You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

5777 lines
222KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2011 Mashiat Sarker Shakkhar
  4. * Copyright (c) 2006-2007 Konstantin Shishkov
  5. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * VC-1 and WMV3 decoder
  26. */
  27. #include "internal.h"
  28. #include "avcodec.h"
  29. #include "error_resilience.h"
  30. #include "mpegvideo.h"
  31. #include "h263.h"
  32. #include "h264chroma.h"
  33. #include "vc1.h"
  34. #include "vc1data.h"
  35. #include "vc1acdata.h"
  36. #include "msmpeg4data.h"
  37. #include "unary.h"
  38. #include "mathops.h"
  39. #include "vdpau_internal.h"
  40. #undef NDEBUG
  41. #include <assert.h>
  42. #define MB_INTRA_VLC_BITS 9
  43. #define DC_VLC_BITS 9
  44. // offset tables for interlaced picture MVDATA decoding
  45. static const int offset_table1[9] = { 0, 1, 2, 4, 8, 16, 32, 64, 128 };
  46. static const int offset_table2[9] = { 0, 1, 3, 7, 15, 31, 63, 127, 255 };
  47. /***********************************************************************/
  48. /**
  49. * @name VC-1 Bitplane decoding
  50. * @see 8.7, p56
  51. * @{
  52. */
  53. /**
  54. * Imode types
  55. * @{
  56. */
  57. enum Imode {
  58. IMODE_RAW,
  59. IMODE_NORM2,
  60. IMODE_DIFF2,
  61. IMODE_NORM6,
  62. IMODE_DIFF6,
  63. IMODE_ROWSKIP,
  64. IMODE_COLSKIP
  65. };
  66. /** @} */ //imode defines
  67. static void init_block_index(VC1Context *v)
  68. {
  69. MpegEncContext *s = &v->s;
  70. ff_init_block_index(s);
  71. if (v->field_mode && !(v->second_field ^ v->tff)) {
  72. s->dest[0] += s->current_picture_ptr->f.linesize[0];
  73. s->dest[1] += s->current_picture_ptr->f.linesize[1];
  74. s->dest[2] += s->current_picture_ptr->f.linesize[2];
  75. }
  76. }
  77. /** @} */ //Bitplane group
  78. static void vc1_put_signed_blocks_clamped(VC1Context *v)
  79. {
  80. MpegEncContext *s = &v->s;
  81. int topleft_mb_pos, top_mb_pos;
  82. int stride_y, fieldtx = 0;
  83. int v_dist;
  84. /* The put pixels loop is always one MB row behind the decoding loop,
  85. * because we can only put pixels when overlap filtering is done, and
  86. * for filtering of the bottom edge of a MB, we need the next MB row
  87. * present as well.
  88. * Within the row, the put pixels loop is also one MB col behind the
  89. * decoding loop. The reason for this is again, because for filtering
  90. * of the right MB edge, we need the next MB present. */
  91. if (!s->first_slice_line) {
  92. if (s->mb_x) {
  93. topleft_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x - 1;
  94. if (v->fcm == ILACE_FRAME)
  95. fieldtx = v->fieldtx_plane[topleft_mb_pos];
  96. stride_y = s->linesize << fieldtx;
  97. v_dist = (16 - fieldtx) >> (fieldtx == 0);
  98. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][0],
  99. s->dest[0] - 16 * s->linesize - 16,
  100. stride_y);
  101. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][1],
  102. s->dest[0] - 16 * s->linesize - 8,
  103. stride_y);
  104. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][2],
  105. s->dest[0] - v_dist * s->linesize - 16,
  106. stride_y);
  107. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][3],
  108. s->dest[0] - v_dist * s->linesize - 8,
  109. stride_y);
  110. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][4],
  111. s->dest[1] - 8 * s->uvlinesize - 8,
  112. s->uvlinesize);
  113. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][5],
  114. s->dest[2] - 8 * s->uvlinesize - 8,
  115. s->uvlinesize);
  116. }
  117. if (s->mb_x == s->mb_width - 1) {
  118. top_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x;
  119. if (v->fcm == ILACE_FRAME)
  120. fieldtx = v->fieldtx_plane[top_mb_pos];
  121. stride_y = s->linesize << fieldtx;
  122. v_dist = fieldtx ? 15 : 8;
  123. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][0],
  124. s->dest[0] - 16 * s->linesize,
  125. stride_y);
  126. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][1],
  127. s->dest[0] - 16 * s->linesize + 8,
  128. stride_y);
  129. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][2],
  130. s->dest[0] - v_dist * s->linesize,
  131. stride_y);
  132. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][3],
  133. s->dest[0] - v_dist * s->linesize + 8,
  134. stride_y);
  135. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][4],
  136. s->dest[1] - 8 * s->uvlinesize,
  137. s->uvlinesize);
  138. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][5],
  139. s->dest[2] - 8 * s->uvlinesize,
  140. s->uvlinesize);
  141. }
  142. }
  143. #define inc_blk_idx(idx) do { \
  144. idx++; \
  145. if (idx >= v->n_allocated_blks) \
  146. idx = 0; \
  147. } while (0)
  148. inc_blk_idx(v->topleft_blk_idx);
  149. inc_blk_idx(v->top_blk_idx);
  150. inc_blk_idx(v->left_blk_idx);
  151. inc_blk_idx(v->cur_blk_idx);
  152. }
  153. static void vc1_loop_filter_iblk(VC1Context *v, int pq)
  154. {
  155. MpegEncContext *s = &v->s;
  156. int j;
  157. if (!s->first_slice_line) {
  158. v->vc1dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
  159. if (s->mb_x)
  160. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
  161. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
  162. for (j = 0; j < 2; j++) {
  163. v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1], s->uvlinesize, pq);
  164. if (s->mb_x)
  165. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
  166. }
  167. }
  168. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] + 8 * s->linesize, s->linesize, pq);
  169. if (s->mb_y == s->end_mb_y - 1) {
  170. if (s->mb_x) {
  171. v->vc1dsp.vc1_h_loop_filter16(s->dest[0], s->linesize, pq);
  172. v->vc1dsp.vc1_h_loop_filter8(s->dest[1], s->uvlinesize, pq);
  173. v->vc1dsp.vc1_h_loop_filter8(s->dest[2], s->uvlinesize, pq);
  174. }
  175. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] + 8, s->linesize, pq);
  176. }
  177. }
  178. static void vc1_loop_filter_iblk_delayed(VC1Context *v, int pq)
  179. {
  180. MpegEncContext *s = &v->s;
  181. int j;
  182. /* The loopfilter runs 1 row and 1 column behind the overlap filter, which
  183. * means it runs two rows/cols behind the decoding loop. */
  184. if (!s->first_slice_line) {
  185. if (s->mb_x) {
  186. if (s->mb_y >= s->start_mb_y + 2) {
  187. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
  188. if (s->mb_x >= 2)
  189. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 16, s->linesize, pq);
  190. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 8, s->linesize, pq);
  191. for (j = 0; j < 2; j++) {
  192. v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
  193. if (s->mb_x >= 2) {
  194. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize - 8, s->uvlinesize, pq);
  195. }
  196. }
  197. }
  198. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize - 16, s->linesize, pq);
  199. }
  200. if (s->mb_x == s->mb_width - 1) {
  201. if (s->mb_y >= s->start_mb_y + 2) {
  202. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
  203. if (s->mb_x)
  204. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize, s->linesize, pq);
  205. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize + 8, s->linesize, pq);
  206. for (j = 0; j < 2; j++) {
  207. v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
  208. if (s->mb_x >= 2) {
  209. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize, s->uvlinesize, pq);
  210. }
  211. }
  212. }
  213. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize, s->linesize, pq);
  214. }
  215. if (s->mb_y == s->end_mb_y) {
  216. if (s->mb_x) {
  217. if (s->mb_x >= 2)
  218. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
  219. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 8, s->linesize, pq);
  220. if (s->mb_x >= 2) {
  221. for (j = 0; j < 2; j++) {
  222. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
  223. }
  224. }
  225. }
  226. if (s->mb_x == s->mb_width - 1) {
  227. if (s->mb_x)
  228. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
  229. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
  230. if (s->mb_x) {
  231. for (j = 0; j < 2; j++) {
  232. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
  233. }
  234. }
  235. }
  236. }
  237. }
  238. }
  239. static void vc1_smooth_overlap_filter_iblk(VC1Context *v)
  240. {
  241. MpegEncContext *s = &v->s;
  242. int mb_pos;
  243. if (v->condover == CONDOVER_NONE)
  244. return;
  245. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  246. /* Within a MB, the horizontal overlap always runs before the vertical.
  247. * To accomplish that, we run the H on left and internal borders of the
  248. * currently decoded MB. Then, we wait for the next overlap iteration
  249. * to do H overlap on the right edge of this MB, before moving over and
  250. * running the V overlap. Therefore, the V overlap makes us trail by one
  251. * MB col and the H overlap filter makes us trail by one MB row. This
  252. * is reflected in the time at which we run the put_pixels loop. */
  253. if (v->condover == CONDOVER_ALL || v->pq >= 9 || v->over_flags_plane[mb_pos]) {
  254. if (s->mb_x && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  255. v->over_flags_plane[mb_pos - 1])) {
  256. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][1],
  257. v->block[v->cur_blk_idx][0]);
  258. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][3],
  259. v->block[v->cur_blk_idx][2]);
  260. if (!(s->flags & CODEC_FLAG_GRAY)) {
  261. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][4],
  262. v->block[v->cur_blk_idx][4]);
  263. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][5],
  264. v->block[v->cur_blk_idx][5]);
  265. }
  266. }
  267. v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][0],
  268. v->block[v->cur_blk_idx][1]);
  269. v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][2],
  270. v->block[v->cur_blk_idx][3]);
  271. if (s->mb_x == s->mb_width - 1) {
  272. if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  273. v->over_flags_plane[mb_pos - s->mb_stride])) {
  274. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][2],
  275. v->block[v->cur_blk_idx][0]);
  276. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][3],
  277. v->block[v->cur_blk_idx][1]);
  278. if (!(s->flags & CODEC_FLAG_GRAY)) {
  279. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][4],
  280. v->block[v->cur_blk_idx][4]);
  281. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][5],
  282. v->block[v->cur_blk_idx][5]);
  283. }
  284. }
  285. v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][0],
  286. v->block[v->cur_blk_idx][2]);
  287. v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][1],
  288. v->block[v->cur_blk_idx][3]);
  289. }
  290. }
  291. if (s->mb_x && (v->condover == CONDOVER_ALL || v->over_flags_plane[mb_pos - 1])) {
  292. if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  293. v->over_flags_plane[mb_pos - s->mb_stride - 1])) {
  294. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][2],
  295. v->block[v->left_blk_idx][0]);
  296. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][3],
  297. v->block[v->left_blk_idx][1]);
  298. if (!(s->flags & CODEC_FLAG_GRAY)) {
  299. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][4],
  300. v->block[v->left_blk_idx][4]);
  301. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][5],
  302. v->block[v->left_blk_idx][5]);
  303. }
  304. }
  305. v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][0],
  306. v->block[v->left_blk_idx][2]);
  307. v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][1],
  308. v->block[v->left_blk_idx][3]);
  309. }
  310. }
  311. /** Do motion compensation over 1 macroblock
  312. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  313. */
  314. static void vc1_mc_1mv(VC1Context *v, int dir)
  315. {
  316. MpegEncContext *s = &v->s;
  317. H264ChromaContext *h264chroma = &v->h264chroma;
  318. uint8_t *srcY, *srcU, *srcV;
  319. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  320. int off, off_uv;
  321. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  322. if ((!v->field_mode ||
  323. (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) &&
  324. !v->s.last_picture.f.data[0])
  325. return;
  326. mx = s->mv[dir][0][0];
  327. my = s->mv[dir][0][1];
  328. // store motion vectors for further use in B frames
  329. if (s->pict_type == AV_PICTURE_TYPE_P) {
  330. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = mx;
  331. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = my;
  332. }
  333. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  334. uvmy = (my + ((my & 3) == 3)) >> 1;
  335. v->luma_mv[s->mb_x][0] = uvmx;
  336. v->luma_mv[s->mb_x][1] = uvmy;
  337. if (v->field_mode &&
  338. v->cur_field_type != v->ref_field_type[dir]) {
  339. my = my - 2 + 4 * v->cur_field_type;
  340. uvmy = uvmy - 2 + 4 * v->cur_field_type;
  341. }
  342. // fastuvmc shall be ignored for interlaced frame picture
  343. if (v->fastuvmc && (v->fcm != ILACE_FRAME)) {
  344. uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
  345. uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
  346. }
  347. if (!dir) {
  348. if (v->field_mode && (v->cur_field_type != v->ref_field_type[dir]) && v->cur_field_type) {
  349. srcY = s->current_picture.f.data[0];
  350. srcU = s->current_picture.f.data[1];
  351. srcV = s->current_picture.f.data[2];
  352. } else {
  353. srcY = s->last_picture.f.data[0];
  354. srcU = s->last_picture.f.data[1];
  355. srcV = s->last_picture.f.data[2];
  356. }
  357. } else {
  358. srcY = s->next_picture.f.data[0];
  359. srcU = s->next_picture.f.data[1];
  360. srcV = s->next_picture.f.data[2];
  361. }
  362. src_x = s->mb_x * 16 + (mx >> 2);
  363. src_y = s->mb_y * 16 + (my >> 2);
  364. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  365. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  366. if (v->profile != PROFILE_ADVANCED) {
  367. src_x = av_clip( src_x, -16, s->mb_width * 16);
  368. src_y = av_clip( src_y, -16, s->mb_height * 16);
  369. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  370. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  371. } else {
  372. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  373. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  374. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  375. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  376. }
  377. srcY += src_y * s->linesize + src_x;
  378. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  379. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  380. if (v->field_mode && v->ref_field_type[dir]) {
  381. srcY += s->current_picture_ptr->f.linesize[0];
  382. srcU += s->current_picture_ptr->f.linesize[1];
  383. srcV += s->current_picture_ptr->f.linesize[2];
  384. }
  385. /* for grayscale we should not try to read from unknown area */
  386. if (s->flags & CODEC_FLAG_GRAY) {
  387. srcU = s->edge_emu_buffer + 18 * s->linesize;
  388. srcV = s->edge_emu_buffer + 18 * s->linesize;
  389. }
  390. if (v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  391. || s->h_edge_pos < 22 || v_edge_pos < 22
  392. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel * 3
  393. || (unsigned)(src_y - 1) > v_edge_pos - (my&3) - 16 - 3) {
  394. uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
  395. srcY -= s->mspel * (1 + s->linesize);
  396. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize,
  397. 17 + s->mspel * 2, 17 + s->mspel * 2,
  398. src_x - s->mspel, src_y - s->mspel,
  399. s->h_edge_pos, v_edge_pos);
  400. srcY = s->edge_emu_buffer;
  401. s->vdsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8 + 1, 8 + 1,
  402. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  403. s->vdsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8 + 1, 8 + 1,
  404. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  405. srcU = uvbuf;
  406. srcV = uvbuf + 16;
  407. /* if we deal with range reduction we need to scale source blocks */
  408. if (v->rangeredfrm) {
  409. int i, j;
  410. uint8_t *src, *src2;
  411. src = srcY;
  412. for (j = 0; j < 17 + s->mspel * 2; j++) {
  413. for (i = 0; i < 17 + s->mspel * 2; i++)
  414. src[i] = ((src[i] - 128) >> 1) + 128;
  415. src += s->linesize;
  416. }
  417. src = srcU;
  418. src2 = srcV;
  419. for (j = 0; j < 9; j++) {
  420. for (i = 0; i < 9; i++) {
  421. src[i] = ((src[i] - 128) >> 1) + 128;
  422. src2[i] = ((src2[i] - 128) >> 1) + 128;
  423. }
  424. src += s->uvlinesize;
  425. src2 += s->uvlinesize;
  426. }
  427. }
  428. /* if we deal with intensity compensation we need to scale source blocks */
  429. if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  430. int i, j;
  431. uint8_t *src, *src2;
  432. src = srcY;
  433. for (j = 0; j < 17 + s->mspel * 2; j++) {
  434. for (i = 0; i < 17 + s->mspel * 2; i++)
  435. src[i] = v->luty[src[i]];
  436. src += s->linesize;
  437. }
  438. src = srcU;
  439. src2 = srcV;
  440. for (j = 0; j < 9; j++) {
  441. for (i = 0; i < 9; i++) {
  442. src[i] = v->lutuv[src[i]];
  443. src2[i] = v->lutuv[src2[i]];
  444. }
  445. src += s->uvlinesize;
  446. src2 += s->uvlinesize;
  447. }
  448. }
  449. srcY += s->mspel * (1 + s->linesize);
  450. }
  451. off = 0;
  452. off_uv = 0;
  453. if (s->mspel) {
  454. dxy = ((my & 3) << 2) | (mx & 3);
  455. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off , srcY , s->linesize, v->rnd);
  456. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8, srcY + 8, s->linesize, v->rnd);
  457. srcY += s->linesize * 8;
  458. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize , srcY , s->linesize, v->rnd);
  459. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  460. } else { // hpel mc - always used for luma
  461. dxy = (my & 2) | ((mx & 2) >> 1);
  462. if (!v->rnd)
  463. s->hdsp.put_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
  464. else
  465. s->hdsp.put_no_rnd_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
  466. }
  467. if (s->flags & CODEC_FLAG_GRAY) return;
  468. /* Chroma MC always uses qpel bilinear */
  469. uvmx = (uvmx & 3) << 1;
  470. uvmy = (uvmy & 3) << 1;
  471. if (!v->rnd) {
  472. h264chroma->put_h264_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
  473. h264chroma->put_h264_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
  474. } else {
  475. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
  476. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
  477. }
  478. }
  479. static inline int median4(int a, int b, int c, int d)
  480. {
  481. if (a < b) {
  482. if (c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  483. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  484. } else {
  485. if (c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  486. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  487. }
  488. }
  489. /** Do motion compensation for 4-MV macroblock - luminance block
  490. */
  491. static void vc1_mc_4mv_luma(VC1Context *v, int n, int dir)
  492. {
  493. MpegEncContext *s = &v->s;
  494. uint8_t *srcY;
  495. int dxy, mx, my, src_x, src_y;
  496. int off;
  497. int fieldmv = (v->fcm == ILACE_FRAME) ? v->blk_mv_type[s->block_index[n]] : 0;
  498. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  499. if ((!v->field_mode ||
  500. (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) &&
  501. !v->s.last_picture.f.data[0])
  502. return;
  503. mx = s->mv[dir][n][0];
  504. my = s->mv[dir][n][1];
  505. if (!dir) {
  506. if (v->field_mode && (v->cur_field_type != v->ref_field_type[dir]) && v->cur_field_type) {
  507. srcY = s->current_picture.f.data[0];
  508. } else
  509. srcY = s->last_picture.f.data[0];
  510. } else
  511. srcY = s->next_picture.f.data[0];
  512. if (v->field_mode) {
  513. if (v->cur_field_type != v->ref_field_type[dir])
  514. my = my - 2 + 4 * v->cur_field_type;
  515. }
  516. if (s->pict_type == AV_PICTURE_TYPE_P && n == 3 && v->field_mode) {
  517. int same_count = 0, opp_count = 0, k;
  518. int chosen_mv[2][4][2], f;
  519. int tx, ty;
  520. for (k = 0; k < 4; k++) {
  521. f = v->mv_f[0][s->block_index[k] + v->blocks_off];
  522. chosen_mv[f][f ? opp_count : same_count][0] = s->mv[0][k][0];
  523. chosen_mv[f][f ? opp_count : same_count][1] = s->mv[0][k][1];
  524. opp_count += f;
  525. same_count += 1 - f;
  526. }
  527. f = opp_count > same_count;
  528. switch (f ? opp_count : same_count) {
  529. case 4:
  530. tx = median4(chosen_mv[f][0][0], chosen_mv[f][1][0],
  531. chosen_mv[f][2][0], chosen_mv[f][3][0]);
  532. ty = median4(chosen_mv[f][0][1], chosen_mv[f][1][1],
  533. chosen_mv[f][2][1], chosen_mv[f][3][1]);
  534. break;
  535. case 3:
  536. tx = mid_pred(chosen_mv[f][0][0], chosen_mv[f][1][0], chosen_mv[f][2][0]);
  537. ty = mid_pred(chosen_mv[f][0][1], chosen_mv[f][1][1], chosen_mv[f][2][1]);
  538. break;
  539. case 2:
  540. tx = (chosen_mv[f][0][0] + chosen_mv[f][1][0]) / 2;
  541. ty = (chosen_mv[f][0][1] + chosen_mv[f][1][1]) / 2;
  542. break;
  543. }
  544. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
  545. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
  546. for (k = 0; k < 4; k++)
  547. v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
  548. }
  549. if (v->fcm == ILACE_FRAME) { // not sure if needed for other types of picture
  550. int qx, qy;
  551. int width = s->avctx->coded_width;
  552. int height = s->avctx->coded_height >> 1;
  553. qx = (s->mb_x * 16) + (mx >> 2);
  554. qy = (s->mb_y * 8) + (my >> 3);
  555. if (qx < -17)
  556. mx -= 4 * (qx + 17);
  557. else if (qx > width)
  558. mx -= 4 * (qx - width);
  559. if (qy < -18)
  560. my -= 8 * (qy + 18);
  561. else if (qy > height + 1)
  562. my -= 8 * (qy - height - 1);
  563. }
  564. if ((v->fcm == ILACE_FRAME) && fieldmv)
  565. off = ((n > 1) ? s->linesize : 0) + (n & 1) * 8;
  566. else
  567. off = s->linesize * 4 * (n & 2) + (n & 1) * 8;
  568. src_x = s->mb_x * 16 + (n & 1) * 8 + (mx >> 2);
  569. if (!fieldmv)
  570. src_y = s->mb_y * 16 + (n & 2) * 4 + (my >> 2);
  571. else
  572. src_y = s->mb_y * 16 + ((n > 1) ? 1 : 0) + (my >> 2);
  573. if (v->profile != PROFILE_ADVANCED) {
  574. src_x = av_clip(src_x, -16, s->mb_width * 16);
  575. src_y = av_clip(src_y, -16, s->mb_height * 16);
  576. } else {
  577. src_x = av_clip(src_x, -17, s->avctx->coded_width);
  578. if (v->fcm == ILACE_FRAME) {
  579. if (src_y & 1)
  580. src_y = av_clip(src_y, -17, s->avctx->coded_height + 1);
  581. else
  582. src_y = av_clip(src_y, -18, s->avctx->coded_height);
  583. } else {
  584. src_y = av_clip(src_y, -18, s->avctx->coded_height + 1);
  585. }
  586. }
  587. srcY += src_y * s->linesize + src_x;
  588. if (v->field_mode && v->ref_field_type[dir])
  589. srcY += s->current_picture_ptr->f.linesize[0];
  590. if (fieldmv && !(src_y & 1))
  591. v_edge_pos--;
  592. if (fieldmv && (src_y & 1) && src_y < 4)
  593. src_y--;
  594. if (v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  595. || s->h_edge_pos < 13 || v_edge_pos < 23
  596. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx & 3) - 8 - s->mspel * 2
  597. || (unsigned)(src_y - (s->mspel << fieldmv)) > v_edge_pos - (my & 3) - ((8 + s->mspel * 2) << fieldmv)) {
  598. srcY -= s->mspel * (1 + (s->linesize << fieldmv));
  599. /* check emulate edge stride and offset */
  600. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize,
  601. 9 + s->mspel * 2, (9 + s->mspel * 2) << fieldmv,
  602. src_x - s->mspel, src_y - (s->mspel << fieldmv),
  603. s->h_edge_pos, v_edge_pos);
  604. srcY = s->edge_emu_buffer;
  605. /* if we deal with range reduction we need to scale source blocks */
  606. if (v->rangeredfrm) {
  607. int i, j;
  608. uint8_t *src;
  609. src = srcY;
  610. for (j = 0; j < 9 + s->mspel * 2; j++) {
  611. for (i = 0; i < 9 + s->mspel * 2; i++)
  612. src[i] = ((src[i] - 128) >> 1) + 128;
  613. src += s->linesize << fieldmv;
  614. }
  615. }
  616. /* if we deal with intensity compensation we need to scale source blocks */
  617. if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  618. int i, j;
  619. uint8_t *src;
  620. src = srcY;
  621. for (j = 0; j < 9 + s->mspel * 2; j++) {
  622. for (i = 0; i < 9 + s->mspel * 2; i++)
  623. src[i] = v->luty[src[i]];
  624. src += s->linesize << fieldmv;
  625. }
  626. }
  627. srcY += s->mspel * (1 + (s->linesize << fieldmv));
  628. }
  629. if (s->mspel) {
  630. dxy = ((my & 3) << 2) | (mx & 3);
  631. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize << fieldmv, v->rnd);
  632. } else { // hpel mc - always used for luma
  633. dxy = (my & 2) | ((mx & 2) >> 1);
  634. if (!v->rnd)
  635. s->hdsp.put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  636. else
  637. s->hdsp.put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  638. }
  639. }
  640. static av_always_inline int get_chroma_mv(int *mvx, int *mvy, int *a, int flag, int *tx, int *ty)
  641. {
  642. int idx, i;
  643. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  644. idx = ((a[3] != flag) << 3)
  645. | ((a[2] != flag) << 2)
  646. | ((a[1] != flag) << 1)
  647. | (a[0] != flag);
  648. if (!idx) {
  649. *tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  650. *ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  651. return 4;
  652. } else if (count[idx] == 1) {
  653. switch (idx) {
  654. case 0x1:
  655. *tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  656. *ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  657. return 3;
  658. case 0x2:
  659. *tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  660. *ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  661. return 3;
  662. case 0x4:
  663. *tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  664. *ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  665. return 3;
  666. case 0x8:
  667. *tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  668. *ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  669. return 3;
  670. }
  671. } else if (count[idx] == 2) {
  672. int t1 = 0, t2 = 0;
  673. for (i = 0; i < 3; i++)
  674. if (!a[i]) {
  675. t1 = i;
  676. break;
  677. }
  678. for (i = t1 + 1; i < 4; i++)
  679. if (!a[i]) {
  680. t2 = i;
  681. break;
  682. }
  683. *tx = (mvx[t1] + mvx[t2]) / 2;
  684. *ty = (mvy[t1] + mvy[t2]) / 2;
  685. return 2;
  686. } else {
  687. return 0;
  688. }
  689. return -1;
  690. }
  691. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  692. */
  693. static void vc1_mc_4mv_chroma(VC1Context *v, int dir)
  694. {
  695. MpegEncContext *s = &v->s;
  696. H264ChromaContext *h264chroma = &v->h264chroma;
  697. uint8_t *srcU, *srcV;
  698. int uvmx, uvmy, uvsrc_x, uvsrc_y;
  699. int k, tx = 0, ty = 0;
  700. int mvx[4], mvy[4], intra[4], mv_f[4];
  701. int valid_count;
  702. int chroma_ref_type = v->cur_field_type, off = 0;
  703. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  704. if (!v->field_mode && !v->s.last_picture.f.data[0])
  705. return;
  706. if (s->flags & CODEC_FLAG_GRAY)
  707. return;
  708. for (k = 0; k < 4; k++) {
  709. mvx[k] = s->mv[dir][k][0];
  710. mvy[k] = s->mv[dir][k][1];
  711. intra[k] = v->mb_type[0][s->block_index[k]];
  712. if (v->field_mode)
  713. mv_f[k] = v->mv_f[dir][s->block_index[k] + v->blocks_off];
  714. }
  715. /* calculate chroma MV vector from four luma MVs */
  716. if (!v->field_mode || (v->field_mode && !v->numref)) {
  717. valid_count = get_chroma_mv(mvx, mvy, intra, 0, &tx, &ty);
  718. chroma_ref_type = v->reffield;
  719. if (!valid_count) {
  720. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  721. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  722. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  723. return; //no need to do MC for intra blocks
  724. }
  725. } else {
  726. int dominant = 0;
  727. if (mv_f[0] + mv_f[1] + mv_f[2] + mv_f[3] > 2)
  728. dominant = 1;
  729. valid_count = get_chroma_mv(mvx, mvy, mv_f, dominant, &tx, &ty);
  730. if (dominant)
  731. chroma_ref_type = !v->cur_field_type;
  732. }
  733. if (v->field_mode && chroma_ref_type == 1 && v->cur_field_type == 1 && !v->s.last_picture.f.data[0])
  734. return;
  735. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
  736. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
  737. uvmx = (tx + ((tx & 3) == 3)) >> 1;
  738. uvmy = (ty + ((ty & 3) == 3)) >> 1;
  739. v->luma_mv[s->mb_x][0] = uvmx;
  740. v->luma_mv[s->mb_x][1] = uvmy;
  741. if (v->fastuvmc) {
  742. uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
  743. uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
  744. }
  745. // Field conversion bias
  746. if (v->cur_field_type != chroma_ref_type)
  747. uvmy += 2 - 4 * chroma_ref_type;
  748. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  749. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  750. if (v->profile != PROFILE_ADVANCED) {
  751. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  752. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  753. } else {
  754. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  755. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  756. }
  757. if (!dir) {
  758. if (v->field_mode && (v->cur_field_type != chroma_ref_type) && v->cur_field_type) {
  759. srcU = s->current_picture.f.data[1];
  760. srcV = s->current_picture.f.data[2];
  761. } else {
  762. srcU = s->last_picture.f.data[1];
  763. srcV = s->last_picture.f.data[2];
  764. }
  765. } else {
  766. srcU = s->next_picture.f.data[1];
  767. srcV = s->next_picture.f.data[2];
  768. }
  769. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  770. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  771. if (v->field_mode) {
  772. if (chroma_ref_type) {
  773. srcU += s->current_picture_ptr->f.linesize[1];
  774. srcV += s->current_picture_ptr->f.linesize[2];
  775. }
  776. off = 0;
  777. }
  778. if (v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  779. || s->h_edge_pos < 18 || v_edge_pos < 18
  780. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  781. || (unsigned)uvsrc_y > (v_edge_pos >> 1) - 9) {
  782. s->vdsp.emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize,
  783. 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
  784. s->h_edge_pos >> 1, v_edge_pos >> 1);
  785. s->vdsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize,
  786. 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
  787. s->h_edge_pos >> 1, v_edge_pos >> 1);
  788. srcU = s->edge_emu_buffer;
  789. srcV = s->edge_emu_buffer + 16;
  790. /* if we deal with range reduction we need to scale source blocks */
  791. if (v->rangeredfrm) {
  792. int i, j;
  793. uint8_t *src, *src2;
  794. src = srcU;
  795. src2 = srcV;
  796. for (j = 0; j < 9; j++) {
  797. for (i = 0; i < 9; i++) {
  798. src[i] = ((src[i] - 128) >> 1) + 128;
  799. src2[i] = ((src2[i] - 128) >> 1) + 128;
  800. }
  801. src += s->uvlinesize;
  802. src2 += s->uvlinesize;
  803. }
  804. }
  805. /* if we deal with intensity compensation we need to scale source blocks */
  806. if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  807. int i, j;
  808. uint8_t *src, *src2;
  809. src = srcU;
  810. src2 = srcV;
  811. for (j = 0; j < 9; j++) {
  812. for (i = 0; i < 9; i++) {
  813. src[i] = v->lutuv[src[i]];
  814. src2[i] = v->lutuv[src2[i]];
  815. }
  816. src += s->uvlinesize;
  817. src2 += s->uvlinesize;
  818. }
  819. }
  820. }
  821. /* Chroma MC always uses qpel bilinear */
  822. uvmx = (uvmx & 3) << 1;
  823. uvmy = (uvmy & 3) << 1;
  824. if (!v->rnd) {
  825. h264chroma->put_h264_chroma_pixels_tab[0](s->dest[1] + off, srcU, s->uvlinesize, 8, uvmx, uvmy);
  826. h264chroma->put_h264_chroma_pixels_tab[0](s->dest[2] + off, srcV, s->uvlinesize, 8, uvmx, uvmy);
  827. } else {
  828. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off, srcU, s->uvlinesize, 8, uvmx, uvmy);
  829. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off, srcV, s->uvlinesize, 8, uvmx, uvmy);
  830. }
  831. }
  832. /** Do motion compensation for 4-MV field chroma macroblock (both U and V)
  833. */
  834. static void vc1_mc_4mv_chroma4(VC1Context *v)
  835. {
  836. MpegEncContext *s = &v->s;
  837. H264ChromaContext *h264chroma = &v->h264chroma;
  838. uint8_t *srcU, *srcV;
  839. int uvsrc_x, uvsrc_y;
  840. int uvmx_field[4], uvmy_field[4];
  841. int i, off, tx, ty;
  842. int fieldmv = v->blk_mv_type[s->block_index[0]];
  843. static const int s_rndtblfield[16] = { 0, 0, 1, 2, 4, 4, 5, 6, 2, 2, 3, 8, 6, 6, 7, 12 };
  844. int v_dist = fieldmv ? 1 : 4; // vertical offset for lower sub-blocks
  845. int v_edge_pos = s->v_edge_pos >> 1;
  846. if (!v->s.last_picture.f.data[0])
  847. return;
  848. if (s->flags & CODEC_FLAG_GRAY)
  849. return;
  850. for (i = 0; i < 4; i++) {
  851. tx = s->mv[0][i][0];
  852. uvmx_field[i] = (tx + ((tx & 3) == 3)) >> 1;
  853. ty = s->mv[0][i][1];
  854. if (fieldmv)
  855. uvmy_field[i] = (ty >> 4) * 8 + s_rndtblfield[ty & 0xF];
  856. else
  857. uvmy_field[i] = (ty + ((ty & 3) == 3)) >> 1;
  858. }
  859. for (i = 0; i < 4; i++) {
  860. off = (i & 1) * 4 + ((i & 2) ? v_dist * s->uvlinesize : 0);
  861. uvsrc_x = s->mb_x * 8 + (i & 1) * 4 + (uvmx_field[i] >> 2);
  862. uvsrc_y = s->mb_y * 8 + ((i & 2) ? v_dist : 0) + (uvmy_field[i] >> 2);
  863. // FIXME: implement proper pull-back (see vc1cropmv.c, vc1CROPMV_ChromaPullBack())
  864. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  865. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  866. srcU = s->last_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  867. srcV = s->last_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  868. uvmx_field[i] = (uvmx_field[i] & 3) << 1;
  869. uvmy_field[i] = (uvmy_field[i] & 3) << 1;
  870. if (fieldmv && !(uvsrc_y & 1))
  871. v_edge_pos--;
  872. if (fieldmv && (uvsrc_y & 1) && uvsrc_y < 2)
  873. uvsrc_y--;
  874. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP)
  875. || s->h_edge_pos < 10 || v_edge_pos < (5 << fieldmv)
  876. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 5
  877. || (unsigned)uvsrc_y > v_edge_pos - (5 << fieldmv)) {
  878. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcU, s->uvlinesize,
  879. 5, (5 << fieldmv), uvsrc_x, uvsrc_y,
  880. s->h_edge_pos >> 1, v_edge_pos);
  881. s->vdsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize,
  882. 5, (5 << fieldmv), uvsrc_x, uvsrc_y,
  883. s->h_edge_pos >> 1, v_edge_pos);
  884. srcU = s->edge_emu_buffer;
  885. srcV = s->edge_emu_buffer + 16;
  886. /* if we deal with intensity compensation we need to scale source blocks */
  887. if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  888. int i, j;
  889. uint8_t *src, *src2;
  890. src = srcU;
  891. src2 = srcV;
  892. for (j = 0; j < 5; j++) {
  893. for (i = 0; i < 5; i++) {
  894. src[i] = v->lutuv[src[i]];
  895. src2[i] = v->lutuv[src2[i]];
  896. }
  897. src += s->uvlinesize << 1;
  898. src2 += s->uvlinesize << 1;
  899. }
  900. }
  901. }
  902. if (!v->rnd) {
  903. h264chroma->put_h264_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  904. h264chroma->put_h264_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  905. } else {
  906. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  907. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  908. }
  909. }
  910. }
  911. /***********************************************************************/
  912. /**
  913. * @name VC-1 Block-level functions
  914. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  915. * @{
  916. */
  917. /**
  918. * @def GET_MQUANT
  919. * @brief Get macroblock-level quantizer scale
  920. */
  921. #define GET_MQUANT() \
  922. if (v->dquantfrm) { \
  923. int edges = 0; \
  924. if (v->dqprofile == DQPROFILE_ALL_MBS) { \
  925. if (v->dqbilevel) { \
  926. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  927. } else { \
  928. mqdiff = get_bits(gb, 3); \
  929. if (mqdiff != 7) \
  930. mquant = v->pq + mqdiff; \
  931. else \
  932. mquant = get_bits(gb, 5); \
  933. } \
  934. } \
  935. if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  936. edges = 1 << v->dqsbedge; \
  937. else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  938. edges = (3 << v->dqsbedge) % 15; \
  939. else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
  940. edges = 15; \
  941. if ((edges&1) && !s->mb_x) \
  942. mquant = v->altpq; \
  943. if ((edges&2) && s->first_slice_line) \
  944. mquant = v->altpq; \
  945. if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
  946. mquant = v->altpq; \
  947. if ((edges&8) && s->mb_y == (s->mb_height - 1)) \
  948. mquant = v->altpq; \
  949. if (!mquant || mquant > 31) { \
  950. av_log(v->s.avctx, AV_LOG_ERROR, \
  951. "Overriding invalid mquant %d\n", mquant); \
  952. mquant = 1; \
  953. } \
  954. }
  955. /**
  956. * @def GET_MVDATA(_dmv_x, _dmv_y)
  957. * @brief Get MV differentials
  958. * @see MVDATA decoding from 8.3.5.2, p(1)20
  959. * @param _dmv_x Horizontal differential for decoded MV
  960. * @param _dmv_y Vertical differential for decoded MV
  961. */
  962. #define GET_MVDATA(_dmv_x, _dmv_y) \
  963. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
  964. VC1_MV_DIFF_VLC_BITS, 2); \
  965. if (index > 36) { \
  966. mb_has_coeffs = 1; \
  967. index -= 37; \
  968. } else \
  969. mb_has_coeffs = 0; \
  970. s->mb_intra = 0; \
  971. if (!index) { \
  972. _dmv_x = _dmv_y = 0; \
  973. } else if (index == 35) { \
  974. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  975. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  976. } else if (index == 36) { \
  977. _dmv_x = 0; \
  978. _dmv_y = 0; \
  979. s->mb_intra = 1; \
  980. } else { \
  981. index1 = index % 6; \
  982. if (!s->quarter_sample && index1 == 5) val = 1; \
  983. else val = 0; \
  984. if (size_table[index1] - val > 0) \
  985. val = get_bits(gb, size_table[index1] - val); \
  986. else val = 0; \
  987. sign = 0 - (val&1); \
  988. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  989. \
  990. index1 = index / 6; \
  991. if (!s->quarter_sample && index1 == 5) val = 1; \
  992. else val = 0; \
  993. if (size_table[index1] - val > 0) \
  994. val = get_bits(gb, size_table[index1] - val); \
  995. else val = 0; \
  996. sign = 0 - (val & 1); \
  997. _dmv_y = (sign ^ ((val >> 1) + offset_table[index1])) - sign; \
  998. }
  999. static av_always_inline void get_mvdata_interlaced(VC1Context *v, int *dmv_x,
  1000. int *dmv_y, int *pred_flag)
  1001. {
  1002. int index, index1;
  1003. int extend_x = 0, extend_y = 0;
  1004. GetBitContext *gb = &v->s.gb;
  1005. int bits, esc;
  1006. int val, sign;
  1007. const int* offs_tab;
  1008. if (v->numref) {
  1009. bits = VC1_2REF_MVDATA_VLC_BITS;
  1010. esc = 125;
  1011. } else {
  1012. bits = VC1_1REF_MVDATA_VLC_BITS;
  1013. esc = 71;
  1014. }
  1015. switch (v->dmvrange) {
  1016. case 1:
  1017. extend_x = 1;
  1018. break;
  1019. case 2:
  1020. extend_y = 1;
  1021. break;
  1022. case 3:
  1023. extend_x = extend_y = 1;
  1024. break;
  1025. }
  1026. index = get_vlc2(gb, v->imv_vlc->table, bits, 3);
  1027. if (index == esc) {
  1028. *dmv_x = get_bits(gb, v->k_x);
  1029. *dmv_y = get_bits(gb, v->k_y);
  1030. if (v->numref) {
  1031. if (pred_flag) {
  1032. *pred_flag = *dmv_y & 1;
  1033. *dmv_y = (*dmv_y + *pred_flag) >> 1;
  1034. } else {
  1035. *dmv_y = (*dmv_y + (*dmv_y & 1)) >> 1;
  1036. }
  1037. }
  1038. }
  1039. else {
  1040. if (extend_x)
  1041. offs_tab = offset_table2;
  1042. else
  1043. offs_tab = offset_table1;
  1044. index1 = (index + 1) % 9;
  1045. if (index1 != 0) {
  1046. val = get_bits(gb, index1 + extend_x);
  1047. sign = 0 -(val & 1);
  1048. *dmv_x = (sign ^ ((val >> 1) + offs_tab[index1])) - sign;
  1049. } else
  1050. *dmv_x = 0;
  1051. if (extend_y)
  1052. offs_tab = offset_table2;
  1053. else
  1054. offs_tab = offset_table1;
  1055. index1 = (index + 1) / 9;
  1056. if (index1 > v->numref) {
  1057. val = get_bits(gb, (index1 + (extend_y << v->numref)) >> v->numref);
  1058. sign = 0 - (val & 1);
  1059. *dmv_y = (sign ^ ((val >> 1) + offs_tab[index1 >> v->numref])) - sign;
  1060. } else
  1061. *dmv_y = 0;
  1062. if (v->numref && pred_flag)
  1063. *pred_flag = index1 & 1;
  1064. }
  1065. }
  1066. static av_always_inline int scaleforsame_x(VC1Context *v, int n /* MV */, int dir)
  1067. {
  1068. int scaledvalue, refdist;
  1069. int scalesame1, scalesame2;
  1070. int scalezone1_x, zone1offset_x;
  1071. int table_index = dir ^ v->second_field;
  1072. if (v->s.pict_type != AV_PICTURE_TYPE_B)
  1073. refdist = v->refdist;
  1074. else
  1075. refdist = dir ? v->brfd : v->frfd;
  1076. if (refdist > 3)
  1077. refdist = 3;
  1078. scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
  1079. scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
  1080. scalezone1_x = ff_vc1_field_mvpred_scales[table_index][3][refdist];
  1081. zone1offset_x = ff_vc1_field_mvpred_scales[table_index][5][refdist];
  1082. if (FFABS(n) > 255)
  1083. scaledvalue = n;
  1084. else {
  1085. if (FFABS(n) < scalezone1_x)
  1086. scaledvalue = (n * scalesame1) >> 8;
  1087. else {
  1088. if (n < 0)
  1089. scaledvalue = ((n * scalesame2) >> 8) - zone1offset_x;
  1090. else
  1091. scaledvalue = ((n * scalesame2) >> 8) + zone1offset_x;
  1092. }
  1093. }
  1094. return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
  1095. }
  1096. static av_always_inline int scaleforsame_y(VC1Context *v, int i, int n /* MV */, int dir)
  1097. {
  1098. int scaledvalue, refdist;
  1099. int scalesame1, scalesame2;
  1100. int scalezone1_y, zone1offset_y;
  1101. int table_index = dir ^ v->second_field;
  1102. if (v->s.pict_type != AV_PICTURE_TYPE_B)
  1103. refdist = v->refdist;
  1104. else
  1105. refdist = dir ? v->brfd : v->frfd;
  1106. if (refdist > 3)
  1107. refdist = 3;
  1108. scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
  1109. scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
  1110. scalezone1_y = ff_vc1_field_mvpred_scales[table_index][4][refdist];
  1111. zone1offset_y = ff_vc1_field_mvpred_scales[table_index][6][refdist];
  1112. if (FFABS(n) > 63)
  1113. scaledvalue = n;
  1114. else {
  1115. if (FFABS(n) < scalezone1_y)
  1116. scaledvalue = (n * scalesame1) >> 8;
  1117. else {
  1118. if (n < 0)
  1119. scaledvalue = ((n * scalesame2) >> 8) - zone1offset_y;
  1120. else
  1121. scaledvalue = ((n * scalesame2) >> 8) + zone1offset_y;
  1122. }
  1123. }
  1124. if (v->cur_field_type && !v->ref_field_type[dir])
  1125. return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
  1126. else
  1127. return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
  1128. }
  1129. static av_always_inline int scaleforopp_x(VC1Context *v, int n /* MV */)
  1130. {
  1131. int scalezone1_x, zone1offset_x;
  1132. int scaleopp1, scaleopp2, brfd;
  1133. int scaledvalue;
  1134. brfd = FFMIN(v->brfd, 3);
  1135. scalezone1_x = ff_vc1_b_field_mvpred_scales[3][brfd];
  1136. zone1offset_x = ff_vc1_b_field_mvpred_scales[5][brfd];
  1137. scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
  1138. scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
  1139. if (FFABS(n) > 255)
  1140. scaledvalue = n;
  1141. else {
  1142. if (FFABS(n) < scalezone1_x)
  1143. scaledvalue = (n * scaleopp1) >> 8;
  1144. else {
  1145. if (n < 0)
  1146. scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_x;
  1147. else
  1148. scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_x;
  1149. }
  1150. }
  1151. return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
  1152. }
  1153. static av_always_inline int scaleforopp_y(VC1Context *v, int n /* MV */, int dir)
  1154. {
  1155. int scalezone1_y, zone1offset_y;
  1156. int scaleopp1, scaleopp2, brfd;
  1157. int scaledvalue;
  1158. brfd = FFMIN(v->brfd, 3);
  1159. scalezone1_y = ff_vc1_b_field_mvpred_scales[4][brfd];
  1160. zone1offset_y = ff_vc1_b_field_mvpred_scales[6][brfd];
  1161. scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
  1162. scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
  1163. if (FFABS(n) > 63)
  1164. scaledvalue = n;
  1165. else {
  1166. if (FFABS(n) < scalezone1_y)
  1167. scaledvalue = (n * scaleopp1) >> 8;
  1168. else {
  1169. if (n < 0)
  1170. scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_y;
  1171. else
  1172. scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_y;
  1173. }
  1174. }
  1175. if (v->cur_field_type && !v->ref_field_type[dir]) {
  1176. return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
  1177. } else {
  1178. return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
  1179. }
  1180. }
  1181. static av_always_inline int scaleforsame(VC1Context *v, int i, int n /* MV */,
  1182. int dim, int dir)
  1183. {
  1184. int brfd, scalesame;
  1185. int hpel = 1 - v->s.quarter_sample;
  1186. n >>= hpel;
  1187. if (v->s.pict_type != AV_PICTURE_TYPE_B || v->second_field || !dir) {
  1188. if (dim)
  1189. n = scaleforsame_y(v, i, n, dir) << hpel;
  1190. else
  1191. n = scaleforsame_x(v, n, dir) << hpel;
  1192. return n;
  1193. }
  1194. brfd = FFMIN(v->brfd, 3);
  1195. scalesame = ff_vc1_b_field_mvpred_scales[0][brfd];
  1196. n = (n * scalesame >> 8) << hpel;
  1197. return n;
  1198. }
  1199. static av_always_inline int scaleforopp(VC1Context *v, int n /* MV */,
  1200. int dim, int dir)
  1201. {
  1202. int refdist, scaleopp;
  1203. int hpel = 1 - v->s.quarter_sample;
  1204. n >>= hpel;
  1205. if (v->s.pict_type == AV_PICTURE_TYPE_B && !v->second_field && dir == 1) {
  1206. if (dim)
  1207. n = scaleforopp_y(v, n, dir) << hpel;
  1208. else
  1209. n = scaleforopp_x(v, n) << hpel;
  1210. return n;
  1211. }
  1212. if (v->s.pict_type != AV_PICTURE_TYPE_B)
  1213. refdist = FFMIN(v->refdist, 3);
  1214. else
  1215. refdist = dir ? v->brfd : v->frfd;
  1216. scaleopp = ff_vc1_field_mvpred_scales[dir ^ v->second_field][0][refdist];
  1217. n = (n * scaleopp >> 8) << hpel;
  1218. return n;
  1219. }
  1220. /** Predict and set motion vector
  1221. */
  1222. static inline void vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y,
  1223. int mv1, int r_x, int r_y, uint8_t* is_intra,
  1224. int pred_flag, int dir)
  1225. {
  1226. MpegEncContext *s = &v->s;
  1227. int xy, wrap, off = 0;
  1228. int16_t *A, *B, *C;
  1229. int px, py;
  1230. int sum;
  1231. int mixedmv_pic, num_samefield = 0, num_oppfield = 0;
  1232. int opposite, a_f, b_f, c_f;
  1233. int16_t field_predA[2];
  1234. int16_t field_predB[2];
  1235. int16_t field_predC[2];
  1236. int a_valid, b_valid, c_valid;
  1237. int hybridmv_thresh, y_bias = 0;
  1238. if (v->mv_mode == MV_PMODE_MIXED_MV ||
  1239. ((v->mv_mode == MV_PMODE_INTENSITY_COMP) && (v->mv_mode2 == MV_PMODE_MIXED_MV)))
  1240. mixedmv_pic = 1;
  1241. else
  1242. mixedmv_pic = 0;
  1243. /* scale MV difference to be quad-pel */
  1244. dmv_x <<= 1 - s->quarter_sample;
  1245. dmv_y <<= 1 - s->quarter_sample;
  1246. wrap = s->b8_stride;
  1247. xy = s->block_index[n];
  1248. if (s->mb_intra) {
  1249. s->mv[0][n][0] = s->current_picture.motion_val[0][xy + v->blocks_off][0] = 0;
  1250. s->mv[0][n][1] = s->current_picture.motion_val[0][xy + v->blocks_off][1] = 0;
  1251. s->current_picture.motion_val[1][xy + v->blocks_off][0] = 0;
  1252. s->current_picture.motion_val[1][xy + v->blocks_off][1] = 0;
  1253. if (mv1) { /* duplicate motion data for 1-MV block */
  1254. s->current_picture.motion_val[0][xy + 1 + v->blocks_off][0] = 0;
  1255. s->current_picture.motion_val[0][xy + 1 + v->blocks_off][1] = 0;
  1256. s->current_picture.motion_val[0][xy + wrap + v->blocks_off][0] = 0;
  1257. s->current_picture.motion_val[0][xy + wrap + v->blocks_off][1] = 0;
  1258. s->current_picture.motion_val[0][xy + wrap + 1 + v->blocks_off][0] = 0;
  1259. s->current_picture.motion_val[0][xy + wrap + 1 + v->blocks_off][1] = 0;
  1260. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  1261. s->current_picture.motion_val[1][xy + 1 + v->blocks_off][0] = 0;
  1262. s->current_picture.motion_val[1][xy + 1 + v->blocks_off][1] = 0;
  1263. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1264. s->current_picture.motion_val[1][xy + wrap + v->blocks_off][1] = 0;
  1265. s->current_picture.motion_val[1][xy + wrap + 1 + v->blocks_off][0] = 0;
  1266. s->current_picture.motion_val[1][xy + wrap + 1 + v->blocks_off][1] = 0;
  1267. }
  1268. return;
  1269. }
  1270. C = s->current_picture.motion_val[dir][xy - 1 + v->blocks_off];
  1271. A = s->current_picture.motion_val[dir][xy - wrap + v->blocks_off];
  1272. if (mv1) {
  1273. if (v->field_mode && mixedmv_pic)
  1274. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1275. else
  1276. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1277. } else {
  1278. //in 4-MV mode different blocks have different B predictor position
  1279. switch (n) {
  1280. case 0:
  1281. off = (s->mb_x > 0) ? -1 : 1;
  1282. break;
  1283. case 1:
  1284. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1285. break;
  1286. case 2:
  1287. off = 1;
  1288. break;
  1289. case 3:
  1290. off = -1;
  1291. }
  1292. }
  1293. B = s->current_picture.motion_val[dir][xy - wrap + off + v->blocks_off];
  1294. a_valid = !s->first_slice_line || (n == 2 || n == 3);
  1295. b_valid = a_valid && (s->mb_width > 1);
  1296. c_valid = s->mb_x || (n == 1 || n == 3);
  1297. if (v->field_mode) {
  1298. a_valid = a_valid && !is_intra[xy - wrap];
  1299. b_valid = b_valid && !is_intra[xy - wrap + off];
  1300. c_valid = c_valid && !is_intra[xy - 1];
  1301. }
  1302. if (a_valid) {
  1303. a_f = v->mv_f[dir][xy - wrap + v->blocks_off];
  1304. num_oppfield += a_f;
  1305. num_samefield += 1 - a_f;
  1306. field_predA[0] = A[0];
  1307. field_predA[1] = A[1];
  1308. } else {
  1309. field_predA[0] = field_predA[1] = 0;
  1310. a_f = 0;
  1311. }
  1312. if (b_valid) {
  1313. b_f = v->mv_f[dir][xy - wrap + off + v->blocks_off];
  1314. num_oppfield += b_f;
  1315. num_samefield += 1 - b_f;
  1316. field_predB[0] = B[0];
  1317. field_predB[1] = B[1];
  1318. } else {
  1319. field_predB[0] = field_predB[1] = 0;
  1320. b_f = 0;
  1321. }
  1322. if (c_valid) {
  1323. c_f = v->mv_f[dir][xy - 1 + v->blocks_off];
  1324. num_oppfield += c_f;
  1325. num_samefield += 1 - c_f;
  1326. field_predC[0] = C[0];
  1327. field_predC[1] = C[1];
  1328. } else {
  1329. field_predC[0] = field_predC[1] = 0;
  1330. c_f = 0;
  1331. }
  1332. if (v->field_mode) {
  1333. if (!v->numref)
  1334. // REFFIELD determines if the last field or the second-last field is
  1335. // to be used as reference
  1336. opposite = 1 - v->reffield;
  1337. else {
  1338. if (num_samefield <= num_oppfield)
  1339. opposite = 1 - pred_flag;
  1340. else
  1341. opposite = pred_flag;
  1342. }
  1343. } else
  1344. opposite = 0;
  1345. if (opposite) {
  1346. if (a_valid && !a_f) {
  1347. field_predA[0] = scaleforopp(v, field_predA[0], 0, dir);
  1348. field_predA[1] = scaleforopp(v, field_predA[1], 1, dir);
  1349. }
  1350. if (b_valid && !b_f) {
  1351. field_predB[0] = scaleforopp(v, field_predB[0], 0, dir);
  1352. field_predB[1] = scaleforopp(v, field_predB[1], 1, dir);
  1353. }
  1354. if (c_valid && !c_f) {
  1355. field_predC[0] = scaleforopp(v, field_predC[0], 0, dir);
  1356. field_predC[1] = scaleforopp(v, field_predC[1], 1, dir);
  1357. }
  1358. v->mv_f[dir][xy + v->blocks_off] = 1;
  1359. v->ref_field_type[dir] = !v->cur_field_type;
  1360. } else {
  1361. if (a_valid && a_f) {
  1362. field_predA[0] = scaleforsame(v, n, field_predA[0], 0, dir);
  1363. field_predA[1] = scaleforsame(v, n, field_predA[1], 1, dir);
  1364. }
  1365. if (b_valid && b_f) {
  1366. field_predB[0] = scaleforsame(v, n, field_predB[0], 0, dir);
  1367. field_predB[1] = scaleforsame(v, n, field_predB[1], 1, dir);
  1368. }
  1369. if (c_valid && c_f) {
  1370. field_predC[0] = scaleforsame(v, n, field_predC[0], 0, dir);
  1371. field_predC[1] = scaleforsame(v, n, field_predC[1], 1, dir);
  1372. }
  1373. v->mv_f[dir][xy + v->blocks_off] = 0;
  1374. v->ref_field_type[dir] = v->cur_field_type;
  1375. }
  1376. if (a_valid) {
  1377. px = field_predA[0];
  1378. py = field_predA[1];
  1379. } else if (c_valid) {
  1380. px = field_predC[0];
  1381. py = field_predC[1];
  1382. } else if (b_valid) {
  1383. px = field_predB[0];
  1384. py = field_predB[1];
  1385. } else {
  1386. px = 0;
  1387. py = 0;
  1388. }
  1389. if (num_samefield + num_oppfield > 1) {
  1390. px = mid_pred(field_predA[0], field_predB[0], field_predC[0]);
  1391. py = mid_pred(field_predA[1], field_predB[1], field_predC[1]);
  1392. }
  1393. /* Pullback MV as specified in 8.3.5.3.4 */
  1394. if (!v->field_mode) {
  1395. int qx, qy, X, Y;
  1396. qx = (s->mb_x << 6) + ((n == 1 || n == 3) ? 32 : 0);
  1397. qy = (s->mb_y << 6) + ((n == 2 || n == 3) ? 32 : 0);
  1398. X = (s->mb_width << 6) - 4;
  1399. Y = (s->mb_height << 6) - 4;
  1400. if (mv1) {
  1401. if (qx + px < -60) px = -60 - qx;
  1402. if (qy + py < -60) py = -60 - qy;
  1403. } else {
  1404. if (qx + px < -28) px = -28 - qx;
  1405. if (qy + py < -28) py = -28 - qy;
  1406. }
  1407. if (qx + px > X) px = X - qx;
  1408. if (qy + py > Y) py = Y - qy;
  1409. }
  1410. if (!v->field_mode || s->pict_type != AV_PICTURE_TYPE_B) {
  1411. /* Calculate hybrid prediction as specified in 8.3.5.3.5 (also 10.3.5.4.3.5) */
  1412. hybridmv_thresh = 32;
  1413. if (a_valid && c_valid) {
  1414. if (is_intra[xy - wrap])
  1415. sum = FFABS(px) + FFABS(py);
  1416. else
  1417. sum = FFABS(px - field_predA[0]) + FFABS(py - field_predA[1]);
  1418. if (sum > hybridmv_thresh) {
  1419. if (get_bits1(&s->gb)) { // read HYBRIDPRED bit
  1420. px = field_predA[0];
  1421. py = field_predA[1];
  1422. } else {
  1423. px = field_predC[0];
  1424. py = field_predC[1];
  1425. }
  1426. } else {
  1427. if (is_intra[xy - 1])
  1428. sum = FFABS(px) + FFABS(py);
  1429. else
  1430. sum = FFABS(px - field_predC[0]) + FFABS(py - field_predC[1]);
  1431. if (sum > hybridmv_thresh) {
  1432. if (get_bits1(&s->gb)) {
  1433. px = field_predA[0];
  1434. py = field_predA[1];
  1435. } else {
  1436. px = field_predC[0];
  1437. py = field_predC[1];
  1438. }
  1439. }
  1440. }
  1441. }
  1442. }
  1443. if (v->field_mode && v->numref)
  1444. r_y >>= 1;
  1445. if (v->field_mode && v->cur_field_type && v->ref_field_type[dir] == 0)
  1446. y_bias = 1;
  1447. /* store MV using signed modulus of MV range defined in 4.11 */
  1448. s->mv[dir][n][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1449. s->mv[dir][n][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1] = ((py + dmv_y + r_y - y_bias) & ((r_y << 1) - 1)) - r_y + y_bias;
  1450. if (mv1) { /* duplicate motion data for 1-MV block */
  1451. s->current_picture.motion_val[dir][xy + 1 + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
  1452. s->current_picture.motion_val[dir][xy + 1 + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
  1453. s->current_picture.motion_val[dir][xy + wrap + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
  1454. s->current_picture.motion_val[dir][xy + wrap + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
  1455. s->current_picture.motion_val[dir][xy + wrap + 1 + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
  1456. s->current_picture.motion_val[dir][xy + wrap + 1 + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
  1457. v->mv_f[dir][xy + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
  1458. v->mv_f[dir][xy + wrap + v->blocks_off] = v->mv_f[dir][xy + wrap + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
  1459. }
  1460. }
  1461. /** Predict and set motion vector for interlaced frame picture MBs
  1462. */
  1463. static inline void vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y,
  1464. int mvn, int r_x, int r_y, uint8_t* is_intra)
  1465. {
  1466. MpegEncContext *s = &v->s;
  1467. int xy, wrap, off = 0;
  1468. int A[2], B[2], C[2];
  1469. int px, py;
  1470. int a_valid = 0, b_valid = 0, c_valid = 0;
  1471. int field_a, field_b, field_c; // 0: same, 1: opposit
  1472. int total_valid, num_samefield, num_oppfield;
  1473. int pos_c, pos_b, n_adj;
  1474. wrap = s->b8_stride;
  1475. xy = s->block_index[n];
  1476. if (s->mb_intra) {
  1477. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1478. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1479. s->current_picture.motion_val[1][xy][0] = 0;
  1480. s->current_picture.motion_val[1][xy][1] = 0;
  1481. if (mvn == 1) { /* duplicate motion data for 1-MV block */
  1482. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1483. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1484. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1485. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1486. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1487. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1488. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  1489. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1490. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1491. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1492. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1493. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1494. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1495. }
  1496. return;
  1497. }
  1498. off = ((n == 0) || (n == 1)) ? 1 : -1;
  1499. /* predict A */
  1500. if (s->mb_x || (n == 1) || (n == 3)) {
  1501. if ((v->blk_mv_type[xy]) // current block (MB) has a field MV
  1502. || (!v->blk_mv_type[xy] && !v->blk_mv_type[xy - 1])) { // or both have frame MV
  1503. A[0] = s->current_picture.motion_val[0][xy - 1][0];
  1504. A[1] = s->current_picture.motion_val[0][xy - 1][1];
  1505. a_valid = 1;
  1506. } else { // current block has frame mv and cand. has field MV (so average)
  1507. A[0] = (s->current_picture.motion_val[0][xy - 1][0]
  1508. + s->current_picture.motion_val[0][xy - 1 + off * wrap][0] + 1) >> 1;
  1509. A[1] = (s->current_picture.motion_val[0][xy - 1][1]
  1510. + s->current_picture.motion_val[0][xy - 1 + off * wrap][1] + 1) >> 1;
  1511. a_valid = 1;
  1512. }
  1513. if (!(n & 1) && v->is_intra[s->mb_x - 1]) {
  1514. a_valid = 0;
  1515. A[0] = A[1] = 0;
  1516. }
  1517. } else
  1518. A[0] = A[1] = 0;
  1519. /* Predict B and C */
  1520. B[0] = B[1] = C[0] = C[1] = 0;
  1521. if (n == 0 || n == 1 || v->blk_mv_type[xy]) {
  1522. if (!s->first_slice_line) {
  1523. if (!v->is_intra[s->mb_x - s->mb_stride]) {
  1524. b_valid = 1;
  1525. n_adj = n | 2;
  1526. pos_b = s->block_index[n_adj] - 2 * wrap;
  1527. if (v->blk_mv_type[pos_b] && v->blk_mv_type[xy]) {
  1528. n_adj = (n & 2) | (n & 1);
  1529. }
  1530. B[0] = s->current_picture.motion_val[0][s->block_index[n_adj] - 2 * wrap][0];
  1531. B[1] = s->current_picture.motion_val[0][s->block_index[n_adj] - 2 * wrap][1];
  1532. if (v->blk_mv_type[pos_b] && !v->blk_mv_type[xy]) {
  1533. B[0] = (B[0] + s->current_picture.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap][0] + 1) >> 1;
  1534. B[1] = (B[1] + s->current_picture.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap][1] + 1) >> 1;
  1535. }
  1536. }
  1537. if (s->mb_width > 1) {
  1538. if (!v->is_intra[s->mb_x - s->mb_stride + 1]) {
  1539. c_valid = 1;
  1540. n_adj = 2;
  1541. pos_c = s->block_index[2] - 2 * wrap + 2;
  1542. if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
  1543. n_adj = n & 2;
  1544. }
  1545. C[0] = s->current_picture.motion_val[0][s->block_index[n_adj] - 2 * wrap + 2][0];
  1546. C[1] = s->current_picture.motion_val[0][s->block_index[n_adj] - 2 * wrap + 2][1];
  1547. if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
  1548. C[0] = (1 + C[0] + (s->current_picture.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap + 2][0])) >> 1;
  1549. C[1] = (1 + C[1] + (s->current_picture.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap + 2][1])) >> 1;
  1550. }
  1551. if (s->mb_x == s->mb_width - 1) {
  1552. if (!v->is_intra[s->mb_x - s->mb_stride - 1]) {
  1553. c_valid = 1;
  1554. n_adj = 3;
  1555. pos_c = s->block_index[3] - 2 * wrap - 2;
  1556. if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
  1557. n_adj = n | 1;
  1558. }
  1559. C[0] = s->current_picture.motion_val[0][s->block_index[n_adj] - 2 * wrap - 2][0];
  1560. C[1] = s->current_picture.motion_val[0][s->block_index[n_adj] - 2 * wrap - 2][1];
  1561. if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
  1562. C[0] = (1 + C[0] + s->current_picture.motion_val[0][s->block_index[1] - 2 * wrap - 2][0]) >> 1;
  1563. C[1] = (1 + C[1] + s->current_picture.motion_val[0][s->block_index[1] - 2 * wrap - 2][1]) >> 1;
  1564. }
  1565. } else
  1566. c_valid = 0;
  1567. }
  1568. }
  1569. }
  1570. }
  1571. } else {
  1572. pos_b = s->block_index[1];
  1573. b_valid = 1;
  1574. B[0] = s->current_picture.motion_val[0][pos_b][0];
  1575. B[1] = s->current_picture.motion_val[0][pos_b][1];
  1576. pos_c = s->block_index[0];
  1577. c_valid = 1;
  1578. C[0] = s->current_picture.motion_val[0][pos_c][0];
  1579. C[1] = s->current_picture.motion_val[0][pos_c][1];
  1580. }
  1581. total_valid = a_valid + b_valid + c_valid;
  1582. // check if predictor A is out of bounds
  1583. if (!s->mb_x && !(n == 1 || n == 3)) {
  1584. A[0] = A[1] = 0;
  1585. }
  1586. // check if predictor B is out of bounds
  1587. if ((s->first_slice_line && v->blk_mv_type[xy]) || (s->first_slice_line && !(n & 2))) {
  1588. B[0] = B[1] = C[0] = C[1] = 0;
  1589. }
  1590. if (!v->blk_mv_type[xy]) {
  1591. if (s->mb_width == 1) {
  1592. px = B[0];
  1593. py = B[1];
  1594. } else {
  1595. if (total_valid >= 2) {
  1596. px = mid_pred(A[0], B[0], C[0]);
  1597. py = mid_pred(A[1], B[1], C[1]);
  1598. } else if (total_valid) {
  1599. if (a_valid) { px = A[0]; py = A[1]; }
  1600. if (b_valid) { px = B[0]; py = B[1]; }
  1601. if (c_valid) { px = C[0]; py = C[1]; }
  1602. } else
  1603. px = py = 0;
  1604. }
  1605. } else {
  1606. if (a_valid)
  1607. field_a = (A[1] & 4) ? 1 : 0;
  1608. else
  1609. field_a = 0;
  1610. if (b_valid)
  1611. field_b = (B[1] & 4) ? 1 : 0;
  1612. else
  1613. field_b = 0;
  1614. if (c_valid)
  1615. field_c = (C[1] & 4) ? 1 : 0;
  1616. else
  1617. field_c = 0;
  1618. num_oppfield = field_a + field_b + field_c;
  1619. num_samefield = total_valid - num_oppfield;
  1620. if (total_valid == 3) {
  1621. if ((num_samefield == 3) || (num_oppfield == 3)) {
  1622. px = mid_pred(A[0], B[0], C[0]);
  1623. py = mid_pred(A[1], B[1], C[1]);
  1624. } else if (num_samefield >= num_oppfield) {
  1625. /* take one MV from same field set depending on priority
  1626. the check for B may not be necessary */
  1627. px = !field_a ? A[0] : B[0];
  1628. py = !field_a ? A[1] : B[1];
  1629. } else {
  1630. px = field_a ? A[0] : B[0];
  1631. py = field_a ? A[1] : B[1];
  1632. }
  1633. } else if (total_valid == 2) {
  1634. if (num_samefield >= num_oppfield) {
  1635. if (!field_a && a_valid) {
  1636. px = A[0];
  1637. py = A[1];
  1638. } else if (!field_b && b_valid) {
  1639. px = B[0];
  1640. py = B[1];
  1641. } else if (c_valid) {
  1642. px = C[0];
  1643. py = C[1];
  1644. } else px = py = 0;
  1645. } else {
  1646. if (field_a && a_valid) {
  1647. px = A[0];
  1648. py = A[1];
  1649. } else if (field_b && b_valid) {
  1650. px = B[0];
  1651. py = B[1];
  1652. } else if (c_valid) {
  1653. px = C[0];
  1654. py = C[1];
  1655. }
  1656. }
  1657. } else if (total_valid == 1) {
  1658. px = (a_valid) ? A[0] : ((b_valid) ? B[0] : C[0]);
  1659. py = (a_valid) ? A[1] : ((b_valid) ? B[1] : C[1]);
  1660. } else
  1661. px = py = 0;
  1662. }
  1663. /* store MV using signed modulus of MV range defined in 4.11 */
  1664. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1665. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1666. if (mvn == 1) { /* duplicate motion data for 1-MV block */
  1667. s->current_picture.motion_val[0][xy + 1 ][0] = s->current_picture.motion_val[0][xy][0];
  1668. s->current_picture.motion_val[0][xy + 1 ][1] = s->current_picture.motion_val[0][xy][1];
  1669. s->current_picture.motion_val[0][xy + wrap ][0] = s->current_picture.motion_val[0][xy][0];
  1670. s->current_picture.motion_val[0][xy + wrap ][1] = s->current_picture.motion_val[0][xy][1];
  1671. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1672. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1673. } else if (mvn == 2) { /* duplicate motion data for 2-Field MV block */
  1674. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1675. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1676. s->mv[0][n + 1][0] = s->mv[0][n][0];
  1677. s->mv[0][n + 1][1] = s->mv[0][n][1];
  1678. }
  1679. }
  1680. /** Motion compensation for direct or interpolated blocks in B-frames
  1681. */
  1682. static void vc1_interp_mc(VC1Context *v)
  1683. {
  1684. MpegEncContext *s = &v->s;
  1685. H264ChromaContext *h264chroma = &v->h264chroma;
  1686. uint8_t *srcY, *srcU, *srcV;
  1687. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1688. int off, off_uv;
  1689. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  1690. if (!v->field_mode && !v->s.next_picture.f.data[0])
  1691. return;
  1692. mx = s->mv[1][0][0];
  1693. my = s->mv[1][0][1];
  1694. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1695. uvmy = (my + ((my & 3) == 3)) >> 1;
  1696. if (v->field_mode) {
  1697. if (v->cur_field_type != v->ref_field_type[1])
  1698. my = my - 2 + 4 * v->cur_field_type;
  1699. uvmy = uvmy - 2 + 4 * v->cur_field_type;
  1700. }
  1701. if (v->fastuvmc) {
  1702. uvmx = uvmx + ((uvmx < 0) ? -(uvmx & 1) : (uvmx & 1));
  1703. uvmy = uvmy + ((uvmy < 0) ? -(uvmy & 1) : (uvmy & 1));
  1704. }
  1705. srcY = s->next_picture.f.data[0];
  1706. srcU = s->next_picture.f.data[1];
  1707. srcV = s->next_picture.f.data[2];
  1708. src_x = s->mb_x * 16 + (mx >> 2);
  1709. src_y = s->mb_y * 16 + (my >> 2);
  1710. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1711. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1712. if (v->profile != PROFILE_ADVANCED) {
  1713. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1714. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1715. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1716. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1717. } else {
  1718. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1719. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1720. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1721. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1722. }
  1723. srcY += src_y * s->linesize + src_x;
  1724. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1725. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1726. if (v->field_mode && v->ref_field_type[1]) {
  1727. srcY += s->current_picture_ptr->f.linesize[0];
  1728. srcU += s->current_picture_ptr->f.linesize[1];
  1729. srcV += s->current_picture_ptr->f.linesize[2];
  1730. }
  1731. /* for grayscale we should not try to read from unknown area */
  1732. if (s->flags & CODEC_FLAG_GRAY) {
  1733. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1734. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1735. }
  1736. if (v->rangeredfrm || s->h_edge_pos < 22 || v_edge_pos < 22
  1737. || (unsigned)(src_x - 1) > s->h_edge_pos - (mx & 3) - 16 - 3
  1738. || (unsigned)(src_y - 1) > v_edge_pos - (my & 3) - 16 - 3) {
  1739. uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
  1740. srcY -= s->mspel * (1 + s->linesize);
  1741. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize,
  1742. 17 + s->mspel * 2, 17 + s->mspel * 2,
  1743. src_x - s->mspel, src_y - s->mspel,
  1744. s->h_edge_pos, v_edge_pos);
  1745. srcY = s->edge_emu_buffer;
  1746. s->vdsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8 + 1, 8 + 1,
  1747. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  1748. s->vdsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8 + 1, 8 + 1,
  1749. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  1750. srcU = uvbuf;
  1751. srcV = uvbuf + 16;
  1752. /* if we deal with range reduction we need to scale source blocks */
  1753. if (v->rangeredfrm) {
  1754. int i, j;
  1755. uint8_t *src, *src2;
  1756. src = srcY;
  1757. for (j = 0; j < 17 + s->mspel * 2; j++) {
  1758. for (i = 0; i < 17 + s->mspel * 2; i++)
  1759. src[i] = ((src[i] - 128) >> 1) + 128;
  1760. src += s->linesize;
  1761. }
  1762. src = srcU;
  1763. src2 = srcV;
  1764. for (j = 0; j < 9; j++) {
  1765. for (i = 0; i < 9; i++) {
  1766. src[i] = ((src[i] - 128) >> 1) + 128;
  1767. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1768. }
  1769. src += s->uvlinesize;
  1770. src2 += s->uvlinesize;
  1771. }
  1772. }
  1773. srcY += s->mspel * (1 + s->linesize);
  1774. }
  1775. off = 0;
  1776. off_uv = 0;
  1777. if (s->mspel) {
  1778. dxy = ((my & 3) << 2) | (mx & 3);
  1779. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off , srcY , s->linesize, v->rnd);
  1780. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8, srcY + 8, s->linesize, v->rnd);
  1781. srcY += s->linesize * 8;
  1782. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize , srcY , s->linesize, v->rnd);
  1783. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  1784. } else { // hpel mc
  1785. dxy = (my & 2) | ((mx & 2) >> 1);
  1786. if (!v->rnd)
  1787. s->hdsp.avg_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
  1788. else
  1789. s->hdsp.avg_no_rnd_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, 16);
  1790. }
  1791. if (s->flags & CODEC_FLAG_GRAY) return;
  1792. /* Chroma MC always uses qpel blilinear */
  1793. uvmx = (uvmx & 3) << 1;
  1794. uvmy = (uvmy & 3) << 1;
  1795. if (!v->rnd) {
  1796. h264chroma->avg_h264_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
  1797. h264chroma->avg_h264_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
  1798. } else {
  1799. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
  1800. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
  1801. }
  1802. }
  1803. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1804. {
  1805. int n = bfrac;
  1806. #if B_FRACTION_DEN==256
  1807. if (inv)
  1808. n -= 256;
  1809. if (!qs)
  1810. return 2 * ((value * n + 255) >> 9);
  1811. return (value * n + 128) >> 8;
  1812. #else
  1813. if (inv)
  1814. n -= B_FRACTION_DEN;
  1815. if (!qs)
  1816. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1817. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1818. #endif
  1819. }
  1820. /** Reconstruct motion vector for B-frame and do motion compensation
  1821. */
  1822. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2],
  1823. int direct, int mode)
  1824. {
  1825. if (v->use_ic) {
  1826. v->mv_mode2 = v->mv_mode;
  1827. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1828. }
  1829. if (direct) {
  1830. vc1_mc_1mv(v, 0);
  1831. vc1_interp_mc(v);
  1832. if (v->use_ic)
  1833. v->mv_mode = v->mv_mode2;
  1834. return;
  1835. }
  1836. if (mode == BMV_TYPE_INTERPOLATED) {
  1837. vc1_mc_1mv(v, 0);
  1838. vc1_interp_mc(v);
  1839. if (v->use_ic)
  1840. v->mv_mode = v->mv_mode2;
  1841. return;
  1842. }
  1843. if (v->use_ic && (mode == BMV_TYPE_BACKWARD))
  1844. v->mv_mode = v->mv_mode2;
  1845. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1846. if (v->use_ic)
  1847. v->mv_mode = v->mv_mode2;
  1848. }
  1849. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2],
  1850. int direct, int mvtype)
  1851. {
  1852. MpegEncContext *s = &v->s;
  1853. int xy, wrap, off = 0;
  1854. int16_t *A, *B, *C;
  1855. int px, py;
  1856. int sum;
  1857. int r_x, r_y;
  1858. const uint8_t *is_intra = v->mb_type[0];
  1859. r_x = v->range_x;
  1860. r_y = v->range_y;
  1861. /* scale MV difference to be quad-pel */
  1862. dmv_x[0] <<= 1 - s->quarter_sample;
  1863. dmv_y[0] <<= 1 - s->quarter_sample;
  1864. dmv_x[1] <<= 1 - s->quarter_sample;
  1865. dmv_y[1] <<= 1 - s->quarter_sample;
  1866. wrap = s->b8_stride;
  1867. xy = s->block_index[0];
  1868. if (s->mb_intra) {
  1869. s->current_picture.motion_val[0][xy + v->blocks_off][0] =
  1870. s->current_picture.motion_val[0][xy + v->blocks_off][1] =
  1871. s->current_picture.motion_val[1][xy + v->blocks_off][0] =
  1872. s->current_picture.motion_val[1][xy + v->blocks_off][1] = 0;
  1873. return;
  1874. }
  1875. if (!v->field_mode) {
  1876. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1877. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1878. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1879. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1880. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1881. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1882. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1883. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1884. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1885. }
  1886. if (direct) {
  1887. s->current_picture.motion_val[0][xy + v->blocks_off][0] = s->mv[0][0][0];
  1888. s->current_picture.motion_val[0][xy + v->blocks_off][1] = s->mv[0][0][1];
  1889. s->current_picture.motion_val[1][xy + v->blocks_off][0] = s->mv[1][0][0];
  1890. s->current_picture.motion_val[1][xy + v->blocks_off][1] = s->mv[1][0][1];
  1891. return;
  1892. }
  1893. if ((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1894. C = s->current_picture.motion_val[0][xy - 2];
  1895. A = s->current_picture.motion_val[0][xy - wrap * 2];
  1896. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1897. B = s->current_picture.motion_val[0][xy - wrap * 2 + off];
  1898. if (!s->mb_x) C[0] = C[1] = 0;
  1899. if (!s->first_slice_line) { // predictor A is not out of bounds
  1900. if (s->mb_width == 1) {
  1901. px = A[0];
  1902. py = A[1];
  1903. } else {
  1904. px = mid_pred(A[0], B[0], C[0]);
  1905. py = mid_pred(A[1], B[1], C[1]);
  1906. }
  1907. } else if (s->mb_x) { // predictor C is not out of bounds
  1908. px = C[0];
  1909. py = C[1];
  1910. } else {
  1911. px = py = 0;
  1912. }
  1913. /* Pullback MV as specified in 8.3.5.3.4 */
  1914. {
  1915. int qx, qy, X, Y;
  1916. if (v->profile < PROFILE_ADVANCED) {
  1917. qx = (s->mb_x << 5);
  1918. qy = (s->mb_y << 5);
  1919. X = (s->mb_width << 5) - 4;
  1920. Y = (s->mb_height << 5) - 4;
  1921. if (qx + px < -28) px = -28 - qx;
  1922. if (qy + py < -28) py = -28 - qy;
  1923. if (qx + px > X) px = X - qx;
  1924. if (qy + py > Y) py = Y - qy;
  1925. } else {
  1926. qx = (s->mb_x << 6);
  1927. qy = (s->mb_y << 6);
  1928. X = (s->mb_width << 6) - 4;
  1929. Y = (s->mb_height << 6) - 4;
  1930. if (qx + px < -60) px = -60 - qx;
  1931. if (qy + py < -60) py = -60 - qy;
  1932. if (qx + px > X) px = X - qx;
  1933. if (qy + py > Y) py = Y - qy;
  1934. }
  1935. }
  1936. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1937. if (0 && !s->first_slice_line && s->mb_x) {
  1938. if (is_intra[xy - wrap])
  1939. sum = FFABS(px) + FFABS(py);
  1940. else
  1941. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1942. if (sum > 32) {
  1943. if (get_bits1(&s->gb)) {
  1944. px = A[0];
  1945. py = A[1];
  1946. } else {
  1947. px = C[0];
  1948. py = C[1];
  1949. }
  1950. } else {
  1951. if (is_intra[xy - 2])
  1952. sum = FFABS(px) + FFABS(py);
  1953. else
  1954. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1955. if (sum > 32) {
  1956. if (get_bits1(&s->gb)) {
  1957. px = A[0];
  1958. py = A[1];
  1959. } else {
  1960. px = C[0];
  1961. py = C[1];
  1962. }
  1963. }
  1964. }
  1965. }
  1966. /* store MV using signed modulus of MV range defined in 4.11 */
  1967. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1968. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1969. }
  1970. if ((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1971. C = s->current_picture.motion_val[1][xy - 2];
  1972. A = s->current_picture.motion_val[1][xy - wrap * 2];
  1973. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1974. B = s->current_picture.motion_val[1][xy - wrap * 2 + off];
  1975. if (!s->mb_x)
  1976. C[0] = C[1] = 0;
  1977. if (!s->first_slice_line) { // predictor A is not out of bounds
  1978. if (s->mb_width == 1) {
  1979. px = A[0];
  1980. py = A[1];
  1981. } else {
  1982. px = mid_pred(A[0], B[0], C[0]);
  1983. py = mid_pred(A[1], B[1], C[1]);
  1984. }
  1985. } else if (s->mb_x) { // predictor C is not out of bounds
  1986. px = C[0];
  1987. py = C[1];
  1988. } else {
  1989. px = py = 0;
  1990. }
  1991. /* Pullback MV as specified in 8.3.5.3.4 */
  1992. {
  1993. int qx, qy, X, Y;
  1994. if (v->profile < PROFILE_ADVANCED) {
  1995. qx = (s->mb_x << 5);
  1996. qy = (s->mb_y << 5);
  1997. X = (s->mb_width << 5) - 4;
  1998. Y = (s->mb_height << 5) - 4;
  1999. if (qx + px < -28) px = -28 - qx;
  2000. if (qy + py < -28) py = -28 - qy;
  2001. if (qx + px > X) px = X - qx;
  2002. if (qy + py > Y) py = Y - qy;
  2003. } else {
  2004. qx = (s->mb_x << 6);
  2005. qy = (s->mb_y << 6);
  2006. X = (s->mb_width << 6) - 4;
  2007. Y = (s->mb_height << 6) - 4;
  2008. if (qx + px < -60) px = -60 - qx;
  2009. if (qy + py < -60) py = -60 - qy;
  2010. if (qx + px > X) px = X - qx;
  2011. if (qy + py > Y) py = Y - qy;
  2012. }
  2013. }
  2014. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2015. if (0 && !s->first_slice_line && s->mb_x) {
  2016. if (is_intra[xy - wrap])
  2017. sum = FFABS(px) + FFABS(py);
  2018. else
  2019. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2020. if (sum > 32) {
  2021. if (get_bits1(&s->gb)) {
  2022. px = A[0];
  2023. py = A[1];
  2024. } else {
  2025. px = C[0];
  2026. py = C[1];
  2027. }
  2028. } else {
  2029. if (is_intra[xy - 2])
  2030. sum = FFABS(px) + FFABS(py);
  2031. else
  2032. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2033. if (sum > 32) {
  2034. if (get_bits1(&s->gb)) {
  2035. px = A[0];
  2036. py = A[1];
  2037. } else {
  2038. px = C[0];
  2039. py = C[1];
  2040. }
  2041. }
  2042. }
  2043. }
  2044. /* store MV using signed modulus of MV range defined in 4.11 */
  2045. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  2046. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  2047. }
  2048. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2049. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2050. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2051. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2052. }
  2053. static inline void vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y, int mv1, int *pred_flag)
  2054. {
  2055. int dir = (v->bmvtype == BMV_TYPE_BACKWARD) ? 1 : 0;
  2056. MpegEncContext *s = &v->s;
  2057. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2058. if (v->bmvtype == BMV_TYPE_DIRECT) {
  2059. int total_opp, k, f;
  2060. if (s->next_picture.mb_type[mb_pos + v->mb_off] != MB_TYPE_INTRA) {
  2061. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][0],
  2062. v->bfraction, 0, s->quarter_sample);
  2063. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][1],
  2064. v->bfraction, 0, s->quarter_sample);
  2065. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][0],
  2066. v->bfraction, 1, s->quarter_sample);
  2067. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][1],
  2068. v->bfraction, 1, s->quarter_sample);
  2069. total_opp = v->mv_f_next[0][s->block_index[0] + v->blocks_off]
  2070. + v->mv_f_next[0][s->block_index[1] + v->blocks_off]
  2071. + v->mv_f_next[0][s->block_index[2] + v->blocks_off]
  2072. + v->mv_f_next[0][s->block_index[3] + v->blocks_off];
  2073. f = (total_opp > 2) ? 1 : 0;
  2074. } else {
  2075. s->mv[0][0][0] = s->mv[0][0][1] = 0;
  2076. s->mv[1][0][0] = s->mv[1][0][1] = 0;
  2077. f = 0;
  2078. }
  2079. v->ref_field_type[0] = v->ref_field_type[1] = v->cur_field_type ^ f;
  2080. for (k = 0; k < 4; k++) {
  2081. s->current_picture.motion_val[0][s->block_index[k] + v->blocks_off][0] = s->mv[0][0][0];
  2082. s->current_picture.motion_val[0][s->block_index[k] + v->blocks_off][1] = s->mv[0][0][1];
  2083. s->current_picture.motion_val[1][s->block_index[k] + v->blocks_off][0] = s->mv[1][0][0];
  2084. s->current_picture.motion_val[1][s->block_index[k] + v->blocks_off][1] = s->mv[1][0][1];
  2085. v->mv_f[0][s->block_index[k] + v->blocks_off] = f;
  2086. v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
  2087. }
  2088. return;
  2089. }
  2090. if (v->bmvtype == BMV_TYPE_INTERPOLATED) {
  2091. vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
  2092. vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
  2093. return;
  2094. }
  2095. if (dir) { // backward
  2096. vc1_pred_mv(v, n, dmv_x[1], dmv_y[1], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
  2097. if (n == 3 || mv1) {
  2098. vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  2099. }
  2100. } else { // forward
  2101. vc1_pred_mv(v, n, dmv_x[0], dmv_y[0], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
  2102. if (n == 3 || mv1) {
  2103. vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], 0, 1);
  2104. }
  2105. }
  2106. }
  2107. /** Get predicted DC value for I-frames only
  2108. * prediction dir: left=0, top=1
  2109. * @param s MpegEncContext
  2110. * @param overlap flag indicating that overlap filtering is used
  2111. * @param pq integer part of picture quantizer
  2112. * @param[in] n block index in the current MB
  2113. * @param dc_val_ptr Pointer to DC predictor
  2114. * @param dir_ptr Prediction direction for use in AC prediction
  2115. */
  2116. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2117. int16_t **dc_val_ptr, int *dir_ptr)
  2118. {
  2119. int a, b, c, wrap, pred, scale;
  2120. int16_t *dc_val;
  2121. static const uint16_t dcpred[32] = {
  2122. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2123. 114, 102, 93, 85, 79, 73, 68, 64,
  2124. 60, 57, 54, 51, 49, 47, 45, 43,
  2125. 41, 39, 38, 37, 35, 34, 33
  2126. };
  2127. /* find prediction - wmv3_dc_scale always used here in fact */
  2128. if (n < 4) scale = s->y_dc_scale;
  2129. else scale = s->c_dc_scale;
  2130. wrap = s->block_wrap[n];
  2131. dc_val = s->dc_val[0] + s->block_index[n];
  2132. /* B A
  2133. * C X
  2134. */
  2135. c = dc_val[ - 1];
  2136. b = dc_val[ - 1 - wrap];
  2137. a = dc_val[ - wrap];
  2138. if (pq < 9 || !overlap) {
  2139. /* Set outer values */
  2140. if (s->first_slice_line && (n != 2 && n != 3))
  2141. b = a = dcpred[scale];
  2142. if (s->mb_x == 0 && (n != 1 && n != 3))
  2143. b = c = dcpred[scale];
  2144. } else {
  2145. /* Set outer values */
  2146. if (s->first_slice_line && (n != 2 && n != 3))
  2147. b = a = 0;
  2148. if (s->mb_x == 0 && (n != 1 && n != 3))
  2149. b = c = 0;
  2150. }
  2151. if (abs(a - b) <= abs(b - c)) {
  2152. pred = c;
  2153. *dir_ptr = 1; // left
  2154. } else {
  2155. pred = a;
  2156. *dir_ptr = 0; // top
  2157. }
  2158. /* update predictor */
  2159. *dc_val_ptr = &dc_val[0];
  2160. return pred;
  2161. }
  2162. /** Get predicted DC value
  2163. * prediction dir: left=0, top=1
  2164. * @param s MpegEncContext
  2165. * @param overlap flag indicating that overlap filtering is used
  2166. * @param pq integer part of picture quantizer
  2167. * @param[in] n block index in the current MB
  2168. * @param a_avail flag indicating top block availability
  2169. * @param c_avail flag indicating left block availability
  2170. * @param dc_val_ptr Pointer to DC predictor
  2171. * @param dir_ptr Prediction direction for use in AC prediction
  2172. */
  2173. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2174. int a_avail, int c_avail,
  2175. int16_t **dc_val_ptr, int *dir_ptr)
  2176. {
  2177. int a, b, c, wrap, pred;
  2178. int16_t *dc_val;
  2179. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2180. int q1, q2 = 0;
  2181. int dqscale_index;
  2182. wrap = s->block_wrap[n];
  2183. dc_val = s->dc_val[0] + s->block_index[n];
  2184. /* B A
  2185. * C X
  2186. */
  2187. c = dc_val[ - 1];
  2188. b = dc_val[ - 1 - wrap];
  2189. a = dc_val[ - wrap];
  2190. /* scale predictors if needed */
  2191. q1 = s->current_picture.qscale_table[mb_pos];
  2192. dqscale_index = s->y_dc_scale_table[q1] - 1;
  2193. if (dqscale_index < 0)
  2194. return 0;
  2195. if (c_avail && (n != 1 && n != 3)) {
  2196. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2197. if (q2 && q2 != q1)
  2198. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  2199. }
  2200. if (a_avail && (n != 2 && n != 3)) {
  2201. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2202. if (q2 && q2 != q1)
  2203. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  2204. }
  2205. if (a_avail && c_avail && (n != 3)) {
  2206. int off = mb_pos;
  2207. if (n != 1)
  2208. off--;
  2209. if (n != 2)
  2210. off -= s->mb_stride;
  2211. q2 = s->current_picture.qscale_table[off];
  2212. if (q2 && q2 != q1)
  2213. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  2214. }
  2215. if (a_avail && c_avail) {
  2216. if (abs(a - b) <= abs(b - c)) {
  2217. pred = c;
  2218. *dir_ptr = 1; // left
  2219. } else {
  2220. pred = a;
  2221. *dir_ptr = 0; // top
  2222. }
  2223. } else if (a_avail) {
  2224. pred = a;
  2225. *dir_ptr = 0; // top
  2226. } else if (c_avail) {
  2227. pred = c;
  2228. *dir_ptr = 1; // left
  2229. } else {
  2230. pred = 0;
  2231. *dir_ptr = 1; // left
  2232. }
  2233. /* update predictor */
  2234. *dc_val_ptr = &dc_val[0];
  2235. return pred;
  2236. }
  2237. /** @} */ // Block group
  2238. /**
  2239. * @name VC1 Macroblock-level functions in Simple/Main Profiles
  2240. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2241. * @{
  2242. */
  2243. static inline int vc1_coded_block_pred(MpegEncContext * s, int n,
  2244. uint8_t **coded_block_ptr)
  2245. {
  2246. int xy, wrap, pred, a, b, c;
  2247. xy = s->block_index[n];
  2248. wrap = s->b8_stride;
  2249. /* B C
  2250. * A X
  2251. */
  2252. a = s->coded_block[xy - 1 ];
  2253. b = s->coded_block[xy - 1 - wrap];
  2254. c = s->coded_block[xy - wrap];
  2255. if (b == c) {
  2256. pred = a;
  2257. } else {
  2258. pred = c;
  2259. }
  2260. /* store value */
  2261. *coded_block_ptr = &s->coded_block[xy];
  2262. return pred;
  2263. }
  2264. /**
  2265. * Decode one AC coefficient
  2266. * @param v The VC1 context
  2267. * @param last Last coefficient
  2268. * @param skip How much zero coefficients to skip
  2269. * @param value Decoded AC coefficient value
  2270. * @param codingset set of VLC to decode data
  2271. * @see 8.1.3.4
  2272. */
  2273. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip,
  2274. int *value, int codingset)
  2275. {
  2276. GetBitContext *gb = &v->s.gb;
  2277. int index, escape, run = 0, level = 0, lst = 0;
  2278. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2279. if (index != ff_vc1_ac_sizes[codingset] - 1) {
  2280. run = vc1_index_decode_table[codingset][index][0];
  2281. level = vc1_index_decode_table[codingset][index][1];
  2282. lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
  2283. if (get_bits1(gb))
  2284. level = -level;
  2285. } else {
  2286. escape = decode210(gb);
  2287. if (escape != 2) {
  2288. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2289. run = vc1_index_decode_table[codingset][index][0];
  2290. level = vc1_index_decode_table[codingset][index][1];
  2291. lst = index >= vc1_last_decode_table[codingset];
  2292. if (escape == 0) {
  2293. if (lst)
  2294. level += vc1_last_delta_level_table[codingset][run];
  2295. else
  2296. level += vc1_delta_level_table[codingset][run];
  2297. } else {
  2298. if (lst)
  2299. run += vc1_last_delta_run_table[codingset][level] + 1;
  2300. else
  2301. run += vc1_delta_run_table[codingset][level] + 1;
  2302. }
  2303. if (get_bits1(gb))
  2304. level = -level;
  2305. } else {
  2306. int sign;
  2307. lst = get_bits1(gb);
  2308. if (v->s.esc3_level_length == 0) {
  2309. if (v->pq < 8 || v->dquantfrm) { // table 59
  2310. v->s.esc3_level_length = get_bits(gb, 3);
  2311. if (!v->s.esc3_level_length)
  2312. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2313. } else { // table 60
  2314. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2315. }
  2316. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2317. }
  2318. run = get_bits(gb, v->s.esc3_run_length);
  2319. sign = get_bits1(gb);
  2320. level = get_bits(gb, v->s.esc3_level_length);
  2321. if (sign)
  2322. level = -level;
  2323. }
  2324. }
  2325. *last = lst;
  2326. *skip = run;
  2327. *value = level;
  2328. }
  2329. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2330. * @param v VC1Context
  2331. * @param block block to decode
  2332. * @param[in] n subblock index
  2333. * @param coded are AC coeffs present or not
  2334. * @param codingset set of VLC to decode data
  2335. */
  2336. static int vc1_decode_i_block(VC1Context *v, int16_t block[64], int n,
  2337. int coded, int codingset)
  2338. {
  2339. GetBitContext *gb = &v->s.gb;
  2340. MpegEncContext *s = &v->s;
  2341. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2342. int i;
  2343. int16_t *dc_val;
  2344. int16_t *ac_val, *ac_val2;
  2345. int dcdiff;
  2346. /* Get DC differential */
  2347. if (n < 4) {
  2348. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2349. } else {
  2350. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2351. }
  2352. if (dcdiff < 0) {
  2353. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2354. return -1;
  2355. }
  2356. if (dcdiff) {
  2357. if (dcdiff == 119 /* ESC index value */) {
  2358. /* TODO: Optimize */
  2359. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2360. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2361. else dcdiff = get_bits(gb, 8);
  2362. } else {
  2363. if (v->pq == 1)
  2364. dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
  2365. else if (v->pq == 2)
  2366. dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
  2367. }
  2368. if (get_bits1(gb))
  2369. dcdiff = -dcdiff;
  2370. }
  2371. /* Prediction */
  2372. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2373. *dc_val = dcdiff;
  2374. /* Store the quantized DC coeff, used for prediction */
  2375. if (n < 4) {
  2376. block[0] = dcdiff * s->y_dc_scale;
  2377. } else {
  2378. block[0] = dcdiff * s->c_dc_scale;
  2379. }
  2380. /* Skip ? */
  2381. if (!coded) {
  2382. goto not_coded;
  2383. }
  2384. // AC Decoding
  2385. i = 1;
  2386. {
  2387. int last = 0, skip, value;
  2388. const uint8_t *zz_table;
  2389. int scale;
  2390. int k;
  2391. scale = v->pq * 2 + v->halfpq;
  2392. if (v->s.ac_pred) {
  2393. if (!dc_pred_dir)
  2394. zz_table = v->zz_8x8[2];
  2395. else
  2396. zz_table = v->zz_8x8[3];
  2397. } else
  2398. zz_table = v->zz_8x8[1];
  2399. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2400. ac_val2 = ac_val;
  2401. if (dc_pred_dir) // left
  2402. ac_val -= 16;
  2403. else // top
  2404. ac_val -= 16 * s->block_wrap[n];
  2405. while (!last) {
  2406. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2407. i += skip;
  2408. if (i > 63)
  2409. break;
  2410. block[zz_table[i++]] = value;
  2411. }
  2412. /* apply AC prediction if needed */
  2413. if (s->ac_pred) {
  2414. if (dc_pred_dir) { // left
  2415. for (k = 1; k < 8; k++)
  2416. block[k << v->left_blk_sh] += ac_val[k];
  2417. } else { // top
  2418. for (k = 1; k < 8; k++)
  2419. block[k << v->top_blk_sh] += ac_val[k + 8];
  2420. }
  2421. }
  2422. /* save AC coeffs for further prediction */
  2423. for (k = 1; k < 8; k++) {
  2424. ac_val2[k] = block[k << v->left_blk_sh];
  2425. ac_val2[k + 8] = block[k << v->top_blk_sh];
  2426. }
  2427. /* scale AC coeffs */
  2428. for (k = 1; k < 64; k++)
  2429. if (block[k]) {
  2430. block[k] *= scale;
  2431. if (!v->pquantizer)
  2432. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2433. }
  2434. if (s->ac_pred) i = 63;
  2435. }
  2436. not_coded:
  2437. if (!coded) {
  2438. int k, scale;
  2439. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2440. ac_val2 = ac_val;
  2441. i = 0;
  2442. scale = v->pq * 2 + v->halfpq;
  2443. memset(ac_val2, 0, 16 * 2);
  2444. if (dc_pred_dir) { // left
  2445. ac_val -= 16;
  2446. if (s->ac_pred)
  2447. memcpy(ac_val2, ac_val, 8 * 2);
  2448. } else { // top
  2449. ac_val -= 16 * s->block_wrap[n];
  2450. if (s->ac_pred)
  2451. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2452. }
  2453. /* apply AC prediction if needed */
  2454. if (s->ac_pred) {
  2455. if (dc_pred_dir) { //left
  2456. for (k = 1; k < 8; k++) {
  2457. block[k << v->left_blk_sh] = ac_val[k] * scale;
  2458. if (!v->pquantizer && block[k << v->left_blk_sh])
  2459. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -v->pq : v->pq;
  2460. }
  2461. } else { // top
  2462. for (k = 1; k < 8; k++) {
  2463. block[k << v->top_blk_sh] = ac_val[k + 8] * scale;
  2464. if (!v->pquantizer && block[k << v->top_blk_sh])
  2465. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -v->pq : v->pq;
  2466. }
  2467. }
  2468. i = 63;
  2469. }
  2470. }
  2471. s->block_last_index[n] = i;
  2472. return 0;
  2473. }
  2474. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2475. * @param v VC1Context
  2476. * @param block block to decode
  2477. * @param[in] n subblock number
  2478. * @param coded are AC coeffs present or not
  2479. * @param codingset set of VLC to decode data
  2480. * @param mquant quantizer value for this macroblock
  2481. */
  2482. static int vc1_decode_i_block_adv(VC1Context *v, int16_t block[64], int n,
  2483. int coded, int codingset, int mquant)
  2484. {
  2485. GetBitContext *gb = &v->s.gb;
  2486. MpegEncContext *s = &v->s;
  2487. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2488. int i;
  2489. int16_t *dc_val;
  2490. int16_t *ac_val, *ac_val2;
  2491. int dcdiff;
  2492. int a_avail = v->a_avail, c_avail = v->c_avail;
  2493. int use_pred = s->ac_pred;
  2494. int scale;
  2495. int q1, q2 = 0;
  2496. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2497. /* Get DC differential */
  2498. if (n < 4) {
  2499. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2500. } else {
  2501. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2502. }
  2503. if (dcdiff < 0) {
  2504. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2505. return -1;
  2506. }
  2507. if (dcdiff) {
  2508. if (dcdiff == 119 /* ESC index value */) {
  2509. /* TODO: Optimize */
  2510. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2511. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2512. else dcdiff = get_bits(gb, 8);
  2513. } else {
  2514. if (mquant == 1)
  2515. dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
  2516. else if (mquant == 2)
  2517. dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
  2518. }
  2519. if (get_bits1(gb))
  2520. dcdiff = -dcdiff;
  2521. }
  2522. /* Prediction */
  2523. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2524. *dc_val = dcdiff;
  2525. /* Store the quantized DC coeff, used for prediction */
  2526. if (n < 4) {
  2527. block[0] = dcdiff * s->y_dc_scale;
  2528. } else {
  2529. block[0] = dcdiff * s->c_dc_scale;
  2530. }
  2531. //AC Decoding
  2532. i = 1;
  2533. /* check if AC is needed at all */
  2534. if (!a_avail && !c_avail)
  2535. use_pred = 0;
  2536. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2537. ac_val2 = ac_val;
  2538. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2539. if (dc_pred_dir) // left
  2540. ac_val -= 16;
  2541. else // top
  2542. ac_val -= 16 * s->block_wrap[n];
  2543. q1 = s->current_picture.qscale_table[mb_pos];
  2544. if ( dc_pred_dir && c_avail && mb_pos)
  2545. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2546. if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
  2547. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2548. if ( dc_pred_dir && n == 1)
  2549. q2 = q1;
  2550. if (!dc_pred_dir && n == 2)
  2551. q2 = q1;
  2552. if (n == 3)
  2553. q2 = q1;
  2554. if (coded) {
  2555. int last = 0, skip, value;
  2556. const uint8_t *zz_table;
  2557. int k;
  2558. if (v->s.ac_pred) {
  2559. if (!use_pred && v->fcm == ILACE_FRAME) {
  2560. zz_table = v->zzi_8x8;
  2561. } else {
  2562. if (!dc_pred_dir) // top
  2563. zz_table = v->zz_8x8[2];
  2564. else // left
  2565. zz_table = v->zz_8x8[3];
  2566. }
  2567. } else {
  2568. if (v->fcm != ILACE_FRAME)
  2569. zz_table = v->zz_8x8[1];
  2570. else
  2571. zz_table = v->zzi_8x8;
  2572. }
  2573. while (!last) {
  2574. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2575. i += skip;
  2576. if (i > 63)
  2577. break;
  2578. block[zz_table[i++]] = value;
  2579. }
  2580. /* apply AC prediction if needed */
  2581. if (use_pred) {
  2582. /* scale predictors if needed*/
  2583. if (q2 && q1 != q2) {
  2584. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2585. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2586. if (q1 < 1)
  2587. return AVERROR_INVALIDDATA;
  2588. if (dc_pred_dir) { // left
  2589. for (k = 1; k < 8; k++)
  2590. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2591. } else { // top
  2592. for (k = 1; k < 8; k++)
  2593. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2594. }
  2595. } else {
  2596. if (dc_pred_dir) { //left
  2597. for (k = 1; k < 8; k++)
  2598. block[k << v->left_blk_sh] += ac_val[k];
  2599. } else { //top
  2600. for (k = 1; k < 8; k++)
  2601. block[k << v->top_blk_sh] += ac_val[k + 8];
  2602. }
  2603. }
  2604. }
  2605. /* save AC coeffs for further prediction */
  2606. for (k = 1; k < 8; k++) {
  2607. ac_val2[k ] = block[k << v->left_blk_sh];
  2608. ac_val2[k + 8] = block[k << v->top_blk_sh];
  2609. }
  2610. /* scale AC coeffs */
  2611. for (k = 1; k < 64; k++)
  2612. if (block[k]) {
  2613. block[k] *= scale;
  2614. if (!v->pquantizer)
  2615. block[k] += (block[k] < 0) ? -mquant : mquant;
  2616. }
  2617. if (use_pred) i = 63;
  2618. } else { // no AC coeffs
  2619. int k;
  2620. memset(ac_val2, 0, 16 * 2);
  2621. if (dc_pred_dir) { // left
  2622. if (use_pred) {
  2623. memcpy(ac_val2, ac_val, 8 * 2);
  2624. if (q2 && q1 != q2) {
  2625. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2626. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2627. if (q1 < 1)
  2628. return AVERROR_INVALIDDATA;
  2629. for (k = 1; k < 8; k++)
  2630. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2631. }
  2632. }
  2633. } else { // top
  2634. if (use_pred) {
  2635. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2636. if (q2 && q1 != q2) {
  2637. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2638. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2639. if (q1 < 1)
  2640. return AVERROR_INVALIDDATA;
  2641. for (k = 1; k < 8; k++)
  2642. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2643. }
  2644. }
  2645. }
  2646. /* apply AC prediction if needed */
  2647. if (use_pred) {
  2648. if (dc_pred_dir) { // left
  2649. for (k = 1; k < 8; k++) {
  2650. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  2651. if (!v->pquantizer && block[k << v->left_blk_sh])
  2652. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
  2653. }
  2654. } else { // top
  2655. for (k = 1; k < 8; k++) {
  2656. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  2657. if (!v->pquantizer && block[k << v->top_blk_sh])
  2658. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
  2659. }
  2660. }
  2661. i = 63;
  2662. }
  2663. }
  2664. s->block_last_index[n] = i;
  2665. return 0;
  2666. }
  2667. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2668. * @param v VC1Context
  2669. * @param block block to decode
  2670. * @param[in] n subblock index
  2671. * @param coded are AC coeffs present or not
  2672. * @param mquant block quantizer
  2673. * @param codingset set of VLC to decode data
  2674. */
  2675. static int vc1_decode_intra_block(VC1Context *v, int16_t block[64], int n,
  2676. int coded, int mquant, int codingset)
  2677. {
  2678. GetBitContext *gb = &v->s.gb;
  2679. MpegEncContext *s = &v->s;
  2680. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2681. int i;
  2682. int16_t *dc_val;
  2683. int16_t *ac_val, *ac_val2;
  2684. int dcdiff;
  2685. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2686. int a_avail = v->a_avail, c_avail = v->c_avail;
  2687. int use_pred = s->ac_pred;
  2688. int scale;
  2689. int q1, q2 = 0;
  2690. s->dsp.clear_block(block);
  2691. /* XXX: Guard against dumb values of mquant */
  2692. mquant = (mquant < 1) ? 0 : ((mquant > 31) ? 31 : mquant);
  2693. /* Set DC scale - y and c use the same */
  2694. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2695. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2696. /* Get DC differential */
  2697. if (n < 4) {
  2698. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2699. } else {
  2700. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2701. }
  2702. if (dcdiff < 0) {
  2703. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2704. return -1;
  2705. }
  2706. if (dcdiff) {
  2707. if (dcdiff == 119 /* ESC index value */) {
  2708. /* TODO: Optimize */
  2709. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2710. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2711. else dcdiff = get_bits(gb, 8);
  2712. } else {
  2713. if (mquant == 1)
  2714. dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
  2715. else if (mquant == 2)
  2716. dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
  2717. }
  2718. if (get_bits1(gb))
  2719. dcdiff = -dcdiff;
  2720. }
  2721. /* Prediction */
  2722. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2723. *dc_val = dcdiff;
  2724. /* Store the quantized DC coeff, used for prediction */
  2725. if (n < 4) {
  2726. block[0] = dcdiff * s->y_dc_scale;
  2727. } else {
  2728. block[0] = dcdiff * s->c_dc_scale;
  2729. }
  2730. //AC Decoding
  2731. i = 1;
  2732. /* check if AC is needed at all and adjust direction if needed */
  2733. if (!a_avail) dc_pred_dir = 1;
  2734. if (!c_avail) dc_pred_dir = 0;
  2735. if (!a_avail && !c_avail) use_pred = 0;
  2736. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2737. ac_val2 = ac_val;
  2738. scale = mquant * 2 + v->halfpq;
  2739. if (dc_pred_dir) //left
  2740. ac_val -= 16;
  2741. else //top
  2742. ac_val -= 16 * s->block_wrap[n];
  2743. q1 = s->current_picture.qscale_table[mb_pos];
  2744. if (dc_pred_dir && c_avail && mb_pos)
  2745. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2746. if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
  2747. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2748. if ( dc_pred_dir && n == 1)
  2749. q2 = q1;
  2750. if (!dc_pred_dir && n == 2)
  2751. q2 = q1;
  2752. if (n == 3) q2 = q1;
  2753. if (coded) {
  2754. int last = 0, skip, value;
  2755. int k;
  2756. while (!last) {
  2757. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2758. i += skip;
  2759. if (i > 63)
  2760. break;
  2761. if (v->fcm == PROGRESSIVE)
  2762. block[v->zz_8x8[0][i++]] = value;
  2763. else {
  2764. if (use_pred && (v->fcm == ILACE_FRAME)) {
  2765. if (!dc_pred_dir) // top
  2766. block[v->zz_8x8[2][i++]] = value;
  2767. else // left
  2768. block[v->zz_8x8[3][i++]] = value;
  2769. } else {
  2770. block[v->zzi_8x8[i++]] = value;
  2771. }
  2772. }
  2773. }
  2774. /* apply AC prediction if needed */
  2775. if (use_pred) {
  2776. /* scale predictors if needed*/
  2777. if (q2 && q1 != q2) {
  2778. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2779. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2780. if (q1 < 1)
  2781. return AVERROR_INVALIDDATA;
  2782. if (dc_pred_dir) { // left
  2783. for (k = 1; k < 8; k++)
  2784. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2785. } else { //top
  2786. for (k = 1; k < 8; k++)
  2787. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2788. }
  2789. } else {
  2790. if (dc_pred_dir) { // left
  2791. for (k = 1; k < 8; k++)
  2792. block[k << v->left_blk_sh] += ac_val[k];
  2793. } else { // top
  2794. for (k = 1; k < 8; k++)
  2795. block[k << v->top_blk_sh] += ac_val[k + 8];
  2796. }
  2797. }
  2798. }
  2799. /* save AC coeffs for further prediction */
  2800. for (k = 1; k < 8; k++) {
  2801. ac_val2[k ] = block[k << v->left_blk_sh];
  2802. ac_val2[k + 8] = block[k << v->top_blk_sh];
  2803. }
  2804. /* scale AC coeffs */
  2805. for (k = 1; k < 64; k++)
  2806. if (block[k]) {
  2807. block[k] *= scale;
  2808. if (!v->pquantizer)
  2809. block[k] += (block[k] < 0) ? -mquant : mquant;
  2810. }
  2811. if (use_pred) i = 63;
  2812. } else { // no AC coeffs
  2813. int k;
  2814. memset(ac_val2, 0, 16 * 2);
  2815. if (dc_pred_dir) { // left
  2816. if (use_pred) {
  2817. memcpy(ac_val2, ac_val, 8 * 2);
  2818. if (q2 && q1 != q2) {
  2819. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2820. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2821. if (q1 < 1)
  2822. return AVERROR_INVALIDDATA;
  2823. for (k = 1; k < 8; k++)
  2824. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2825. }
  2826. }
  2827. } else { // top
  2828. if (use_pred) {
  2829. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2830. if (q2 && q1 != q2) {
  2831. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2832. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2833. if (q1 < 1)
  2834. return AVERROR_INVALIDDATA;
  2835. for (k = 1; k < 8; k++)
  2836. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2837. }
  2838. }
  2839. }
  2840. /* apply AC prediction if needed */
  2841. if (use_pred) {
  2842. if (dc_pred_dir) { // left
  2843. for (k = 1; k < 8; k++) {
  2844. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  2845. if (!v->pquantizer && block[k << v->left_blk_sh])
  2846. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
  2847. }
  2848. } else { // top
  2849. for (k = 1; k < 8; k++) {
  2850. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  2851. if (!v->pquantizer && block[k << v->top_blk_sh])
  2852. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
  2853. }
  2854. }
  2855. i = 63;
  2856. }
  2857. }
  2858. s->block_last_index[n] = i;
  2859. return 0;
  2860. }
  2861. /** Decode P block
  2862. */
  2863. static int vc1_decode_p_block(VC1Context *v, int16_t block[64], int n,
  2864. int mquant, int ttmb, int first_block,
  2865. uint8_t *dst, int linesize, int skip_block,
  2866. int *ttmb_out)
  2867. {
  2868. MpegEncContext *s = &v->s;
  2869. GetBitContext *gb = &s->gb;
  2870. int i, j;
  2871. int subblkpat = 0;
  2872. int scale, off, idx, last, skip, value;
  2873. int ttblk = ttmb & 7;
  2874. int pat = 0;
  2875. s->dsp.clear_block(block);
  2876. if (ttmb == -1) {
  2877. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2878. }
  2879. if (ttblk == TT_4X4) {
  2880. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2881. }
  2882. if ((ttblk != TT_8X8 && ttblk != TT_4X4)
  2883. && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
  2884. || (!v->res_rtm_flag && !first_block))) {
  2885. subblkpat = decode012(gb);
  2886. if (subblkpat)
  2887. subblkpat ^= 3; // swap decoded pattern bits
  2888. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM)
  2889. ttblk = TT_8X4;
  2890. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT)
  2891. ttblk = TT_4X8;
  2892. }
  2893. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2894. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2895. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2896. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2897. ttblk = TT_8X4;
  2898. }
  2899. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2900. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2901. ttblk = TT_4X8;
  2902. }
  2903. switch (ttblk) {
  2904. case TT_8X8:
  2905. pat = 0xF;
  2906. i = 0;
  2907. last = 0;
  2908. while (!last) {
  2909. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2910. i += skip;
  2911. if (i > 63)
  2912. break;
  2913. if (!v->fcm)
  2914. idx = v->zz_8x8[0][i++];
  2915. else
  2916. idx = v->zzi_8x8[i++];
  2917. block[idx] = value * scale;
  2918. if (!v->pquantizer)
  2919. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2920. }
  2921. if (!skip_block) {
  2922. if (i == 1)
  2923. v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
  2924. else {
  2925. v->vc1dsp.vc1_inv_trans_8x8(block);
  2926. s->dsp.add_pixels_clamped(block, dst, linesize);
  2927. }
  2928. }
  2929. break;
  2930. case TT_4X4:
  2931. pat = ~subblkpat & 0xF;
  2932. for (j = 0; j < 4; j++) {
  2933. last = subblkpat & (1 << (3 - j));
  2934. i = 0;
  2935. off = (j & 1) * 4 + (j & 2) * 16;
  2936. while (!last) {
  2937. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2938. i += skip;
  2939. if (i > 15)
  2940. break;
  2941. if (!v->fcm)
  2942. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2943. else
  2944. idx = ff_vc1_adv_interlaced_4x4_zz[i++];
  2945. block[idx + off] = value * scale;
  2946. if (!v->pquantizer)
  2947. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2948. }
  2949. if (!(subblkpat & (1 << (3 - j))) && !skip_block) {
  2950. if (i == 1)
  2951. v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  2952. else
  2953. v->vc1dsp.vc1_inv_trans_4x4(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  2954. }
  2955. }
  2956. break;
  2957. case TT_8X4:
  2958. pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF;
  2959. for (j = 0; j < 2; j++) {
  2960. last = subblkpat & (1 << (1 - j));
  2961. i = 0;
  2962. off = j * 32;
  2963. while (!last) {
  2964. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2965. i += skip;
  2966. if (i > 31)
  2967. break;
  2968. if (!v->fcm)
  2969. idx = v->zz_8x4[i++] + off;
  2970. else
  2971. idx = ff_vc1_adv_interlaced_8x4_zz[i++] + off;
  2972. block[idx] = value * scale;
  2973. if (!v->pquantizer)
  2974. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2975. }
  2976. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  2977. if (i == 1)
  2978. v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j * 4 * linesize, linesize, block + off);
  2979. else
  2980. v->vc1dsp.vc1_inv_trans_8x4(dst + j * 4 * linesize, linesize, block + off);
  2981. }
  2982. }
  2983. break;
  2984. case TT_4X8:
  2985. pat = ~(subblkpat * 5) & 0xF;
  2986. for (j = 0; j < 2; j++) {
  2987. last = subblkpat & (1 << (1 - j));
  2988. i = 0;
  2989. off = j * 4;
  2990. while (!last) {
  2991. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2992. i += skip;
  2993. if (i > 31)
  2994. break;
  2995. if (!v->fcm)
  2996. idx = v->zz_4x8[i++] + off;
  2997. else
  2998. idx = ff_vc1_adv_interlaced_4x8_zz[i++] + off;
  2999. block[idx] = value * scale;
  3000. if (!v->pquantizer)
  3001. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  3002. }
  3003. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  3004. if (i == 1)
  3005. v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j * 4, linesize, block + off);
  3006. else
  3007. v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  3008. }
  3009. }
  3010. break;
  3011. }
  3012. if (ttmb_out)
  3013. *ttmb_out |= ttblk << (n * 4);
  3014. return pat;
  3015. }
  3016. /** @} */ // Macroblock group
  3017. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  3018. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3019. static av_always_inline void vc1_apply_p_v_loop_filter(VC1Context *v, int block_num)
  3020. {
  3021. MpegEncContext *s = &v->s;
  3022. int mb_cbp = v->cbp[s->mb_x - s->mb_stride],
  3023. block_cbp = mb_cbp >> (block_num * 4), bottom_cbp,
  3024. mb_is_intra = v->is_intra[s->mb_x - s->mb_stride],
  3025. block_is_intra = mb_is_intra >> (block_num * 4), bottom_is_intra;
  3026. int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
  3027. uint8_t *dst;
  3028. if (block_num > 3) {
  3029. dst = s->dest[block_num - 3];
  3030. } else {
  3031. dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 8) * linesize;
  3032. }
  3033. if (s->mb_y != s->end_mb_y || block_num < 2) {
  3034. int16_t (*mv)[2];
  3035. int mv_stride;
  3036. if (block_num > 3) {
  3037. bottom_cbp = v->cbp[s->mb_x] >> (block_num * 4);
  3038. bottom_is_intra = v->is_intra[s->mb_x] >> (block_num * 4);
  3039. mv = &v->luma_mv[s->mb_x - s->mb_stride];
  3040. mv_stride = s->mb_stride;
  3041. } else {
  3042. bottom_cbp = (block_num < 2) ? (mb_cbp >> ((block_num + 2) * 4))
  3043. : (v->cbp[s->mb_x] >> ((block_num - 2) * 4));
  3044. bottom_is_intra = (block_num < 2) ? (mb_is_intra >> ((block_num + 2) * 4))
  3045. : (v->is_intra[s->mb_x] >> ((block_num - 2) * 4));
  3046. mv_stride = s->b8_stride;
  3047. mv = &s->current_picture.motion_val[0][s->block_index[block_num] - 2 * mv_stride];
  3048. }
  3049. if (bottom_is_intra & 1 || block_is_intra & 1 ||
  3050. mv[0][0] != mv[mv_stride][0] || mv[0][1] != mv[mv_stride][1]) {
  3051. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  3052. } else {
  3053. idx = ((bottom_cbp >> 2) | block_cbp) & 3;
  3054. if (idx == 3) {
  3055. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  3056. } else if (idx) {
  3057. if (idx == 1)
  3058. v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
  3059. else
  3060. v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
  3061. }
  3062. }
  3063. }
  3064. dst -= 4 * linesize;
  3065. ttblk = (v->ttblk[s->mb_x - s->mb_stride] >> (block_num * 4)) & 0xF;
  3066. if (ttblk == TT_4X4 || ttblk == TT_8X4) {
  3067. idx = (block_cbp | (block_cbp >> 2)) & 3;
  3068. if (idx == 3) {
  3069. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  3070. } else if (idx) {
  3071. if (idx == 1)
  3072. v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
  3073. else
  3074. v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
  3075. }
  3076. }
  3077. }
  3078. static av_always_inline void vc1_apply_p_h_loop_filter(VC1Context *v, int block_num)
  3079. {
  3080. MpegEncContext *s = &v->s;
  3081. int mb_cbp = v->cbp[s->mb_x - 1 - s->mb_stride],
  3082. block_cbp = mb_cbp >> (block_num * 4), right_cbp,
  3083. mb_is_intra = v->is_intra[s->mb_x - 1 - s->mb_stride],
  3084. block_is_intra = mb_is_intra >> (block_num * 4), right_is_intra;
  3085. int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
  3086. uint8_t *dst;
  3087. if (block_num > 3) {
  3088. dst = s->dest[block_num - 3] - 8 * linesize;
  3089. } else {
  3090. dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 16) * linesize - 8;
  3091. }
  3092. if (s->mb_x != s->mb_width || !(block_num & 5)) {
  3093. int16_t (*mv)[2];
  3094. if (block_num > 3) {
  3095. right_cbp = v->cbp[s->mb_x - s->mb_stride] >> (block_num * 4);
  3096. right_is_intra = v->is_intra[s->mb_x - s->mb_stride] >> (block_num * 4);
  3097. mv = &v->luma_mv[s->mb_x - s->mb_stride - 1];
  3098. } else {
  3099. right_cbp = (block_num & 1) ? (v->cbp[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4))
  3100. : (mb_cbp >> ((block_num + 1) * 4));
  3101. right_is_intra = (block_num & 1) ? (v->is_intra[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4))
  3102. : (mb_is_intra >> ((block_num + 1) * 4));
  3103. mv = &s->current_picture.motion_val[0][s->block_index[block_num] - s->b8_stride * 2 - 2];
  3104. }
  3105. if (block_is_intra & 1 || right_is_intra & 1 || mv[0][0] != mv[1][0] || mv[0][1] != mv[1][1]) {
  3106. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  3107. } else {
  3108. idx = ((right_cbp >> 1) | block_cbp) & 5; // FIXME check
  3109. if (idx == 5) {
  3110. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  3111. } else if (idx) {
  3112. if (idx == 1)
  3113. v->vc1dsp.vc1_h_loop_filter4(dst + 4 * linesize, linesize, v->pq);
  3114. else
  3115. v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
  3116. }
  3117. }
  3118. }
  3119. dst -= 4;
  3120. ttblk = (v->ttblk[s->mb_x - s->mb_stride - 1] >> (block_num * 4)) & 0xf;
  3121. if (ttblk == TT_4X4 || ttblk == TT_4X8) {
  3122. idx = (block_cbp | (block_cbp >> 1)) & 5;
  3123. if (idx == 5) {
  3124. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  3125. } else if (idx) {
  3126. if (idx == 1)
  3127. v->vc1dsp.vc1_h_loop_filter4(dst + linesize * 4, linesize, v->pq);
  3128. else
  3129. v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
  3130. }
  3131. }
  3132. }
  3133. static void vc1_apply_p_loop_filter(VC1Context *v)
  3134. {
  3135. MpegEncContext *s = &v->s;
  3136. int i;
  3137. for (i = 0; i < 6; i++) {
  3138. vc1_apply_p_v_loop_filter(v, i);
  3139. }
  3140. /* V always precedes H, therefore we run H one MB before V;
  3141. * at the end of a row, we catch up to complete the row */
  3142. if (s->mb_x) {
  3143. for (i = 0; i < 6; i++) {
  3144. vc1_apply_p_h_loop_filter(v, i);
  3145. }
  3146. if (s->mb_x == s->mb_width - 1) {
  3147. s->mb_x++;
  3148. ff_update_block_index(s);
  3149. for (i = 0; i < 6; i++) {
  3150. vc1_apply_p_h_loop_filter(v, i);
  3151. }
  3152. }
  3153. }
  3154. }
  3155. /** Decode one P-frame MB
  3156. */
  3157. static int vc1_decode_p_mb(VC1Context *v)
  3158. {
  3159. MpegEncContext *s = &v->s;
  3160. GetBitContext *gb = &s->gb;
  3161. int i, j;
  3162. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3163. int cbp; /* cbp decoding stuff */
  3164. int mqdiff, mquant; /* MB quantization */
  3165. int ttmb = v->ttfrm; /* MB Transform type */
  3166. int mb_has_coeffs = 1; /* last_flag */
  3167. int dmv_x, dmv_y; /* Differential MV components */
  3168. int index, index1; /* LUT indexes */
  3169. int val, sign; /* temp values */
  3170. int first_block = 1;
  3171. int dst_idx, off;
  3172. int skipped, fourmv;
  3173. int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
  3174. mquant = v->pq; /* lossy initialization */
  3175. if (v->mv_type_is_raw)
  3176. fourmv = get_bits1(gb);
  3177. else
  3178. fourmv = v->mv_type_mb_plane[mb_pos];
  3179. if (v->skip_is_raw)
  3180. skipped = get_bits1(gb);
  3181. else
  3182. skipped = v->s.mbskip_table[mb_pos];
  3183. if (!fourmv) { /* 1MV mode */
  3184. if (!skipped) {
  3185. GET_MVDATA(dmv_x, dmv_y);
  3186. if (s->mb_intra) {
  3187. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3188. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3189. }
  3190. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  3191. vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3192. /* FIXME Set DC val for inter block ? */
  3193. if (s->mb_intra && !mb_has_coeffs) {
  3194. GET_MQUANT();
  3195. s->ac_pred = get_bits1(gb);
  3196. cbp = 0;
  3197. } else if (mb_has_coeffs) {
  3198. if (s->mb_intra)
  3199. s->ac_pred = get_bits1(gb);
  3200. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3201. GET_MQUANT();
  3202. } else {
  3203. mquant = v->pq;
  3204. cbp = 0;
  3205. }
  3206. s->current_picture.qscale_table[mb_pos] = mquant;
  3207. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3208. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  3209. VC1_TTMB_VLC_BITS, 2);
  3210. if (!s->mb_intra) vc1_mc_1mv(v, 0);
  3211. dst_idx = 0;
  3212. for (i = 0; i < 6; i++) {
  3213. s->dc_val[0][s->block_index[i]] = 0;
  3214. dst_idx += i >> 2;
  3215. val = ((cbp >> (5 - i)) & 1);
  3216. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3217. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3218. if (s->mb_intra) {
  3219. /* check if prediction blocks A and C are available */
  3220. v->a_avail = v->c_avail = 0;
  3221. if (i == 2 || i == 3 || !s->first_slice_line)
  3222. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3223. if (i == 1 || i == 3 || s->mb_x)
  3224. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3225. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3226. (i & 4) ? v->codingset2 : v->codingset);
  3227. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3228. continue;
  3229. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3230. if (v->rangeredfrm)
  3231. for (j = 0; j < 64; j++)
  3232. s->block[i][j] <<= 1;
  3233. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3234. if (v->pq >= 9 && v->overlap) {
  3235. if (v->c_avail)
  3236. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3237. if (v->a_avail)
  3238. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3239. }
  3240. block_cbp |= 0xF << (i << 2);
  3241. block_intra |= 1 << i;
  3242. } else if (val) {
  3243. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block,
  3244. s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize,
  3245. (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  3246. block_cbp |= pat << (i << 2);
  3247. if (!v->ttmbf && ttmb < 8)
  3248. ttmb = -1;
  3249. first_block = 0;
  3250. }
  3251. }
  3252. } else { // skipped
  3253. s->mb_intra = 0;
  3254. for (i = 0; i < 6; i++) {
  3255. v->mb_type[0][s->block_index[i]] = 0;
  3256. s->dc_val[0][s->block_index[i]] = 0;
  3257. }
  3258. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3259. s->current_picture.qscale_table[mb_pos] = 0;
  3260. vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3261. vc1_mc_1mv(v, 0);
  3262. }
  3263. } else { // 4MV mode
  3264. if (!skipped /* unskipped MB */) {
  3265. int intra_count = 0, coded_inter = 0;
  3266. int is_intra[6], is_coded[6];
  3267. /* Get CBPCY */
  3268. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3269. for (i = 0; i < 6; i++) {
  3270. val = ((cbp >> (5 - i)) & 1);
  3271. s->dc_val[0][s->block_index[i]] = 0;
  3272. s->mb_intra = 0;
  3273. if (i < 4) {
  3274. dmv_x = dmv_y = 0;
  3275. s->mb_intra = 0;
  3276. mb_has_coeffs = 0;
  3277. if (val) {
  3278. GET_MVDATA(dmv_x, dmv_y);
  3279. }
  3280. vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3281. if (!s->mb_intra)
  3282. vc1_mc_4mv_luma(v, i, 0);
  3283. intra_count += s->mb_intra;
  3284. is_intra[i] = s->mb_intra;
  3285. is_coded[i] = mb_has_coeffs;
  3286. }
  3287. if (i & 4) {
  3288. is_intra[i] = (intra_count >= 3);
  3289. is_coded[i] = val;
  3290. }
  3291. if (i == 4)
  3292. vc1_mc_4mv_chroma(v, 0);
  3293. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3294. if (!coded_inter)
  3295. coded_inter = !is_intra[i] & is_coded[i];
  3296. }
  3297. // if there are no coded blocks then don't do anything more
  3298. dst_idx = 0;
  3299. if (!intra_count && !coded_inter)
  3300. goto end;
  3301. GET_MQUANT();
  3302. s->current_picture.qscale_table[mb_pos] = mquant;
  3303. /* test if block is intra and has pred */
  3304. {
  3305. int intrapred = 0;
  3306. for (i = 0; i < 6; i++)
  3307. if (is_intra[i]) {
  3308. if (((!s->first_slice_line || (i == 2 || i == 3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3309. || ((s->mb_x || (i == 1 || i == 3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3310. intrapred = 1;
  3311. break;
  3312. }
  3313. }
  3314. if (intrapred)
  3315. s->ac_pred = get_bits1(gb);
  3316. else
  3317. s->ac_pred = 0;
  3318. }
  3319. if (!v->ttmbf && coded_inter)
  3320. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3321. for (i = 0; i < 6; i++) {
  3322. dst_idx += i >> 2;
  3323. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3324. s->mb_intra = is_intra[i];
  3325. if (is_intra[i]) {
  3326. /* check if prediction blocks A and C are available */
  3327. v->a_avail = v->c_avail = 0;
  3328. if (i == 2 || i == 3 || !s->first_slice_line)
  3329. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3330. if (i == 1 || i == 3 || s->mb_x)
  3331. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3332. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant,
  3333. (i & 4) ? v->codingset2 : v->codingset);
  3334. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3335. continue;
  3336. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3337. if (v->rangeredfrm)
  3338. for (j = 0; j < 64; j++)
  3339. s->block[i][j] <<= 1;
  3340. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off,
  3341. (i & 4) ? s->uvlinesize : s->linesize);
  3342. if (v->pq >= 9 && v->overlap) {
  3343. if (v->c_avail)
  3344. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3345. if (v->a_avail)
  3346. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3347. }
  3348. block_cbp |= 0xF << (i << 2);
  3349. block_intra |= 1 << i;
  3350. } else if (is_coded[i]) {
  3351. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3352. first_block, s->dest[dst_idx] + off,
  3353. (i & 4) ? s->uvlinesize : s->linesize,
  3354. (i & 4) && (s->flags & CODEC_FLAG_GRAY),
  3355. &block_tt);
  3356. block_cbp |= pat << (i << 2);
  3357. if (!v->ttmbf && ttmb < 8)
  3358. ttmb = -1;
  3359. first_block = 0;
  3360. }
  3361. }
  3362. } else { // skipped MB
  3363. s->mb_intra = 0;
  3364. s->current_picture.qscale_table[mb_pos] = 0;
  3365. for (i = 0; i < 6; i++) {
  3366. v->mb_type[0][s->block_index[i]] = 0;
  3367. s->dc_val[0][s->block_index[i]] = 0;
  3368. }
  3369. for (i = 0; i < 4; i++) {
  3370. vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3371. vc1_mc_4mv_luma(v, i, 0);
  3372. }
  3373. vc1_mc_4mv_chroma(v, 0);
  3374. s->current_picture.qscale_table[mb_pos] = 0;
  3375. }
  3376. }
  3377. end:
  3378. v->cbp[s->mb_x] = block_cbp;
  3379. v->ttblk[s->mb_x] = block_tt;
  3380. v->is_intra[s->mb_x] = block_intra;
  3381. return 0;
  3382. }
  3383. /* Decode one macroblock in an interlaced frame p picture */
  3384. static int vc1_decode_p_mb_intfr(VC1Context *v)
  3385. {
  3386. MpegEncContext *s = &v->s;
  3387. GetBitContext *gb = &s->gb;
  3388. int i;
  3389. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3390. int cbp = 0; /* cbp decoding stuff */
  3391. int mqdiff, mquant; /* MB quantization */
  3392. int ttmb = v->ttfrm; /* MB Transform type */
  3393. int mb_has_coeffs = 1; /* last_flag */
  3394. int dmv_x, dmv_y; /* Differential MV components */
  3395. int val; /* temp value */
  3396. int first_block = 1;
  3397. int dst_idx, off;
  3398. int skipped, fourmv = 0, twomv = 0;
  3399. int block_cbp = 0, pat, block_tt = 0;
  3400. int idx_mbmode = 0, mvbp;
  3401. int stride_y, fieldtx;
  3402. mquant = v->pq; /* Loosy initialization */
  3403. if (v->skip_is_raw)
  3404. skipped = get_bits1(gb);
  3405. else
  3406. skipped = v->s.mbskip_table[mb_pos];
  3407. if (!skipped) {
  3408. if (v->fourmvswitch)
  3409. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done
  3410. else
  3411. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line
  3412. switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) {
  3413. /* store the motion vector type in a flag (useful later) */
  3414. case MV_PMODE_INTFR_4MV:
  3415. fourmv = 1;
  3416. v->blk_mv_type[s->block_index[0]] = 0;
  3417. v->blk_mv_type[s->block_index[1]] = 0;
  3418. v->blk_mv_type[s->block_index[2]] = 0;
  3419. v->blk_mv_type[s->block_index[3]] = 0;
  3420. break;
  3421. case MV_PMODE_INTFR_4MV_FIELD:
  3422. fourmv = 1;
  3423. v->blk_mv_type[s->block_index[0]] = 1;
  3424. v->blk_mv_type[s->block_index[1]] = 1;
  3425. v->blk_mv_type[s->block_index[2]] = 1;
  3426. v->blk_mv_type[s->block_index[3]] = 1;
  3427. break;
  3428. case MV_PMODE_INTFR_2MV_FIELD:
  3429. twomv = 1;
  3430. v->blk_mv_type[s->block_index[0]] = 1;
  3431. v->blk_mv_type[s->block_index[1]] = 1;
  3432. v->blk_mv_type[s->block_index[2]] = 1;
  3433. v->blk_mv_type[s->block_index[3]] = 1;
  3434. break;
  3435. case MV_PMODE_INTFR_1MV:
  3436. v->blk_mv_type[s->block_index[0]] = 0;
  3437. v->blk_mv_type[s->block_index[1]] = 0;
  3438. v->blk_mv_type[s->block_index[2]] = 0;
  3439. v->blk_mv_type[s->block_index[3]] = 0;
  3440. break;
  3441. }
  3442. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
  3443. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3444. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3445. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3446. s->mb_intra = v->is_intra[s->mb_x] = 1;
  3447. for (i = 0; i < 6; i++)
  3448. v->mb_type[0][s->block_index[i]] = 1;
  3449. fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
  3450. mb_has_coeffs = get_bits1(gb);
  3451. if (mb_has_coeffs)
  3452. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3453. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  3454. GET_MQUANT();
  3455. s->current_picture.qscale_table[mb_pos] = mquant;
  3456. /* Set DC scale - y and c use the same (not sure if necessary here) */
  3457. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3458. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3459. dst_idx = 0;
  3460. for (i = 0; i < 6; i++) {
  3461. s->dc_val[0][s->block_index[i]] = 0;
  3462. dst_idx += i >> 2;
  3463. val = ((cbp >> (5 - i)) & 1);
  3464. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3465. v->a_avail = v->c_avail = 0;
  3466. if (i == 2 || i == 3 || !s->first_slice_line)
  3467. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3468. if (i == 1 || i == 3 || s->mb_x)
  3469. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3470. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3471. (i & 4) ? v->codingset2 : v->codingset);
  3472. if ((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3473. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3474. if (i < 4) {
  3475. stride_y = s->linesize << fieldtx;
  3476. off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
  3477. } else {
  3478. stride_y = s->uvlinesize;
  3479. off = 0;
  3480. }
  3481. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, stride_y);
  3482. //TODO: loop filter
  3483. }
  3484. } else { // inter MB
  3485. mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3];
  3486. if (mb_has_coeffs)
  3487. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3488. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
  3489. v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
  3490. } else {
  3491. if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV)
  3492. || (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) {
  3493. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  3494. }
  3495. }
  3496. s->mb_intra = v->is_intra[s->mb_x] = 0;
  3497. for (i = 0; i < 6; i++)
  3498. v->mb_type[0][s->block_index[i]] = 0;
  3499. fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1];
  3500. /* for all motion vector read MVDATA and motion compensate each block */
  3501. dst_idx = 0;
  3502. if (fourmv) {
  3503. mvbp = v->fourmvbp;
  3504. for (i = 0; i < 6; i++) {
  3505. if (i < 4) {
  3506. dmv_x = dmv_y = 0;
  3507. val = ((mvbp >> (3 - i)) & 1);
  3508. if (val) {
  3509. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3510. }
  3511. vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3512. vc1_mc_4mv_luma(v, i, 0);
  3513. } else if (i == 4) {
  3514. vc1_mc_4mv_chroma4(v);
  3515. }
  3516. }
  3517. } else if (twomv) {
  3518. mvbp = v->twomvbp;
  3519. dmv_x = dmv_y = 0;
  3520. if (mvbp & 2) {
  3521. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3522. }
  3523. vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0]);
  3524. vc1_mc_4mv_luma(v, 0, 0);
  3525. vc1_mc_4mv_luma(v, 1, 0);
  3526. dmv_x = dmv_y = 0;
  3527. if (mvbp & 1) {
  3528. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3529. }
  3530. vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0]);
  3531. vc1_mc_4mv_luma(v, 2, 0);
  3532. vc1_mc_4mv_luma(v, 3, 0);
  3533. vc1_mc_4mv_chroma4(v);
  3534. } else {
  3535. mvbp = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][2];
  3536. dmv_x = dmv_y = 0;
  3537. if (mvbp) {
  3538. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3539. }
  3540. vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  3541. vc1_mc_1mv(v, 0);
  3542. }
  3543. if (cbp)
  3544. GET_MQUANT(); // p. 227
  3545. s->current_picture.qscale_table[mb_pos] = mquant;
  3546. if (!v->ttmbf && cbp)
  3547. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3548. for (i = 0; i < 6; i++) {
  3549. s->dc_val[0][s->block_index[i]] = 0;
  3550. dst_idx += i >> 2;
  3551. val = ((cbp >> (5 - i)) & 1);
  3552. if (!fieldtx)
  3553. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3554. else
  3555. off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
  3556. if (val) {
  3557. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3558. first_block, s->dest[dst_idx] + off,
  3559. (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
  3560. (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  3561. block_cbp |= pat << (i << 2);
  3562. if (!v->ttmbf && ttmb < 8)
  3563. ttmb = -1;
  3564. first_block = 0;
  3565. }
  3566. }
  3567. }
  3568. } else { // skipped
  3569. s->mb_intra = v->is_intra[s->mb_x] = 0;
  3570. for (i = 0; i < 6; i++) {
  3571. v->mb_type[0][s->block_index[i]] = 0;
  3572. s->dc_val[0][s->block_index[i]] = 0;
  3573. }
  3574. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3575. s->current_picture.qscale_table[mb_pos] = 0;
  3576. v->blk_mv_type[s->block_index[0]] = 0;
  3577. v->blk_mv_type[s->block_index[1]] = 0;
  3578. v->blk_mv_type[s->block_index[2]] = 0;
  3579. v->blk_mv_type[s->block_index[3]] = 0;
  3580. vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  3581. vc1_mc_1mv(v, 0);
  3582. }
  3583. if (s->mb_x == s->mb_width - 1)
  3584. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0])*s->mb_stride);
  3585. return 0;
  3586. }
  3587. static int vc1_decode_p_mb_intfi(VC1Context *v)
  3588. {
  3589. MpegEncContext *s = &v->s;
  3590. GetBitContext *gb = &s->gb;
  3591. int i;
  3592. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3593. int cbp = 0; /* cbp decoding stuff */
  3594. int mqdiff, mquant; /* MB quantization */
  3595. int ttmb = v->ttfrm; /* MB Transform type */
  3596. int mb_has_coeffs = 1; /* last_flag */
  3597. int dmv_x, dmv_y; /* Differential MV components */
  3598. int val; /* temp values */
  3599. int first_block = 1;
  3600. int dst_idx, off;
  3601. int pred_flag;
  3602. int block_cbp = 0, pat, block_tt = 0;
  3603. int idx_mbmode = 0;
  3604. mquant = v->pq; /* Loosy initialization */
  3605. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  3606. if (idx_mbmode <= 1) { // intra MB
  3607. s->mb_intra = v->is_intra[s->mb_x] = 1;
  3608. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  3609. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  3610. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  3611. GET_MQUANT();
  3612. s->current_picture.qscale_table[mb_pos] = mquant;
  3613. /* Set DC scale - y and c use the same (not sure if necessary here) */
  3614. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3615. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3616. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  3617. mb_has_coeffs = idx_mbmode & 1;
  3618. if (mb_has_coeffs)
  3619. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  3620. dst_idx = 0;
  3621. for (i = 0; i < 6; i++) {
  3622. s->dc_val[0][s->block_index[i]] = 0;
  3623. v->mb_type[0][s->block_index[i]] = 1;
  3624. dst_idx += i >> 2;
  3625. val = ((cbp >> (5 - i)) & 1);
  3626. v->a_avail = v->c_avail = 0;
  3627. if (i == 2 || i == 3 || !s->first_slice_line)
  3628. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3629. if (i == 1 || i == 3 || s->mb_x)
  3630. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3631. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3632. (i & 4) ? v->codingset2 : v->codingset);
  3633. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3634. continue;
  3635. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3636. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3637. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize);
  3638. // TODO: loop filter
  3639. }
  3640. } else {
  3641. s->mb_intra = v->is_intra[s->mb_x] = 0;
  3642. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  3643. for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
  3644. if (idx_mbmode <= 5) { // 1-MV
  3645. dmv_x = dmv_y = pred_flag = 0;
  3646. if (idx_mbmode & 1) {
  3647. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  3648. }
  3649. vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  3650. vc1_mc_1mv(v, 0);
  3651. mb_has_coeffs = !(idx_mbmode & 2);
  3652. } else { // 4-MV
  3653. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  3654. for (i = 0; i < 6; i++) {
  3655. if (i < 4) {
  3656. dmv_x = dmv_y = pred_flag = 0;
  3657. val = ((v->fourmvbp >> (3 - i)) & 1);
  3658. if (val) {
  3659. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  3660. }
  3661. vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  3662. vc1_mc_4mv_luma(v, i, 0);
  3663. } else if (i == 4)
  3664. vc1_mc_4mv_chroma(v, 0);
  3665. }
  3666. mb_has_coeffs = idx_mbmode & 1;
  3667. }
  3668. if (mb_has_coeffs)
  3669. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3670. if (cbp) {
  3671. GET_MQUANT();
  3672. }
  3673. s->current_picture.qscale_table[mb_pos] = mquant;
  3674. if (!v->ttmbf && cbp) {
  3675. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3676. }
  3677. dst_idx = 0;
  3678. for (i = 0; i < 6; i++) {
  3679. s->dc_val[0][s->block_index[i]] = 0;
  3680. dst_idx += i >> 2;
  3681. val = ((cbp >> (5 - i)) & 1);
  3682. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  3683. if (val) {
  3684. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3685. first_block, s->dest[dst_idx] + off,
  3686. (i & 4) ? s->uvlinesize : s->linesize,
  3687. (i & 4) && (s->flags & CODEC_FLAG_GRAY),
  3688. &block_tt);
  3689. block_cbp |= pat << (i << 2);
  3690. if (!v->ttmbf && ttmb < 8) ttmb = -1;
  3691. first_block = 0;
  3692. }
  3693. }
  3694. }
  3695. if (s->mb_x == s->mb_width - 1)
  3696. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  3697. return 0;
  3698. }
  3699. /** Decode one B-frame MB (in Main profile)
  3700. */
  3701. static void vc1_decode_b_mb(VC1Context *v)
  3702. {
  3703. MpegEncContext *s = &v->s;
  3704. GetBitContext *gb = &s->gb;
  3705. int i, j;
  3706. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3707. int cbp = 0; /* cbp decoding stuff */
  3708. int mqdiff, mquant; /* MB quantization */
  3709. int ttmb = v->ttfrm; /* MB Transform type */
  3710. int mb_has_coeffs = 0; /* last_flag */
  3711. int index, index1; /* LUT indexes */
  3712. int val, sign; /* temp values */
  3713. int first_block = 1;
  3714. int dst_idx, off;
  3715. int skipped, direct;
  3716. int dmv_x[2], dmv_y[2];
  3717. int bmvtype = BMV_TYPE_BACKWARD;
  3718. mquant = v->pq; /* lossy initialization */
  3719. s->mb_intra = 0;
  3720. if (v->dmb_is_raw)
  3721. direct = get_bits1(gb);
  3722. else
  3723. direct = v->direct_mb_plane[mb_pos];
  3724. if (v->skip_is_raw)
  3725. skipped = get_bits1(gb);
  3726. else
  3727. skipped = v->s.mbskip_table[mb_pos];
  3728. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3729. for (i = 0; i < 6; i++) {
  3730. v->mb_type[0][s->block_index[i]] = 0;
  3731. s->dc_val[0][s->block_index[i]] = 0;
  3732. }
  3733. s->current_picture.qscale_table[mb_pos] = 0;
  3734. if (!direct) {
  3735. if (!skipped) {
  3736. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3737. dmv_x[1] = dmv_x[0];
  3738. dmv_y[1] = dmv_y[0];
  3739. }
  3740. if (skipped || !s->mb_intra) {
  3741. bmvtype = decode012(gb);
  3742. switch (bmvtype) {
  3743. case 0:
  3744. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3745. break;
  3746. case 1:
  3747. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3748. break;
  3749. case 2:
  3750. bmvtype = BMV_TYPE_INTERPOLATED;
  3751. dmv_x[0] = dmv_y[0] = 0;
  3752. }
  3753. }
  3754. }
  3755. for (i = 0; i < 6; i++)
  3756. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3757. if (skipped) {
  3758. if (direct)
  3759. bmvtype = BMV_TYPE_INTERPOLATED;
  3760. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3761. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3762. return;
  3763. }
  3764. if (direct) {
  3765. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3766. GET_MQUANT();
  3767. s->mb_intra = 0;
  3768. s->current_picture.qscale_table[mb_pos] = mquant;
  3769. if (!v->ttmbf)
  3770. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3771. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3772. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3773. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3774. } else {
  3775. if (!mb_has_coeffs && !s->mb_intra) {
  3776. /* no coded blocks - effectively skipped */
  3777. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3778. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3779. return;
  3780. }
  3781. if (s->mb_intra && !mb_has_coeffs) {
  3782. GET_MQUANT();
  3783. s->current_picture.qscale_table[mb_pos] = mquant;
  3784. s->ac_pred = get_bits1(gb);
  3785. cbp = 0;
  3786. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3787. } else {
  3788. if (bmvtype == BMV_TYPE_INTERPOLATED) {
  3789. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3790. if (!mb_has_coeffs) {
  3791. /* interpolated skipped block */
  3792. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3793. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3794. return;
  3795. }
  3796. }
  3797. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3798. if (!s->mb_intra) {
  3799. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3800. }
  3801. if (s->mb_intra)
  3802. s->ac_pred = get_bits1(gb);
  3803. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3804. GET_MQUANT();
  3805. s->current_picture.qscale_table[mb_pos] = mquant;
  3806. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3807. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3808. }
  3809. }
  3810. dst_idx = 0;
  3811. for (i = 0; i < 6; i++) {
  3812. s->dc_val[0][s->block_index[i]] = 0;
  3813. dst_idx += i >> 2;
  3814. val = ((cbp >> (5 - i)) & 1);
  3815. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3816. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3817. if (s->mb_intra) {
  3818. /* check if prediction blocks A and C are available */
  3819. v->a_avail = v->c_avail = 0;
  3820. if (i == 2 || i == 3 || !s->first_slice_line)
  3821. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3822. if (i == 1 || i == 3 || s->mb_x)
  3823. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3824. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3825. (i & 4) ? v->codingset2 : v->codingset);
  3826. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3827. continue;
  3828. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3829. if (v->rangeredfrm)
  3830. for (j = 0; j < 64; j++)
  3831. s->block[i][j] <<= 1;
  3832. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3833. } else if (val) {
  3834. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3835. first_block, s->dest[dst_idx] + off,
  3836. (i & 4) ? s->uvlinesize : s->linesize,
  3837. (i & 4) && (s->flags & CODEC_FLAG_GRAY), NULL);
  3838. if (!v->ttmbf && ttmb < 8)
  3839. ttmb = -1;
  3840. first_block = 0;
  3841. }
  3842. }
  3843. }
  3844. /** Decode one B-frame MB (in interlaced field B picture)
  3845. */
  3846. static void vc1_decode_b_mb_intfi(VC1Context *v)
  3847. {
  3848. MpegEncContext *s = &v->s;
  3849. GetBitContext *gb = &s->gb;
  3850. int i, j;
  3851. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3852. int cbp = 0; /* cbp decoding stuff */
  3853. int mqdiff, mquant; /* MB quantization */
  3854. int ttmb = v->ttfrm; /* MB Transform type */
  3855. int mb_has_coeffs = 0; /* last_flag */
  3856. int val; /* temp value */
  3857. int first_block = 1;
  3858. int dst_idx, off;
  3859. int fwd;
  3860. int dmv_x[2], dmv_y[2], pred_flag[2];
  3861. int bmvtype = BMV_TYPE_BACKWARD;
  3862. int idx_mbmode, interpmvp;
  3863. mquant = v->pq; /* Loosy initialization */
  3864. s->mb_intra = 0;
  3865. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  3866. if (idx_mbmode <= 1) { // intra MB
  3867. s->mb_intra = v->is_intra[s->mb_x] = 1;
  3868. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3869. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3870. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  3871. GET_MQUANT();
  3872. s->current_picture.qscale_table[mb_pos] = mquant;
  3873. /* Set DC scale - y and c use the same (not sure if necessary here) */
  3874. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3875. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3876. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  3877. mb_has_coeffs = idx_mbmode & 1;
  3878. if (mb_has_coeffs)
  3879. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  3880. dst_idx = 0;
  3881. for (i = 0; i < 6; i++) {
  3882. s->dc_val[0][s->block_index[i]] = 0;
  3883. dst_idx += i >> 2;
  3884. val = ((cbp >> (5 - i)) & 1);
  3885. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3886. v->a_avail = v->c_avail = 0;
  3887. if (i == 2 || i == 3 || !s->first_slice_line)
  3888. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3889. if (i == 1 || i == 3 || s->mb_x)
  3890. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3891. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3892. (i & 4) ? v->codingset2 : v->codingset);
  3893. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3894. continue;
  3895. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3896. if (v->rangeredfrm)
  3897. for (j = 0; j < 64; j++)
  3898. s->block[i][j] <<= 1;
  3899. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3900. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize);
  3901. // TODO: yet to perform loop filter
  3902. }
  3903. } else {
  3904. s->mb_intra = v->is_intra[s->mb_x] = 0;
  3905. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  3906. for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
  3907. if (v->fmb_is_raw)
  3908. fwd = v->forward_mb_plane[mb_pos] = get_bits1(gb);
  3909. else
  3910. fwd = v->forward_mb_plane[mb_pos];
  3911. if (idx_mbmode <= 5) { // 1-MV
  3912. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3913. pred_flag[0] = pred_flag[1] = 0;
  3914. if (fwd)
  3915. bmvtype = BMV_TYPE_FORWARD;
  3916. else {
  3917. bmvtype = decode012(gb);
  3918. switch (bmvtype) {
  3919. case 0:
  3920. bmvtype = BMV_TYPE_BACKWARD;
  3921. break;
  3922. case 1:
  3923. bmvtype = BMV_TYPE_DIRECT;
  3924. break;
  3925. case 2:
  3926. bmvtype = BMV_TYPE_INTERPOLATED;
  3927. interpmvp = get_bits1(gb);
  3928. }
  3929. }
  3930. v->bmvtype = bmvtype;
  3931. if (bmvtype != BMV_TYPE_DIRECT && idx_mbmode & 1) {
  3932. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD], &dmv_y[bmvtype == BMV_TYPE_BACKWARD], &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  3933. }
  3934. if (bmvtype == BMV_TYPE_INTERPOLATED && interpmvp) {
  3935. get_mvdata_interlaced(v, &dmv_x[1], &dmv_y[1], &pred_flag[1]);
  3936. }
  3937. if (bmvtype == BMV_TYPE_DIRECT) {
  3938. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  3939. dmv_x[1] = dmv_y[1] = pred_flag[0] = 0;
  3940. }
  3941. vc1_pred_b_mv_intfi(v, 0, dmv_x, dmv_y, 1, pred_flag);
  3942. vc1_b_mc(v, dmv_x, dmv_y, (bmvtype == BMV_TYPE_DIRECT), bmvtype);
  3943. mb_has_coeffs = !(idx_mbmode & 2);
  3944. } else { // 4-MV
  3945. if (fwd)
  3946. bmvtype = BMV_TYPE_FORWARD;
  3947. v->bmvtype = bmvtype;
  3948. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  3949. for (i = 0; i < 6; i++) {
  3950. if (i < 4) {
  3951. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  3952. dmv_x[1] = dmv_y[1] = pred_flag[1] = 0;
  3953. val = ((v->fourmvbp >> (3 - i)) & 1);
  3954. if (val) {
  3955. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD],
  3956. &dmv_y[bmvtype == BMV_TYPE_BACKWARD],
  3957. &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  3958. }
  3959. vc1_pred_b_mv_intfi(v, i, dmv_x, dmv_y, 0, pred_flag);
  3960. vc1_mc_4mv_luma(v, i, bmvtype == BMV_TYPE_BACKWARD);
  3961. } else if (i == 4)
  3962. vc1_mc_4mv_chroma(v, bmvtype == BMV_TYPE_BACKWARD);
  3963. }
  3964. mb_has_coeffs = idx_mbmode & 1;
  3965. }
  3966. if (mb_has_coeffs)
  3967. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3968. if (cbp) {
  3969. GET_MQUANT();
  3970. }
  3971. s->current_picture.qscale_table[mb_pos] = mquant;
  3972. if (!v->ttmbf && cbp) {
  3973. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3974. }
  3975. dst_idx = 0;
  3976. for (i = 0; i < 6; i++) {
  3977. s->dc_val[0][s->block_index[i]] = 0;
  3978. dst_idx += i >> 2;
  3979. val = ((cbp >> (5 - i)) & 1);
  3980. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  3981. if (val) {
  3982. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3983. first_block, s->dest[dst_idx] + off,
  3984. (i & 4) ? s->uvlinesize : s->linesize,
  3985. (i & 4) && (s->flags & CODEC_FLAG_GRAY), NULL);
  3986. if (!v->ttmbf && ttmb < 8)
  3987. ttmb = -1;
  3988. first_block = 0;
  3989. }
  3990. }
  3991. }
  3992. }
  3993. /** Decode blocks of I-frame
  3994. */
  3995. static void vc1_decode_i_blocks(VC1Context *v)
  3996. {
  3997. int k, j;
  3998. MpegEncContext *s = &v->s;
  3999. int cbp, val;
  4000. uint8_t *coded_val;
  4001. int mb_pos;
  4002. /* select codingmode used for VLC tables selection */
  4003. switch (v->y_ac_table_index) {
  4004. case 0:
  4005. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4006. break;
  4007. case 1:
  4008. v->codingset = CS_HIGH_MOT_INTRA;
  4009. break;
  4010. case 2:
  4011. v->codingset = CS_MID_RATE_INTRA;
  4012. break;
  4013. }
  4014. switch (v->c_ac_table_index) {
  4015. case 0:
  4016. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4017. break;
  4018. case 1:
  4019. v->codingset2 = CS_HIGH_MOT_INTER;
  4020. break;
  4021. case 2:
  4022. v->codingset2 = CS_MID_RATE_INTER;
  4023. break;
  4024. }
  4025. /* Set DC scale - y and c use the same */
  4026. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  4027. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  4028. //do frame decode
  4029. s->mb_x = s->mb_y = 0;
  4030. s->mb_intra = 1;
  4031. s->first_slice_line = 1;
  4032. for (s->mb_y = 0; s->mb_y < s->end_mb_y; s->mb_y++) {
  4033. s->mb_x = 0;
  4034. init_block_index(v);
  4035. for (; s->mb_x < v->end_mb_x; s->mb_x++) {
  4036. uint8_t *dst[6];
  4037. ff_update_block_index(s);
  4038. dst[0] = s->dest[0];
  4039. dst[1] = dst[0] + 8;
  4040. dst[2] = s->dest[0] + s->linesize * 8;
  4041. dst[3] = dst[2] + 8;
  4042. dst[4] = s->dest[1];
  4043. dst[5] = s->dest[2];
  4044. s->dsp.clear_blocks(s->block[0]);
  4045. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  4046. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  4047. s->current_picture.qscale_table[mb_pos] = v->pq;
  4048. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  4049. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  4050. // do actual MB decoding and displaying
  4051. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  4052. v->s.ac_pred = get_bits1(&v->s.gb);
  4053. for (k = 0; k < 6; k++) {
  4054. val = ((cbp >> (5 - k)) & 1);
  4055. if (k < 4) {
  4056. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  4057. val = val ^ pred;
  4058. *coded_val = val;
  4059. }
  4060. cbp |= val << (5 - k);
  4061. vc1_decode_i_block(v, s->block[k], k, val, (k < 4) ? v->codingset : v->codingset2);
  4062. if (k > 3 && (s->flags & CODEC_FLAG_GRAY))
  4063. continue;
  4064. v->vc1dsp.vc1_inv_trans_8x8(s->block[k]);
  4065. if (v->pq >= 9 && v->overlap) {
  4066. if (v->rangeredfrm)
  4067. for (j = 0; j < 64; j++)
  4068. s->block[k][j] <<= 1;
  4069. s->dsp.put_signed_pixels_clamped(s->block[k], dst[k], k & 4 ? s->uvlinesize : s->linesize);
  4070. } else {
  4071. if (v->rangeredfrm)
  4072. for (j = 0; j < 64; j++)
  4073. s->block[k][j] = (s->block[k][j] - 64) << 1;
  4074. s->dsp.put_pixels_clamped(s->block[k], dst[k], k & 4 ? s->uvlinesize : s->linesize);
  4075. }
  4076. }
  4077. if (v->pq >= 9 && v->overlap) {
  4078. if (s->mb_x) {
  4079. v->vc1dsp.vc1_h_overlap(s->dest[0], s->linesize);
  4080. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  4081. if (!(s->flags & CODEC_FLAG_GRAY)) {
  4082. v->vc1dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  4083. v->vc1dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  4084. }
  4085. }
  4086. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  4087. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  4088. if (!s->first_slice_line) {
  4089. v->vc1dsp.vc1_v_overlap(s->dest[0], s->linesize);
  4090. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  4091. if (!(s->flags & CODEC_FLAG_GRAY)) {
  4092. v->vc1dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  4093. v->vc1dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  4094. }
  4095. }
  4096. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  4097. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  4098. }
  4099. if (v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  4100. if (get_bits_count(&s->gb) > v->bits) {
  4101. ff_er_add_slice(&s->er, 0, 0, s->mb_x, s->mb_y, ER_MB_ERROR);
  4102. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  4103. get_bits_count(&s->gb), v->bits);
  4104. return;
  4105. }
  4106. }
  4107. if (!v->s.loop_filter)
  4108. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  4109. else if (s->mb_y)
  4110. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  4111. s->first_slice_line = 0;
  4112. }
  4113. if (v->s.loop_filter)
  4114. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  4115. /* This is intentionally mb_height and not end_mb_y - unlike in advanced
  4116. * profile, these only differ are when decoding MSS2 rectangles. */
  4117. ff_er_add_slice(&s->er, 0, 0, s->mb_width - 1, s->mb_height - 1, ER_MB_END);
  4118. }
  4119. /** Decode blocks of I-frame for advanced profile
  4120. */
  4121. static void vc1_decode_i_blocks_adv(VC1Context *v)
  4122. {
  4123. int k;
  4124. MpegEncContext *s = &v->s;
  4125. int cbp, val;
  4126. uint8_t *coded_val;
  4127. int mb_pos;
  4128. int mquant = v->pq;
  4129. int mqdiff;
  4130. GetBitContext *gb = &s->gb;
  4131. /* select codingmode used for VLC tables selection */
  4132. switch (v->y_ac_table_index) {
  4133. case 0:
  4134. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4135. break;
  4136. case 1:
  4137. v->codingset = CS_HIGH_MOT_INTRA;
  4138. break;
  4139. case 2:
  4140. v->codingset = CS_MID_RATE_INTRA;
  4141. break;
  4142. }
  4143. switch (v->c_ac_table_index) {
  4144. case 0:
  4145. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4146. break;
  4147. case 1:
  4148. v->codingset2 = CS_HIGH_MOT_INTER;
  4149. break;
  4150. case 2:
  4151. v->codingset2 = CS_MID_RATE_INTER;
  4152. break;
  4153. }
  4154. // do frame decode
  4155. s->mb_x = s->mb_y = 0;
  4156. s->mb_intra = 1;
  4157. s->first_slice_line = 1;
  4158. s->mb_y = s->start_mb_y;
  4159. if (s->start_mb_y) {
  4160. s->mb_x = 0;
  4161. init_block_index(v);
  4162. memset(&s->coded_block[s->block_index[0] - s->b8_stride], 0,
  4163. (1 + s->b8_stride) * sizeof(*s->coded_block));
  4164. }
  4165. for (; s->mb_y < s->end_mb_y; s->mb_y++) {
  4166. s->mb_x = 0;
  4167. init_block_index(v);
  4168. for (;s->mb_x < s->mb_width; s->mb_x++) {
  4169. int16_t (*block)[64] = v->block[v->cur_blk_idx];
  4170. ff_update_block_index(s);
  4171. s->dsp.clear_blocks(block[0]);
  4172. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  4173. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  4174. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  4175. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  4176. // do actual MB decoding and displaying
  4177. if (v->fieldtx_is_raw)
  4178. v->fieldtx_plane[mb_pos] = get_bits1(&v->s.gb);
  4179. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  4180. if ( v->acpred_is_raw)
  4181. v->s.ac_pred = get_bits1(&v->s.gb);
  4182. else
  4183. v->s.ac_pred = v->acpred_plane[mb_pos];
  4184. if (v->condover == CONDOVER_SELECT && v->overflg_is_raw)
  4185. v->over_flags_plane[mb_pos] = get_bits1(&v->s.gb);
  4186. GET_MQUANT();
  4187. s->current_picture.qscale_table[mb_pos] = mquant;
  4188. /* Set DC scale - y and c use the same */
  4189. s->y_dc_scale = s->y_dc_scale_table[mquant];
  4190. s->c_dc_scale = s->c_dc_scale_table[mquant];
  4191. for (k = 0; k < 6; k++) {
  4192. val = ((cbp >> (5 - k)) & 1);
  4193. if (k < 4) {
  4194. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  4195. val = val ^ pred;
  4196. *coded_val = val;
  4197. }
  4198. cbp |= val << (5 - k);
  4199. v->a_avail = !s->first_slice_line || (k == 2 || k == 3);
  4200. v->c_avail = !!s->mb_x || (k == 1 || k == 3);
  4201. vc1_decode_i_block_adv(v, block[k], k, val,
  4202. (k < 4) ? v->codingset : v->codingset2, mquant);
  4203. if (k > 3 && (s->flags & CODEC_FLAG_GRAY))
  4204. continue;
  4205. v->vc1dsp.vc1_inv_trans_8x8(block[k]);
  4206. }
  4207. vc1_smooth_overlap_filter_iblk(v);
  4208. vc1_put_signed_blocks_clamped(v);
  4209. if (v->s.loop_filter) vc1_loop_filter_iblk_delayed(v, v->pq);
  4210. if (get_bits_count(&s->gb) > v->bits) {
  4211. // TODO: may need modification to handle slice coding
  4212. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  4213. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  4214. get_bits_count(&s->gb), v->bits);
  4215. return;
  4216. }
  4217. }
  4218. if (!v->s.loop_filter)
  4219. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  4220. else if (s->mb_y)
  4221. ff_mpeg_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  4222. s->first_slice_line = 0;
  4223. }
  4224. /* raw bottom MB row */
  4225. s->mb_x = 0;
  4226. init_block_index(v);
  4227. for (;s->mb_x < s->mb_width; s->mb_x++) {
  4228. ff_update_block_index(s);
  4229. vc1_put_signed_blocks_clamped(v);
  4230. if (v->s.loop_filter)
  4231. vc1_loop_filter_iblk_delayed(v, v->pq);
  4232. }
  4233. if (v->s.loop_filter)
  4234. ff_mpeg_draw_horiz_band(s, (s->end_mb_y-1)*16, 16);
  4235. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  4236. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  4237. }
  4238. static void vc1_decode_p_blocks(VC1Context *v)
  4239. {
  4240. MpegEncContext *s = &v->s;
  4241. int apply_loop_filter;
  4242. /* select codingmode used for VLC tables selection */
  4243. switch (v->c_ac_table_index) {
  4244. case 0:
  4245. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4246. break;
  4247. case 1:
  4248. v->codingset = CS_HIGH_MOT_INTRA;
  4249. break;
  4250. case 2:
  4251. v->codingset = CS_MID_RATE_INTRA;
  4252. break;
  4253. }
  4254. switch (v->c_ac_table_index) {
  4255. case 0:
  4256. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4257. break;
  4258. case 1:
  4259. v->codingset2 = CS_HIGH_MOT_INTER;
  4260. break;
  4261. case 2:
  4262. v->codingset2 = CS_MID_RATE_INTER;
  4263. break;
  4264. }
  4265. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY) &&
  4266. v->fcm == PROGRESSIVE;
  4267. s->first_slice_line = 1;
  4268. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  4269. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  4270. s->mb_x = 0;
  4271. init_block_index(v);
  4272. for (; s->mb_x < s->mb_width; s->mb_x++) {
  4273. ff_update_block_index(s);
  4274. if (v->fcm == ILACE_FIELD)
  4275. vc1_decode_p_mb_intfi(v);
  4276. else if (v->fcm == ILACE_FRAME)
  4277. vc1_decode_p_mb_intfr(v);
  4278. else vc1_decode_p_mb(v);
  4279. if (s->mb_y != s->start_mb_y && apply_loop_filter)
  4280. vc1_apply_p_loop_filter(v);
  4281. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  4282. // TODO: may need modification to handle slice coding
  4283. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  4284. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  4285. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  4286. return;
  4287. }
  4288. }
  4289. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0]) * s->mb_stride);
  4290. memmove(v->ttblk_base, v->ttblk, sizeof(v->ttblk_base[0]) * s->mb_stride);
  4291. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  4292. memmove(v->luma_mv_base, v->luma_mv, sizeof(v->luma_mv_base[0]) * s->mb_stride);
  4293. if (s->mb_y != s->start_mb_y) ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  4294. s->first_slice_line = 0;
  4295. }
  4296. if (apply_loop_filter) {
  4297. s->mb_x = 0;
  4298. init_block_index(v);
  4299. for (; s->mb_x < s->mb_width; s->mb_x++) {
  4300. ff_update_block_index(s);
  4301. vc1_apply_p_loop_filter(v);
  4302. }
  4303. }
  4304. if (s->end_mb_y >= s->start_mb_y)
  4305. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  4306. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  4307. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  4308. }
  4309. static void vc1_decode_b_blocks(VC1Context *v)
  4310. {
  4311. MpegEncContext *s = &v->s;
  4312. /* select codingmode used for VLC tables selection */
  4313. switch (v->c_ac_table_index) {
  4314. case 0:
  4315. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4316. break;
  4317. case 1:
  4318. v->codingset = CS_HIGH_MOT_INTRA;
  4319. break;
  4320. case 2:
  4321. v->codingset = CS_MID_RATE_INTRA;
  4322. break;
  4323. }
  4324. switch (v->c_ac_table_index) {
  4325. case 0:
  4326. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4327. break;
  4328. case 1:
  4329. v->codingset2 = CS_HIGH_MOT_INTER;
  4330. break;
  4331. case 2:
  4332. v->codingset2 = CS_MID_RATE_INTER;
  4333. break;
  4334. }
  4335. s->first_slice_line = 1;
  4336. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  4337. s->mb_x = 0;
  4338. init_block_index(v);
  4339. for (; s->mb_x < s->mb_width; s->mb_x++) {
  4340. ff_update_block_index(s);
  4341. if (v->fcm == ILACE_FIELD)
  4342. vc1_decode_b_mb_intfi(v);
  4343. else
  4344. vc1_decode_b_mb(v);
  4345. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  4346. // TODO: may need modification to handle slice coding
  4347. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  4348. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  4349. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  4350. return;
  4351. }
  4352. if (v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  4353. }
  4354. if (!v->s.loop_filter)
  4355. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  4356. else if (s->mb_y)
  4357. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  4358. s->first_slice_line = 0;
  4359. }
  4360. if (v->s.loop_filter)
  4361. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  4362. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  4363. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  4364. }
  4365. static void vc1_decode_skip_blocks(VC1Context *v)
  4366. {
  4367. MpegEncContext *s = &v->s;
  4368. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, ER_MB_END);
  4369. s->first_slice_line = 1;
  4370. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  4371. s->mb_x = 0;
  4372. init_block_index(v);
  4373. ff_update_block_index(s);
  4374. memcpy(s->dest[0], s->last_picture.f.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  4375. memcpy(s->dest[1], s->last_picture.f.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  4376. memcpy(s->dest[2], s->last_picture.f.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  4377. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  4378. s->first_slice_line = 0;
  4379. }
  4380. s->pict_type = AV_PICTURE_TYPE_P;
  4381. }
  4382. void ff_vc1_decode_blocks(VC1Context *v)
  4383. {
  4384. v->s.esc3_level_length = 0;
  4385. if (v->x8_type) {
  4386. ff_intrax8_decode_picture(&v->x8, 2*v->pq + v->halfpq, v->pq * !v->pquantizer);
  4387. } else {
  4388. v->cur_blk_idx = 0;
  4389. v->left_blk_idx = -1;
  4390. v->topleft_blk_idx = 1;
  4391. v->top_blk_idx = 2;
  4392. switch (v->s.pict_type) {
  4393. case AV_PICTURE_TYPE_I:
  4394. if (v->profile == PROFILE_ADVANCED)
  4395. vc1_decode_i_blocks_adv(v);
  4396. else
  4397. vc1_decode_i_blocks(v);
  4398. break;
  4399. case AV_PICTURE_TYPE_P:
  4400. if (v->p_frame_skipped)
  4401. vc1_decode_skip_blocks(v);
  4402. else
  4403. vc1_decode_p_blocks(v);
  4404. break;
  4405. case AV_PICTURE_TYPE_B:
  4406. if (v->bi_type) {
  4407. if (v->profile == PROFILE_ADVANCED)
  4408. vc1_decode_i_blocks_adv(v);
  4409. else
  4410. vc1_decode_i_blocks(v);
  4411. } else
  4412. vc1_decode_b_blocks(v);
  4413. break;
  4414. }
  4415. }
  4416. }
  4417. #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
  4418. typedef struct {
  4419. /**
  4420. * Transform coefficients for both sprites in 16.16 fixed point format,
  4421. * in the order they appear in the bitstream:
  4422. * x scale
  4423. * rotation 1 (unused)
  4424. * x offset
  4425. * rotation 2 (unused)
  4426. * y scale
  4427. * y offset
  4428. * alpha
  4429. */
  4430. int coefs[2][7];
  4431. int effect_type, effect_flag;
  4432. int effect_pcount1, effect_pcount2; ///< amount of effect parameters stored in effect_params
  4433. int effect_params1[15], effect_params2[10]; ///< effect parameters in 16.16 fixed point format
  4434. } SpriteData;
  4435. static inline int get_fp_val(GetBitContext* gb)
  4436. {
  4437. return (get_bits_long(gb, 30) - (1 << 29)) << 1;
  4438. }
  4439. static void vc1_sprite_parse_transform(GetBitContext* gb, int c[7])
  4440. {
  4441. c[1] = c[3] = 0;
  4442. switch (get_bits(gb, 2)) {
  4443. case 0:
  4444. c[0] = 1 << 16;
  4445. c[2] = get_fp_val(gb);
  4446. c[4] = 1 << 16;
  4447. break;
  4448. case 1:
  4449. c[0] = c[4] = get_fp_val(gb);
  4450. c[2] = get_fp_val(gb);
  4451. break;
  4452. case 2:
  4453. c[0] = get_fp_val(gb);
  4454. c[2] = get_fp_val(gb);
  4455. c[4] = get_fp_val(gb);
  4456. break;
  4457. case 3:
  4458. c[0] = get_fp_val(gb);
  4459. c[1] = get_fp_val(gb);
  4460. c[2] = get_fp_val(gb);
  4461. c[3] = get_fp_val(gb);
  4462. c[4] = get_fp_val(gb);
  4463. break;
  4464. }
  4465. c[5] = get_fp_val(gb);
  4466. if (get_bits1(gb))
  4467. c[6] = get_fp_val(gb);
  4468. else
  4469. c[6] = 1 << 16;
  4470. }
  4471. static void vc1_parse_sprites(VC1Context *v, GetBitContext* gb, SpriteData* sd)
  4472. {
  4473. AVCodecContext *avctx = v->s.avctx;
  4474. int sprite, i;
  4475. for (sprite = 0; sprite <= v->two_sprites; sprite++) {
  4476. vc1_sprite_parse_transform(gb, sd->coefs[sprite]);
  4477. if (sd->coefs[sprite][1] || sd->coefs[sprite][3])
  4478. avpriv_request_sample(avctx, "Non-zero rotation coefficients");
  4479. av_log(avctx, AV_LOG_DEBUG, sprite ? "S2:" : "S1:");
  4480. for (i = 0; i < 7; i++)
  4481. av_log(avctx, AV_LOG_DEBUG, " %d.%.3d",
  4482. sd->coefs[sprite][i] / (1<<16),
  4483. (abs(sd->coefs[sprite][i]) & 0xFFFF) * 1000 / (1 << 16));
  4484. av_log(avctx, AV_LOG_DEBUG, "\n");
  4485. }
  4486. skip_bits(gb, 2);
  4487. if (sd->effect_type = get_bits_long(gb, 30)) {
  4488. switch (sd->effect_pcount1 = get_bits(gb, 4)) {
  4489. case 7:
  4490. vc1_sprite_parse_transform(gb, sd->effect_params1);
  4491. break;
  4492. case 14:
  4493. vc1_sprite_parse_transform(gb, sd->effect_params1);
  4494. vc1_sprite_parse_transform(gb, sd->effect_params1 + 7);
  4495. break;
  4496. default:
  4497. for (i = 0; i < sd->effect_pcount1; i++)
  4498. sd->effect_params1[i] = get_fp_val(gb);
  4499. }
  4500. if (sd->effect_type != 13 || sd->effect_params1[0] != sd->coefs[0][6]) {
  4501. // effect 13 is simple alpha blending and matches the opacity above
  4502. av_log(avctx, AV_LOG_DEBUG, "Effect: %d; params: ", sd->effect_type);
  4503. for (i = 0; i < sd->effect_pcount1; i++)
  4504. av_log(avctx, AV_LOG_DEBUG, " %d.%.2d",
  4505. sd->effect_params1[i] / (1 << 16),
  4506. (abs(sd->effect_params1[i]) & 0xFFFF) * 1000 / (1 << 16));
  4507. av_log(avctx, AV_LOG_DEBUG, "\n");
  4508. }
  4509. sd->effect_pcount2 = get_bits(gb, 16);
  4510. if (sd->effect_pcount2 > 10) {
  4511. av_log(avctx, AV_LOG_ERROR, "Too many effect parameters\n");
  4512. return;
  4513. } else if (sd->effect_pcount2) {
  4514. i = -1;
  4515. av_log(avctx, AV_LOG_DEBUG, "Effect params 2: ");
  4516. while (++i < sd->effect_pcount2) {
  4517. sd->effect_params2[i] = get_fp_val(gb);
  4518. av_log(avctx, AV_LOG_DEBUG, " %d.%.2d",
  4519. sd->effect_params2[i] / (1 << 16),
  4520. (abs(sd->effect_params2[i]) & 0xFFFF) * 1000 / (1 << 16));
  4521. }
  4522. av_log(avctx, AV_LOG_DEBUG, "\n");
  4523. }
  4524. }
  4525. if (sd->effect_flag = get_bits1(gb))
  4526. av_log(avctx, AV_LOG_DEBUG, "Effect flag set\n");
  4527. if (get_bits_count(gb) >= gb->size_in_bits +
  4528. (avctx->codec_id == AV_CODEC_ID_WMV3IMAGE ? 64 : 0))
  4529. av_log(avctx, AV_LOG_ERROR, "Buffer overrun\n");
  4530. if (get_bits_count(gb) < gb->size_in_bits - 8)
  4531. av_log(avctx, AV_LOG_WARNING, "Buffer not fully read\n");
  4532. }
  4533. static void vc1_draw_sprites(VC1Context *v, SpriteData* sd)
  4534. {
  4535. int i, plane, row, sprite;
  4536. int sr_cache[2][2] = { { -1, -1 }, { -1, -1 } };
  4537. uint8_t* src_h[2][2];
  4538. int xoff[2], xadv[2], yoff[2], yadv[2], alpha;
  4539. int ysub[2];
  4540. MpegEncContext *s = &v->s;
  4541. for (i = 0; i < 2; i++) {
  4542. xoff[i] = av_clip(sd->coefs[i][2], 0, v->sprite_width-1 << 16);
  4543. xadv[i] = sd->coefs[i][0];
  4544. if (xadv[i] != 1<<16 || (v->sprite_width << 16) - (v->output_width << 16) - xoff[i])
  4545. xadv[i] = av_clip(xadv[i], 0, ((v->sprite_width<<16) - xoff[i] - 1) / v->output_width);
  4546. yoff[i] = av_clip(sd->coefs[i][5], 0, v->sprite_height-1 << 16);
  4547. yadv[i] = av_clip(sd->coefs[i][4], 0, ((v->sprite_height << 16) - yoff[i]) / v->output_height);
  4548. }
  4549. alpha = av_clip(sd->coefs[1][6], 0, (1<<16) - 1);
  4550. for (plane = 0; plane < (s->flags&CODEC_FLAG_GRAY ? 1 : 3); plane++) {
  4551. int width = v->output_width>>!!plane;
  4552. for (row = 0; row < v->output_height>>!!plane; row++) {
  4553. uint8_t *dst = v->sprite_output_frame.data[plane] +
  4554. v->sprite_output_frame.linesize[plane] * row;
  4555. for (sprite = 0; sprite <= v->two_sprites; sprite++) {
  4556. uint8_t *iplane = s->current_picture.f.data[plane];
  4557. int iline = s->current_picture.f.linesize[plane];
  4558. int ycoord = yoff[sprite] + yadv[sprite] * row;
  4559. int yline = ycoord >> 16;
  4560. int next_line;
  4561. ysub[sprite] = ycoord & 0xFFFF;
  4562. if (sprite) {
  4563. iplane = s->last_picture.f.data[plane];
  4564. iline = s->last_picture.f.linesize[plane];
  4565. }
  4566. next_line = FFMIN(yline + 1, (v->sprite_height >> !!plane) - 1) * iline;
  4567. if (!(xoff[sprite] & 0xFFFF) && xadv[sprite] == 1 << 16) {
  4568. src_h[sprite][0] = iplane + (xoff[sprite] >> 16) + yline * iline;
  4569. if (ysub[sprite])
  4570. src_h[sprite][1] = iplane + (xoff[sprite] >> 16) + next_line;
  4571. } else {
  4572. if (sr_cache[sprite][0] != yline) {
  4573. if (sr_cache[sprite][1] == yline) {
  4574. FFSWAP(uint8_t*, v->sr_rows[sprite][0], v->sr_rows[sprite][1]);
  4575. FFSWAP(int, sr_cache[sprite][0], sr_cache[sprite][1]);
  4576. } else {
  4577. v->vc1dsp.sprite_h(v->sr_rows[sprite][0], iplane + yline * iline, xoff[sprite], xadv[sprite], width);
  4578. sr_cache[sprite][0] = yline;
  4579. }
  4580. }
  4581. if (ysub[sprite] && sr_cache[sprite][1] != yline + 1) {
  4582. v->vc1dsp.sprite_h(v->sr_rows[sprite][1],
  4583. iplane + next_line, xoff[sprite],
  4584. xadv[sprite], width);
  4585. sr_cache[sprite][1] = yline + 1;
  4586. }
  4587. src_h[sprite][0] = v->sr_rows[sprite][0];
  4588. src_h[sprite][1] = v->sr_rows[sprite][1];
  4589. }
  4590. }
  4591. if (!v->two_sprites) {
  4592. if (ysub[0]) {
  4593. v->vc1dsp.sprite_v_single(dst, src_h[0][0], src_h[0][1], ysub[0], width);
  4594. } else {
  4595. memcpy(dst, src_h[0][0], width);
  4596. }
  4597. } else {
  4598. if (ysub[0] && ysub[1]) {
  4599. v->vc1dsp.sprite_v_double_twoscale(dst, src_h[0][0], src_h[0][1], ysub[0],
  4600. src_h[1][0], src_h[1][1], ysub[1], alpha, width);
  4601. } else if (ysub[0]) {
  4602. v->vc1dsp.sprite_v_double_onescale(dst, src_h[0][0], src_h[0][1], ysub[0],
  4603. src_h[1][0], alpha, width);
  4604. } else if (ysub[1]) {
  4605. v->vc1dsp.sprite_v_double_onescale(dst, src_h[1][0], src_h[1][1], ysub[1],
  4606. src_h[0][0], (1<<16)-1-alpha, width);
  4607. } else {
  4608. v->vc1dsp.sprite_v_double_noscale(dst, src_h[0][0], src_h[1][0], alpha, width);
  4609. }
  4610. }
  4611. }
  4612. if (!plane) {
  4613. for (i = 0; i < 2; i++) {
  4614. xoff[i] >>= 1;
  4615. yoff[i] >>= 1;
  4616. }
  4617. }
  4618. }
  4619. }
  4620. static int vc1_decode_sprites(VC1Context *v, GetBitContext* gb)
  4621. {
  4622. MpegEncContext *s = &v->s;
  4623. AVCodecContext *avctx = s->avctx;
  4624. SpriteData sd;
  4625. vc1_parse_sprites(v, gb, &sd);
  4626. if (!s->current_picture.f.data[0]) {
  4627. av_log(avctx, AV_LOG_ERROR, "Got no sprites\n");
  4628. return -1;
  4629. }
  4630. if (v->two_sprites && (!s->last_picture_ptr || !s->last_picture.f.data[0])) {
  4631. av_log(avctx, AV_LOG_WARNING, "Need two sprites, only got one\n");
  4632. v->two_sprites = 0;
  4633. }
  4634. av_frame_unref(&v->sprite_output_frame);
  4635. if (ff_get_buffer(avctx, &v->sprite_output_frame, 0) < 0) {
  4636. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  4637. return -1;
  4638. }
  4639. vc1_draw_sprites(v, &sd);
  4640. return 0;
  4641. }
  4642. static void vc1_sprite_flush(AVCodecContext *avctx)
  4643. {
  4644. VC1Context *v = avctx->priv_data;
  4645. MpegEncContext *s = &v->s;
  4646. AVFrame *f = &s->current_picture.f;
  4647. int plane, i;
  4648. /* Windows Media Image codecs have a convergence interval of two keyframes.
  4649. Since we can't enforce it, clear to black the missing sprite. This is
  4650. wrong but it looks better than doing nothing. */
  4651. if (f->data[0])
  4652. for (plane = 0; plane < (s->flags&CODEC_FLAG_GRAY ? 1 : 3); plane++)
  4653. for (i = 0; i < v->sprite_height>>!!plane; i++)
  4654. memset(f->data[plane] + i * f->linesize[plane],
  4655. plane ? 128 : 0, f->linesize[plane]);
  4656. }
  4657. #endif
  4658. av_cold int ff_vc1_decode_init_alloc_tables(VC1Context *v)
  4659. {
  4660. MpegEncContext *s = &v->s;
  4661. int i;
  4662. /* Allocate mb bitplanes */
  4663. v->mv_type_mb_plane = av_malloc (s->mb_stride * s->mb_height);
  4664. v->direct_mb_plane = av_malloc (s->mb_stride * s->mb_height);
  4665. v->forward_mb_plane = av_malloc (s->mb_stride * s->mb_height);
  4666. v->fieldtx_plane = av_mallocz(s->mb_stride * s->mb_height);
  4667. v->acpred_plane = av_malloc (s->mb_stride * s->mb_height);
  4668. v->over_flags_plane = av_malloc (s->mb_stride * s->mb_height);
  4669. v->n_allocated_blks = s->mb_width + 2;
  4670. v->block = av_malloc(sizeof(*v->block) * v->n_allocated_blks);
  4671. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  4672. v->cbp = v->cbp_base + s->mb_stride;
  4673. v->ttblk_base = av_malloc(sizeof(v->ttblk_base[0]) * 2 * s->mb_stride);
  4674. v->ttblk = v->ttblk_base + s->mb_stride;
  4675. v->is_intra_base = av_mallocz(sizeof(v->is_intra_base[0]) * 2 * s->mb_stride);
  4676. v->is_intra = v->is_intra_base + s->mb_stride;
  4677. v->luma_mv_base = av_malloc(sizeof(v->luma_mv_base[0]) * 2 * s->mb_stride);
  4678. v->luma_mv = v->luma_mv_base + s->mb_stride;
  4679. /* allocate block type info in that way so it could be used with s->block_index[] */
  4680. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  4681. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  4682. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  4683. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  4684. /* allocate memory to store block level MV info */
  4685. v->blk_mv_type_base = av_mallocz( s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  4686. v->blk_mv_type = v->blk_mv_type_base + s->b8_stride + 1;
  4687. v->mv_f_base = av_mallocz(2 * (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2));
  4688. v->mv_f[0] = v->mv_f_base + s->b8_stride + 1;
  4689. v->mv_f[1] = v->mv_f[0] + (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  4690. v->mv_f_last_base = av_mallocz(2 * (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2));
  4691. v->mv_f_last[0] = v->mv_f_last_base + s->b8_stride + 1;
  4692. v->mv_f_last[1] = v->mv_f_last[0] + (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  4693. v->mv_f_next_base = av_mallocz(2 * (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2));
  4694. v->mv_f_next[0] = v->mv_f_next_base + s->b8_stride + 1;
  4695. v->mv_f_next[1] = v->mv_f_next[0] + (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  4696. /* Init coded blocks info */
  4697. if (v->profile == PROFILE_ADVANCED) {
  4698. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  4699. // return -1;
  4700. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  4701. // return -1;
  4702. }
  4703. ff_intrax8_common_init(&v->x8,s);
  4704. if (s->avctx->codec_id == AV_CODEC_ID_WMV3IMAGE || s->avctx->codec_id == AV_CODEC_ID_VC1IMAGE) {
  4705. for (i = 0; i < 4; i++)
  4706. if (!(v->sr_rows[i >> 1][i & 1] = av_malloc(v->output_width))) return -1;
  4707. }
  4708. if (!v->mv_type_mb_plane || !v->direct_mb_plane || !v->acpred_plane || !v->over_flags_plane ||
  4709. !v->block || !v->cbp_base || !v->ttblk_base || !v->is_intra_base || !v->luma_mv_base ||
  4710. !v->mb_type_base)
  4711. return -1;
  4712. return 0;
  4713. }
  4714. av_cold void ff_vc1_init_transposed_scantables(VC1Context *v)
  4715. {
  4716. int i;
  4717. for (i = 0; i < 64; i++) {
  4718. #define transpose(x) ((x >> 3) | ((x & 7) << 3))
  4719. v->zz_8x8[0][i] = transpose(ff_wmv1_scantable[0][i]);
  4720. v->zz_8x8[1][i] = transpose(ff_wmv1_scantable[1][i]);
  4721. v->zz_8x8[2][i] = transpose(ff_wmv1_scantable[2][i]);
  4722. v->zz_8x8[3][i] = transpose(ff_wmv1_scantable[3][i]);
  4723. v->zzi_8x8[i] = transpose(ff_vc1_adv_interlaced_8x8_zz[i]);
  4724. }
  4725. v->left_blk_sh = 0;
  4726. v->top_blk_sh = 3;
  4727. }
  4728. /** Initialize a VC1/WMV3 decoder
  4729. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  4730. * @todo TODO: Decypher remaining bits in extra_data
  4731. */
  4732. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  4733. {
  4734. VC1Context *v = avctx->priv_data;
  4735. MpegEncContext *s = &v->s;
  4736. GetBitContext gb;
  4737. /* save the container output size for WMImage */
  4738. v->output_width = avctx->width;
  4739. v->output_height = avctx->height;
  4740. if (!avctx->extradata_size || !avctx->extradata)
  4741. return -1;
  4742. if (!(avctx->flags & CODEC_FLAG_GRAY))
  4743. avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
  4744. else
  4745. avctx->pix_fmt = AV_PIX_FMT_GRAY8;
  4746. avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
  4747. v->s.avctx = avctx;
  4748. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  4749. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  4750. if (ff_vc1_init_common(v) < 0)
  4751. return -1;
  4752. ff_h264chroma_init(&v->h264chroma, 8);
  4753. ff_vc1dsp_init(&v->vc1dsp);
  4754. if (avctx->codec_id == AV_CODEC_ID_WMV3 || avctx->codec_id == AV_CODEC_ID_WMV3IMAGE) {
  4755. int count = 0;
  4756. // looks like WMV3 has a sequence header stored in the extradata
  4757. // advanced sequence header may be before the first frame
  4758. // the last byte of the extradata is a version number, 1 for the
  4759. // samples we can decode
  4760. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  4761. if (ff_vc1_decode_sequence_header(avctx, v, &gb) < 0)
  4762. return -1;
  4763. count = avctx->extradata_size*8 - get_bits_count(&gb);
  4764. if (count > 0) {
  4765. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  4766. count, get_bits(&gb, count));
  4767. } else if (count < 0) {
  4768. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  4769. }
  4770. } else { // VC1/WVC1/WVP2
  4771. const uint8_t *start = avctx->extradata;
  4772. uint8_t *end = avctx->extradata + avctx->extradata_size;
  4773. const uint8_t *next;
  4774. int size, buf2_size;
  4775. uint8_t *buf2 = NULL;
  4776. int seq_initialized = 0, ep_initialized = 0;
  4777. if (avctx->extradata_size < 16) {
  4778. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  4779. return -1;
  4780. }
  4781. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  4782. start = find_next_marker(start, end); // in WVC1 extradata first byte is its size, but can be 0 in mkv
  4783. next = start;
  4784. for (; next < end; start = next) {
  4785. next = find_next_marker(start + 4, end);
  4786. size = next - start - 4;
  4787. if (size <= 0)
  4788. continue;
  4789. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  4790. init_get_bits(&gb, buf2, buf2_size * 8);
  4791. switch (AV_RB32(start)) {
  4792. case VC1_CODE_SEQHDR:
  4793. if (ff_vc1_decode_sequence_header(avctx, v, &gb) < 0) {
  4794. av_free(buf2);
  4795. return -1;
  4796. }
  4797. seq_initialized = 1;
  4798. break;
  4799. case VC1_CODE_ENTRYPOINT:
  4800. if (ff_vc1_decode_entry_point(avctx, v, &gb) < 0) {
  4801. av_free(buf2);
  4802. return -1;
  4803. }
  4804. ep_initialized = 1;
  4805. break;
  4806. }
  4807. }
  4808. av_free(buf2);
  4809. if (!seq_initialized || !ep_initialized) {
  4810. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  4811. return -1;
  4812. }
  4813. v->res_sprite = (avctx->codec_id == AV_CODEC_ID_VC1IMAGE);
  4814. }
  4815. avctx->profile = v->profile;
  4816. if (v->profile == PROFILE_ADVANCED)
  4817. avctx->level = v->level;
  4818. avctx->has_b_frames = !!avctx->max_b_frames;
  4819. s->mb_width = (avctx->coded_width + 15) >> 4;
  4820. s->mb_height = (avctx->coded_height + 15) >> 4;
  4821. if (v->profile == PROFILE_ADVANCED || v->res_fasttx) {
  4822. ff_vc1_init_transposed_scantables(v);
  4823. } else {
  4824. memcpy(v->zz_8x8, ff_wmv1_scantable, 4*64);
  4825. v->left_blk_sh = 3;
  4826. v->top_blk_sh = 0;
  4827. }
  4828. if (avctx->codec_id == AV_CODEC_ID_WMV3IMAGE || avctx->codec_id == AV_CODEC_ID_VC1IMAGE) {
  4829. v->sprite_width = avctx->coded_width;
  4830. v->sprite_height = avctx->coded_height;
  4831. avctx->coded_width = avctx->width = v->output_width;
  4832. avctx->coded_height = avctx->height = v->output_height;
  4833. // prevent 16.16 overflows
  4834. if (v->sprite_width > 1 << 14 ||
  4835. v->sprite_height > 1 << 14 ||
  4836. v->output_width > 1 << 14 ||
  4837. v->output_height > 1 << 14) return -1;
  4838. }
  4839. return 0;
  4840. }
  4841. /** Close a VC1/WMV3 decoder
  4842. * @warning Initial try at using MpegEncContext stuff
  4843. */
  4844. av_cold int ff_vc1_decode_end(AVCodecContext *avctx)
  4845. {
  4846. VC1Context *v = avctx->priv_data;
  4847. int i;
  4848. av_frame_unref(&v->sprite_output_frame);
  4849. for (i = 0; i < 4; i++)
  4850. av_freep(&v->sr_rows[i >> 1][i & 1]);
  4851. av_freep(&v->hrd_rate);
  4852. av_freep(&v->hrd_buffer);
  4853. ff_MPV_common_end(&v->s);
  4854. av_freep(&v->mv_type_mb_plane);
  4855. av_freep(&v->direct_mb_plane);
  4856. av_freep(&v->forward_mb_plane);
  4857. av_freep(&v->fieldtx_plane);
  4858. av_freep(&v->acpred_plane);
  4859. av_freep(&v->over_flags_plane);
  4860. av_freep(&v->mb_type_base);
  4861. av_freep(&v->blk_mv_type_base);
  4862. av_freep(&v->mv_f_base);
  4863. av_freep(&v->mv_f_last_base);
  4864. av_freep(&v->mv_f_next_base);
  4865. av_freep(&v->block);
  4866. av_freep(&v->cbp_base);
  4867. av_freep(&v->ttblk_base);
  4868. av_freep(&v->is_intra_base); // FIXME use v->mb_type[]
  4869. av_freep(&v->luma_mv_base);
  4870. ff_intrax8_common_end(&v->x8);
  4871. return 0;
  4872. }
  4873. /** Decode a VC1/WMV3 frame
  4874. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  4875. */
  4876. static int vc1_decode_frame(AVCodecContext *avctx, void *data,
  4877. int *got_frame, AVPacket *avpkt)
  4878. {
  4879. const uint8_t *buf = avpkt->data;
  4880. int buf_size = avpkt->size, n_slices = 0, i, ret;
  4881. VC1Context *v = avctx->priv_data;
  4882. MpegEncContext *s = &v->s;
  4883. AVFrame *pict = data;
  4884. uint8_t *buf2 = NULL;
  4885. const uint8_t *buf_start = buf;
  4886. int mb_height, n_slices1;
  4887. struct {
  4888. uint8_t *buf;
  4889. GetBitContext gb;
  4890. int mby_start;
  4891. } *slices = NULL, *tmp;
  4892. /* no supplementary picture */
  4893. if (buf_size == 0 || (buf_size == 4 && AV_RB32(buf) == VC1_CODE_ENDOFSEQ)) {
  4894. /* special case for last picture */
  4895. if (s->low_delay == 0 && s->next_picture_ptr) {
  4896. if ((ret = av_frame_ref(pict, &s->next_picture_ptr->f)) < 0)
  4897. return ret;
  4898. s->next_picture_ptr = NULL;
  4899. *got_frame = 1;
  4900. }
  4901. return 0;
  4902. }
  4903. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU) {
  4904. if (v->profile < PROFILE_ADVANCED)
  4905. avctx->pix_fmt = AV_PIX_FMT_VDPAU_WMV3;
  4906. else
  4907. avctx->pix_fmt = AV_PIX_FMT_VDPAU_VC1;
  4908. }
  4909. //for advanced profile we may need to parse and unescape data
  4910. if (avctx->codec_id == AV_CODEC_ID_VC1 || avctx->codec_id == AV_CODEC_ID_VC1IMAGE) {
  4911. int buf_size2 = 0;
  4912. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  4913. if (IS_MARKER(AV_RB32(buf))) { /* frame starts with marker and needs to be parsed */
  4914. const uint8_t *start, *end, *next;
  4915. int size;
  4916. next = buf;
  4917. for (start = buf, end = buf + buf_size; next < end; start = next) {
  4918. next = find_next_marker(start + 4, end);
  4919. size = next - start - 4;
  4920. if (size <= 0) continue;
  4921. switch (AV_RB32(start)) {
  4922. case VC1_CODE_FRAME:
  4923. if (avctx->hwaccel ||
  4924. s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  4925. buf_start = start;
  4926. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  4927. break;
  4928. case VC1_CODE_FIELD: {
  4929. int buf_size3;
  4930. tmp = av_realloc(slices, sizeof(*slices) * (n_slices+1));
  4931. if (!tmp)
  4932. goto err;
  4933. slices = tmp;
  4934. slices[n_slices].buf = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  4935. if (!slices[n_slices].buf)
  4936. goto err;
  4937. buf_size3 = vc1_unescape_buffer(start + 4, size,
  4938. slices[n_slices].buf);
  4939. init_get_bits(&slices[n_slices].gb, slices[n_slices].buf,
  4940. buf_size3 << 3);
  4941. /* assuming that the field marker is at the exact middle,
  4942. hope it's correct */
  4943. slices[n_slices].mby_start = s->mb_height >> 1;
  4944. n_slices1 = n_slices - 1; // index of the last slice of the first field
  4945. n_slices++;
  4946. break;
  4947. }
  4948. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  4949. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  4950. init_get_bits(&s->gb, buf2, buf_size2 * 8);
  4951. ff_vc1_decode_entry_point(avctx, v, &s->gb);
  4952. break;
  4953. case VC1_CODE_SLICE: {
  4954. int buf_size3;
  4955. tmp = av_realloc(slices, sizeof(*slices) * (n_slices+1));
  4956. if (!tmp)
  4957. goto err;
  4958. slices = tmp;
  4959. slices[n_slices].buf = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  4960. if (!slices[n_slices].buf)
  4961. goto err;
  4962. buf_size3 = vc1_unescape_buffer(start + 4, size,
  4963. slices[n_slices].buf);
  4964. init_get_bits(&slices[n_slices].gb, slices[n_slices].buf,
  4965. buf_size3 << 3);
  4966. slices[n_slices].mby_start = get_bits(&slices[n_slices].gb, 9);
  4967. n_slices++;
  4968. break;
  4969. }
  4970. }
  4971. }
  4972. } else if (v->interlace && ((buf[0] & 0xC0) == 0xC0)) { /* WVC1 interlaced stores both fields divided by marker */
  4973. const uint8_t *divider;
  4974. int buf_size3;
  4975. divider = find_next_marker(buf, buf + buf_size);
  4976. if ((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD) {
  4977. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  4978. goto err;
  4979. } else { // found field marker, unescape second field
  4980. tmp = av_realloc(slices, sizeof(*slices) * (n_slices+1));
  4981. if (!tmp)
  4982. goto err;
  4983. slices = tmp;
  4984. slices[n_slices].buf = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  4985. if (!slices[n_slices].buf)
  4986. goto err;
  4987. buf_size3 = vc1_unescape_buffer(divider + 4, buf + buf_size - divider - 4, slices[n_slices].buf);
  4988. init_get_bits(&slices[n_slices].gb, slices[n_slices].buf,
  4989. buf_size3 << 3);
  4990. slices[n_slices].mby_start = s->mb_height >> 1;
  4991. n_slices1 = n_slices - 1;
  4992. n_slices++;
  4993. }
  4994. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  4995. } else {
  4996. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  4997. }
  4998. init_get_bits(&s->gb, buf2, buf_size2*8);
  4999. } else
  5000. init_get_bits(&s->gb, buf, buf_size*8);
  5001. if (v->res_sprite) {
  5002. v->new_sprite = !get_bits1(&s->gb);
  5003. v->two_sprites = get_bits1(&s->gb);
  5004. /* res_sprite means a Windows Media Image stream, AV_CODEC_ID_*IMAGE means
  5005. we're using the sprite compositor. These are intentionally kept separate
  5006. so you can get the raw sprites by using the wmv3 decoder for WMVP or
  5007. the vc1 one for WVP2 */
  5008. if (avctx->codec_id == AV_CODEC_ID_WMV3IMAGE || avctx->codec_id == AV_CODEC_ID_VC1IMAGE) {
  5009. if (v->new_sprite) {
  5010. // switch AVCodecContext parameters to those of the sprites
  5011. avctx->width = avctx->coded_width = v->sprite_width;
  5012. avctx->height = avctx->coded_height = v->sprite_height;
  5013. } else {
  5014. goto image;
  5015. }
  5016. }
  5017. }
  5018. if (s->context_initialized &&
  5019. (s->width != avctx->coded_width ||
  5020. s->height != avctx->coded_height)) {
  5021. ff_vc1_decode_end(avctx);
  5022. }
  5023. if (!s->context_initialized) {
  5024. if (ff_msmpeg4_decode_init(avctx) < 0 || ff_vc1_decode_init_alloc_tables(v) < 0)
  5025. goto err;
  5026. s->low_delay = !avctx->has_b_frames || v->res_sprite;
  5027. if (v->profile == PROFILE_ADVANCED) {
  5028. s->h_edge_pos = avctx->coded_width;
  5029. s->v_edge_pos = avctx->coded_height;
  5030. }
  5031. }
  5032. /* We need to set current_picture_ptr before reading the header,
  5033. * otherwise we cannot store anything in there. */
  5034. if (s->current_picture_ptr == NULL || s->current_picture_ptr->f.data[0]) {
  5035. int i = ff_find_unused_picture(s, 0);
  5036. if (i < 0)
  5037. goto err;
  5038. s->current_picture_ptr = &s->picture[i];
  5039. }
  5040. // do parse frame header
  5041. v->pic_header_flag = 0;
  5042. if (v->profile < PROFILE_ADVANCED) {
  5043. if (ff_vc1_parse_frame_header(v, &s->gb) == -1) {
  5044. goto err;
  5045. }
  5046. } else {
  5047. if (ff_vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  5048. goto err;
  5049. }
  5050. }
  5051. if ((avctx->codec_id == AV_CODEC_ID_WMV3IMAGE || avctx->codec_id == AV_CODEC_ID_VC1IMAGE)
  5052. && s->pict_type != AV_PICTURE_TYPE_I) {
  5053. av_log(v->s.avctx, AV_LOG_ERROR, "Sprite decoder: expected I-frame\n");
  5054. goto err;
  5055. }
  5056. // process pulldown flags
  5057. s->current_picture_ptr->f.repeat_pict = 0;
  5058. // Pulldown flags are only valid when 'broadcast' has been set.
  5059. // So ticks_per_frame will be 2
  5060. if (v->rff) {
  5061. // repeat field
  5062. s->current_picture_ptr->f.repeat_pict = 1;
  5063. } else if (v->rptfrm) {
  5064. // repeat frames
  5065. s->current_picture_ptr->f.repeat_pict = v->rptfrm * 2;
  5066. }
  5067. // for skipping the frame
  5068. s->current_picture.f.pict_type = s->pict_type;
  5069. s->current_picture.f.key_frame = s->pict_type == AV_PICTURE_TYPE_I;
  5070. /* skip B-frames if we don't have reference frames */
  5071. if (s->last_picture_ptr == NULL && (s->pict_type == AV_PICTURE_TYPE_B || s->droppable)) {
  5072. goto err;
  5073. }
  5074. if ((avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == AV_PICTURE_TYPE_B) ||
  5075. (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != AV_PICTURE_TYPE_I) ||
  5076. avctx->skip_frame >= AVDISCARD_ALL) {
  5077. goto end;
  5078. }
  5079. if (s->next_p_frame_damaged) {
  5080. if (s->pict_type == AV_PICTURE_TYPE_B)
  5081. goto end;
  5082. else
  5083. s->next_p_frame_damaged = 0;
  5084. }
  5085. if (ff_MPV_frame_start(s, avctx) < 0) {
  5086. goto err;
  5087. }
  5088. s->me.qpel_put = s->dsp.put_qpel_pixels_tab;
  5089. s->me.qpel_avg = s->dsp.avg_qpel_pixels_tab;
  5090. if ((CONFIG_VC1_VDPAU_DECODER)
  5091. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  5092. ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
  5093. else if (avctx->hwaccel) {
  5094. if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
  5095. goto err;
  5096. if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
  5097. goto err;
  5098. if (avctx->hwaccel->end_frame(avctx) < 0)
  5099. goto err;
  5100. } else {
  5101. ff_mpeg_er_frame_start(s);
  5102. v->bits = buf_size * 8;
  5103. v->end_mb_x = s->mb_width;
  5104. if (v->field_mode) {
  5105. uint8_t *tmp[2];
  5106. s->current_picture.f.linesize[0] <<= 1;
  5107. s->current_picture.f.linesize[1] <<= 1;
  5108. s->current_picture.f.linesize[2] <<= 1;
  5109. s->linesize <<= 1;
  5110. s->uvlinesize <<= 1;
  5111. tmp[0] = v->mv_f_last[0];
  5112. tmp[1] = v->mv_f_last[1];
  5113. v->mv_f_last[0] = v->mv_f_next[0];
  5114. v->mv_f_last[1] = v->mv_f_next[1];
  5115. v->mv_f_next[0] = v->mv_f[0];
  5116. v->mv_f_next[1] = v->mv_f[1];
  5117. v->mv_f[0] = tmp[0];
  5118. v->mv_f[1] = tmp[1];
  5119. }
  5120. mb_height = s->mb_height >> v->field_mode;
  5121. for (i = 0; i <= n_slices; i++) {
  5122. if (i > 0 && slices[i - 1].mby_start >= mb_height) {
  5123. if (v->field_mode <= 0) {
  5124. av_log(v->s.avctx, AV_LOG_ERROR, "Slice %d starts beyond "
  5125. "picture boundary (%d >= %d)\n", i,
  5126. slices[i - 1].mby_start, mb_height);
  5127. continue;
  5128. }
  5129. v->second_field = 1;
  5130. v->blocks_off = s->mb_width * s->mb_height << 1;
  5131. v->mb_off = s->mb_stride * s->mb_height >> 1;
  5132. } else {
  5133. v->second_field = 0;
  5134. v->blocks_off = 0;
  5135. v->mb_off = 0;
  5136. }
  5137. if (i) {
  5138. v->pic_header_flag = 0;
  5139. if (v->field_mode && i == n_slices1 + 2) {
  5140. if (ff_vc1_parse_frame_header_adv(v, &s->gb) < 0) {
  5141. av_log(v->s.avctx, AV_LOG_ERROR, "Field header damaged\n");
  5142. continue;
  5143. }
  5144. } else if (get_bits1(&s->gb)) {
  5145. v->pic_header_flag = 1;
  5146. if (ff_vc1_parse_frame_header_adv(v, &s->gb) < 0) {
  5147. av_log(v->s.avctx, AV_LOG_ERROR, "Slice header damaged\n");
  5148. continue;
  5149. }
  5150. }
  5151. }
  5152. s->start_mb_y = (i == 0) ? 0 : FFMAX(0, slices[i-1].mby_start % mb_height);
  5153. if (!v->field_mode || v->second_field)
  5154. s->end_mb_y = (i == n_slices ) ? mb_height : FFMIN(mb_height, slices[i].mby_start % mb_height);
  5155. else
  5156. s->end_mb_y = (i <= n_slices1 + 1) ? mb_height : FFMIN(mb_height, slices[i].mby_start % mb_height);
  5157. ff_vc1_decode_blocks(v);
  5158. if (i != n_slices)
  5159. s->gb = slices[i].gb;
  5160. }
  5161. if (v->field_mode) {
  5162. v->second_field = 0;
  5163. if (s->pict_type == AV_PICTURE_TYPE_B) {
  5164. memcpy(v->mv_f_base, v->mv_f_next_base,
  5165. 2 * (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2));
  5166. }
  5167. s->current_picture.f.linesize[0] >>= 1;
  5168. s->current_picture.f.linesize[1] >>= 1;
  5169. s->current_picture.f.linesize[2] >>= 1;
  5170. s->linesize >>= 1;
  5171. s->uvlinesize >>= 1;
  5172. }
  5173. av_dlog(s->avctx, "Consumed %i/%i bits\n",
  5174. get_bits_count(&s->gb), s->gb.size_in_bits);
  5175. // if (get_bits_count(&s->gb) > buf_size * 8)
  5176. // return -1;
  5177. if (!v->field_mode)
  5178. ff_er_frame_end(&s->er);
  5179. }
  5180. ff_MPV_frame_end(s);
  5181. if (avctx->codec_id == AV_CODEC_ID_WMV3IMAGE || avctx->codec_id == AV_CODEC_ID_VC1IMAGE) {
  5182. image:
  5183. avctx->width = avctx->coded_width = v->output_width;
  5184. avctx->height = avctx->coded_height = v->output_height;
  5185. if (avctx->skip_frame >= AVDISCARD_NONREF)
  5186. goto end;
  5187. #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
  5188. if (vc1_decode_sprites(v, &s->gb))
  5189. goto err;
  5190. #endif
  5191. if ((ret = av_frame_ref(pict, &v->sprite_output_frame)) < 0)
  5192. goto err;
  5193. *got_frame = 1;
  5194. } else {
  5195. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
  5196. if ((ret = av_frame_ref(pict, &s->current_picture_ptr->f)) < 0)
  5197. goto err;
  5198. ff_print_debug_info(s, s->current_picture_ptr);
  5199. } else if (s->last_picture_ptr != NULL) {
  5200. if ((ret = av_frame_ref(pict, &s->last_picture_ptr->f)) < 0)
  5201. goto err;
  5202. ff_print_debug_info(s, s->last_picture_ptr);
  5203. }
  5204. if (s->last_picture_ptr || s->low_delay) {
  5205. *got_frame = 1;
  5206. }
  5207. }
  5208. end:
  5209. av_free(buf2);
  5210. for (i = 0; i < n_slices; i++)
  5211. av_free(slices[i].buf);
  5212. av_free(slices);
  5213. return buf_size;
  5214. err:
  5215. av_free(buf2);
  5216. for (i = 0; i < n_slices; i++)
  5217. av_free(slices[i].buf);
  5218. av_free(slices);
  5219. return -1;
  5220. }
  5221. static const AVProfile profiles[] = {
  5222. { FF_PROFILE_VC1_SIMPLE, "Simple" },
  5223. { FF_PROFILE_VC1_MAIN, "Main" },
  5224. { FF_PROFILE_VC1_COMPLEX, "Complex" },
  5225. { FF_PROFILE_VC1_ADVANCED, "Advanced" },
  5226. { FF_PROFILE_UNKNOWN },
  5227. };
  5228. static const enum AVPixelFormat vc1_hwaccel_pixfmt_list_420[] = {
  5229. #if CONFIG_DXVA2
  5230. AV_PIX_FMT_DXVA2_VLD,
  5231. #endif
  5232. #if CONFIG_VAAPI
  5233. AV_PIX_FMT_VAAPI_VLD,
  5234. #endif
  5235. #if CONFIG_VDPAU
  5236. AV_PIX_FMT_VDPAU,
  5237. #endif
  5238. AV_PIX_FMT_YUV420P,
  5239. AV_PIX_FMT_NONE
  5240. };
  5241. AVCodec ff_vc1_decoder = {
  5242. .name = "vc1",
  5243. .type = AVMEDIA_TYPE_VIDEO,
  5244. .id = AV_CODEC_ID_VC1,
  5245. .priv_data_size = sizeof(VC1Context),
  5246. .init = vc1_decode_init,
  5247. .close = ff_vc1_decode_end,
  5248. .decode = vc1_decode_frame,
  5249. .flush = ff_mpeg_flush,
  5250. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  5251. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  5252. .pix_fmts = vc1_hwaccel_pixfmt_list_420,
  5253. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  5254. };
  5255. #if CONFIG_WMV3_DECODER
  5256. AVCodec ff_wmv3_decoder = {
  5257. .name = "wmv3",
  5258. .type = AVMEDIA_TYPE_VIDEO,
  5259. .id = AV_CODEC_ID_WMV3,
  5260. .priv_data_size = sizeof(VC1Context),
  5261. .init = vc1_decode_init,
  5262. .close = ff_vc1_decode_end,
  5263. .decode = vc1_decode_frame,
  5264. .flush = ff_mpeg_flush,
  5265. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  5266. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  5267. .pix_fmts = vc1_hwaccel_pixfmt_list_420,
  5268. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  5269. };
  5270. #endif
  5271. #if CONFIG_WMV3_VDPAU_DECODER
  5272. AVCodec ff_wmv3_vdpau_decoder = {
  5273. .name = "wmv3_vdpau",
  5274. .type = AVMEDIA_TYPE_VIDEO,
  5275. .id = AV_CODEC_ID_WMV3,
  5276. .priv_data_size = sizeof(VC1Context),
  5277. .init = vc1_decode_init,
  5278. .close = ff_vc1_decode_end,
  5279. .decode = vc1_decode_frame,
  5280. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  5281. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  5282. .pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_VDPAU_WMV3, AV_PIX_FMT_NONE },
  5283. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  5284. };
  5285. #endif
  5286. #if CONFIG_VC1_VDPAU_DECODER
  5287. AVCodec ff_vc1_vdpau_decoder = {
  5288. .name = "vc1_vdpau",
  5289. .type = AVMEDIA_TYPE_VIDEO,
  5290. .id = AV_CODEC_ID_VC1,
  5291. .priv_data_size = sizeof(VC1Context),
  5292. .init = vc1_decode_init,
  5293. .close = ff_vc1_decode_end,
  5294. .decode = vc1_decode_frame,
  5295. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  5296. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  5297. .pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_VDPAU_VC1, AV_PIX_FMT_NONE },
  5298. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  5299. };
  5300. #endif
  5301. #if CONFIG_WMV3IMAGE_DECODER
  5302. AVCodec ff_wmv3image_decoder = {
  5303. .name = "wmv3image",
  5304. .type = AVMEDIA_TYPE_VIDEO,
  5305. .id = AV_CODEC_ID_WMV3IMAGE,
  5306. .priv_data_size = sizeof(VC1Context),
  5307. .init = vc1_decode_init,
  5308. .close = ff_vc1_decode_end,
  5309. .decode = vc1_decode_frame,
  5310. .capabilities = CODEC_CAP_DR1,
  5311. .flush = vc1_sprite_flush,
  5312. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 Image"),
  5313. .pix_fmts = ff_pixfmt_list_420
  5314. };
  5315. #endif
  5316. #if CONFIG_VC1IMAGE_DECODER
  5317. AVCodec ff_vc1image_decoder = {
  5318. .name = "vc1image",
  5319. .type = AVMEDIA_TYPE_VIDEO,
  5320. .id = AV_CODEC_ID_VC1IMAGE,
  5321. .priv_data_size = sizeof(VC1Context),
  5322. .init = vc1_decode_init,
  5323. .close = ff_vc1_decode_end,
  5324. .decode = vc1_decode_frame,
  5325. .capabilities = CODEC_CAP_DR1,
  5326. .flush = vc1_sprite_flush,
  5327. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 Image v2"),
  5328. .pix_fmts = ff_pixfmt_list_420
  5329. };
  5330. #endif