You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

514 lines
19KB

  1. ;******************************************************************************
  2. ;* x86-optimized input routines; does shuffling of packed
  3. ;* YUV formats into individual planes, and converts RGB
  4. ;* into YUV planes also.
  5. ;* Copyright (c) 2012 Ronald S. Bultje <rsbultje@gmail.com>
  6. ;*
  7. ;* This file is part of Libav.
  8. ;*
  9. ;* Libav is free software; you can redistribute it and/or
  10. ;* modify it under the terms of the GNU Lesser General Public
  11. ;* License as published by the Free Software Foundation; either
  12. ;* version 2.1 of the License, or (at your option) any later version.
  13. ;*
  14. ;* Libav is distributed in the hope that it will be useful,
  15. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. ;* Lesser General Public License for more details.
  18. ;*
  19. ;* You should have received a copy of the GNU Lesser General Public
  20. ;* License along with Libav; if not, write to the Free Software
  21. ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. ;******************************************************************************
  23. %include "x86inc.asm"
  24. %include "x86util.asm"
  25. SECTION_RODATA
  26. %define RY 0x20DE
  27. %define GY 0x4087
  28. %define BY 0x0C88
  29. %define RU 0xECFF
  30. %define GU 0xDAC8
  31. %define BU 0x3838
  32. %define RV 0x3838
  33. %define GV 0xD0E3
  34. %define BV 0xF6E4
  35. rgb_Yrnd: times 4 dd 0x80100 ; 16.5 << 15
  36. rgb_UVrnd: times 4 dd 0x400100 ; 128.5 << 15
  37. bgr_Ycoeff_12x4: times 2 dw BY, GY, 0, BY
  38. bgr_Ycoeff_3x56: times 2 dw RY, 0, GY, RY
  39. rgb_Ycoeff_12x4: times 2 dw RY, GY, 0, RY
  40. rgb_Ycoeff_3x56: times 2 dw BY, 0, GY, BY
  41. bgr_Ucoeff_12x4: times 2 dw BU, GU, 0, BU
  42. bgr_Ucoeff_3x56: times 2 dw RU, 0, GU, RU
  43. rgb_Ucoeff_12x4: times 2 dw RU, GU, 0, RU
  44. rgb_Ucoeff_3x56: times 2 dw BU, 0, GU, BU
  45. bgr_Vcoeff_12x4: times 2 dw BV, GV, 0, BV
  46. bgr_Vcoeff_3x56: times 2 dw RV, 0, GV, RV
  47. rgb_Vcoeff_12x4: times 2 dw RV, GV, 0, RV
  48. rgb_Vcoeff_3x56: times 2 dw BV, 0, GV, BV
  49. shuf_rgb_12x4: db 0, 0x80, 1, 0x80, 2, 0x80, 3, 0x80, \
  50. 6, 0x80, 7, 0x80, 8, 0x80, 9, 0x80
  51. shuf_rgb_3x56: db 2, 0x80, 3, 0x80, 4, 0x80, 5, 0x80, \
  52. 8, 0x80, 9, 0x80, 10, 0x80, 11, 0x80
  53. SECTION .text
  54. ;-----------------------------------------------------------------------------
  55. ; RGB to Y/UV.
  56. ;
  57. ; void <fmt>ToY_<opt>(uint8_t *dst, const uint8_t *src, int w);
  58. ; and
  59. ; void <fmt>toUV_<opt>(uint8_t *dstU, uint8_t *dstV, const uint8_t *src,
  60. ; const uint8_t *unused, int w);
  61. ;-----------------------------------------------------------------------------
  62. ; %1 = nr. of XMM registers
  63. ; %2 = rgb or bgr
  64. %macro RGB24_TO_Y_FN 2-3
  65. cglobal %2 %+ 24ToY, 6, 6, %1, dst, src, u1, u2, w, u3
  66. %if mmsize == 8
  67. mova m5, [%2_Ycoeff_12x4]
  68. mova m6, [%2_Ycoeff_3x56]
  69. %define coeff1 m5
  70. %define coeff2 m6
  71. %elif ARCH_X86_64
  72. mova m8, [%2_Ycoeff_12x4]
  73. mova m9, [%2_Ycoeff_3x56]
  74. %define coeff1 m8
  75. %define coeff2 m9
  76. %else ; x86-32 && mmsize == 16
  77. %define coeff1 [%2_Ycoeff_12x4]
  78. %define coeff2 [%2_Ycoeff_3x56]
  79. %endif ; x86-32/64 && mmsize == 8/16
  80. %if (ARCH_X86_64 || mmsize == 8) && %0 == 3
  81. jmp mangle(program_name %+ _ %+ %3 %+ 24ToY %+ SUFFIX).body
  82. %else ; (ARCH_X86_64 && %0 == 3) || mmsize == 8
  83. .body:
  84. %if cpuflag(ssse3)
  85. mova m7, [shuf_rgb_12x4]
  86. %define shuf_rgb1 m7
  87. %if ARCH_X86_64
  88. mova m10, [shuf_rgb_3x56]
  89. %define shuf_rgb2 m10
  90. %else ; x86-32
  91. %define shuf_rgb2 [shuf_rgb_3x56]
  92. %endif ; x86-32/64
  93. %endif ; cpuflag(ssse3)
  94. %if ARCH_X86_64
  95. movsxd wq, wd
  96. %endif
  97. add wq, wq
  98. add dstq, wq
  99. neg wq
  100. %if notcpuflag(ssse3)
  101. pxor m7, m7
  102. %endif ; !cpuflag(ssse3)
  103. mova m4, [rgb_Yrnd]
  104. .loop:
  105. %if cpuflag(ssse3)
  106. movu m0, [srcq+0] ; (byte) { Bx, Gx, Rx }[0-3]
  107. movu m2, [srcq+12] ; (byte) { Bx, Gx, Rx }[4-7]
  108. pshufb m1, m0, shuf_rgb2 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
  109. pshufb m0, shuf_rgb1 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
  110. pshufb m3, m2, shuf_rgb2 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
  111. pshufb m2, shuf_rgb1 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
  112. %else ; !cpuflag(ssse3)
  113. movd m0, [srcq+0] ; (byte) { B0, G0, R0, B1 }
  114. movd m1, [srcq+2] ; (byte) { R0, B1, G1, R1 }
  115. movd m2, [srcq+6] ; (byte) { B2, G2, R2, B3 }
  116. movd m3, [srcq+8] ; (byte) { R2, B3, G3, R3 }
  117. %if mmsize == 16 ; i.e. sse2
  118. punpckldq m0, m2 ; (byte) { B0, G0, R0, B1, B2, G2, R2, B3 }
  119. punpckldq m1, m3 ; (byte) { R0, B1, G1, R1, R2, B3, G3, R3 }
  120. movd m2, [srcq+12] ; (byte) { B4, G4, R4, B5 }
  121. movd m3, [srcq+14] ; (byte) { R4, B5, G5, R5 }
  122. movd m5, [srcq+18] ; (byte) { B6, G6, R6, B7 }
  123. movd m6, [srcq+20] ; (byte) { R6, B7, G7, R7 }
  124. punpckldq m2, m5 ; (byte) { B4, G4, R4, B5, B6, G6, R6, B7 }
  125. punpckldq m3, m6 ; (byte) { R4, B5, G5, R5, R6, B7, G7, R7 }
  126. %endif ; mmsize == 16
  127. punpcklbw m0, m7 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
  128. punpcklbw m1, m7 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
  129. punpcklbw m2, m7 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
  130. punpcklbw m3, m7 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
  131. %endif ; cpuflag(ssse3)
  132. add srcq, 3 * mmsize / 2
  133. pmaddwd m0, coeff1 ; (dword) { B0*BY + G0*GY, B1*BY, B2*BY + G2*GY, B3*BY }
  134. pmaddwd m1, coeff2 ; (dword) { R0*RY, G1+GY + R1*RY, R2*RY, G3+GY + R3*RY }
  135. pmaddwd m2, coeff1 ; (dword) { B4*BY + G4*GY, B5*BY, B6*BY + G6*GY, B7*BY }
  136. pmaddwd m3, coeff2 ; (dword) { R4*RY, G5+GY + R5*RY, R6*RY, G7+GY + R7*RY }
  137. paddd m0, m1 ; (dword) { Bx*BY + Gx*GY + Rx*RY }[0-3]
  138. paddd m2, m3 ; (dword) { Bx*BY + Gx*GY + Rx*RY }[4-7]
  139. paddd m0, m4 ; += rgb_Yrnd, i.e. (dword) { Y[0-3] }
  140. paddd m2, m4 ; += rgb_Yrnd, i.e. (dword) { Y[4-7] }
  141. psrad m0, 9
  142. psrad m2, 9
  143. packssdw m0, m2 ; (word) { Y[0-7] }
  144. mova [dstq+wq], m0
  145. add wq, mmsize
  146. jl .loop
  147. REP_RET
  148. %endif ; (ARCH_X86_64 && %0 == 3) || mmsize == 8
  149. %endmacro
  150. ; %1 = nr. of XMM registers
  151. ; %2 = rgb or bgr
  152. %macro RGB24_TO_UV_FN 2-3
  153. cglobal %2 %+ 24ToUV, 7, 7, %1, dstU, dstV, u1, src, u2, w, u3
  154. %if ARCH_X86_64
  155. mova m8, [%2_Ucoeff_12x4]
  156. mova m9, [%2_Ucoeff_3x56]
  157. mova m10, [%2_Vcoeff_12x4]
  158. mova m11, [%2_Vcoeff_3x56]
  159. %define coeffU1 m8
  160. %define coeffU2 m9
  161. %define coeffV1 m10
  162. %define coeffV2 m11
  163. %else ; x86-32
  164. %define coeffU1 [%2_Ucoeff_12x4]
  165. %define coeffU2 [%2_Ucoeff_3x56]
  166. %define coeffV1 [%2_Vcoeff_12x4]
  167. %define coeffV2 [%2_Vcoeff_3x56]
  168. %endif ; x86-32/64
  169. %if ARCH_X86_64 && %0 == 3
  170. jmp mangle(program_name %+ _ %+ %3 %+ 24ToUV %+ SUFFIX).body
  171. %else ; ARCH_X86_64 && %0 == 3
  172. .body:
  173. %if cpuflag(ssse3)
  174. mova m7, [shuf_rgb_12x4]
  175. %define shuf_rgb1 m7
  176. %if ARCH_X86_64
  177. mova m12, [shuf_rgb_3x56]
  178. %define shuf_rgb2 m12
  179. %else ; x86-32
  180. %define shuf_rgb2 [shuf_rgb_3x56]
  181. %endif ; x86-32/64
  182. %endif ; cpuflag(ssse3)
  183. %if ARCH_X86_64
  184. movsxd wq, dword r5m
  185. %else ; x86-32
  186. mov wq, r5m
  187. %endif
  188. add wq, wq
  189. add dstUq, wq
  190. add dstVq, wq
  191. neg wq
  192. mova m6, [rgb_UVrnd]
  193. %if notcpuflag(ssse3)
  194. pxor m7, m7
  195. %endif
  196. .loop:
  197. %if cpuflag(ssse3)
  198. movu m0, [srcq+0] ; (byte) { Bx, Gx, Rx }[0-3]
  199. movu m4, [srcq+12] ; (byte) { Bx, Gx, Rx }[4-7]
  200. pshufb m1, m0, shuf_rgb2 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
  201. pshufb m0, shuf_rgb1 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
  202. %else ; !cpuflag(ssse3)
  203. movd m0, [srcq+0] ; (byte) { B0, G0, R0, B1 }
  204. movd m1, [srcq+2] ; (byte) { R0, B1, G1, R1 }
  205. movd m4, [srcq+6] ; (byte) { B2, G2, R2, B3 }
  206. movd m5, [srcq+8] ; (byte) { R2, B3, G3, R3 }
  207. %if mmsize == 16
  208. punpckldq m0, m4 ; (byte) { B0, G0, R0, B1, B2, G2, R2, B3 }
  209. punpckldq m1, m5 ; (byte) { R0, B1, G1, R1, R2, B3, G3, R3 }
  210. movd m4, [srcq+12] ; (byte) { B4, G4, R4, B5 }
  211. movd m5, [srcq+14] ; (byte) { R4, B5, G5, R5 }
  212. %endif ; mmsize == 16
  213. punpcklbw m0, m7 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
  214. punpcklbw m1, m7 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
  215. %endif ; cpuflag(ssse3)
  216. pmaddwd m2, m0, coeffV1 ; (dword) { B0*BV + G0*GV, B1*BV, B2*BV + G2*GV, B3*BV }
  217. pmaddwd m3, m1, coeffV2 ; (dword) { R0*BV, G1*GV + R1*BV, R2*BV, G3*GV + R3*BV }
  218. pmaddwd m0, coeffU1 ; (dword) { B0*BU + G0*GU, B1*BU, B2*BU + G2*GU, B3*BU }
  219. pmaddwd m1, coeffU2 ; (dword) { R0*BU, G1*GU + R1*BU, R2*BU, G3*GU + R3*BU }
  220. paddd m0, m1 ; (dword) { Bx*BU + Gx*GU + Rx*RU }[0-3]
  221. paddd m2, m3 ; (dword) { Bx*BV + Gx*GV + Rx*RV }[0-3]
  222. %if cpuflag(ssse3)
  223. pshufb m5, m4, shuf_rgb2 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
  224. pshufb m4, shuf_rgb1 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
  225. %else ; !cpuflag(ssse3)
  226. %if mmsize == 16
  227. movd m1, [srcq+18] ; (byte) { B6, G6, R6, B7 }
  228. movd m3, [srcq+20] ; (byte) { R6, B7, G7, R7 }
  229. punpckldq m4, m1 ; (byte) { B4, G4, R4, B5, B6, G6, R6, B7 }
  230. punpckldq m5, m3 ; (byte) { R4, B5, G5, R5, R6, B7, G7, R7 }
  231. %endif ; mmsize == 16 && !cpuflag(ssse3)
  232. punpcklbw m4, m7 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
  233. punpcklbw m5, m7 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
  234. %endif ; cpuflag(ssse3)
  235. add srcq, 3 * mmsize / 2
  236. pmaddwd m1, m4, coeffU1 ; (dword) { B4*BU + G4*GU, B5*BU, B6*BU + G6*GU, B7*BU }
  237. pmaddwd m3, m5, coeffU2 ; (dword) { R4*BU, G5*GU + R5*BU, R6*BU, G7*GU + R7*BU }
  238. pmaddwd m4, coeffV1 ; (dword) { B4*BV + G4*GV, B5*BV, B6*BV + G6*GV, B7*BV }
  239. pmaddwd m5, coeffV2 ; (dword) { R4*BV, G5*GV + R5*BV, R6*BV, G7*GV + R7*BV }
  240. paddd m1, m3 ; (dword) { Bx*BU + Gx*GU + Rx*RU }[4-7]
  241. paddd m4, m5 ; (dword) { Bx*BV + Gx*GV + Rx*RV }[4-7]
  242. paddd m0, m6 ; += rgb_UVrnd, i.e. (dword) { U[0-3] }
  243. paddd m2, m6 ; += rgb_UVrnd, i.e. (dword) { V[0-3] }
  244. paddd m1, m6 ; += rgb_UVrnd, i.e. (dword) { U[4-7] }
  245. paddd m4, m6 ; += rgb_UVrnd, i.e. (dword) { V[4-7] }
  246. psrad m0, 9
  247. psrad m2, 9
  248. psrad m1, 9
  249. psrad m4, 9
  250. packssdw m0, m1 ; (word) { U[0-7] }
  251. packssdw m2, m4 ; (word) { V[0-7] }
  252. %if mmsize == 8
  253. mova [dstUq+wq], m0
  254. mova [dstVq+wq], m2
  255. %else ; mmsize == 16
  256. mova [dstUq+wq], m0
  257. mova [dstVq+wq], m2
  258. %endif ; mmsize == 8/16
  259. add wq, mmsize
  260. jl .loop
  261. REP_RET
  262. %endif ; ARCH_X86_64 && %0 == 3
  263. %endmacro
  264. %if ARCH_X86_32
  265. INIT_MMX mmx
  266. RGB24_TO_Y_FN 0, rgb
  267. RGB24_TO_Y_FN 0, bgr, rgb
  268. RGB24_TO_UV_FN 0, rgb
  269. RGB24_TO_UV_FN 0, bgr, rgb
  270. %endif
  271. INIT_XMM sse2
  272. RGB24_TO_Y_FN 10, rgb
  273. RGB24_TO_Y_FN 10, bgr, rgb
  274. RGB24_TO_UV_FN 12, rgb
  275. RGB24_TO_UV_FN 12, bgr, rgb
  276. INIT_XMM ssse3
  277. RGB24_TO_Y_FN 11, rgb
  278. RGB24_TO_Y_FN 11, bgr, rgb
  279. RGB24_TO_UV_FN 13, rgb
  280. RGB24_TO_UV_FN 13, bgr, rgb
  281. INIT_XMM avx
  282. RGB24_TO_Y_FN 11, rgb
  283. RGB24_TO_Y_FN 11, bgr, rgb
  284. RGB24_TO_UV_FN 13, rgb
  285. RGB24_TO_UV_FN 13, bgr, rgb
  286. ;-----------------------------------------------------------------------------
  287. ; YUYV/UYVY/NV12/NV21 packed pixel shuffling.
  288. ;
  289. ; void <fmt>ToY_<opt>(uint8_t *dst, const uint8_t *src, int w);
  290. ; and
  291. ; void <fmt>toUV_<opt>(uint8_t *dstU, uint8_t *dstV, const uint8_t *src,
  292. ; const uint8_t *unused, int w);
  293. ;-----------------------------------------------------------------------------
  294. ; %1 = a (aligned) or u (unaligned)
  295. ; %2 = yuyv or uyvy
  296. %macro LOOP_YUYV_TO_Y 2
  297. .loop_%1:
  298. mov%1 m0, [srcq+wq*2] ; (byte) { Y0, U0, Y1, V0, ... }
  299. mov%1 m1, [srcq+wq*2+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
  300. %ifidn %2, yuyv
  301. pand m0, m2 ; (word) { Y0, Y1, ..., Y7 }
  302. pand m1, m2 ; (word) { Y8, Y9, ..., Y15 }
  303. %else ; uyvy
  304. psrlw m0, 8 ; (word) { Y0, Y1, ..., Y7 }
  305. psrlw m1, 8 ; (word) { Y8, Y9, ..., Y15 }
  306. %endif ; yuyv/uyvy
  307. packuswb m0, m1 ; (byte) { Y0, ..., Y15 }
  308. mova [dstq+wq], m0
  309. add wq, mmsize
  310. jl .loop_%1
  311. REP_RET
  312. %endmacro
  313. ; %1 = nr. of XMM registers
  314. ; %2 = yuyv or uyvy
  315. ; %3 = if specified, it means that unaligned and aligned code in loop
  316. ; will be the same (i.e. YUYV+AVX), and thus we don't need to
  317. ; split the loop in an aligned and unaligned case
  318. %macro YUYV_TO_Y_FN 2-3
  319. cglobal %2ToY, 5, 5, %1, dst, unused0, unused1, src, w
  320. %if ARCH_X86_64
  321. movsxd wq, wd
  322. %endif
  323. add dstq, wq
  324. %if mmsize == 16
  325. test srcq, 15
  326. %endif
  327. lea srcq, [srcq+wq*2]
  328. %ifidn %2, yuyv
  329. pcmpeqb m2, m2 ; (byte) { 0xff } x 16
  330. psrlw m2, 8 ; (word) { 0x00ff } x 8
  331. %endif ; yuyv
  332. %if mmsize == 16
  333. jnz .loop_u_start
  334. neg wq
  335. LOOP_YUYV_TO_Y a, %2
  336. .loop_u_start:
  337. neg wq
  338. LOOP_YUYV_TO_Y u, %2
  339. %else ; mmsize == 8
  340. neg wq
  341. LOOP_YUYV_TO_Y a, %2
  342. %endif ; mmsize == 8/16
  343. %endmacro
  344. ; %1 = a (aligned) or u (unaligned)
  345. ; %2 = yuyv or uyvy
  346. %macro LOOP_YUYV_TO_UV 2
  347. .loop_%1:
  348. %ifidn %2, yuyv
  349. mov%1 m0, [srcq+wq*4] ; (byte) { Y0, U0, Y1, V0, ... }
  350. mov%1 m1, [srcq+wq*4+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
  351. psrlw m0, 8 ; (word) { U0, V0, ..., U3, V3 }
  352. psrlw m1, 8 ; (word) { U4, V4, ..., U7, V7 }
  353. %else ; uyvy
  354. %if cpuflag(avx)
  355. vpand m0, m2, [srcq+wq*4] ; (word) { U0, V0, ..., U3, V3 }
  356. vpand m1, m2, [srcq+wq*4+mmsize] ; (word) { U4, V4, ..., U7, V7 }
  357. %else
  358. mov%1 m0, [srcq+wq*4] ; (byte) { Y0, U0, Y1, V0, ... }
  359. mov%1 m1, [srcq+wq*4+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
  360. pand m0, m2 ; (word) { U0, V0, ..., U3, V3 }
  361. pand m1, m2 ; (word) { U4, V4, ..., U7, V7 }
  362. %endif
  363. %endif ; yuyv/uyvy
  364. packuswb m0, m1 ; (byte) { U0, V0, ..., U7, V7 }
  365. pand m1, m0, m2 ; (word) { U0, U1, ..., U7 }
  366. psrlw m0, 8 ; (word) { V0, V1, ..., V7 }
  367. %if mmsize == 16
  368. packuswb m1, m0 ; (byte) { U0, ... U7, V1, ... V7 }
  369. movh [dstUq+wq], m1
  370. movhps [dstVq+wq], m1
  371. %else ; mmsize == 8
  372. packuswb m1, m1 ; (byte) { U0, ... U3 }
  373. packuswb m0, m0 ; (byte) { V0, ... V3 }
  374. movh [dstUq+wq], m1
  375. movh [dstVq+wq], m0
  376. %endif ; mmsize == 8/16
  377. add wq, mmsize / 2
  378. jl .loop_%1
  379. REP_RET
  380. %endmacro
  381. ; %1 = nr. of XMM registers
  382. ; %2 = yuyv or uyvy
  383. ; %3 = if specified, it means that unaligned and aligned code in loop
  384. ; will be the same (i.e. UYVY+AVX), and thus we don't need to
  385. ; split the loop in an aligned and unaligned case
  386. %macro YUYV_TO_UV_FN 2-3
  387. cglobal %2ToUV, 4, 5, %1, dstU, dstV, unused, src, w
  388. %if ARCH_X86_64
  389. movsxd wq, dword r5m
  390. %else ; x86-32
  391. mov wq, r5m
  392. %endif
  393. add dstUq, wq
  394. add dstVq, wq
  395. %if mmsize == 16 && %0 == 2
  396. test srcq, 15
  397. %endif
  398. lea srcq, [srcq+wq*4]
  399. pcmpeqb m2, m2 ; (byte) { 0xff } x 16
  400. psrlw m2, 8 ; (word) { 0x00ff } x 8
  401. ; NOTE: if uyvy+avx, u/a are identical
  402. %if mmsize == 16 && %0 == 2
  403. jnz .loop_u_start
  404. neg wq
  405. LOOP_YUYV_TO_UV a, %2
  406. .loop_u_start:
  407. neg wq
  408. LOOP_YUYV_TO_UV u, %2
  409. %else ; mmsize == 8
  410. neg wq
  411. LOOP_YUYV_TO_UV a, %2
  412. %endif ; mmsize == 8/16
  413. %endmacro
  414. ; %1 = a (aligned) or u (unaligned)
  415. ; %2 = nv12 or nv21
  416. %macro LOOP_NVXX_TO_UV 2
  417. .loop_%1:
  418. mov%1 m0, [srcq+wq*2] ; (byte) { U0, V0, U1, V1, ... }
  419. mov%1 m1, [srcq+wq*2+mmsize] ; (byte) { U8, V8, U9, V9, ... }
  420. pand m2, m0, m5 ; (word) { U0, U1, ..., U7 }
  421. pand m3, m1, m5 ; (word) { U8, U9, ..., U15 }
  422. psrlw m0, 8 ; (word) { V0, V1, ..., V7 }
  423. psrlw m1, 8 ; (word) { V8, V9, ..., V15 }
  424. packuswb m2, m3 ; (byte) { U0, ..., U15 }
  425. packuswb m0, m1 ; (byte) { V0, ..., V15 }
  426. %ifidn %2, nv12
  427. mova [dstUq+wq], m2
  428. mova [dstVq+wq], m0
  429. %else ; nv21
  430. mova [dstVq+wq], m2
  431. mova [dstUq+wq], m0
  432. %endif ; nv12/21
  433. add wq, mmsize
  434. jl .loop_%1
  435. REP_RET
  436. %endmacro
  437. ; %1 = nr. of XMM registers
  438. ; %2 = nv12 or nv21
  439. %macro NVXX_TO_UV_FN 2
  440. cglobal %2ToUV, 4, 5, %1, dstU, dstV, unused, src, w
  441. %if ARCH_X86_64
  442. movsxd wq, dword r5m
  443. %else ; x86-32
  444. mov wq, r5m
  445. %endif
  446. add dstUq, wq
  447. add dstVq, wq
  448. %if mmsize == 16
  449. test srcq, 15
  450. %endif
  451. lea srcq, [srcq+wq*2]
  452. pcmpeqb m5, m5 ; (byte) { 0xff } x 16
  453. psrlw m5, 8 ; (word) { 0x00ff } x 8
  454. %if mmsize == 16
  455. jnz .loop_u_start
  456. neg wq
  457. LOOP_NVXX_TO_UV a, %2
  458. .loop_u_start:
  459. neg wq
  460. LOOP_NVXX_TO_UV u, %2
  461. %else ; mmsize == 8
  462. neg wq
  463. LOOP_NVXX_TO_UV a, %2
  464. %endif ; mmsize == 8/16
  465. %endmacro
  466. %if ARCH_X86_32
  467. INIT_MMX mmx
  468. YUYV_TO_Y_FN 0, yuyv
  469. YUYV_TO_Y_FN 0, uyvy
  470. YUYV_TO_UV_FN 0, yuyv
  471. YUYV_TO_UV_FN 0, uyvy
  472. NVXX_TO_UV_FN 0, nv12
  473. NVXX_TO_UV_FN 0, nv21
  474. %endif
  475. INIT_XMM sse2
  476. YUYV_TO_Y_FN 3, yuyv
  477. YUYV_TO_Y_FN 2, uyvy
  478. YUYV_TO_UV_FN 3, yuyv
  479. YUYV_TO_UV_FN 3, uyvy
  480. NVXX_TO_UV_FN 5, nv12
  481. NVXX_TO_UV_FN 5, nv21
  482. %ifdef HAVE_AVX
  483. INIT_XMM avx
  484. ; in theory, we could write a yuy2-to-y using vpand (i.e. AVX), but
  485. ; that's not faster in practice
  486. YUYV_TO_UV_FN 3, yuyv
  487. YUYV_TO_UV_FN 3, uyvy, 1
  488. NVXX_TO_UV_FN 5, nv12
  489. NVXX_TO_UV_FN 5, nv21
  490. %endif