You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

844 lines
21KB

  1. /*
  2. * yuv2rgb.c, Software YUV to RGB coverter
  3. *
  4. * Copyright (C) 1999, Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
  5. * All Rights Reserved.
  6. *
  7. * Functions broken out from display_x11.c and several new modes
  8. * added by HÃ¥kan Hjort <d95hjort@dtek.chalmers.se>
  9. *
  10. * 15 & 16 bpp support by Franck Sicard <Franck.Sicard@solsoft.fr>
  11. *
  12. * This file is part of mpeg2dec, a free MPEG-2 video decoder
  13. *
  14. * mpeg2dec is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2, or (at your option)
  17. * any later version.
  18. *
  19. * mpeg2dec is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with GNU Make; see the file COPYING. If not, write to
  26. * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  27. *
  28. * MMX/MMX2 Template stuff from Michael Niedermayer (michaelni@gmx.at) (needed for fast movntq support)
  29. * 1,4,8bpp support by Michael Niedermayer (michaelni@gmx.at)
  30. * context / deglobalize stuff by Michael Niedermayer
  31. */
  32. #include <stdio.h>
  33. #include <stdlib.h>
  34. #include <inttypes.h>
  35. #include <assert.h>
  36. #include "config.h"
  37. //#include "video_out.h"
  38. #include "rgb2rgb.h"
  39. #include "swscale.h"
  40. #include "swscale_internal.h"
  41. #include "../mangle.h"
  42. #include "../libvo/img_format.h" //FIXME try to reduce dependency of such stuff
  43. #ifdef HAVE_MLIB
  44. #include "yuv2rgb_mlib.c"
  45. #endif
  46. #define DITHER1XBPP // only for mmx
  47. const uint8_t __attribute__((aligned(8))) dither_2x2_4[2][8]={
  48. { 1, 3, 1, 3, 1, 3, 1, 3, },
  49. { 2, 0, 2, 0, 2, 0, 2, 0, },
  50. };
  51. const uint8_t __attribute__((aligned(8))) dither_2x2_8[2][8]={
  52. { 6, 2, 6, 2, 6, 2, 6, 2, },
  53. { 0, 4, 0, 4, 0, 4, 0, 4, },
  54. };
  55. const uint8_t __attribute__((aligned(8))) dither_8x8_32[8][8]={
  56. { 17, 9, 23, 15, 16, 8, 22, 14, },
  57. { 5, 29, 3, 27, 4, 28, 2, 26, },
  58. { 21, 13, 19, 11, 20, 12, 18, 10, },
  59. { 0, 24, 6, 30, 1, 25, 7, 31, },
  60. { 16, 8, 22, 14, 17, 9, 23, 15, },
  61. { 4, 28, 2, 26, 5, 29, 3, 27, },
  62. { 20, 12, 18, 10, 21, 13, 19, 11, },
  63. { 1, 25, 7, 31, 0, 24, 6, 30, },
  64. };
  65. #if 0
  66. const uint8_t __attribute__((aligned(8))) dither_8x8_64[8][8]={
  67. { 0, 48, 12, 60, 3, 51, 15, 63, },
  68. { 32, 16, 44, 28, 35, 19, 47, 31, },
  69. { 8, 56, 4, 52, 11, 59, 7, 55, },
  70. { 40, 24, 36, 20, 43, 27, 39, 23, },
  71. { 2, 50, 14, 62, 1, 49, 13, 61, },
  72. { 34, 18, 46, 30, 33, 17, 45, 29, },
  73. { 10, 58, 6, 54, 9, 57, 5, 53, },
  74. { 42, 26, 38, 22, 41, 25, 37, 21, },
  75. };
  76. #endif
  77. const uint8_t __attribute__((aligned(8))) dither_8x8_73[8][8]={
  78. { 0, 55, 14, 68, 3, 58, 17, 72, },
  79. { 37, 18, 50, 32, 40, 22, 54, 35, },
  80. { 9, 64, 5, 59, 13, 67, 8, 63, },
  81. { 46, 27, 41, 23, 49, 31, 44, 26, },
  82. { 2, 57, 16, 71, 1, 56, 15, 70, },
  83. { 39, 21, 52, 34, 38, 19, 51, 33, },
  84. { 11, 66, 7, 62, 10, 65, 6, 60, },
  85. { 48, 30, 43, 25, 47, 29, 42, 24, },
  86. };
  87. #if 0
  88. const uint8_t __attribute__((aligned(8))) dither_8x8_128[8][8]={
  89. { 68, 36, 92, 60, 66, 34, 90, 58, },
  90. { 20, 116, 12, 108, 18, 114, 10, 106, },
  91. { 84, 52, 76, 44, 82, 50, 74, 42, },
  92. { 0, 96, 24, 120, 6, 102, 30, 126, },
  93. { 64, 32, 88, 56, 70, 38, 94, 62, },
  94. { 16, 112, 8, 104, 22, 118, 14, 110, },
  95. { 80, 48, 72, 40, 86, 54, 78, 46, },
  96. { 4, 100, 28, 124, 2, 98, 26, 122, },
  97. };
  98. #endif
  99. #if 1
  100. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  101. {117, 62, 158, 103, 113, 58, 155, 100, },
  102. { 34, 199, 21, 186, 31, 196, 17, 182, },
  103. {144, 89, 131, 76, 141, 86, 127, 72, },
  104. { 0, 165, 41, 206, 10, 175, 52, 217, },
  105. {110, 55, 151, 96, 120, 65, 162, 107, },
  106. { 28, 193, 14, 179, 38, 203, 24, 189, },
  107. {138, 83, 124, 69, 148, 93, 134, 79, },
  108. { 7, 172, 48, 213, 3, 168, 45, 210, },
  109. };
  110. #elif 1
  111. // tries to correct a gamma of 1.5
  112. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  113. { 0, 143, 18, 200, 2, 156, 25, 215, },
  114. { 78, 28, 125, 64, 89, 36, 138, 74, },
  115. { 10, 180, 3, 161, 16, 195, 8, 175, },
  116. {109, 51, 93, 38, 121, 60, 105, 47, },
  117. { 1, 152, 23, 210, 0, 147, 20, 205, },
  118. { 85, 33, 134, 71, 81, 30, 130, 67, },
  119. { 14, 190, 6, 171, 12, 185, 5, 166, },
  120. {117, 57, 101, 44, 113, 54, 97, 41, },
  121. };
  122. #elif 1
  123. // tries to correct a gamma of 2.0
  124. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  125. { 0, 124, 8, 193, 0, 140, 12, 213, },
  126. { 55, 14, 104, 42, 66, 19, 119, 52, },
  127. { 3, 168, 1, 145, 6, 187, 3, 162, },
  128. { 86, 31, 70, 21, 99, 39, 82, 28, },
  129. { 0, 134, 11, 206, 0, 129, 9, 200, },
  130. { 62, 17, 114, 48, 58, 16, 109, 45, },
  131. { 5, 181, 2, 157, 4, 175, 1, 151, },
  132. { 95, 36, 78, 26, 90, 34, 74, 24, },
  133. };
  134. #else
  135. // tries to correct a gamma of 2.5
  136. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  137. { 0, 107, 3, 187, 0, 125, 6, 212, },
  138. { 39, 7, 86, 28, 49, 11, 102, 36, },
  139. { 1, 158, 0, 131, 3, 180, 1, 151, },
  140. { 68, 19, 52, 12, 81, 25, 64, 17, },
  141. { 0, 119, 5, 203, 0, 113, 4, 195, },
  142. { 45, 9, 96, 33, 42, 8, 91, 30, },
  143. { 2, 172, 1, 144, 2, 165, 0, 137, },
  144. { 77, 23, 60, 15, 72, 21, 56, 14, },
  145. };
  146. #endif
  147. #ifdef ARCH_X86
  148. /* hope these constant values are cache line aligned */
  149. uint64_t attribute_used __attribute__((aligned(8))) mmx_00ffw = 0x00ff00ff00ff00ffULL;
  150. uint64_t attribute_used __attribute__((aligned(8))) mmx_redmask = 0xf8f8f8f8f8f8f8f8ULL;
  151. uint64_t attribute_used __attribute__((aligned(8))) mmx_grnmask = 0xfcfcfcfcfcfcfcfcULL;
  152. uint64_t attribute_used __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFULL;
  153. uint64_t attribute_used __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00ULL;
  154. uint64_t attribute_used __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000ULL;
  155. // the volatile is required because gcc otherwise optimizes some writes away not knowing that these
  156. // are read in the asm block
  157. volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
  158. volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
  159. volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
  160. volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
  161. uint64_t __attribute__((aligned(8))) dither4[2]={
  162. 0x0103010301030103LL,
  163. 0x0200020002000200LL,};
  164. uint64_t __attribute__((aligned(8))) dither8[2]={
  165. 0x0602060206020602LL,
  166. 0x0004000400040004LL,};
  167. #undef HAVE_MMX
  168. #undef ARCH_X86
  169. //MMX versions
  170. #undef RENAME
  171. #define HAVE_MMX
  172. #undef HAVE_MMX2
  173. #undef HAVE_3DNOW
  174. #define ARCH_X86
  175. #define RENAME(a) a ## _MMX
  176. #include "yuv2rgb_template.c"
  177. //MMX2 versions
  178. #undef RENAME
  179. #define HAVE_MMX
  180. #define HAVE_MMX2
  181. #undef HAVE_3DNOW
  182. #define ARCH_X86
  183. #define RENAME(a) a ## _MMX2
  184. #include "yuv2rgb_template.c"
  185. #endif // CAN_COMPILE_X86_ASM
  186. const int32_t Inverse_Table_6_9[8][4] = {
  187. {117504, 138453, 13954, 34903}, /* no sequence_display_extension */
  188. {117504, 138453, 13954, 34903}, /* ITU-R Rec. 709 (1990) */
  189. {104597, 132201, 25675, 53279}, /* unspecified */
  190. {104597, 132201, 25675, 53279}, /* reserved */
  191. {104448, 132798, 24759, 53109}, /* FCC */
  192. {104597, 132201, 25675, 53279}, /* ITU-R Rec. 624-4 System B, G */
  193. {104597, 132201, 25675, 53279}, /* SMPTE 170M */
  194. {117579, 136230, 16907, 35559} /* SMPTE 240M (1987) */
  195. };
  196. #define RGB(i) \
  197. U = pu[i]; \
  198. V = pv[i]; \
  199. r = c->table_rV[V]; \
  200. g = c->table_gU[U] + c->table_gV[V]; \
  201. b = c->table_bU[U];
  202. #define DST1(i) \
  203. Y = py_1[2*i]; \
  204. dst_1[2*i] = r[Y] + g[Y] + b[Y]; \
  205. Y = py_1[2*i+1]; \
  206. dst_1[2*i+1] = r[Y] + g[Y] + b[Y];
  207. #define DST2(i) \
  208. Y = py_2[2*i]; \
  209. dst_2[2*i] = r[Y] + g[Y] + b[Y]; \
  210. Y = py_2[2*i+1]; \
  211. dst_2[2*i+1] = r[Y] + g[Y] + b[Y];
  212. #define DST1RGB(i) \
  213. Y = py_1[2*i]; \
  214. dst_1[6*i] = r[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = b[Y]; \
  215. Y = py_1[2*i+1]; \
  216. dst_1[6*i+3] = r[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = b[Y];
  217. #define DST2RGB(i) \
  218. Y = py_2[2*i]; \
  219. dst_2[6*i] = r[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = b[Y]; \
  220. Y = py_2[2*i+1]; \
  221. dst_2[6*i+3] = r[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = b[Y];
  222. #define DST1BGR(i) \
  223. Y = py_1[2*i]; \
  224. dst_1[6*i] = b[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = r[Y]; \
  225. Y = py_1[2*i+1]; \
  226. dst_1[6*i+3] = b[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = r[Y];
  227. #define DST2BGR(i) \
  228. Y = py_2[2*i]; \
  229. dst_2[6*i] = b[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = r[Y]; \
  230. Y = py_2[2*i+1]; \
  231. dst_2[6*i+3] = b[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = r[Y];
  232. #define PROLOG(func_name, dst_type) \
  233. static int func_name(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, \
  234. int srcSliceH, uint8_t* dst[], int dstStride[]){\
  235. int y;\
  236. \
  237. if(c->srcFormat == IMGFMT_422P){\
  238. srcStride[1] *= 2;\
  239. srcStride[2] *= 2;\
  240. }\
  241. for(y=0; y<srcSliceH; y+=2){\
  242. dst_type *dst_1= (dst_type*)(dst[0] + (y+srcSliceY )*dstStride[0]);\
  243. dst_type *dst_2= (dst_type*)(dst[0] + (y+srcSliceY+1)*dstStride[0]);\
  244. dst_type *r, *g, *b;\
  245. uint8_t *py_1= src[0] + y*srcStride[0];\
  246. uint8_t *py_2= py_1 + srcStride[0];\
  247. uint8_t *pu= src[1] + (y>>1)*srcStride[1];\
  248. uint8_t *pv= src[2] + (y>>1)*srcStride[2];\
  249. unsigned int h_size= c->dstW>>3;\
  250. while (h_size--) {\
  251. int U, V, Y;\
  252. #define EPILOG(dst_delta)\
  253. pu += 4;\
  254. pv += 4;\
  255. py_1 += 8;\
  256. py_2 += 8;\
  257. dst_1 += dst_delta;\
  258. dst_2 += dst_delta;\
  259. }\
  260. }\
  261. return srcSliceH;\
  262. }
  263. PROLOG(yuv2rgb_c_32, uint32_t)
  264. RGB(0);
  265. DST1(0);
  266. DST2(0);
  267. RGB(1);
  268. DST2(1);
  269. DST1(1);
  270. RGB(2);
  271. DST1(2);
  272. DST2(2);
  273. RGB(3);
  274. DST2(3);
  275. DST1(3);
  276. EPILOG(8)
  277. PROLOG(yuv2rgb_c_24_rgb, uint8_t)
  278. RGB(0);
  279. DST1RGB(0);
  280. DST2RGB(0);
  281. RGB(1);
  282. DST2RGB(1);
  283. DST1RGB(1);
  284. RGB(2);
  285. DST1RGB(2);
  286. DST2RGB(2);
  287. RGB(3);
  288. DST2RGB(3);
  289. DST1RGB(3);
  290. EPILOG(24)
  291. // only trivial mods from yuv2rgb_c_24_rgb
  292. PROLOG(yuv2rgb_c_24_bgr, uint8_t)
  293. RGB(0);
  294. DST1BGR(0);
  295. DST2BGR(0);
  296. RGB(1);
  297. DST2BGR(1);
  298. DST1BGR(1);
  299. RGB(2);
  300. DST1BGR(2);
  301. DST2BGR(2);
  302. RGB(3);
  303. DST2BGR(3);
  304. DST1BGR(3);
  305. EPILOG(24)
  306. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  307. // r, g, b, dst_1, dst_2
  308. PROLOG(yuv2rgb_c_16, uint16_t)
  309. RGB(0);
  310. DST1(0);
  311. DST2(0);
  312. RGB(1);
  313. DST2(1);
  314. DST1(1);
  315. RGB(2);
  316. DST1(2);
  317. DST2(2);
  318. RGB(3);
  319. DST2(3);
  320. DST1(3);
  321. EPILOG(8)
  322. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  323. // r, g, b, dst_1, dst_2
  324. PROLOG(yuv2rgb_c_8, uint8_t)
  325. RGB(0);
  326. DST1(0);
  327. DST2(0);
  328. RGB(1);
  329. DST2(1);
  330. DST1(1);
  331. RGB(2);
  332. DST1(2);
  333. DST2(2);
  334. RGB(3);
  335. DST2(3);
  336. DST1(3);
  337. EPILOG(8)
  338. // r, g, b, dst_1, dst_2
  339. PROLOG(yuv2rgb_c_8_ordered_dither, uint8_t)
  340. const uint8_t *d32= dither_8x8_32[y&7];
  341. const uint8_t *d64= dither_8x8_73[y&7];
  342. #define DST1bpp8(i,o) \
  343. Y = py_1[2*i]; \
  344. dst_1[2*i] = r[Y+d32[0+o]] + g[Y+d32[0+o]] + b[Y+d64[0+o]]; \
  345. Y = py_1[2*i+1]; \
  346. dst_1[2*i+1] = r[Y+d32[1+o]] + g[Y+d32[1+o]] + b[Y+d64[1+o]];
  347. #define DST2bpp8(i,o) \
  348. Y = py_2[2*i]; \
  349. dst_2[2*i] = r[Y+d32[8+o]] + g[Y+d32[8+o]] + b[Y+d64[8+o]]; \
  350. Y = py_2[2*i+1]; \
  351. dst_2[2*i+1] = r[Y+d32[9+o]] + g[Y+d32[9+o]] + b[Y+d64[9+o]];
  352. RGB(0);
  353. DST1bpp8(0,0);
  354. DST2bpp8(0,0);
  355. RGB(1);
  356. DST2bpp8(1,2);
  357. DST1bpp8(1,2);
  358. RGB(2);
  359. DST1bpp8(2,4);
  360. DST2bpp8(2,4);
  361. RGB(3);
  362. DST2bpp8(3,6);
  363. DST1bpp8(3,6);
  364. EPILOG(8)
  365. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  366. // r, g, b, dst_1, dst_2
  367. PROLOG(yuv2rgb_c_4, uint8_t)
  368. int acc;
  369. #define DST1_4(i) \
  370. Y = py_1[2*i]; \
  371. acc = r[Y] + g[Y] + b[Y]; \
  372. Y = py_1[2*i+1]; \
  373. acc |= (r[Y] + g[Y] + b[Y])<<4;\
  374. dst_1[i] = acc;
  375. #define DST2_4(i) \
  376. Y = py_2[2*i]; \
  377. acc = r[Y] + g[Y] + b[Y]; \
  378. Y = py_2[2*i+1]; \
  379. acc |= (r[Y] + g[Y] + b[Y])<<4;\
  380. dst_2[i] = acc;
  381. RGB(0);
  382. DST1_4(0);
  383. DST2_4(0);
  384. RGB(1);
  385. DST2_4(1);
  386. DST1_4(1);
  387. RGB(2);
  388. DST1_4(2);
  389. DST2_4(2);
  390. RGB(3);
  391. DST2_4(3);
  392. DST1_4(3);
  393. EPILOG(4)
  394. PROLOG(yuv2rgb_c_4_ordered_dither, uint8_t)
  395. const uint8_t *d64= dither_8x8_73[y&7];
  396. const uint8_t *d128=dither_8x8_220[y&7];
  397. int acc;
  398. #define DST1bpp4(i,o) \
  399. Y = py_1[2*i]; \
  400. acc = r[Y+d128[0+o]] + g[Y+d64[0+o]] + b[Y+d128[0+o]]; \
  401. Y = py_1[2*i+1]; \
  402. acc |= (r[Y+d128[1+o]] + g[Y+d64[1+o]] + b[Y+d128[1+o]])<<4;\
  403. dst_1[i]= acc;
  404. #define DST2bpp4(i,o) \
  405. Y = py_2[2*i]; \
  406. acc = r[Y+d128[8+o]] + g[Y+d64[8+o]] + b[Y+d128[8+o]]; \
  407. Y = py_2[2*i+1]; \
  408. acc |= (r[Y+d128[9+o]] + g[Y+d64[9+o]] + b[Y+d128[9+o]])<<4;\
  409. dst_2[i]= acc;
  410. RGB(0);
  411. DST1bpp4(0,0);
  412. DST2bpp4(0,0);
  413. RGB(1);
  414. DST2bpp4(1,2);
  415. DST1bpp4(1,2);
  416. RGB(2);
  417. DST1bpp4(2,4);
  418. DST2bpp4(2,4);
  419. RGB(3);
  420. DST2bpp4(3,6);
  421. DST1bpp4(3,6);
  422. EPILOG(4)
  423. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  424. // r, g, b, dst_1, dst_2
  425. PROLOG(yuv2rgb_c_4b, uint8_t)
  426. RGB(0);
  427. DST1(0);
  428. DST2(0);
  429. RGB(1);
  430. DST2(1);
  431. DST1(1);
  432. RGB(2);
  433. DST1(2);
  434. DST2(2);
  435. RGB(3);
  436. DST2(3);
  437. DST1(3);
  438. EPILOG(8)
  439. PROLOG(yuv2rgb_c_4b_ordered_dither, uint8_t)
  440. const uint8_t *d64= dither_8x8_73[y&7];
  441. const uint8_t *d128=dither_8x8_220[y&7];
  442. #define DST1bpp4b(i,o) \
  443. Y = py_1[2*i]; \
  444. dst_1[2*i] = r[Y+d128[0+o]] + g[Y+d64[0+o]] + b[Y+d128[0+o]]; \
  445. Y = py_1[2*i+1]; \
  446. dst_1[2*i+1] = r[Y+d128[1+o]] + g[Y+d64[1+o]] + b[Y+d128[1+o]];
  447. #define DST2bpp4b(i,o) \
  448. Y = py_2[2*i]; \
  449. dst_2[2*i] = r[Y+d128[8+o]] + g[Y+d64[8+o]] + b[Y+d128[8+o]]; \
  450. Y = py_2[2*i+1]; \
  451. dst_2[2*i+1] = r[Y+d128[9+o]] + g[Y+d64[9+o]] + b[Y+d128[9+o]];
  452. RGB(0);
  453. DST1bpp4b(0,0);
  454. DST2bpp4b(0,0);
  455. RGB(1);
  456. DST2bpp4b(1,2);
  457. DST1bpp4b(1,2);
  458. RGB(2);
  459. DST1bpp4b(2,4);
  460. DST2bpp4b(2,4);
  461. RGB(3);
  462. DST2bpp4b(3,6);
  463. DST1bpp4b(3,6);
  464. EPILOG(8)
  465. PROLOG(yuv2rgb_c_1_ordered_dither, uint8_t)
  466. const uint8_t *d128=dither_8x8_220[y&7];
  467. char out_1=0, out_2=0;
  468. g= c->table_gU[128] + c->table_gV[128];
  469. #define DST1bpp1(i,o) \
  470. Y = py_1[2*i]; \
  471. out_1+= out_1 + g[Y+d128[0+o]]; \
  472. Y = py_1[2*i+1]; \
  473. out_1+= out_1 + g[Y+d128[1+o]];
  474. #define DST2bpp1(i,o) \
  475. Y = py_2[2*i]; \
  476. out_2+= out_2 + g[Y+d128[8+o]]; \
  477. Y = py_2[2*i+1]; \
  478. out_2+= out_2 + g[Y+d128[9+o]];
  479. DST1bpp1(0,0);
  480. DST2bpp1(0,0);
  481. DST2bpp1(1,2);
  482. DST1bpp1(1,2);
  483. DST1bpp1(2,4);
  484. DST2bpp1(2,4);
  485. DST2bpp1(3,6);
  486. DST1bpp1(3,6);
  487. dst_1[0]= out_1;
  488. dst_2[0]= out_2;
  489. EPILOG(1)
  490. SwsFunc yuv2rgb_get_func_ptr (SwsContext *c)
  491. {
  492. #ifdef ARCH_X86
  493. if(c->flags & SWS_CPU_CAPS_MMX2){
  494. switch(c->dstFormat){
  495. case IMGFMT_BGR32: return yuv420_rgb32_MMX2;
  496. case IMGFMT_BGR24: return yuv420_rgb24_MMX2;
  497. case IMGFMT_BGR16: return yuv420_rgb16_MMX2;
  498. case IMGFMT_BGR15: return yuv420_rgb15_MMX2;
  499. }
  500. }
  501. if(c->flags & SWS_CPU_CAPS_MMX){
  502. switch(c->dstFormat){
  503. case IMGFMT_BGR32: return yuv420_rgb32_MMX;
  504. case IMGFMT_BGR24: return yuv420_rgb24_MMX;
  505. case IMGFMT_BGR16: return yuv420_rgb16_MMX;
  506. case IMGFMT_BGR15: return yuv420_rgb15_MMX;
  507. }
  508. }
  509. #endif
  510. #ifdef HAVE_MLIB
  511. {
  512. SwsFunc t= yuv2rgb_init_mlib(c);
  513. if(t) return t;
  514. }
  515. #endif
  516. MSG_WARN("No accelerated colorspace conversion found\n");
  517. switch(c->dstFormat){
  518. case IMGFMT_RGB32:
  519. case IMGFMT_BGR32: return yuv2rgb_c_32;
  520. case IMGFMT_RGB24: return yuv2rgb_c_24_rgb;
  521. case IMGFMT_BGR24: return yuv2rgb_c_24_bgr;
  522. case IMGFMT_RGB16:
  523. case IMGFMT_BGR16:
  524. case IMGFMT_RGB15:
  525. case IMGFMT_BGR15: return yuv2rgb_c_16;
  526. case IMGFMT_RGB8:
  527. case IMGFMT_BGR8: return yuv2rgb_c_8_ordered_dither;
  528. case IMGFMT_RGB4:
  529. case IMGFMT_BGR4: return yuv2rgb_c_4_ordered_dither;
  530. case IMGFMT_RG4B:
  531. case IMGFMT_BG4B: return yuv2rgb_c_4b_ordered_dither;
  532. case IMGFMT_RGB1:
  533. case IMGFMT_BGR1: return yuv2rgb_c_1_ordered_dither;
  534. default:
  535. assert(0);
  536. }
  537. return NULL;
  538. }
  539. static int div_round (int dividend, int divisor)
  540. {
  541. if (dividend > 0)
  542. return (dividend + (divisor>>1)) / divisor;
  543. else
  544. return -((-dividend + (divisor>>1)) / divisor);
  545. }
  546. int yuv2rgb_c_init_tables (SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
  547. {
  548. const int isRgb = IMGFMT_IS_RGB(c->dstFormat);
  549. const int bpp = isRgb?IMGFMT_RGB_DEPTH(c->dstFormat):IMGFMT_BGR_DEPTH(c->dstFormat);
  550. int i;
  551. uint8_t table_Y[1024];
  552. uint32_t *table_32 = 0;
  553. uint16_t *table_16 = 0;
  554. uint8_t *table_8 = 0;
  555. uint8_t *table_332 = 0;
  556. uint8_t *table_121 = 0;
  557. uint8_t *table_1 = 0;
  558. int entry_size = 0;
  559. void *table_r = 0, *table_g = 0, *table_b = 0;
  560. void *table_start;
  561. int64_t crv = inv_table[0];
  562. int64_t cbu = inv_table[1];
  563. int64_t cgu = -inv_table[2];
  564. int64_t cgv = -inv_table[3];
  565. int64_t cy = 1<<16;
  566. int64_t oy = 0;
  567. //printf("%lld %lld %lld %lld %lld\n", cy, crv, cbu, cgu, cgv);
  568. if(!fullRange){
  569. cy= (cy*255) / 219;
  570. oy= 16<<16;
  571. }
  572. cy = (cy *contrast )>>16;
  573. crv= (crv*contrast * saturation)>>32;
  574. cbu= (cbu*contrast * saturation)>>32;
  575. cgu= (cgu*contrast * saturation)>>32;
  576. cgv= (cgv*contrast * saturation)>>32;
  577. //printf("%lld %lld %lld %lld %lld\n", cy, crv, cbu, cgu, cgv);
  578. oy -= 256*brightness;
  579. for (i = 0; i < 1024; i++) {
  580. int j;
  581. j= (cy*(((i - 384)<<16) - oy) + (1<<31))>>32;
  582. j = (j < 0) ? 0 : ((j > 255) ? 255 : j);
  583. table_Y[i] = j;
  584. }
  585. switch (bpp) {
  586. case 32:
  587. table_start= table_32 = malloc ((197 + 2*682 + 256 + 132) * sizeof (uint32_t));
  588. entry_size = sizeof (uint32_t);
  589. table_r = table_32 + 197;
  590. table_b = table_32 + 197 + 685;
  591. table_g = table_32 + 197 + 2*682;
  592. for (i = -197; i < 256+197; i++)
  593. ((uint32_t *)table_r)[i] = table_Y[i+384] << (isRgb ? 16 : 0);
  594. for (i = -132; i < 256+132; i++)
  595. ((uint32_t *)table_g)[i] = table_Y[i+384] << 8;
  596. for (i = -232; i < 256+232; i++)
  597. ((uint32_t *)table_b)[i] = table_Y[i+384] << (isRgb ? 0 : 16);
  598. break;
  599. case 24:
  600. table_start= table_8 = malloc ((256 + 2*232) * sizeof (uint8_t));
  601. entry_size = sizeof (uint8_t);
  602. table_r = table_g = table_b = table_8 + 232;
  603. for (i = -232; i < 256+232; i++)
  604. ((uint8_t * )table_b)[i] = table_Y[i+384];
  605. break;
  606. case 15:
  607. case 16:
  608. table_start= table_16 = malloc ((197 + 2*682 + 256 + 132) * sizeof (uint16_t));
  609. entry_size = sizeof (uint16_t);
  610. table_r = table_16 + 197;
  611. table_b = table_16 + 197 + 685;
  612. table_g = table_16 + 197 + 2*682;
  613. for (i = -197; i < 256+197; i++) {
  614. int j = table_Y[i+384] >> 3;
  615. if (isRgb)
  616. j <<= ((bpp==16) ? 11 : 10);
  617. ((uint16_t *)table_r)[i] = j;
  618. }
  619. for (i = -132; i < 256+132; i++) {
  620. int j = table_Y[i+384] >> ((bpp==16) ? 2 : 3);
  621. ((uint16_t *)table_g)[i] = j << 5;
  622. }
  623. for (i = -232; i < 256+232; i++) {
  624. int j = table_Y[i+384] >> 3;
  625. if (!isRgb)
  626. j <<= ((bpp==16) ? 11 : 10);
  627. ((uint16_t *)table_b)[i] = j;
  628. }
  629. break;
  630. case 8:
  631. table_start= table_332 = malloc ((197 + 2*682 + 256 + 132) * sizeof (uint8_t));
  632. entry_size = sizeof (uint8_t);
  633. table_r = table_332 + 197;
  634. table_b = table_332 + 197 + 685;
  635. table_g = table_332 + 197 + 2*682;
  636. for (i = -197; i < 256+197; i++) {
  637. int j = (table_Y[i+384 - 16] + 18)/36;
  638. if (isRgb)
  639. j <<= 5;
  640. ((uint8_t *)table_r)[i] = j;
  641. }
  642. for (i = -132; i < 256+132; i++) {
  643. int j = (table_Y[i+384 - 16] + 18)/36;
  644. if (!isRgb)
  645. j <<= 1;
  646. ((uint8_t *)table_g)[i] = j << 2;
  647. }
  648. for (i = -232; i < 256+232; i++) {
  649. int j = (table_Y[i+384 - 37] + 43)/85;
  650. if (!isRgb)
  651. j <<= 6;
  652. ((uint8_t *)table_b)[i] = j;
  653. }
  654. break;
  655. case 4:
  656. case 4|128:
  657. table_start= table_121 = malloc ((197 + 2*682 + 256 + 132) * sizeof (uint8_t));
  658. entry_size = sizeof (uint8_t);
  659. table_r = table_121 + 197;
  660. table_b = table_121 + 197 + 685;
  661. table_g = table_121 + 197 + 2*682;
  662. for (i = -197; i < 256+197; i++) {
  663. int j = table_Y[i+384 - 110] >> 7;
  664. if (isRgb)
  665. j <<= 3;
  666. ((uint8_t *)table_r)[i] = j;
  667. }
  668. for (i = -132; i < 256+132; i++) {
  669. int j = (table_Y[i+384 - 37]+ 43)/85;
  670. ((uint8_t *)table_g)[i] = j << 1;
  671. }
  672. for (i = -232; i < 256+232; i++) {
  673. int j =table_Y[i+384 - 110] >> 7;
  674. if (!isRgb)
  675. j <<= 3;
  676. ((uint8_t *)table_b)[i] = j;
  677. }
  678. break;
  679. case 1:
  680. table_start= table_1 = malloc (256*2 * sizeof (uint8_t));
  681. entry_size = sizeof (uint8_t);
  682. table_g = table_1;
  683. table_r = table_b = NULL;
  684. for (i = 0; i < 256+256; i++) {
  685. int j = table_Y[i + 384 - 110]>>7;
  686. ((uint8_t *)table_g)[i] = j;
  687. }
  688. break;
  689. default:
  690. table_start= NULL;
  691. MSG_ERR("%ibpp not supported by yuv2rgb\n", bpp);
  692. //free mem?
  693. return -1;
  694. }
  695. for (i = 0; i < 256; i++) {
  696. c->table_rV[i] = table_r + entry_size * div_round (crv * (i-128), 76309);
  697. c->table_gU[i] = table_g + entry_size * div_round (cgu * (i-128), 76309);
  698. c->table_gV[i] = entry_size * div_round (cgv * (i-128), 76309);
  699. c->table_bU[i] = table_b + entry_size * div_round (cbu * (i-128), 76309);
  700. }
  701. if(c->yuvTable) free(c->yuvTable);
  702. c->yuvTable= table_start;
  703. return 0;
  704. }