You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

269 lines
7.8KB

  1. /*
  2. * Copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #ifndef AVUTIL_SOFTFLOAT_H
  21. #define AVUTIL_SOFTFLOAT_H
  22. #include <stdint.h>
  23. #include "common.h"
  24. #include "avassert.h"
  25. #include "softfloat_tables.h"
  26. #define MIN_EXP -149
  27. #define MAX_EXP 126
  28. #define ONE_BITS 29
  29. typedef struct SoftFloat{
  30. int32_t mant;
  31. int32_t exp;
  32. }SoftFloat;
  33. static const SoftFloat FLOAT_0 = { 0, MIN_EXP};
  34. static const SoftFloat FLOAT_05 = { 0x20000000, 0};
  35. static const SoftFloat FLOAT_1 = { 0x20000000, 1};
  36. static const SoftFloat FLOAT_EPSILON = { 0x29F16B12, -16};
  37. static const SoftFloat FLOAT_1584893192 = { 0x32B771ED, 1};
  38. static const SoftFloat FLOAT_100000 = { 0x30D40000, 17};
  39. static const SoftFloat FLOAT_0999999 = { 0x3FFFFBCE, 0};
  40. static const SoftFloat FLOAT_MIN = { 0x20000000, MIN_EXP};
  41. static inline av_const double av_sf2double(SoftFloat v) {
  42. v.exp -= ONE_BITS +1;
  43. if(v.exp > 0) return (double)v.mant * (double)(1 << v.exp);
  44. else return (double)v.mant / (double)(1 << (-v.exp));
  45. }
  46. static av_const SoftFloat av_normalize_sf(SoftFloat a){
  47. if(a.mant){
  48. #if 1
  49. while((a.mant + 0x1FFFFFFFU)<0x3FFFFFFFU){
  50. a.mant += a.mant;
  51. a.exp -= 1;
  52. }
  53. #else
  54. int s=ONE_BITS - av_log2(FFABS(a.mant));
  55. a.exp -= s;
  56. a.mant <<= s;
  57. #endif
  58. if(a.exp < MIN_EXP){
  59. a.exp = MIN_EXP;
  60. a.mant= 0;
  61. }
  62. }else{
  63. a.exp= MIN_EXP;
  64. }
  65. return a;
  66. }
  67. static inline av_const SoftFloat av_normalize1_sf(SoftFloat a){
  68. #if 1
  69. if((int32_t)(a.mant + 0x40000000U) <= 0){
  70. a.exp++;
  71. a.mant>>=1;
  72. }
  73. av_assert2(a.mant < 0x40000000 && a.mant > -0x40000000);
  74. return a;
  75. #elif 1
  76. int t= a.mant + 0x40000000 < 0;
  77. return (SoftFloat){ a.mant>>t, a.exp+t};
  78. #else
  79. int t= (a.mant + 0x3FFFFFFFU)>>31;
  80. return (SoftFloat){a.mant>>t, a.exp+t};
  81. #endif
  82. }
  83. /**
  84. * @return Will not be more denormalized than a*b. So if either input is
  85. * normalized, then the output will not be worse then the other input.
  86. * If both are normalized, then the output will be normalized.
  87. */
  88. static inline av_const SoftFloat av_mul_sf(SoftFloat a, SoftFloat b){
  89. a.exp += b.exp;
  90. av_assert2((int32_t)((a.mant * (int64_t)b.mant) >> ONE_BITS) == (a.mant * (int64_t)b.mant) >> ONE_BITS);
  91. a.mant = (a.mant * (int64_t)b.mant) >> ONE_BITS;
  92. a = av_normalize1_sf((SoftFloat){a.mant, a.exp - 1});
  93. if (!a.mant || a.exp < MIN_EXP)
  94. return FLOAT_0;
  95. return a;
  96. }
  97. /**
  98. * b has to be normalized and not zero.
  99. * @return Will not be more denormalized than a.
  100. */
  101. static inline av_const SoftFloat av_div_sf(SoftFloat a, SoftFloat b){
  102. int64_t temp = (int64_t)a.mant * (1<<(ONE_BITS+1));
  103. temp /= b.mant;
  104. a.exp -= b.exp;
  105. a.mant = temp;
  106. while (a.mant != temp) {
  107. temp /= 2;
  108. a.exp--;
  109. a.mant = temp;
  110. }
  111. a = av_normalize1_sf(a);
  112. if (!a.mant || a.exp < MIN_EXP)
  113. return FLOAT_0;
  114. return a;
  115. }
  116. static inline av_const int av_cmp_sf(SoftFloat a, SoftFloat b){
  117. int t= a.exp - b.exp;
  118. if (t <-31) return - b.mant ;
  119. else if (t < 0) return (a.mant >> (-t)) - b.mant ;
  120. else if (t < 32) return a.mant - (b.mant >> t);
  121. else return a.mant ;
  122. }
  123. static inline av_const int av_gt_sf(SoftFloat a, SoftFloat b)
  124. {
  125. int t= a.exp - b.exp;
  126. if (t <-31) return 0 > b.mant ;
  127. else if (t < 0) return (a.mant >> (-t)) > b.mant ;
  128. else if (t < 32) return a.mant > (b.mant >> t);
  129. else return a.mant > 0 ;
  130. }
  131. static inline av_const SoftFloat av_add_sf(SoftFloat a, SoftFloat b){
  132. int t= a.exp - b.exp;
  133. if (t <-31) return b;
  134. else if (t < 0) return av_normalize_sf(av_normalize1_sf((SoftFloat){ b.mant + (a.mant >> (-t)), b.exp}));
  135. else if (t < 32) return av_normalize_sf(av_normalize1_sf((SoftFloat){ a.mant + (b.mant >> t ), a.exp}));
  136. else return a;
  137. }
  138. static inline av_const SoftFloat av_sub_sf(SoftFloat a, SoftFloat b){
  139. return av_add_sf(a, (SoftFloat){ -b.mant, b.exp});
  140. }
  141. //FIXME log, exp, pow
  142. /**
  143. * Converts a mantisse and exponent to a SoftFloat.
  144. * This converts a fixed point value v with frac_bits fractional bits to a
  145. * SoftFloat.
  146. * @returns a SoftFloat with value v * 2^-frac_bits
  147. */
  148. static inline av_const SoftFloat av_int2sf(int v, int frac_bits){
  149. int exp_offset = 0;
  150. if(v <= INT_MIN + 1){
  151. exp_offset = 1;
  152. v>>=1;
  153. }
  154. return av_normalize_sf(av_normalize1_sf((SoftFloat){v, ONE_BITS + 1 - frac_bits + exp_offset}));
  155. }
  156. /**
  157. * Rounding is to -inf.
  158. */
  159. static inline av_const int av_sf2int(SoftFloat v, int frac_bits){
  160. v.exp += frac_bits - (ONE_BITS + 1);
  161. if(v.exp >= 0) return v.mant << v.exp ;
  162. else return v.mant >>(-v.exp);
  163. }
  164. /**
  165. * Rounding-to-nearest used.
  166. */
  167. static av_always_inline SoftFloat av_sqrt_sf(SoftFloat val)
  168. {
  169. int tabIndex, rem;
  170. if (val.mant == 0)
  171. val.exp = MIN_EXP;
  172. else if (val.mant < 0)
  173. abort();
  174. else
  175. {
  176. tabIndex = (val.mant - 0x20000000) >> 20;
  177. rem = val.mant & 0xFFFFF;
  178. val.mant = (int)(((int64_t)av_sqrttbl_sf[tabIndex] * (0x100000 - rem) +
  179. (int64_t)av_sqrttbl_sf[tabIndex + 1] * rem +
  180. 0x80000) >> 20);
  181. val.mant = (int)(((int64_t)av_sqr_exp_multbl_sf[val.exp & 1] * val.mant +
  182. 0x10000000) >> 29);
  183. if (val.mant < 0x40000000)
  184. val.exp -= 2;
  185. else
  186. val.mant >>= 1;
  187. val.exp = (val.exp >> 1) + 1;
  188. }
  189. return val;
  190. }
  191. /**
  192. * Rounding-to-nearest used.
  193. */
  194. static av_unused void av_sincos_sf(int a, int *s, int *c)
  195. {
  196. int idx, sign;
  197. int sv, cv;
  198. int st, ct;
  199. idx = a >> 26;
  200. sign = (int32_t)((unsigned)idx << 27) >> 31;
  201. cv = av_costbl_1_sf[idx & 0xf];
  202. cv = (cv ^ sign) - sign;
  203. idx -= 8;
  204. sign = (int32_t)((unsigned)idx << 27) >> 31;
  205. sv = av_costbl_1_sf[idx & 0xf];
  206. sv = (sv ^ sign) - sign;
  207. idx = a >> 21;
  208. ct = av_costbl_2_sf[idx & 0x1f];
  209. st = av_sintbl_2_sf[idx & 0x1f];
  210. idx = (int)(((int64_t)cv * ct - (int64_t)sv * st + 0x20000000) >> 30);
  211. sv = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30);
  212. cv = idx;
  213. idx = a >> 16;
  214. ct = av_costbl_3_sf[idx & 0x1f];
  215. st = av_sintbl_3_sf[idx & 0x1f];
  216. idx = (int)(((int64_t)cv * ct - (int64_t)sv * st + 0x20000000) >> 30);
  217. sv = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30);
  218. cv = idx;
  219. idx = a >> 11;
  220. ct = (int)(((int64_t)av_costbl_4_sf[idx & 0x1f] * (0x800 - (a & 0x7ff)) +
  221. (int64_t)av_costbl_4_sf[(idx & 0x1f)+1]*(a & 0x7ff) +
  222. 0x400) >> 11);
  223. st = (int)(((int64_t)av_sintbl_4_sf[idx & 0x1f] * (0x800 - (a & 0x7ff)) +
  224. (int64_t)av_sintbl_4_sf[(idx & 0x1f) + 1] * (a & 0x7ff) +
  225. 0x400) >> 11);
  226. *c = (int)(((int64_t)cv * ct + (int64_t)sv * st + 0x20000000) >> 30);
  227. *s = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30);
  228. }
  229. #endif /* AVUTIL_SOFTFLOAT_H */