memset(ics, 0, sizeof(IndividualChannelStream));
  457. return -1;
  458. }
  459. } else if (ac->m4ac.object_type == AOT_AAC_LC) {
  460. av_log(ac->avccontext, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
  461. memset(ics, 0, sizeof(IndividualChannelStream));
  462. return -1;
  463. } else {
  464. av_log_missing_feature(ac->avccontext, "Predictor bit set but LTP is", 1);
  465. memset(ics, 0, sizeof(IndividualChannelStream));
  466. return -1;
  467. }
  468. }
  469. }
  470. if(ics->max_sfb > ics->num_swb) {
  471. av_log(ac->avccontext, AV_LOG_ERROR,
  472. "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
  473. ics->max_sfb, ics->num_swb);
  474. memset(ics, 0, sizeof(IndividualChannelStream));
  475. return -1;
  476. }
  477. return 0;
  478. }
  479. /**
  480. * Decode band types (section_data payload); reference: table 4.46.
  481. *
  482. * @param band_type array of the used band type
  483. * @param band_type_run_end array of the last scalefactor band of a band type run
  484. *
  485. * @return Returns error status. 0 - OK, !0 - error
  486. */
  487. static int decode_band_types(AACContext * ac, enum BandType band_type[120],
  488. int band_type_run_end[120], GetBitContext * gb, IndividualChannelStream * ics) {
  489. int g, idx = 0;
  490. const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
  491. for (g = 0; g < ics->num_window_groups; g++) {
  492. int k = 0;
  493. while (k < ics->max_sfb) {
  494. uint8_t sect_len = k;
  495. int sect_len_incr;
  496. int sect_band_type = get_bits(gb, 4);
  497. if (sect_band_type == 12) {
  498. av_log(ac->avccontext, AV_LOG_ERROR, "invalid band type\n");
  499. return -1;
  500. }
  501. while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits)-1)
  502. sect_len += sect_len_incr;
  503. sect_len += sect_len_incr;
  504. if (sect_len > ics->max_sfb) {
  505. av_log(ac->avccontext, AV_LOG_ERROR,
  506. "Number of bands (%d) exceeds limit (%d).\n",
  507. sect_len, ics->max_sfb);
  508. return -1;
  509. }
  510. for (; k < sect_len; k++) {
  511. band_type [idx] = sect_band_type;
  512. band_type_run_end[idx++] = sect_len;
  513. }
  514. }
  515. }
  516. return 0;
  517. }
  518. /**
  519. * Decode scalefactors; reference: table 4.47.
  520. *
  521. * @param global_gain first scalefactor value as scalefactors are differentially coded
  522. * @param band_type array of the used band type
  523. * @param band_type_run_end array of the last scalefactor band of a band type run
  524. * @param sf array of scalefactors or intensity stereo positions
  525. *
  526. * @return Returns error status. 0 - OK, !0 - error
  527. */
  528. static int decode_scalefactors(AACContext * ac, float sf[120], GetBitContext * gb,
  529. unsigned int global_gain, IndividualChannelStream * ics,
  530. enum BandType band_type[120], int band_type_run_end[120]) {
  531. const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0);
  532. int g, i, idx = 0;
  533. int offset[3] = { global_gain, global_gain - 90, 100 };
  534. int noise_flag = 1;
  535. static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
  536. for (g = 0; g < ics->num_window_groups; g++) {
  537. for (i = 0; i < ics->max_sfb;) {
  538. int run_end = band_type_run_end[idx];
  539. if (band_type[idx] == ZERO_BT) {
  540. for(; i < run_end; i++, idx++)
  541. sf[idx] = 0.;
  542. }else if((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
  543. for(; i < run_end; i++, idx++) {
  544. offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  545. if(offset[2] > 255U) {
  546. av_log(ac->avccontext, AV_LOG_ERROR,
  547. "%s (%d) out of range.\n", sf_str[2], offset[2]);
  548. return -1;
  549. }
  550. sf[idx] = ff_aac_pow2sf_tab[-offset[2] + 300];
  551. }
  552. }else if(band_type[idx] == NOISE_BT) {
  553. for(; i < run_end; i++, idx++) {
  554. if(noise_flag-- > 0)
  555. offset[1] += get_bits(gb, 9) - 256;
  556. else
  557. offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  558. if(offset[1] > 255U) {
  559. av_log(ac->avccontext, AV_LOG_ERROR,
  560. "%s (%d) out of range.\n", sf_str[1], offset[1]);
  561. return -1;
  562. }
  563. sf[idx] = -ff_aac_pow2sf_tab[ offset[1] + sf_offset + 100];
  564. }
  565. }else {
  566. for(; i < run_end; i++, idx++) {
  567. offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  568. if(offset[0] > 255U) {
  569. av_log(ac->avccontext, AV_LOG_ERROR,
  570. "%s (%d) out of range.\n", sf_str[0], offset[0]);
  571. return -1;
  572. }
  573. sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
  574. }
  575. }
  576. }
  577. }
  578. return 0;
  579. }
  580. /**
  581. * Decode pulse data; reference: table 4.7.
  582. */
  583. static int decode_pulses(Pulse * pulse, GetBitContext * gb, const uint16_t * swb_offset, int num_swb) {
  584. int i, pulse_swb;
  585. pulse->num_pulse = get_bits(gb, 2) + 1;
  586. pulse_swb = get_bits(gb, 6);
  587. if (pulse_swb >= num_swb)
  588. return -1;
  589. pulse->pos[0] = swb_offset[pulse_swb];
  590. pulse->pos[0] += get_bits(gb, 5);
  591. if (pulse->pos[0] > 1023)
  592. return -1;
  593. pulse->amp[0] = get_bits(gb, 4);
  594. for (i = 1; i < pulse->num_pulse; i++) {
  595. pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i-1];
  596. if (pulse->pos[i] > 1023)
  597. return -1;
  598. pulse->amp[i] = get_bits(gb, 4);
  599. }
  600. return 0;
  601. }
  602. /**
  603. * Decode Temporal Noise Shaping data; reference: table 4.48.
  604. *
  605. * @return Returns error status. 0 - OK, !0 - error
  606. */
  607. static int decode_tns(AACContext * ac, TemporalNoiseShaping * tns,
  608. GetBitContext * gb, const IndividualChannelStream * ics) {
  609. int w, filt, i, coef_len, coef_res, coef_compress;
  610. const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
  611. const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
  612. for (w = 0; w < ics->num_windows; w++) {
  613. if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
  614. coef_res = get_bits1(gb);
  615. for (filt = 0; filt < tns->n_filt[w]; filt++) {
  616. int tmp2_idx;
  617. tns->length[w][filt] = get_bits(gb, 6 - 2*is8);
  618. if ((tns->order[w][filt] = get_bits(gb, 5 - 2*is8)) > tns_max_order) {
  619. av_log(ac->avccontext, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.",
  620. tns->order[w][filt], tns_max_order);
  621. tns->order[w][filt] = 0;
  622. return -1;
  623. }
  624. if (tns->order[w][filt]) {
  625. tns->direction[w][filt] = get_bits1(gb);
  626. coef_compress = get_bits1(gb);
  627. coef_len = coef_res + 3 - coef_compress;
  628. tmp2_idx = 2*coef_compress + coef_res;
  629. for (i = 0; i < tns->order[w][filt]; i++)
  630. tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
  631. }
  632. }
  633. }
  634. }
  635. return 0;
  636. }
  637. /**
  638. * Decode Mid/Side data; reference: table 4.54.
  639. *
  640. * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
  641. * [1] mask is decoded from bitstream; [2] mask is all 1s;
  642. * [3] reserved for scalable AAC
  643. */
  644. static void decode_mid_side_stereo(ChannelElement * cpe, GetBitContext * gb,
  645. int ms_present) {
  646. int idx;
  647. if (ms_present == 1) {
  648. for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
  649. cpe->ms_mask[idx] = get_bits1(gb);
  650. } else if (ms_present == 2) {
  651. memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
  652. }
  653. }
  654. /**
  655. * Decode spectral data; reference: table 4.50.
  656. * Dequantize and scale spectral data; reference: 4.6.3.3.
  657. *
  658. * @param coef array of dequantized, scaled spectral data
  659. * @param sf array of scalefactors or intensity stereo positions
  660. * @param pulse_present set if pulses are present
  661. * @param pulse pointer to pulse data struct
  662. * @param band_type array of the used band type
  663. *
  664. * @return Returns error status. 0 - OK, !0 - error
  665. */
  666. static int decode_spectrum_and_dequant(AACContext * ac, float coef[1024], GetBitContext * gb, float sf[120],
  667. int pulse_present, const Pulse * pulse, const IndividualChannelStream * ics, enum BandType band_type[120]) {
  668. int i, k, g, idx = 0;
  669. const int c = 1024/ics->num_windows;
  670. const uint16_t * offsets = ics->swb_offset;
  671. float *coef_base = coef;
  672. for (g = 0; g < ics->num_windows; g++)
  673. memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float)*(c - offsets[ics->max_sfb]));
  674. for (g = 0; g < ics->num_window_groups; g++) {
  675. for (i = 0; i < ics->max_sfb; i++, idx++) {
  676. const int cur_band_type = band_type[idx];
  677. const int dim = cur_band_type >= FIRST_PAIR_BT ? 2 : 4;
  678. const int is_cb_unsigned = IS_CODEBOOK_UNSIGNED(cur_band_type);
  679. int group;
  680. if (cur_band_type == ZERO_BT) {
  681. for (group = 0; group < ics->group_len[g]; group++) {
  682. memset(coef + group * 128 + offsets[i], 0, (offsets[i+1] - offsets[i])*sizeof(float));
  683. }
  684. }else if (cur_band_type == NOISE_BT) {
  685. for (group = 0; group < ics->group_len[g]; group++) {
  686. float scale;
  687. float band_energy = 0;
  688. for (k = offsets[i]; k < offsets[i+1]; k++) {
  689. ac->random_state = lcg_random(ac->random_state);
  690. coef[group*128+k] = ac->random_state;
  691. band_energy += coef[group*128+k]*coef[group*128+k];
  692. }
  693. scale = sf[idx] / sqrtf(band_energy);
  694. for (k = offsets[i]; k < offsets[i+1]; k++) {
  695. coef[group*128+k] *= scale;
  696. }
  697. }
  698. }else if (cur_band_type != INTENSITY_BT2 && cur_band_type != INTENSITY_BT) {
  699. for (group = 0; group < ics->group_len[g]; group++) {
  700. for (k = offsets[i]; k < offsets[i+1]; k += dim) {
  701. const int index = get_vlc2(gb, vlc_spectral[cur_band_type - 1].table, 6, 3);
  702. const int coef_tmp_idx = (group << 7) + k;
  703. const float *vq_ptr;
  704. int j;
  705. if(index >= ff_aac_spectral_sizes[cur_band_type - 1]) {
  706. av_log(ac->avccontext, AV_LOG_ERROR,
  707. "Read beyond end of ff_aac_codebook_vectors[%d][]. index %d >= %d\n",
  708. cur_band_type - 1, index, ff_aac_spectral_sizes[cur_band_type - 1]);
  709. return -1;
  710. }
  711. vq_ptr = &ff_aac_codebook_vectors[cur_band_type - 1][index * dim];
  712. if (is_cb_unsigned) {
  713. for (j = 0; j < dim; j++)
  714. if (vq_ptr[j])
  715. coef[coef_tmp_idx + j] = 1 - 2*(int)get_bits1(gb);
  716. }else {
  717. for (j = 0; j < dim; j++)
  718. coef[coef_tmp_idx + j] = 1.0f;
  719. }
  720. if (cur_band_type == ESC_BT) {
  721. for (j = 0; j < 2; j++) {
  722. if (vq_ptr[j] == 64.0f) {
  723. int n = 4;
  724. /* The total length of escape_sequence must be < 22 bits according
  725. to the specification (i.e. max is 11111111110xxxxxxxxxx). */
  726. while (get_bits1(gb) && n < 15) n++;
  727. if(n == 15) {
  728. av_log(ac->avccontext, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
  729. return -1;
  730. }
  731. n = (1<<n) + get_bits(gb, n);
  732. coef[coef_tmp_idx + j] *= cbrtf(fabsf(n)) * n;
  733. }else
  734. coef[coef_tmp_idx + j] *= vq_ptr[j];
  735. }
  736. }else
  737. for (j = 0; j < dim; j++)
  738. coef[coef_tmp_idx + j] *= vq_ptr[j];
  739. for (j = 0; j < dim; j++)
  740. coef[coef_tmp_idx + j] *= sf[idx];
  741. }
  742. }
  743. }
  744. }
  745. coef += ics->group_len[g]<<7;
  746. }
  747. if (pulse_present) {
  748. idx = 0;
  749. for(i = 0; i < pulse->num_pulse; i++){
  750. float co = coef_base[ pulse->pos[i] ];
  751. while(offsets[idx + 1] <= pulse->pos[i])
  752. idx++;
  753. if (band_type[idx] != NOISE_BT && sf[idx]) {
  754. float ico = -pulse->amp[i];
  755. if (co) {
  756. co /= sf[idx];
  757. ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
  758. }
  759. coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
  760. }
  761. }
  762. }
  763. return 0;
  764. }
  765. static av_always_inline float flt16_round(float pf) {
  766. int exp;
  767. pf = frexpf(pf, &exp);
  768. pf = ldexpf(roundf(ldexpf(pf, 8)), exp-8);
  769. return pf;
  770. }
  771. static av_always_inline float flt16_even(float pf) {
  772. int exp;
  773. pf = frexpf(pf, &exp);
  774. pf = ldexpf(rintf(ldexpf(pf, 8)), exp-8);
  775. return pf;
  776. }
  777. static av_always_inline float flt16_trunc(float pf) {
  778. int exp;
  779. pf = frexpf(pf, &exp);
  780. pf = ldexpf(truncf(ldexpf(pf, 8)), exp-8);
  781. return pf;
  782. }
  783. static void predict(AACContext * ac, PredictorState * ps, float* coef, int output_enable) {
  784. const float a = 0.953125; // 61.0/64
  785. const float alpha = 0.90625; // 29.0/32
  786. float e0, e1;
  787. float pv;
  788. float k1, k2;
  789. k1 = ps->var0 > 1 ? ps->cor0 * flt16_even(a / ps->var0) : 0;
  790. k2 = ps->var1 > 1 ? ps->cor1 * flt16_even(a / ps->var1) : 0;
  791. pv = flt16_round(k1 * ps->r0 + k2 * ps->r1);
  792. if (output_enable)
  793. *coef += pv * ac->sf_scale;
  794. e0 = *coef / ac->sf_scale;
  795. e1 = e0 - k1 * ps->r0;
  796. ps->cor1 = flt16_trunc(alpha * ps->cor1 + ps->r1 * e1);
  797. ps->var1 = flt16_trunc(alpha * ps->var1 + 0.5 * (ps->r1 * ps->r1 + e1 * e1));
  798. ps->cor0 = flt16_trunc(alpha * ps->cor0 + ps->r0 * e0);
  799. ps->var0 = flt16_trunc(alpha * ps->var0 + 0.5 * (ps->r0 * ps->r0 + e0 * e0));
  800. ps->r1 = flt16_trunc(a * (ps->r0 - k1 * e0));
  801. ps->r0 = flt16_trunc(a * e0);
  802. }
  803. /**
  804. * Apply AAC-Main style frequency domain prediction.
  805. */
  806. static void apply_prediction(AACContext * ac, SingleChannelElement * sce) {
  807. int sfb, k;
  808. if (!sce->ics.predictor_initialized) {
  809. reset_all_predictors(sce->ics.predictor_state);
  810. sce->ics.predictor_initialized = 1;
  811. }
  812. if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
  813. for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
  814. for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
  815. predict(ac, &sce->ics.predictor_state[k], &sce->coeffs[k],
  816. sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
  817. }
  818. }
  819. if (sce->ics.predictor_reset_group)
  820. reset_predictor_group(sce->ics.predictor_state, sce->ics.predictor_reset_group);
  821. } else
  822. reset_all_predictors(sce->ics.predictor_state);
  823. }
  824. /**
  825. * Decode an individual_channel_stream payload; reference: table 4.44.
  826. *
  827. * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
  828. * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
  829. *
  830. * @return Returns error status. 0 - OK, !0 - error
  831. */
  832. static int decode_ics(AACContext * ac, SingleChannelElement * sce, GetBitContext * gb, int common_window, int scale_flag) {
  833. Pulse pulse;
  834. TemporalNoiseShaping * tns = &sce->tns;
  835. IndividualChannelStream * ics = &sce->ics;
  836. float * out = sce->coeffs;
  837. int global_gain, pulse_present = 0;
  838. /* This assignment is to silence a GCC warning about the variable being used
  839. * uninitialized when in fact it always is.
  840. */
  841. pulse.num_pulse = 0;
  842. global_gain = get_bits(gb, 8);
  843. if (!common_window && !scale_flag) {
  844. if (decode_ics_info(ac, ics, gb, 0) < 0)
  845. return -1;
  846. }
  847. if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
  848. return -1;
  849. if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
  850. return -1;
  851. pulse_present = 0;
  852. if (!scale_flag) {
  853. if ((pulse_present = get_bits1(gb))) {
  854. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  855. av_log(ac->avccontext, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
  856. return -1;
  857. }
  858. if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
  859. av_log(ac->avccontext, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
  860. return -1;
  861. }
  862. }
  863. if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
  864. return -1;
  865. if (get_bits1(gb)) {
  866. av_log_missing_feature(ac->avccontext, "SSR", 1);
  867. return -1;
  868. }
  869. }
  870. if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
  871. return -1;
  872. if(ac->m4ac.object_type == AOT_AAC_MAIN)
  873. apply_prediction(ac, sce);
  874. return 0;
  875. }
  876. /**
  877. * Mid/Side stereo decoding; reference: 4.6.8.1.3.
  878. */
  879. static void apply_mid_side_stereo(ChannelElement * cpe) {
  880. const IndividualChannelStream * ics = &cpe->ch[0].ics;
  881. float *ch0 = cpe->ch[0].coeffs;
  882. float *ch1 = cpe->ch[1].coeffs;
  883. int g, i, k, group, idx = 0;
  884. const uint16_t * offsets = ics->swb_offset;
  885. for (g = 0; g < ics->num_window_groups; g++) {
  886. for (i = 0; i < ics->max_sfb; i++, idx++) {
  887. if (cpe->ms_mask[idx] &&
  888. cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
  889. for (group = 0; group < ics->group_len[g]; group++) {
  890. for (k = offsets[i]; k < offsets[i+1]; k++) {
  891. float tmp = ch0[group*128 + k] - ch1[group*128 + k];
  892. ch0[group*128 + k] += ch1[group*128 + k];
  893. ch1[group*128 + k] = tmp;
  894. }
  895. }
  896. }
  897. }
  898. ch0 += ics->group_len[g]*128;
  899. ch1 += ics->group_len[g]*128;
  900. }
  901. }
  902. /**
  903. * intensity stereo decoding; reference: 4.6.8.2.3
  904. *
  905. * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
  906. * [1] mask is decoded from bitstream; [2] mask is all 1s;
  907. * [3] reserved for scalable AAC
  908. */
  909. static void apply_intensity_stereo(ChannelElement * cpe, int ms_present) {
  910. const IndividualChannelStream * ics = &cpe->ch[1].ics;
  911. SingleChannelElement * sce1 = &cpe->ch[1];
  912. float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
  913. const uint16_t * offsets = ics->swb_offset;
  914. int g, group, i, k, idx = 0;
  915. int c;
  916. float scale;
  917. for (g = 0; g < ics->num_window_groups; g++) {
  918. for (i = 0; i < ics->max_sfb;) {
  919. if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
  920. const int bt_run_end = sce1->band_type_run_end[idx];
  921. for (; i < bt_run_end; i++, idx++) {
  922. c = -1 + 2 * (sce1->band_type[idx] - 14);
  923. if (ms_present)
  924. c *= 1 - 2 * cpe->ms_mask[idx];
  925. scale = c * sce1->sf[idx];
  926. for (group = 0; group < ics->group_len[g]; group++)
  927. for (k = offsets[i]; k < offsets[i+1]; k++)
  928. coef1[group*128 + k] = scale * coef0[group*128 + k];
  929. }
  930. } else {
  931. int bt_run_end = sce1->band_type_run_end[idx];
  932. idx += bt_run_end - i;
  933. i = bt_run_end;
  934. }
  935. }
  936. coef0 += ics->group_len[g]*128;
  937. coef1 += ics->group_len[g]*128;
  938. }
  939. }
  940. /**
  941. * Decode a channel_pair_element; reference: table 4.4.
  942. *
  943. * @param elem_id Identifies the instance of a syntax element.
  944. *
  945. * @return Returns error status. 0 - OK, !0 - error
  946. */
  947. static int decode_cpe(AACContext * ac, GetBitContext * gb, int elem_id) {
  948. int i, ret, common_window, ms_present = 0;
  949. ChannelElement * cpe;
  950. cpe = ac->che[TYPE_CPE][elem_id];
  951. common_window = get_bits1(gb);
  952. if (common_window) {
  953. if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
  954. return -1;
  955. i = cpe->ch[1].ics.use_kb_window[0];
  956. cpe->ch[1].ics = cpe->ch[0].ics;
  957. cpe->ch[1].ics.use_kb_window[1] = i;
  958. ms_present = get_bits(gb, 2);
  959. if(ms_present == 3) {
  960. av_log(ac->avccontext, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
  961. return -1;
  962. } else if(ms_present)
  963. decode_mid_side_stereo(cpe, gb, ms_present);
  964. }
  965. if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
  966. return ret;
  967. if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
  968. return ret;
  969. if (common_window && ms_present)
  970. apply_mid_side_stereo(cpe);
  971. apply_intensity_stereo(cpe, ms_present);
  972. return 0;
  973. }
  974. /**
  975. * Decode coupling_channel_element; reference: table 4.8.
  976. *
  977. * @param elem_id Identifies the instance of a syntax element.
  978. *
  979. * @return Returns error status. 0 - OK, !0 - error
  980. */
  981. static int decode_cce(AACContext * ac, GetBitContext * gb, ChannelElement * che) {
  982. int num_gain = 0;
  983. int c, g, sfb, ret;
  984. int sign;
  985. float scale;
  986. SingleChannelElement * sce = &che->ch[0];
  987. ChannelCoupling * coup = &che->coup;
  988. coup->coupling_point = 2*get_bits1(gb);
  989. coup->num_coupled = get_bits(gb, 3);
  990. for (c = 0; c <= coup->num_coupled; c++) {
  991. num_gain++;
  992. coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
  993. coup->id_select[c] = get_bits(gb, 4);
  994. if (coup->type[c] == TYPE_CPE) {
  995. coup->ch_select[c] = get_bits(gb, 2);
  996. if (coup->ch_select[c] == 3)
  997. num_gain++;
  998. } else
  999. coup->ch_select[c] = 2;
  1000. }
  1001. coup->coupling_point += get_bits1(gb);
  1002. if (coup->coupling_point == 2) {
  1003. av_log(ac->avccontext, AV_LOG_ERROR,
  1004. "Independently switched CCE with 'invalid' domain signalled.\n");
  1005. memset(coup, 0, sizeof(ChannelCoupling));
  1006. return -1;
  1007. }
  1008. sign = get_bits(gb, 1);
  1009. scale = pow(2., pow(2., (int)get_bits(gb, 2) - 3));
  1010. if ((ret = decode_ics(ac, sce, gb, 0, 0)))
  1011. return ret;
  1012. for (c = 0; c < num_gain; c++) {
  1013. int idx = 0;
  1014. int cge = 1;
  1015. int gain = 0;
  1016. float gain_cache = 1.;
  1017. if (c) {
  1018. cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
  1019. gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
  1020. gain_cache = pow(scale, -gain);
  1021. }
  1022. for (g = 0; g < sce->ics.num_window_groups; g++) {
  1023. for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
  1024. if (sce->band_type[idx] != ZERO_BT) {
  1025. if (!cge) {
  1026. int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  1027. if (t) {
  1028. int s = 1;
  1029. t = gain += t;
  1030. if (sign) {
  1031. s -= 2 * (t & 0x1);
  1032. t >>= 1;
  1033. }
  1034. gain_cache = pow(scale, -t) * s;
  1035. }
  1036. }
  1037. coup->gain[c][idx] = gain_cache;
  1038. }
  1039. }
  1040. }
  1041. }
  1042. return 0;
  1043. }
  1044. /**
  1045. * Decode Spectral Band Replication extension data; reference: table 4.55.
  1046. *
  1047. * @param crc flag indicating the presence of CRC checksum
  1048. * @param cnt length of TYPE_FIL syntactic element in bytes
  1049. *
  1050. * @return Returns number of bytes consumed from the TYPE_FIL element.
  1051. */
  1052. static int decode_sbr_extension(AACContext * ac, GetBitContext * gb, int crc, int cnt) {
  1053. // TODO : sbr_extension implementation
  1054. av_log_missing_feature(ac->avccontext, "SBR", 0);
  1055. skip_bits_long(gb, 8*cnt - 4); // -4 due to reading extension type
  1056. return cnt;
  1057. }
  1058. /**
  1059. * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
  1060. *
  1061. * @return Returns number of bytes consumed.
  1062. */
  1063. static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, GetBitContext * gb) {
  1064. int i;
  1065. int num_excl_chan = 0;
  1066. do {
  1067. for (i = 0; i < 7; i++)
  1068. che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
  1069. } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
  1070. return num_excl_chan / 7;
  1071. }
  1072. /**
  1073. * Decode dynamic range information; reference: table 4.52.
  1074. *
  1075. * @param cnt length of TYPE_FIL syntactic element in bytes
  1076. *
  1077. * @return Returns number of bytes consumed.
  1078. */
  1079. static int decode_dynamic_range(DynamicRangeControl *che_drc, GetBitContext * gb, int cnt) {
  1080. int n = 1;
  1081. int drc_num_bands = 1;
  1082. int i;
  1083. /* pce_tag_present? */
  1084. if(get_bits1(gb)) {
  1085. che_drc->pce_instance_tag = get_bits(gb, 4);
  1086. skip_bits(gb, 4); // tag_reserved_bits
  1087. n++;
  1088. }
  1089. /* excluded_chns_present? */
  1090. if(get_bits1(gb)) {
  1091. n += decode_drc_channel_exclusions(che_drc, gb);
  1092. }
  1093. /* drc_bands_present? */
  1094. if (get_bits1(gb)) {
  1095. che_drc->band_incr = get_bits(gb, 4);
  1096. che_drc->interpolation_scheme = get_bits(gb, 4);
  1097. n++;
  1098. drc_num_bands += che_drc->band_incr;
  1099. for (i = 0; i < drc_num_bands; i++) {
  1100. che_drc->band_top[i] = get_bits(gb, 8);
  1101. n++;
  1102. }
  1103. }
  1104. /* prog_ref_level_present? */
  1105. if (get_bits1(gb)) {
  1106. che_drc->prog_ref_level = get_bits(gb, 7);
  1107. skip_bits1(gb); // prog_ref_level_reserved_bits
  1108. n++;
  1109. }
  1110. for (i = 0; i < drc_num_bands; i++) {
  1111. che_drc->dyn_rng_sgn[i] = get_bits1(gb);
  1112. che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
  1113. n++;
  1114. }
  1115. return n;
  1116. }
  1117. /**
  1118. * Decode extension data (incomplete); reference: table 4.51.
  1119. *
  1120. * @param cnt length of TYPE_FIL syntactic element in bytes
  1121. *
  1122. * @return Returns number of bytes consumed
  1123. */
  1124. static int decode_extension_payload(AACContext * ac, GetBitContext * gb, int cnt) {
  1125. int crc_flag = 0;
  1126. int res = cnt;
  1127. switch (get_bits(gb, 4)) { // extension type
  1128. case EXT_SBR_DATA_CRC:
  1129. crc_flag++;
  1130. case EXT_SBR_DATA:
  1131. res = decode_sbr_extension(ac, gb, crc_flag, cnt);
  1132. break;
  1133. case EXT_DYNAMIC_RANGE:
  1134. res = decode_dynamic_range(&ac->che_drc, gb, cnt);
  1135. break;
  1136. case EXT_FILL:
  1137. case EXT_FILL_DATA:
  1138. case EXT_DATA_ELEMENT:
  1139. default:
  1140. skip_bits_long(gb, 8*cnt - 4);
  1141. break;
  1142. };
  1143. return res;
  1144. }
  1145. /**
  1146. * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
  1147. *
  1148. * @param decode 1 if tool is used normally, 0 if tool is used in LTP.
  1149. * @param coef spectral coefficients
  1150. */
  1151. static void apply_tns(float coef[1024], TemporalNoiseShaping * tns, IndividualChannelStream * ics, int decode) {
  1152. const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
  1153. int w, filt, m, i;
  1154. int bottom, top, order, start, end, size, inc;
  1155. float lpc[TNS_MAX_ORDER];
  1156. for (w = 0; w < ics->num_windows; w++) {
  1157. bottom = ics->num_swb;
  1158. for (filt = 0; filt < tns->n_filt[w]; filt++) {
  1159. top = bottom;
  1160. bottom = FFMAX(0, top - tns->length[w][filt]);
  1161. order = tns->order[w][filt];
  1162. if (order == 0)
  1163. continue;
  1164. // tns_decode_coef
  1165. compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
  1166. start = ics->swb_offset[FFMIN(bottom, mmm)];
  1167. end = ics->swb_offset[FFMIN( top, mmm)];
  1168. if ((size = end - start) <= 0)
  1169. continue;
  1170. if (tns->direction[w][filt]) {
  1171. inc = -1; start = end - 1;
  1172. } else {
  1173. inc = 1;
  1174. }
  1175. start += w * 128;
  1176. // ar filter
  1177. for (m = 0; m < size; m++, start += inc)
  1178. for (i = 1; i <= FFMIN(m, order); i++)
  1179. coef[start] -= coef[start - i*inc] * lpc[i-1];
  1180. }
  1181. }
  1182. }
  1183. /**
  1184. * Conduct IMDCT and windowing.
  1185. */
  1186. static void imdct_and_windowing(AACContext * ac, SingleChannelElement * sce) {
  1187. IndividualChannelStream * ics = &sce->ics;
  1188. float * in = sce->coeffs;
  1189. float * out = sce->ret;
  1190. float * saved = sce->saved;
  1191. const float * swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  1192. const float * lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  1193. const float * swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  1194. float * buf = ac->buf_mdct;
  1195. DECLARE_ALIGNED(16, float, temp[128]);
  1196. int i;
  1197. // imdct
  1198. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1199. if (ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE)
  1200. av_log(ac->avccontext, AV_LOG_WARNING,
  1201. "Transition from an ONLY_LONG or LONG_STOP to an EIGHT_SHORT sequence detected. "
  1202. "If you heard an audible artifact, please submit the sample to the FFmpeg developers.\n");
  1203. for (i = 0; i < 1024; i += 128)
  1204. ff_imdct_half(&ac->mdct_small, buf + i, in + i);
  1205. } else
  1206. ff_imdct_half(&ac->mdct, buf, in);
  1207. /* window overlapping
  1208. * NOTE: To simplify the overlapping code, all 'meaningless' short to long
  1209. * and long to short transitions are considered to be short to short
  1210. * transitions. This leaves just two cases (long to long and short to short)
  1211. * with a little special sauce for EIGHT_SHORT_SEQUENCE.
  1212. */
  1213. if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
  1214. (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
  1215. ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, ac->add_bias, 512);
  1216. } else {
  1217. for (i = 0; i < 448; i++)
  1218. out[i] = saved[i] + ac->add_bias;
  1219. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1220. ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, ac->add_bias, 64);
  1221. ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, ac->add_bias, 64);
  1222. ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, ac->add_bias, 64);
  1223. ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, ac->add_bias, 64);
  1224. ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, ac->add_bias, 64);
  1225. memcpy( out + 448 + 4*128, temp, 64 * sizeof(float));
  1226. } else {
  1227. ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, ac->add_bias, 64);
  1228. for (i = 576; i < 1024; i++)
  1229. out[i] = buf[i-512] + ac->add_bias;
  1230. }
  1231. }
  1232. // buffer update
  1233. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1234. for (i = 0; i < 64; i++)
  1235. saved[i] = temp[64 + i] - ac->add_bias;
  1236. ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 0, 64);
  1237. ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 0, 64);
  1238. ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 0, 64);
  1239. memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
  1240. } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
  1241. memcpy( saved, buf + 512, 448 * sizeof(float));
  1242. memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
  1243. } else { // LONG_STOP or ONLY_LONG
  1244. memcpy( saved, buf + 512, 512 * sizeof(float));
  1245. }
  1246. }
  1247. /**
  1248. * Apply dependent channel coupling (applied before IMDCT).
  1249. *
  1250. * @param index index into coupling gain array
  1251. */
  1252. static void apply_dependent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
  1253. IndividualChannelStream * ics = &cce->ch[0].ics;
  1254. const uint16_t * offsets = ics->swb_offset;
  1255. float * dest = target->coeffs;
  1256. const float * src = cce->ch[0].coeffs;
  1257. int g, i, group, k, idx = 0;
  1258. if(ac->m4ac.object_type == AOT_AAC_LTP) {
  1259. av_log(ac->avccontext, AV_LOG_ERROR,
  1260. "Dependent coupling is not supported together with LTP\n");
  1261. return;
  1262. }
  1263. for (g = 0; g < ics->num_window_groups; g++) {
  1264. for (i = 0; i < ics->max_sfb; i++, idx++) {
  1265. if (cce->ch[0].band_type[idx] != ZERO_BT) {
  1266. for (group = 0; group < ics->group_len[g]; group++) {
  1267. for (k = offsets[i]; k < offsets[i+1]; k++) {
  1268. // XXX dsputil-ize
  1269. dest[group*128+k] += cce->coup.gain[index][idx] * src[group*128+k];
  1270. }
  1271. }
  1272. }
  1273. }
  1274. dest += ics->group_len[g]*128;
  1275. src += ics->group_len[g]*128;
  1276. }
  1277. }
  1278. /**
  1279. * Apply independent channel coupling (applied after IMDCT).
  1280. *
  1281. * @param index index into coupling gain array
  1282. */
  1283. static void apply_independent_coupling(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index) {
  1284. int i;
  1285. for (i = 0; i < 1024; i++)
  1286. target->ret[i] += cce->coup.gain[index][0] * (cce->ch[0].ret[i] - ac->add_bias);
  1287. }
  1288. /**
  1289. * channel coupling transformation interface
  1290. *
  1291. * @param index index into coupling gain array
  1292. * @param apply_coupling_method pointer to (in)dependent coupling function
  1293. */
  1294. static void apply_channel_coupling(AACContext * ac, ChannelElement * cc,
  1295. enum RawDataBlockType type, int elem_id, enum CouplingPoint coupling_point,
  1296. void (*apply_coupling_method)(AACContext * ac, SingleChannelElement * target, ChannelElement * cce, int index))
  1297. {
  1298. int i, c;
  1299. for (i = 0; i < MAX_ELEM_ID; i++) {
  1300. ChannelElement *cce = ac->che[TYPE_CCE][i];
  1301. int index = 0;
  1302. if (cce && cce->coup.coupling_point == coupling_point) {
  1303. ChannelCoupling * coup = &cce->coup;
  1304. for (c = 0; c <= coup->num_coupled; c++) {
  1305. if (coup->type[c] == type && coup->id_select[c] == elem_id) {
  1306. if (coup->ch_select[c] != 1) {
  1307. apply_coupling_method(ac, &cc->ch[0], cce, index);
  1308. if (coup->ch_select[c] != 0)
  1309. index++;
  1310. }
  1311. if (coup->ch_select[c] != 2)
  1312. apply_coupling_method(ac, &cc->ch[1], cce, index++);
  1313. } else
  1314. index += 1 + (coup->ch_select[c] == 3);
  1315. }
  1316. }
  1317. }
  1318. }
  1319. /**
  1320. * Convert spectral data to float samples, applying all supported tools as appropriate.
  1321. */
  1322. static void spectral_to_sample(AACContext * ac) {
  1323. int i, type;
  1324. for(type = 3; type >= 0; type--) {
  1325. for (i = 0; i < MAX_ELEM_ID; i++) {
  1326. ChannelElement *che = ac->che[type][i];
  1327. if(che) {
  1328. if(type <= TYPE_CPE)
  1329. apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
  1330. if(che->ch[0].tns.present)
  1331. apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
  1332. if(che->ch[1].tns.present)
  1333. apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
  1334. if(type <= TYPE_CPE)
  1335. apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
  1336. if(type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT)
  1337. imdct_and_windowing(ac, &che->ch[0]);
  1338. if(type == TYPE_CPE)
  1339. imdct_and_windowing(ac, &che->ch[1]);
  1340. if(type <= TYPE_CCE)
  1341. apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
  1342. }
  1343. }
  1344. }
  1345. }
  1346. static int aac_decode_frame(AVCodecContext * avccontext, void * data, int * data_size, const uint8_t * buf, int buf_size) {
  1347. AACContext * ac = avccontext->priv_data;
  1348. GetBitContext gb;
  1349. enum RawDataBlockType elem_type;
  1350. int err, elem_id, data_size_tmp;
  1351. init_get_bits(&gb, buf, buf_size*8);
  1352. // parse
  1353. while ((elem_type = get_bits(&gb, 3)) != TYPE_END) {
  1354. elem_id = get_bits(&gb, 4);
  1355. err = -1;
  1356. if(elem_type == TYPE_SCE && elem_id == 1 &&
  1357. !ac->che[TYPE_SCE][elem_id] && ac->che[TYPE_LFE][0]) {
  1358. /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
  1359. instead of SCE[0] CPE[0] CPE[0] LFE[0]. If we seem to have
  1360. encountered such a stream, transfer the LFE[0] element to SCE[1] */
  1361. ac->che[TYPE_SCE][elem_id] = ac->che[TYPE_LFE][0];
  1362. ac->che[TYPE_LFE][0] = NULL;
  1363. }
  1364. if(elem_type < TYPE_DSE) {
  1365. if(!ac->che[elem_type][elem_id])
  1366. return -1;
  1367. if(elem_type != TYPE_CCE)
  1368. ac->che[elem_type][elem_id]->coup.coupling_point = 4;
  1369. }
  1370. switch (elem_type) {
  1371. case TYPE_SCE:
  1372. err = decode_ics(ac, &ac->che[TYPE_SCE][elem_id]->ch[0], &gb, 0, 0);
  1373. break;
  1374. case TYPE_CPE:
  1375. err = decode_cpe(ac, &gb, elem_id);
  1376. break;
  1377. case TYPE_CCE:
  1378. err = decode_cce(ac, &gb, ac->che[TYPE_CCE][elem_id]);
  1379. break;
  1380. case TYPE_LFE:
  1381. err = decode_ics(ac, &ac->che[TYPE_LFE][elem_id]->ch[0], &gb, 0, 0);
  1382. break;
  1383. case TYPE_DSE:
  1384. skip_data_stream_element(&gb);
  1385. err = 0;
  1386. break;
  1387. case TYPE_PCE:
  1388. {
  1389. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
  1390. memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  1391. if((err = decode_pce(ac, new_che_pos, &gb)))
  1392. break;
  1393. err = output_configure(ac, ac->che_pos, new_che_pos);
  1394. break;
  1395. }
  1396. case TYPE_FIL:
  1397. if (elem_id == 15)
  1398. elem_id += get_bits(&gb, 8) - 1;
  1399. while (elem_id > 0)
  1400. elem_id -= decode_extension_payload(ac, &gb, elem_id);
  1401. err = 0; /* FIXME */
  1402. break;
  1403. default:
  1404. err = -1; /* should not happen, but keeps compiler happy */
  1405. break;
  1406. }
  1407. if(err)
  1408. return err;
  1409. }
  1410. spectral_to_sample(ac);
  1411. if (!ac->is_saved) {
  1412. ac->is_saved = 1;
  1413. *data_size = 0;
  1414. return buf_size;
  1415. }
  1416. data_size_tmp = 1024 * avccontext->channels * sizeof(int16_t);
  1417. if(*data_size < data_size_tmp) {
  1418. av_log(avccontext, AV_LOG_ERROR,
  1419. "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
  1420. *data_size, data_size_tmp);
  1421. return -1;
  1422. }
  1423. *data_size = data_size_tmp;
  1424. ac->dsp.float_to_int16_interleave(data, (const float **)ac->output_data, 1024, avccontext->channels);
  1425. return buf_size;
  1426. }
  1427. static av_cold int aac_decode_close(AVCodecContext * avccontext) {
  1428. AACContext * ac = avccontext->priv_data;
  1429. int i, type;
  1430. for (i = 0; i < MAX_ELEM_ID; i++) {
  1431. for(type = 0; type < 4; type++)
  1432. av_freep(&ac->che[type][i]);
  1433. }
  1434. ff_mdct_end(&ac->mdct);
  1435. ff_mdct_end(&ac->mdct_small);
  1436. return 0 ;
  1437. }
  1438. AVCodec aac_decoder = {
  1439. "aac",
  1440. CODEC_TYPE_AUDIO,
  1441. CODEC_ID_AAC,
  1442. sizeof(AACContext),
  1443. aac_decode_init,
  1444. NULL,
  1445. aac_decode_close,
  1446. aac_decode_frame,
  1447. .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
  1448. .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
  1449. };