You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1156 lines
39KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/internal.h"
  27. #include "libavutil/opt.h"
  28. #include "libavutil/timer.h"
  29. #include "avcodec.h"
  30. #include "blockdsp.h"
  31. #include "dsputil.h"
  32. #include "internal.h"
  33. #include "mpegvideo.h"
  34. #include "dnxhdenc.h"
  35. // The largest value that will not lead to overflow for 10bit samples.
  36. #define DNX10BIT_QMAT_SHIFT 18
  37. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  38. #define LAMBDA_FRAC_BITS 10
  39. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  40. static const AVOption options[] = {
  41. { "nitris_compat", "encode with Avid Nitris compatibility",
  42. offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
  43. { NULL }
  44. };
  45. static const AVClass dnxhd_class = {
  46. .class_name = "dnxhd",
  47. .item_name = av_default_item_name,
  48. .option = options,
  49. .version = LIBAVUTIL_VERSION_INT,
  50. };
  51. static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block,
  52. const uint8_t *pixels,
  53. ptrdiff_t line_size)
  54. {
  55. int i;
  56. for (i = 0; i < 4; i++) {
  57. block[0] = pixels[0];
  58. block[1] = pixels[1];
  59. block[2] = pixels[2];
  60. block[3] = pixels[3];
  61. block[4] = pixels[4];
  62. block[5] = pixels[5];
  63. block[6] = pixels[6];
  64. block[7] = pixels[7];
  65. pixels += line_size;
  66. block += 8;
  67. }
  68. memcpy(block, block - 8, sizeof(*block) * 8);
  69. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  70. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  71. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  72. }
  73. static av_always_inline
  74. void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block,
  75. const uint8_t *pixels,
  76. ptrdiff_t line_size)
  77. {
  78. int i;
  79. const uint16_t* pixels16 = (const uint16_t*)pixels;
  80. line_size >>= 1;
  81. for (i = 0; i < 4; i++) {
  82. block[0] = pixels16[0]; block[1] = pixels16[1];
  83. block[2] = pixels16[2]; block[3] = pixels16[3];
  84. block[4] = pixels16[4]; block[5] = pixels16[5];
  85. block[6] = pixels16[6]; block[7] = pixels16[7];
  86. pixels16 += line_size;
  87. block += 8;
  88. }
  89. memcpy(block, block - 8, sizeof(*block) * 8);
  90. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  91. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  92. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  93. }
  94. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
  95. int n, int qscale, int *overflow)
  96. {
  97. const uint8_t *scantable= ctx->intra_scantable.scantable;
  98. const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
  99. int last_non_zero = 0;
  100. int i;
  101. ctx->dsp.fdct(block);
  102. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  103. block[0] = (block[0] + 2) >> 2;
  104. for (i = 1; i < 64; ++i) {
  105. int j = scantable[i];
  106. int sign = block[j] >> 31;
  107. int level = (block[j] ^ sign) - sign;
  108. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  109. block[j] = (level ^ sign) - sign;
  110. if (level)
  111. last_non_zero = i;
  112. }
  113. return last_non_zero;
  114. }
  115. static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
  116. {
  117. int i, j, level, run;
  118. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  119. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes,
  120. max_level * 4 * sizeof(*ctx->vlc_codes), fail);
  121. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits,
  122. max_level * 4 * sizeof(*ctx->vlc_bits), fail);
  123. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes,
  124. 63 * 2, fail);
  125. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,
  126. 63, fail);
  127. ctx->vlc_codes += max_level * 2;
  128. ctx->vlc_bits += max_level * 2;
  129. for (level = -max_level; level < max_level; level++) {
  130. for (run = 0; run < 2; run++) {
  131. int index = (level << 1) | run;
  132. int sign, offset = 0, alevel = level;
  133. MASK_ABS(sign, alevel);
  134. if (alevel > 64) {
  135. offset = (alevel - 1) >> 6;
  136. alevel -= offset << 6;
  137. }
  138. for (j = 0; j < 257; j++) {
  139. if (ctx->cid_table->ac_level[j] >> 1 == alevel &&
  140. (!offset || (ctx->cid_table->ac_flags[j] & 1) && offset) &&
  141. (!run || (ctx->cid_table->ac_flags[j] & 2) && run)) {
  142. av_assert1(!ctx->vlc_codes[index]);
  143. if (alevel) {
  144. ctx->vlc_codes[index] =
  145. (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
  146. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
  147. } else {
  148. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  149. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
  150. }
  151. break;
  152. }
  153. }
  154. av_assert0(!alevel || j < 257);
  155. if (offset) {
  156. ctx->vlc_codes[index] =
  157. (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
  158. ctx->vlc_bits[index] += ctx->cid_table->index_bits;
  159. }
  160. }
  161. }
  162. for (i = 0; i < 62; i++) {
  163. int run = ctx->cid_table->run[i];
  164. av_assert0(run < 63);
  165. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  166. ctx->run_bits[run] = ctx->cid_table->run_bits[i];
  167. }
  168. return 0;
  169. fail:
  170. return AVERROR(ENOMEM);
  171. }
  172. static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  173. {
  174. // init first elem to 1 to avoid div by 0 in convert_matrix
  175. uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
  176. int qscale, i;
  177. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  178. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  179. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l,
  180. (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
  181. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c,
  182. (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
  183. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16,
  184. (ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
  185. fail);
  186. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16,
  187. (ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
  188. fail);
  189. if (ctx->cid_table->bit_depth == 8) {
  190. for (i = 1; i < 64; i++) {
  191. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  192. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  193. }
  194. ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
  195. weight_matrix, ctx->m.intra_quant_bias, 1,
  196. ctx->m.avctx->qmax, 1);
  197. for (i = 1; i < 64; i++) {
  198. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  199. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  200. }
  201. ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
  202. weight_matrix, ctx->m.intra_quant_bias, 1,
  203. ctx->m.avctx->qmax, 1);
  204. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  205. for (i = 0; i < 64; i++) {
  206. ctx->qmatrix_l[qscale][i] <<= 2;
  207. ctx->qmatrix_c[qscale][i] <<= 2;
  208. ctx->qmatrix_l16[qscale][0][i] <<= 2;
  209. ctx->qmatrix_l16[qscale][1][i] <<= 2;
  210. ctx->qmatrix_c16[qscale][0][i] <<= 2;
  211. ctx->qmatrix_c16[qscale][1][i] <<= 2;
  212. }
  213. }
  214. } else {
  215. // 10-bit
  216. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  217. for (i = 1; i < 64; i++) {
  218. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  219. /* The quantization formula from the VC-3 standard is:
  220. * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
  221. * (qscale * weight_table[i]))
  222. * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  223. * The s factor compensates scaling of DCT coefficients done by
  224. * the DCT routines, and therefore is not present in standard.
  225. * It's 8 for 8-bit samples and 4 for 10-bit ones.
  226. * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  227. * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
  228. * (qscale * weight_table[i])
  229. * For 10-bit samples, p / s == 2 */
  230. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  231. (qscale * luma_weight_table[i]);
  232. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  233. (qscale * chroma_weight_table[i]);
  234. }
  235. }
  236. }
  237. ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
  238. ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
  239. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  240. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  241. return 0;
  242. fail:
  243. return AVERROR(ENOMEM);
  244. }
  245. static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
  246. {
  247. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160 * (ctx->m.avctx->qmax + 1) * sizeof(RCEntry), fail);
  248. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  249. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp,
  250. ctx->m.mb_num * sizeof(RCCMPEntry), fail);
  251. ctx->frame_bits = (ctx->cid_table->coding_unit_size -
  252. 640 - 4 - ctx->min_padding) * 8;
  253. ctx->qscale = 1;
  254. ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
  255. return 0;
  256. fail:
  257. return AVERROR(ENOMEM);
  258. }
  259. static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
  260. {
  261. DNXHDEncContext *ctx = avctx->priv_data;
  262. int i, index, bit_depth, ret;
  263. switch (avctx->pix_fmt) {
  264. case AV_PIX_FMT_YUV422P:
  265. bit_depth = 8;
  266. break;
  267. case AV_PIX_FMT_YUV422P10:
  268. bit_depth = 10;
  269. break;
  270. default:
  271. av_log(avctx, AV_LOG_ERROR,
  272. "pixel format is incompatible with DNxHD\n");
  273. return AVERROR(EINVAL);
  274. }
  275. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  276. if (!ctx->cid) {
  277. av_log(avctx, AV_LOG_ERROR,
  278. "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
  279. ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR);
  280. return AVERROR(EINVAL);
  281. }
  282. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  283. index = ff_dnxhd_get_cid_table(ctx->cid);
  284. av_assert0(index >= 0);
  285. ctx->cid_table = &ff_dnxhd_cid_table[index];
  286. ctx->m.avctx = avctx;
  287. ctx->m.mb_intra = 1;
  288. ctx->m.h263_aic = 1;
  289. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  290. ff_blockdsp_init(&ctx->bdsp, avctx);
  291. ff_dct_common_init(&ctx->m);
  292. ff_dct_encode_init(&ctx->m);
  293. if (!ctx->m.dct_quantize)
  294. ctx->m.dct_quantize = ff_dct_quantize_c;
  295. if (ctx->cid_table->bit_depth == 10) {
  296. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  297. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  298. ctx->block_width_l2 = 4;
  299. } else {
  300. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  301. ctx->block_width_l2 = 3;
  302. }
  303. if (ARCH_X86)
  304. ff_dnxhdenc_init_x86(ctx);
  305. ctx->m.mb_height = (avctx->height + 15) / 16;
  306. ctx->m.mb_width = (avctx->width + 15) / 16;
  307. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  308. ctx->interlaced = 1;
  309. ctx->m.mb_height /= 2;
  310. }
  311. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  312. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  313. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  314. // XXX tune lbias/cbias
  315. if ((ret = dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0)) < 0)
  316. return ret;
  317. /* Avid Nitris hardware decoder requires a minimum amount of padding
  318. * in the coding unit payload */
  319. if (ctx->nitris_compat)
  320. ctx->min_padding = 1600;
  321. if ((ret = dnxhd_init_vlc(ctx)) < 0)
  322. return ret;
  323. if ((ret = dnxhd_init_rc(ctx)) < 0)
  324. return ret;
  325. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size,
  326. ctx->m.mb_height * sizeof(uint32_t), fail);
  327. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs,
  328. ctx->m.mb_height * sizeof(uint32_t), fail);
  329. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,
  330. ctx->m.mb_num * sizeof(uint16_t), fail);
  331. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,
  332. ctx->m.mb_num * sizeof(uint8_t), fail);
  333. avctx->coded_frame = av_frame_alloc();
  334. if (!avctx->coded_frame)
  335. return AVERROR(ENOMEM);
  336. avctx->coded_frame->key_frame = 1;
  337. avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  338. if (avctx->thread_count > MAX_THREADS) {
  339. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  340. return AVERROR(EINVAL);
  341. }
  342. if (avctx->qmax <= 1) {
  343. av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
  344. return AVERROR(EINVAL);
  345. }
  346. ctx->thread[0] = ctx;
  347. for (i = 1; i < avctx->thread_count; i++) {
  348. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  349. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  350. }
  351. return 0;
  352. fail: // for FF_ALLOCZ_OR_GOTO
  353. return AVERROR(ENOMEM);
  354. }
  355. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  356. {
  357. DNXHDEncContext *ctx = avctx->priv_data;
  358. static const uint8_t header_prefix[5] = { 0x00, 0x00, 0x02, 0x80, 0x01 };
  359. memset(buf, 0, 640);
  360. memcpy(buf, header_prefix, 5);
  361. buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
  362. buf[6] = 0x80; // crc flag off
  363. buf[7] = 0xa0; // reserved
  364. AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
  365. AV_WB16(buf + 0x1a, avctx->width); // SPL
  366. AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
  367. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  368. buf[0x22] = 0x88 + (ctx->interlaced << 2);
  369. AV_WB32(buf + 0x28, ctx->cid); // CID
  370. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  371. buf[0x5f] = 0x01; // UDL
  372. buf[0x167] = 0x02; // reserved
  373. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  374. buf[0x16d] = ctx->m.mb_height; // Ns
  375. buf[0x16f] = 0x10; // reserved
  376. ctx->msip = buf + 0x170;
  377. return 0;
  378. }
  379. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  380. {
  381. int nbits;
  382. if (diff < 0) {
  383. nbits = av_log2_16bit(-2 * diff);
  384. diff--;
  385. } else {
  386. nbits = av_log2_16bit(2 * diff);
  387. }
  388. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  389. (ctx->cid_table->dc_codes[nbits] << nbits) +
  390. (diff & ((1 << nbits) - 1)));
  391. }
  392. static av_always_inline
  393. void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
  394. int last_index, int n)
  395. {
  396. int last_non_zero = 0;
  397. int slevel, i, j;
  398. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  399. ctx->m.last_dc[n] = block[0];
  400. for (i = 1; i <= last_index; i++) {
  401. j = ctx->m.intra_scantable.permutated[i];
  402. slevel = block[j];
  403. if (slevel) {
  404. int run_level = i - last_non_zero - 1;
  405. int rlevel = (slevel << 1) | !!run_level;
  406. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  407. if (run_level)
  408. put_bits(&ctx->m.pb, ctx->run_bits[run_level],
  409. ctx->run_codes[run_level]);
  410. last_non_zero = i;
  411. }
  412. }
  413. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  414. }
  415. static av_always_inline
  416. void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
  417. int qscale, int last_index)
  418. {
  419. const uint8_t *weight_matrix;
  420. int level;
  421. int i;
  422. weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
  423. : ctx->cid_table->luma_weight;
  424. for (i = 1; i <= last_index; i++) {
  425. int j = ctx->m.intra_scantable.permutated[i];
  426. level = block[j];
  427. if (level) {
  428. if (level < 0) {
  429. level = (1 - 2 * level) * qscale * weight_matrix[i];
  430. if (ctx->cid_table->bit_depth == 10) {
  431. if (weight_matrix[i] != 8)
  432. level += 8;
  433. level >>= 4;
  434. } else {
  435. if (weight_matrix[i] != 32)
  436. level += 32;
  437. level >>= 6;
  438. }
  439. level = -level;
  440. } else {
  441. level = (2 * level + 1) * qscale * weight_matrix[i];
  442. if (ctx->cid_table->bit_depth == 10) {
  443. if (weight_matrix[i] != 8)
  444. level += 8;
  445. level >>= 4;
  446. } else {
  447. if (weight_matrix[i] != 32)
  448. level += 32;
  449. level >>= 6;
  450. }
  451. }
  452. block[j] = level;
  453. }
  454. }
  455. }
  456. static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
  457. {
  458. int score = 0;
  459. int i;
  460. for (i = 0; i < 64; i++)
  461. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  462. return score;
  463. }
  464. static av_always_inline
  465. int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
  466. {
  467. int last_non_zero = 0;
  468. int bits = 0;
  469. int i, j, level;
  470. for (i = 1; i <= last_index; i++) {
  471. j = ctx->m.intra_scantable.permutated[i];
  472. level = block[j];
  473. if (level) {
  474. int run_level = i - last_non_zero - 1;
  475. bits += ctx->vlc_bits[(level << 1) |
  476. !!run_level] + ctx->run_bits[run_level];
  477. last_non_zero = i;
  478. }
  479. }
  480. return bits;
  481. }
  482. static av_always_inline
  483. void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  484. {
  485. const int bs = ctx->block_width_l2;
  486. const int bw = 1 << bs;
  487. const uint8_t *ptr_y = ctx->thread[0]->src[0] +
  488. ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
  489. const uint8_t *ptr_u = ctx->thread[0]->src[1] +
  490. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  491. const uint8_t *ptr_v = ctx->thread[0]->src[2] +
  492. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  493. DSPContext *dsp = &ctx->m.dsp;
  494. dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  495. dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  496. dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  497. dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  498. if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  499. if (ctx->interlaced) {
  500. ctx->get_pixels_8x4_sym(ctx->blocks[4],
  501. ptr_y + ctx->dct_y_offset,
  502. ctx->m.linesize);
  503. ctx->get_pixels_8x4_sym(ctx->blocks[5],
  504. ptr_y + ctx->dct_y_offset + bw,
  505. ctx->m.linesize);
  506. ctx->get_pixels_8x4_sym(ctx->blocks[6],
  507. ptr_u + ctx->dct_uv_offset,
  508. ctx->m.uvlinesize);
  509. ctx->get_pixels_8x4_sym(ctx->blocks[7],
  510. ptr_v + ctx->dct_uv_offset,
  511. ctx->m.uvlinesize);
  512. } else {
  513. ctx->bdsp.clear_block(ctx->blocks[4]);
  514. ctx->bdsp.clear_block(ctx->blocks[5]);
  515. ctx->bdsp.clear_block(ctx->blocks[6]);
  516. ctx->bdsp.clear_block(ctx->blocks[7]);
  517. }
  518. } else {
  519. dsp->get_pixels(ctx->blocks[4],
  520. ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  521. dsp->get_pixels(ctx->blocks[5],
  522. ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  523. dsp->get_pixels(ctx->blocks[6],
  524. ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  525. dsp->get_pixels(ctx->blocks[7],
  526. ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  527. }
  528. }
  529. static av_always_inline
  530. int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  531. {
  532. const static uint8_t component[8]={0,0,1,2,0,0,1,2};
  533. return component[i];
  534. }
  535. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
  536. int jobnr, int threadnr)
  537. {
  538. DNXHDEncContext *ctx = avctx->priv_data;
  539. int mb_y = jobnr, mb_x;
  540. int qscale = ctx->qscale;
  541. LOCAL_ALIGNED_16(int16_t, block, [64]);
  542. ctx = ctx->thread[threadnr];
  543. ctx->m.last_dc[0] =
  544. ctx->m.last_dc[1] =
  545. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  546. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  547. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  548. int ssd = 0;
  549. int ac_bits = 0;
  550. int dc_bits = 0;
  551. int i;
  552. dnxhd_get_blocks(ctx, mb_x, mb_y);
  553. for (i = 0; i < 8; i++) {
  554. int16_t *src_block = ctx->blocks[i];
  555. int overflow, nbits, diff, last_index;
  556. int n = dnxhd_switch_matrix(ctx, i);
  557. memcpy(block, src_block, 64 * sizeof(*block));
  558. last_index = ctx->m.dct_quantize(&ctx->m, block, 4 & (2*i),
  559. qscale, &overflow);
  560. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  561. diff = block[0] - ctx->m.last_dc[n];
  562. if (diff < 0)
  563. nbits = av_log2_16bit(-2 * diff);
  564. else
  565. nbits = av_log2_16bit(2 * diff);
  566. av_assert1(nbits < ctx->cid_table->bit_depth + 4);
  567. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  568. ctx->m.last_dc[n] = block[0];
  569. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  570. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  571. ctx->m.dsp.idct(block);
  572. ssd += dnxhd_ssd_block(block, src_block);
  573. }
  574. }
  575. ctx->mb_rc[qscale][mb].ssd = ssd;
  576. ctx->mb_rc[qscale][mb].bits = ac_bits + dc_bits + 12 +
  577. 8 * ctx->vlc_bits[0];
  578. }
  579. return 0;
  580. }
  581. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
  582. int jobnr, int threadnr)
  583. {
  584. DNXHDEncContext *ctx = avctx->priv_data;
  585. int mb_y = jobnr, mb_x;
  586. ctx = ctx->thread[threadnr];
  587. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr],
  588. ctx->slice_size[jobnr]);
  589. ctx->m.last_dc[0] =
  590. ctx->m.last_dc[1] =
  591. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  592. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  593. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  594. int qscale = ctx->mb_qscale[mb];
  595. int i;
  596. put_bits(&ctx->m.pb, 12, qscale << 1);
  597. dnxhd_get_blocks(ctx, mb_x, mb_y);
  598. for (i = 0; i < 8; i++) {
  599. int16_t *block = ctx->blocks[i];
  600. int overflow, n = dnxhd_switch_matrix(ctx, i);
  601. int last_index = ctx->m.dct_quantize(&ctx->m, block, 4 & (2*i),
  602. qscale, &overflow);
  603. // START_TIMER;
  604. dnxhd_encode_block(ctx, block, last_index, n);
  605. // STOP_TIMER("encode_block");
  606. }
  607. }
  608. if (put_bits_count(&ctx->m.pb) & 31)
  609. put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
  610. flush_put_bits(&ctx->m.pb);
  611. return 0;
  612. }
  613. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  614. {
  615. int mb_y, mb_x;
  616. int offset = 0;
  617. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  618. int thread_size;
  619. ctx->slice_offs[mb_y] = offset;
  620. ctx->slice_size[mb_y] = 0;
  621. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  622. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  623. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  624. }
  625. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31;
  626. ctx->slice_size[mb_y] >>= 3;
  627. thread_size = ctx->slice_size[mb_y];
  628. offset += thread_size;
  629. }
  630. }
  631. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
  632. int jobnr, int threadnr)
  633. {
  634. DNXHDEncContext *ctx = avctx->priv_data;
  635. int mb_y = jobnr, mb_x, x, y;
  636. int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
  637. ((avctx->height >> ctx->interlaced) & 0xF);
  638. ctx = ctx->thread[threadnr];
  639. if (ctx->cid_table->bit_depth == 8) {
  640. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
  641. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  642. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  643. int sum;
  644. int varc;
  645. if (!partial_last_row && mb_x * 16 <= avctx->width - 16) {
  646. sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  647. varc = ctx->m.dsp.pix_norm1(pix, ctx->m.linesize);
  648. } else {
  649. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  650. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  651. sum = varc = 0;
  652. for (y = 0; y < bh; y++) {
  653. for (x = 0; x < bw; x++) {
  654. uint8_t val = pix[x + y * ctx->m.linesize];
  655. sum += val;
  656. varc += val * val;
  657. }
  658. }
  659. }
  660. varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
  661. ctx->mb_cmp[mb].value = varc;
  662. ctx->mb_cmp[mb].mb = mb;
  663. }
  664. } else { // 10-bit
  665. int const linesize = ctx->m.linesize >> 1;
  666. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  667. uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
  668. ((mb_y << 4) * linesize) + (mb_x << 4);
  669. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  670. int sum = 0;
  671. int sqsum = 0;
  672. int mean, sqmean;
  673. int i, j;
  674. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  675. for (i = 0; i < 16; ++i) {
  676. for (j = 0; j < 16; ++j) {
  677. // Turn 16-bit pixels into 10-bit ones.
  678. int const sample = (unsigned) pix[j] >> 6;
  679. sum += sample;
  680. sqsum += sample * sample;
  681. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  682. }
  683. pix += linesize;
  684. }
  685. mean = sum >> 8; // 16*16 == 2^8
  686. sqmean = sqsum >> 8;
  687. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  688. ctx->mb_cmp[mb].mb = mb;
  689. }
  690. }
  691. return 0;
  692. }
  693. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  694. {
  695. int lambda, up_step, down_step;
  696. int last_lower = INT_MAX, last_higher = 0;
  697. int x, y, q;
  698. for (q = 1; q < avctx->qmax; q++) {
  699. ctx->qscale = q;
  700. avctx->execute2(avctx, dnxhd_calc_bits_thread,
  701. NULL, NULL, ctx->m.mb_height);
  702. }
  703. up_step = down_step = 2 << LAMBDA_FRAC_BITS;
  704. lambda = ctx->lambda;
  705. for (;;) {
  706. int bits = 0;
  707. int end = 0;
  708. if (lambda == last_higher) {
  709. lambda++;
  710. end = 1; // need to set final qscales/bits
  711. }
  712. for (y = 0; y < ctx->m.mb_height; y++) {
  713. for (x = 0; x < ctx->m.mb_width; x++) {
  714. unsigned min = UINT_MAX;
  715. int qscale = 1;
  716. int mb = y * ctx->m.mb_width + x;
  717. for (q = 1; q < avctx->qmax; q++) {
  718. unsigned score = ctx->mb_rc[q][mb].bits * lambda +
  719. ((unsigned) ctx->mb_rc[q][mb].ssd << LAMBDA_FRAC_BITS);
  720. if (score < min) {
  721. min = score;
  722. qscale = q;
  723. }
  724. }
  725. bits += ctx->mb_rc[qscale][mb].bits;
  726. ctx->mb_qscale[mb] = qscale;
  727. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  728. }
  729. bits = (bits + 31) & ~31; // padding
  730. if (bits > ctx->frame_bits)
  731. break;
  732. }
  733. // av_dlog(ctx->m.avctx,
  734. // "lambda %d, up %u, down %u, bits %d, frame %d\n",
  735. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  736. if (end) {
  737. if (bits > ctx->frame_bits)
  738. return AVERROR(EINVAL);
  739. break;
  740. }
  741. if (bits < ctx->frame_bits) {
  742. last_lower = FFMIN(lambda, last_lower);
  743. if (last_higher != 0)
  744. lambda = (lambda+last_higher)>>1;
  745. else
  746. lambda -= down_step;
  747. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  748. up_step = 1<<LAMBDA_FRAC_BITS;
  749. lambda = FFMAX(1, lambda);
  750. if (lambda == last_lower)
  751. break;
  752. } else {
  753. last_higher = FFMAX(lambda, last_higher);
  754. if (last_lower != INT_MAX)
  755. lambda = (lambda+last_lower)>>1;
  756. else if ((int64_t)lambda + up_step > INT_MAX)
  757. return AVERROR(EINVAL);
  758. else
  759. lambda += up_step;
  760. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  761. down_step = 1<<LAMBDA_FRAC_BITS;
  762. }
  763. }
  764. //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  765. ctx->lambda = lambda;
  766. return 0;
  767. }
  768. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  769. {
  770. int bits = 0;
  771. int up_step = 1;
  772. int down_step = 1;
  773. int last_higher = 0;
  774. int last_lower = INT_MAX;
  775. int qscale;
  776. int x, y;
  777. qscale = ctx->qscale;
  778. for (;;) {
  779. bits = 0;
  780. ctx->qscale = qscale;
  781. // XXX avoid recalculating bits
  782. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
  783. NULL, NULL, ctx->m.mb_height);
  784. for (y = 0; y < ctx->m.mb_height; y++) {
  785. for (x = 0; x < ctx->m.mb_width; x++)
  786. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  787. bits = (bits+31)&~31; // padding
  788. if (bits > ctx->frame_bits)
  789. break;
  790. }
  791. // av_dlog(ctx->m.avctx,
  792. // "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  793. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits,
  794. // last_higher, last_lower);
  795. if (bits < ctx->frame_bits) {
  796. if (qscale == 1)
  797. return 1;
  798. if (last_higher == qscale - 1) {
  799. qscale = last_higher;
  800. break;
  801. }
  802. last_lower = FFMIN(qscale, last_lower);
  803. if (last_higher != 0)
  804. qscale = (qscale + last_higher) >> 1;
  805. else
  806. qscale -= down_step++;
  807. if (qscale < 1)
  808. qscale = 1;
  809. up_step = 1;
  810. } else {
  811. if (last_lower == qscale + 1)
  812. break;
  813. last_higher = FFMAX(qscale, last_higher);
  814. if (last_lower != INT_MAX)
  815. qscale = (qscale + last_lower) >> 1;
  816. else
  817. qscale += up_step++;
  818. down_step = 1;
  819. if (qscale >= ctx->m.avctx->qmax)
  820. return AVERROR(EINVAL);
  821. }
  822. }
  823. //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  824. ctx->qscale = qscale;
  825. return 0;
  826. }
  827. #define BUCKET_BITS 8
  828. #define RADIX_PASSES 4
  829. #define NBUCKETS (1 << BUCKET_BITS)
  830. static inline int get_bucket(int value, int shift)
  831. {
  832. value >>= shift;
  833. value &= NBUCKETS - 1;
  834. return NBUCKETS - 1 - value;
  835. }
  836. static void radix_count(const RCCMPEntry *data, int size,
  837. int buckets[RADIX_PASSES][NBUCKETS])
  838. {
  839. int i, j;
  840. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  841. for (i = 0; i < size; i++) {
  842. int v = data[i].value;
  843. for (j = 0; j < RADIX_PASSES; j++) {
  844. buckets[j][get_bucket(v, 0)]++;
  845. v >>= BUCKET_BITS;
  846. }
  847. av_assert1(!v);
  848. }
  849. for (j = 0; j < RADIX_PASSES; j++) {
  850. int offset = size;
  851. for (i = NBUCKETS - 1; i >= 0; i--)
  852. buckets[j][i] = offset -= buckets[j][i];
  853. av_assert1(!buckets[j][0]);
  854. }
  855. }
  856. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
  857. int size, int buckets[NBUCKETS], int pass)
  858. {
  859. int shift = pass * BUCKET_BITS;
  860. int i;
  861. for (i = 0; i < size; i++) {
  862. int v = get_bucket(data[i].value, shift);
  863. int pos = buckets[v]++;
  864. dst[pos] = data[i];
  865. }
  866. }
  867. static void radix_sort(RCCMPEntry *data, int size)
  868. {
  869. int buckets[RADIX_PASSES][NBUCKETS];
  870. RCCMPEntry *tmp = av_malloc_array(size, sizeof(*tmp));
  871. radix_count(data, size, buckets);
  872. radix_sort_pass(tmp, data, size, buckets[0], 0);
  873. radix_sort_pass(data, tmp, size, buckets[1], 1);
  874. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  875. radix_sort_pass(tmp, data, size, buckets[2], 2);
  876. radix_sort_pass(data, tmp, size, buckets[3], 3);
  877. }
  878. av_free(tmp);
  879. }
  880. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  881. {
  882. int max_bits = 0;
  883. int ret, x, y;
  884. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  885. return ret;
  886. for (y = 0; y < ctx->m.mb_height; y++) {
  887. for (x = 0; x < ctx->m.mb_width; x++) {
  888. int mb = y * ctx->m.mb_width + x;
  889. int delta_bits;
  890. ctx->mb_qscale[mb] = ctx->qscale;
  891. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  892. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  893. if (!RC_VARIANCE) {
  894. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits -
  895. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  896. ctx->mb_cmp[mb].mb = mb;
  897. ctx->mb_cmp[mb].value =
  898. delta_bits ? ((ctx->mb_rc[ctx->qscale][mb].ssd -
  899. ctx->mb_rc[ctx->qscale + 1][mb].ssd) * 100) /
  900. delta_bits
  901. : INT_MIN; // avoid increasing qscale
  902. }
  903. }
  904. max_bits += 31; // worst padding
  905. }
  906. if (!ret) {
  907. if (RC_VARIANCE)
  908. avctx->execute2(avctx, dnxhd_mb_var_thread,
  909. NULL, NULL, ctx->m.mb_height);
  910. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  911. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  912. int mb = ctx->mb_cmp[x].mb;
  913. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits -
  914. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  915. ctx->mb_qscale[mb] = ctx->qscale + 1;
  916. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale + 1][mb].bits;
  917. }
  918. }
  919. return 0;
  920. }
  921. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  922. {
  923. int i;
  924. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  925. ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
  926. ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
  927. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  928. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  929. }
  930. ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
  931. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  932. }
  933. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  934. const AVFrame *frame, int *got_packet)
  935. {
  936. DNXHDEncContext *ctx = avctx->priv_data;
  937. int first_field = 1;
  938. int offset, i, ret;
  939. uint8_t *buf;
  940. if ((ret = ff_alloc_packet2(avctx, pkt, ctx->cid_table->frame_size)) < 0)
  941. return ret;
  942. buf = pkt->data;
  943. dnxhd_load_picture(ctx, frame);
  944. encode_coding_unit:
  945. for (i = 0; i < 3; i++) {
  946. ctx->src[i] = frame->data[i];
  947. if (ctx->interlaced && ctx->cur_field)
  948. ctx->src[i] += frame->linesize[i];
  949. }
  950. dnxhd_write_header(avctx, buf);
  951. if (avctx->mb_decision == FF_MB_DECISION_RD)
  952. ret = dnxhd_encode_rdo(avctx, ctx);
  953. else
  954. ret = dnxhd_encode_fast(avctx, ctx);
  955. if (ret < 0) {
  956. av_log(avctx, AV_LOG_ERROR,
  957. "picture could not fit ratecontrol constraints, increase qmax\n");
  958. return ret;
  959. }
  960. dnxhd_setup_threads_slices(ctx);
  961. offset = 0;
  962. for (i = 0; i < ctx->m.mb_height; i++) {
  963. AV_WB32(ctx->msip + i * 4, offset);
  964. offset += ctx->slice_size[i];
  965. av_assert1(!(ctx->slice_size[i] & 3));
  966. }
  967. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  968. av_assert1(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  969. memset(buf + 640 + offset, 0,
  970. ctx->cid_table->coding_unit_size - 4 - offset - 640);
  971. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  972. if (ctx->interlaced && first_field) {
  973. first_field = 0;
  974. ctx->cur_field ^= 1;
  975. buf += ctx->cid_table->coding_unit_size;
  976. goto encode_coding_unit;
  977. }
  978. avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
  979. pkt->flags |= AV_PKT_FLAG_KEY;
  980. *got_packet = 1;
  981. return 0;
  982. }
  983. static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
  984. {
  985. DNXHDEncContext *ctx = avctx->priv_data;
  986. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  987. int i;
  988. av_free(ctx->vlc_codes - max_level * 2);
  989. av_free(ctx->vlc_bits - max_level * 2);
  990. av_freep(&ctx->run_codes);
  991. av_freep(&ctx->run_bits);
  992. av_freep(&ctx->mb_bits);
  993. av_freep(&ctx->mb_qscale);
  994. av_freep(&ctx->mb_rc);
  995. av_freep(&ctx->mb_cmp);
  996. av_freep(&ctx->slice_size);
  997. av_freep(&ctx->slice_offs);
  998. av_freep(&ctx->qmatrix_c);
  999. av_freep(&ctx->qmatrix_l);
  1000. av_freep(&ctx->qmatrix_c16);
  1001. av_freep(&ctx->qmatrix_l16);
  1002. for (i = 1; i < avctx->thread_count; i++)
  1003. av_freep(&ctx->thread[i]);
  1004. av_frame_free(&avctx->coded_frame);
  1005. return 0;
  1006. }
  1007. static const AVCodecDefault dnxhd_defaults[] = {
  1008. { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
  1009. { NULL },
  1010. };
  1011. AVCodec ff_dnxhd_encoder = {
  1012. .name = "dnxhd",
  1013. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  1014. .type = AVMEDIA_TYPE_VIDEO,
  1015. .id = AV_CODEC_ID_DNXHD,
  1016. .priv_data_size = sizeof(DNXHDEncContext),
  1017. .init = dnxhd_encode_init,
  1018. .encode2 = dnxhd_encode_picture,
  1019. .close = dnxhd_encode_end,
  1020. .capabilities = CODEC_CAP_SLICE_THREADS,
  1021. .pix_fmts = (const enum AVPixelFormat[]) {
  1022. AV_PIX_FMT_YUV422P,
  1023. AV_PIX_FMT_YUV422P10,
  1024. AV_PIX_FMT_NONE
  1025. },
  1026. .priv_class = &dnxhd_class,
  1027. .defaults = dnxhd_defaults,
  1028. };