You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1088 lines
41KB

  1. /*
  2. * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include <inttypes.h>
  21. #include <string.h>
  22. #include <math.h>
  23. #include <stdio.h>
  24. #include "config.h"
  25. #include <assert.h>
  26. #include "swscale.h"
  27. #include "swscale_internal.h"
  28. #include "rgb2rgb.h"
  29. #include "libavutil/intreadwrite.h"
  30. #include "libavutil/cpu.h"
  31. #include "libavutil/avutil.h"
  32. #include "libavutil/mathematics.h"
  33. #include "libavutil/bswap.h"
  34. #include "libavutil/pixdesc.h"
  35. #define RGB2YUV_SHIFT 15
  36. #define BY ( (int) (0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  37. #define BV (-(int) (0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  38. #define BU ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  39. #define GY ( (int) (0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  40. #define GV (-(int) (0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  41. #define GU (-(int) (0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  42. #define RY ( (int) (0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  43. #define RV ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  44. #define RU (-(int) (0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
  45. static void fillPlane(uint8_t *plane, int stride, int width, int height, int y,
  46. uint8_t val)
  47. {
  48. int i;
  49. uint8_t *ptr = plane + stride * y;
  50. for (i = 0; i < height; i++) {
  51. memset(ptr, val, width);
  52. ptr += stride;
  53. }
  54. }
  55. static void fillPlane16(uint8_t *plane, int stride, int width, int height, int y,
  56. int alpha, int bits)
  57. {
  58. int i, j;
  59. uint8_t *ptr = plane + stride * y;
  60. int v = alpha ? -1 : (1<<bits);
  61. for (i = 0; i < height; i++) {
  62. for (j = 0; j < width; j++) {
  63. AV_WN16(ptr+2*j, v);
  64. }
  65. ptr += stride;
  66. }
  67. }
  68. static void copyPlane(const uint8_t *src, int srcStride,
  69. int srcSliceY, int srcSliceH, int width,
  70. uint8_t *dst, int dstStride)
  71. {
  72. dst += dstStride * srcSliceY;
  73. if (dstStride == srcStride && srcStride > 0) {
  74. memcpy(dst, src, srcSliceH * dstStride);
  75. } else {
  76. int i;
  77. for (i = 0; i < srcSliceH; i++) {
  78. memcpy(dst, src, width);
  79. src += srcStride;
  80. dst += dstStride;
  81. }
  82. }
  83. }
  84. static int planarToNv12Wrapper(SwsContext *c, const uint8_t *src[],
  85. int srcStride[], int srcSliceY,
  86. int srcSliceH, uint8_t *dstParam[],
  87. int dstStride[])
  88. {
  89. uint8_t *dst = dstParam[1] + dstStride[1] * srcSliceY / 2;
  90. copyPlane(src[0], srcStride[0], srcSliceY, srcSliceH, c->srcW,
  91. dstParam[0], dstStride[0]);
  92. if (c->dstFormat == PIX_FMT_NV12)
  93. interleaveBytes(src[1], src[2], dst, c->srcW / 2, srcSliceH / 2,
  94. srcStride[1], srcStride[2], dstStride[0]);
  95. else
  96. interleaveBytes(src[2], src[1], dst, c->srcW / 2, srcSliceH / 2,
  97. srcStride[2], srcStride[1], dstStride[0]);
  98. return srcSliceH;
  99. }
  100. static int planarToYuy2Wrapper(SwsContext *c, const uint8_t *src[],
  101. int srcStride[], int srcSliceY, int srcSliceH,
  102. uint8_t *dstParam[], int dstStride[])
  103. {
  104. uint8_t *dst = dstParam[0] + dstStride[0] * srcSliceY;
  105. yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0],
  106. srcStride[1], dstStride[0]);
  107. return srcSliceH;
  108. }
  109. static int planarToUyvyWrapper(SwsContext *c, const uint8_t *src[],
  110. int srcStride[], int srcSliceY, int srcSliceH,
  111. uint8_t *dstParam[], int dstStride[])
  112. {
  113. uint8_t *dst = dstParam[0] + dstStride[0] * srcSliceY;
  114. yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0],
  115. srcStride[1], dstStride[0]);
  116. return srcSliceH;
  117. }
  118. static int yuv422pToYuy2Wrapper(SwsContext *c, const uint8_t *src[],
  119. int srcStride[], int srcSliceY, int srcSliceH,
  120. uint8_t *dstParam[], int dstStride[])
  121. {
  122. uint8_t *dst = dstParam[0] + dstStride[0] * srcSliceY;
  123. yuv422ptoyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0],
  124. srcStride[1], dstStride[0]);
  125. return srcSliceH;
  126. }
  127. static int yuv422pToUyvyWrapper(SwsContext *c, const uint8_t *src[],
  128. int srcStride[], int srcSliceY, int srcSliceH,
  129. uint8_t *dstParam[], int dstStride[])
  130. {
  131. uint8_t *dst = dstParam[0] + dstStride[0] * srcSliceY;
  132. yuv422ptouyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0],
  133. srcStride[1], dstStride[0]);
  134. return srcSliceH;
  135. }
  136. static int yuyvToYuv420Wrapper(SwsContext *c, const uint8_t *src[],
  137. int srcStride[], int srcSliceY, int srcSliceH,
  138. uint8_t *dstParam[], int dstStride[])
  139. {
  140. uint8_t *ydst = dstParam[0] + dstStride[0] * srcSliceY;
  141. uint8_t *udst = dstParam[1] + dstStride[1] * srcSliceY / 2;
  142. uint8_t *vdst = dstParam[2] + dstStride[2] * srcSliceY / 2;
  143. yuyvtoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0],
  144. dstStride[1], srcStride[0]);
  145. if (dstParam[3])
  146. fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  147. return srcSliceH;
  148. }
  149. static int yuyvToYuv422Wrapper(SwsContext *c, const uint8_t *src[],
  150. int srcStride[], int srcSliceY, int srcSliceH,
  151. uint8_t *dstParam[], int dstStride[])
  152. {
  153. uint8_t *ydst = dstParam[0] + dstStride[0] * srcSliceY;
  154. uint8_t *udst = dstParam[1] + dstStride[1] * srcSliceY;
  155. uint8_t *vdst = dstParam[2] + dstStride[2] * srcSliceY;
  156. yuyvtoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0],
  157. dstStride[1], srcStride[0]);
  158. return srcSliceH;
  159. }
  160. static int uyvyToYuv420Wrapper(SwsContext *c, const uint8_t *src[],
  161. int srcStride[], int srcSliceY, int srcSliceH,
  162. uint8_t *dstParam[], int dstStride[])
  163. {
  164. uint8_t *ydst = dstParam[0] + dstStride[0] * srcSliceY;
  165. uint8_t *udst = dstParam[1] + dstStride[1] * srcSliceY / 2;
  166. uint8_t *vdst = dstParam[2] + dstStride[2] * srcSliceY / 2;
  167. uyvytoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0],
  168. dstStride[1], srcStride[0]);
  169. if (dstParam[3])
  170. fillPlane(dstParam[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  171. return srcSliceH;
  172. }
  173. static int uyvyToYuv422Wrapper(SwsContext *c, const uint8_t *src[],
  174. int srcStride[], int srcSliceY, int srcSliceH,
  175. uint8_t *dstParam[], int dstStride[])
  176. {
  177. uint8_t *ydst = dstParam[0] + dstStride[0] * srcSliceY;
  178. uint8_t *udst = dstParam[1] + dstStride[1] * srcSliceY;
  179. uint8_t *vdst = dstParam[2] + dstStride[2] * srcSliceY;
  180. uyvytoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0],
  181. dstStride[1], srcStride[0]);
  182. return srcSliceH;
  183. }
  184. static void gray8aToPacked32(const uint8_t *src, uint8_t *dst, int num_pixels,
  185. const uint8_t *palette)
  186. {
  187. int i;
  188. for (i = 0; i < num_pixels; i++)
  189. ((uint32_t *) dst)[i] = ((const uint32_t *) palette)[src[i << 1]] | (src[(i << 1) + 1] << 24);
  190. }
  191. static void gray8aToPacked32_1(const uint8_t *src, uint8_t *dst, int num_pixels,
  192. const uint8_t *palette)
  193. {
  194. int i;
  195. for (i = 0; i < num_pixels; i++)
  196. ((uint32_t *) dst)[i] = ((const uint32_t *) palette)[src[i << 1]] | src[(i << 1) + 1];
  197. }
  198. static void gray8aToPacked24(const uint8_t *src, uint8_t *dst, int num_pixels,
  199. const uint8_t *palette)
  200. {
  201. int i;
  202. for (i = 0; i < num_pixels; i++) {
  203. //FIXME slow?
  204. dst[0] = palette[src[i << 1] * 4 + 0];
  205. dst[1] = palette[src[i << 1] * 4 + 1];
  206. dst[2] = palette[src[i << 1] * 4 + 2];
  207. dst += 3;
  208. }
  209. }
  210. static int packed_16bpc_bswap(SwsContext *c, const uint8_t *src[],
  211. int srcStride[], int srcSliceY, int srcSliceH,
  212. uint8_t *dst[], int dstStride[])
  213. {
  214. int i, j;
  215. int srcstr = srcStride[0] >> 1;
  216. int dststr = dstStride[0] >> 1;
  217. uint16_t *dstPtr = (uint16_t *) dst[0];
  218. const uint16_t *srcPtr = (const uint16_t *) src[0];
  219. int min_stride = FFMIN(srcstr, dststr);
  220. for (i = 0; i < srcSliceH; i++) {
  221. for (j = 0; j < min_stride; j++) {
  222. dstPtr[j] = av_bswap16(srcPtr[j]);
  223. }
  224. srcPtr += srcstr;
  225. dstPtr += dststr;
  226. }
  227. return srcSliceH;
  228. }
  229. static int palToRgbWrapper(SwsContext *c, const uint8_t *src[], int srcStride[],
  230. int srcSliceY, int srcSliceH, uint8_t *dst[],
  231. int dstStride[])
  232. {
  233. const enum PixelFormat srcFormat = c->srcFormat;
  234. const enum PixelFormat dstFormat = c->dstFormat;
  235. void (*conv)(const uint8_t *src, uint8_t *dst, int num_pixels,
  236. const uint8_t *palette) = NULL;
  237. int i;
  238. uint8_t *dstPtr = dst[0] + dstStride[0] * srcSliceY;
  239. const uint8_t *srcPtr = src[0];
  240. if (srcFormat == PIX_FMT_GRAY8A) {
  241. switch (dstFormat) {
  242. case PIX_FMT_RGB32 : conv = gray8aToPacked32; break;
  243. case PIX_FMT_BGR32 : conv = gray8aToPacked32; break;
  244. case PIX_FMT_BGR32_1: conv = gray8aToPacked32_1; break;
  245. case PIX_FMT_RGB32_1: conv = gray8aToPacked32_1; break;
  246. case PIX_FMT_RGB24 : conv = gray8aToPacked24; break;
  247. case PIX_FMT_BGR24 : conv = gray8aToPacked24; break;
  248. }
  249. } else if (usePal(srcFormat)) {
  250. switch (dstFormat) {
  251. case PIX_FMT_RGB32 : conv = sws_convertPalette8ToPacked32; break;
  252. case PIX_FMT_BGR32 : conv = sws_convertPalette8ToPacked32; break;
  253. case PIX_FMT_BGR32_1: conv = sws_convertPalette8ToPacked32; break;
  254. case PIX_FMT_RGB32_1: conv = sws_convertPalette8ToPacked32; break;
  255. case PIX_FMT_RGB24 : conv = sws_convertPalette8ToPacked24; break;
  256. case PIX_FMT_BGR24 : conv = sws_convertPalette8ToPacked24; break;
  257. }
  258. }
  259. if (!conv)
  260. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  261. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  262. else {
  263. for (i = 0; i < srcSliceH; i++) {
  264. conv(srcPtr, dstPtr, c->srcW, (uint8_t *) c->pal_rgb);
  265. srcPtr += srcStride[0];
  266. dstPtr += dstStride[0];
  267. }
  268. }
  269. return srcSliceH;
  270. }
  271. static void gbr24ptopacked24(const uint8_t* src[], int srcStride[], uint8_t* dst, int dstStride, int srcSliceH, int width)
  272. {
  273. int x, h, i;
  274. for (h = 0; h < srcSliceH; h++) {
  275. uint8_t *dest = dst + dstStride * h;
  276. for (x = 0; x < width; x++) {
  277. *dest++ = src[0][x];
  278. *dest++ = src[1][x];
  279. *dest++ = src[2][x];
  280. }
  281. for (i = 0; i < 3; i++)
  282. src[i] += srcStride[i];
  283. }
  284. }
  285. static void gbr24ptopacked32(const uint8_t* src[], int srcStride[], uint8_t* dst, int dstStride, int srcSliceH, int alpha_first, int width)
  286. {
  287. int x, h, i;
  288. for (h = 0; h < srcSliceH; h++) {
  289. uint8_t *dest = dst + dstStride * h;
  290. if (alpha_first) {
  291. for (x = 0; x < width; x++) {
  292. *dest++ = 0xff;
  293. *dest++ = src[0][x];
  294. *dest++ = src[1][x];
  295. *dest++ = src[2][x];
  296. }
  297. } else {
  298. for (x = 0; x < width; x++) {
  299. *dest++ = src[0][x];
  300. *dest++ = src[1][x];
  301. *dest++ = src[2][x];
  302. *dest++ = 0xff;
  303. }
  304. }
  305. for (i = 0; i < 3; i++)
  306. src[i] += srcStride[i];
  307. }
  308. }
  309. static int planarRgbToRgbWrapper(SwsContext *c, const uint8_t* src[], int srcStride[], int srcSliceY,
  310. int srcSliceH, uint8_t* dst[], int dstStride[])
  311. {
  312. int alpha_first = 0;
  313. if (c->srcFormat != PIX_FMT_GBR24P) {
  314. av_log(c, AV_LOG_ERROR, "unsupported planar RGB conversion %s -> %s\n",
  315. av_get_pix_fmt_name(c->srcFormat), av_get_pix_fmt_name(c->dstFormat));
  316. return srcSliceH;
  317. }
  318. switch (c->dstFormat) {
  319. case PIX_FMT_BGR24:
  320. gbr24ptopacked24((const uint8_t* []) {src[1], src[0], src[2]}, (int []) {srcStride[1], srcStride[0], srcStride[2]},
  321. dst[0] + srcSliceY * dstStride[0], dstStride[0], srcSliceH, c->srcW);
  322. break;
  323. case PIX_FMT_RGB24:
  324. gbr24ptopacked24((const uint8_t* []) {src[2], src[0], src[1]}, (int []) {srcStride[2], srcStride[0], srcStride[1]},
  325. dst[0] + srcSliceY * dstStride[0], dstStride[0], srcSliceH, c->srcW);
  326. break;
  327. case PIX_FMT_ARGB:
  328. alpha_first = 1;
  329. case PIX_FMT_RGBA:
  330. gbr24ptopacked32((const uint8_t* []) {src[2], src[0], src[1]}, (int []) {srcStride[2], srcStride[0], srcStride[1]},
  331. dst[0] + srcSliceY * dstStride[0], dstStride[0], srcSliceH, alpha_first, c->srcW);
  332. break;
  333. case PIX_FMT_ABGR:
  334. alpha_first = 1;
  335. case PIX_FMT_BGRA:
  336. gbr24ptopacked32((const uint8_t* []) {src[1], src[0], src[2]}, (int []) {srcStride[1], srcStride[0], srcStride[2]},
  337. dst[0] + srcSliceY * dstStride[0], dstStride[0], srcSliceH, alpha_first, c->srcW);
  338. break;
  339. default:
  340. av_log(c, AV_LOG_ERROR, "unsupported planar RGB conversion %s -> %s\n",
  341. av_get_pix_fmt_name(c->srcFormat), av_get_pix_fmt_name(c->dstFormat));
  342. }
  343. return srcSliceH;
  344. }
  345. #define isRGBA32(x) ( \
  346. (x) == PIX_FMT_ARGB \
  347. || (x) == PIX_FMT_RGBA \
  348. || (x) == PIX_FMT_BGRA \
  349. || (x) == PIX_FMT_ABGR \
  350. )
  351. /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
  352. typedef void (* rgbConvFn) (const uint8_t *, uint8_t *, int);
  353. static rgbConvFn findRgbConvFn(SwsContext *c)
  354. {
  355. const enum PixelFormat srcFormat = c->srcFormat;
  356. const enum PixelFormat dstFormat = c->dstFormat;
  357. const int srcId = c->srcFormatBpp;
  358. const int dstId = c->dstFormatBpp;
  359. rgbConvFn conv = NULL;
  360. #define IS_NOT_NE(bpp, fmt) \
  361. (((bpp + 7) >> 3) == 2 && \
  362. (!(av_pix_fmt_descriptors[fmt].flags & PIX_FMT_BE) != !HAVE_BIGENDIAN))
  363. /* if this is non-native rgb444/555/565, don't handle it here. */
  364. if (IS_NOT_NE(srcId, srcFormat) || IS_NOT_NE(dstId, dstFormat))
  365. return NULL;
  366. #define CONV_IS(src, dst) (srcFormat == PIX_FMT_##src && dstFormat == PIX_FMT_##dst)
  367. if (isRGBA32(srcFormat) && isRGBA32(dstFormat)) {
  368. if ( CONV_IS(ABGR, RGBA)
  369. || CONV_IS(ARGB, BGRA)
  370. || CONV_IS(BGRA, ARGB)
  371. || CONV_IS(RGBA, ABGR)) conv = shuffle_bytes_3210;
  372. else if (CONV_IS(ABGR, ARGB)
  373. || CONV_IS(ARGB, ABGR)) conv = shuffle_bytes_0321;
  374. else if (CONV_IS(ABGR, BGRA)
  375. || CONV_IS(ARGB, RGBA)) conv = shuffle_bytes_1230;
  376. else if (CONV_IS(BGRA, RGBA)
  377. || CONV_IS(RGBA, BGRA)) conv = shuffle_bytes_2103;
  378. else if (CONV_IS(BGRA, ABGR)
  379. || CONV_IS(RGBA, ARGB)) conv = shuffle_bytes_3012;
  380. } else
  381. /* BGR -> BGR */
  382. if ((isBGRinInt(srcFormat) && isBGRinInt(dstFormat)) ||
  383. (isRGBinInt(srcFormat) && isRGBinInt(dstFormat))) {
  384. switch (srcId | (dstId << 16)) {
  385. case 0x000F000C: conv = rgb12to15; break;
  386. case 0x000F0010: conv = rgb16to15; break;
  387. case 0x000F0018: conv = rgb24to15; break;
  388. case 0x000F0020: conv = rgb32to15; break;
  389. case 0x0010000F: conv = rgb15to16; break;
  390. case 0x00100018: conv = rgb24to16; break;
  391. case 0x00100020: conv = rgb32to16; break;
  392. case 0x0018000F: conv = rgb15to24; break;
  393. case 0x00180010: conv = rgb16to24; break;
  394. case 0x00180020: conv = rgb32to24; break;
  395. case 0x0020000F: conv = rgb15to32; break;
  396. case 0x00200010: conv = rgb16to32; break;
  397. case 0x00200018: conv = rgb24to32; break;
  398. }
  399. } else if ((isBGRinInt(srcFormat) && isRGBinInt(dstFormat)) ||
  400. (isRGBinInt(srcFormat) && isBGRinInt(dstFormat))) {
  401. switch (srcId | (dstId << 16)) {
  402. case 0x000C000C: conv = rgb12tobgr12; break;
  403. case 0x000F000F: conv = rgb15tobgr15; break;
  404. case 0x000F0010: conv = rgb16tobgr15; break;
  405. case 0x000F0018: conv = rgb24tobgr15; break;
  406. case 0x000F0020: conv = rgb32tobgr15; break;
  407. case 0x0010000F: conv = rgb15tobgr16; break;
  408. case 0x00100010: conv = rgb16tobgr16; break;
  409. case 0x00100018: conv = rgb24tobgr16; break;
  410. case 0x00100020: conv = rgb32tobgr16; break;
  411. case 0x0018000F: conv = rgb15tobgr24; break;
  412. case 0x00180010: conv = rgb16tobgr24; break;
  413. case 0x00180018: conv = rgb24tobgr24; break;
  414. case 0x00180020: conv = rgb32tobgr24; break;
  415. case 0x0020000F: conv = rgb15tobgr32; break;
  416. case 0x00200010: conv = rgb16tobgr32; break;
  417. case 0x00200018: conv = rgb24tobgr32; break;
  418. }
  419. }
  420. return conv;
  421. }
  422. /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
  423. static int rgbToRgbWrapper(SwsContext *c, const uint8_t *src[], int srcStride[],
  424. int srcSliceY, int srcSliceH, uint8_t *dst[],
  425. int dstStride[])
  426. {
  427. const enum PixelFormat srcFormat = c->srcFormat;
  428. const enum PixelFormat dstFormat = c->dstFormat;
  429. const int srcBpp = (c->srcFormatBpp + 7) >> 3;
  430. const int dstBpp = (c->dstFormatBpp + 7) >> 3;
  431. rgbConvFn conv = findRgbConvFn(c);
  432. if (!conv) {
  433. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  434. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  435. } else {
  436. const uint8_t *srcPtr = src[0];
  437. uint8_t *dstPtr = dst[0];
  438. if ((srcFormat == PIX_FMT_RGB32_1 || srcFormat == PIX_FMT_BGR32_1) &&
  439. !isRGBA32(dstFormat))
  440. srcPtr += ALT32_CORR;
  441. if ((dstFormat == PIX_FMT_RGB32_1 || dstFormat == PIX_FMT_BGR32_1) &&
  442. !isRGBA32(srcFormat))
  443. dstPtr += ALT32_CORR;
  444. if (dstStride[0] * srcBpp == srcStride[0] * dstBpp && srcStride[0] > 0 &&
  445. !(srcStride[0] % srcBpp))
  446. conv(srcPtr, dstPtr + dstStride[0] * srcSliceY,
  447. srcSliceH * srcStride[0]);
  448. else {
  449. int i;
  450. dstPtr += dstStride[0] * srcSliceY;
  451. for (i = 0; i < srcSliceH; i++) {
  452. conv(srcPtr, dstPtr, c->srcW * srcBpp);
  453. srcPtr += srcStride[0];
  454. dstPtr += dstStride[0];
  455. }
  456. }
  457. }
  458. return srcSliceH;
  459. }
  460. static int bgr24ToYv12Wrapper(SwsContext *c, const uint8_t *src[],
  461. int srcStride[], int srcSliceY, int srcSliceH,
  462. uint8_t *dst[], int dstStride[])
  463. {
  464. rgb24toyv12(
  465. src[0],
  466. dst[0] + srcSliceY * dstStride[0],
  467. dst[1] + (srcSliceY >> 1) * dstStride[1],
  468. dst[2] + (srcSliceY >> 1) * dstStride[2],
  469. c->srcW, srcSliceH,
  470. dstStride[0], dstStride[1], srcStride[0]);
  471. if (dst[3])
  472. fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  473. return srcSliceH;
  474. }
  475. static int yvu9ToYv12Wrapper(SwsContext *c, const uint8_t *src[],
  476. int srcStride[], int srcSliceY, int srcSliceH,
  477. uint8_t *dst[], int dstStride[])
  478. {
  479. copyPlane(src[0], srcStride[0], srcSliceY, srcSliceH, c->srcW,
  480. dst[0], dstStride[0]);
  481. planar2x(src[1], dst[1] + dstStride[1] * (srcSliceY >> 1), c->chrSrcW,
  482. srcSliceH >> 2, srcStride[1], dstStride[1]);
  483. planar2x(src[2], dst[2] + dstStride[2] * (srcSliceY >> 1), c->chrSrcW,
  484. srcSliceH >> 2, srcStride[2], dstStride[2]);
  485. if (dst[3])
  486. fillPlane(dst[3], dstStride[3], c->srcW, srcSliceH, srcSliceY, 255);
  487. return srcSliceH;
  488. }
  489. /* unscaled copy like stuff (assumes nearly identical formats) */
  490. static int packedCopyWrapper(SwsContext *c, const uint8_t *src[],
  491. int srcStride[], int srcSliceY, int srcSliceH,
  492. uint8_t *dst[], int dstStride[])
  493. {
  494. if (dstStride[0] == srcStride[0] && srcStride[0] > 0)
  495. memcpy(dst[0] + dstStride[0] * srcSliceY, src[0], srcSliceH * dstStride[0]);
  496. else {
  497. int i;
  498. const uint8_t *srcPtr = src[0];
  499. uint8_t *dstPtr = dst[0] + dstStride[0] * srcSliceY;
  500. int length = 0;
  501. /* universal length finder */
  502. while (length + c->srcW <= FFABS(dstStride[0]) &&
  503. length + c->srcW <= FFABS(srcStride[0]))
  504. length += c->srcW;
  505. assert(length != 0);
  506. for (i = 0; i < srcSliceH; i++) {
  507. memcpy(dstPtr, srcPtr, length);
  508. srcPtr += srcStride[0];
  509. dstPtr += dstStride[0];
  510. }
  511. }
  512. return srcSliceH;
  513. }
  514. #define DITHER_COPY(dst, dstStride, src, srcStride, bswap, dbswap)\
  515. uint16_t scale= dither_scale[dst_depth-1][src_depth-1];\
  516. int shift= src_depth-dst_depth + dither_scale[src_depth-2][dst_depth-1];\
  517. for (i = 0; i < height; i++) {\
  518. const uint8_t *dither= dithers[src_depth-9][i&7];\
  519. for (j = 0; j < length-7; j+=8){\
  520. dst[j+0] = dbswap((bswap(src[j+0]) + dither[0])*scale>>shift);\
  521. dst[j+1] = dbswap((bswap(src[j+1]) + dither[1])*scale>>shift);\
  522. dst[j+2] = dbswap((bswap(src[j+2]) + dither[2])*scale>>shift);\
  523. dst[j+3] = dbswap((bswap(src[j+3]) + dither[3])*scale>>shift);\
  524. dst[j+4] = dbswap((bswap(src[j+4]) + dither[4])*scale>>shift);\
  525. dst[j+5] = dbswap((bswap(src[j+5]) + dither[5])*scale>>shift);\
  526. dst[j+6] = dbswap((bswap(src[j+6]) + dither[6])*scale>>shift);\
  527. dst[j+7] = dbswap((bswap(src[j+7]) + dither[7])*scale>>shift);\
  528. }\
  529. for (; j < length; j++)\
  530. dst[j] = dbswap((bswap(src[j]) + dither[j&7])*scale>>shift);\
  531. dst += dstStride;\
  532. src += srcStride;\
  533. }
  534. static int planarCopyWrapper(SwsContext *c, const uint8_t *src[],
  535. int srcStride[], int srcSliceY, int srcSliceH,
  536. uint8_t *dst[], int dstStride[])
  537. {
  538. int plane, i, j;
  539. for (plane = 0; plane < 4; plane++) {
  540. int length = (plane == 0 || plane == 3) ? c->srcW : -((-c->srcW ) >> c->chrDstHSubSample);
  541. int y = (plane == 0 || plane == 3) ? srcSliceY: -((-srcSliceY) >> c->chrDstVSubSample);
  542. int height = (plane == 0 || plane == 3) ? srcSliceH: -((-srcSliceH) >> c->chrDstVSubSample);
  543. const uint8_t *srcPtr = src[plane];
  544. uint8_t *dstPtr = dst[plane] + dstStride[plane] * y;
  545. int shiftonly= plane==1 || plane==2 || (!c->srcRange && plane==0);
  546. if (!dst[plane])
  547. continue;
  548. // ignore palette for GRAY8
  549. if (plane == 1 && !dst[2]) continue;
  550. if (!src[plane] || (plane == 1 && !src[2])) {
  551. if (is16BPS(c->dstFormat) || isNBPS(c->dstFormat)) {
  552. fillPlane16(dst[plane], dstStride[plane], length, height, y,
  553. plane == 3, av_pix_fmt_descriptors[c->dstFormat].comp[plane].depth_minus1);
  554. } else {
  555. fillPlane(dst[plane], dstStride[plane], length, height, y,
  556. (plane == 3) ? 255 : 128);
  557. }
  558. } else {
  559. if(isNBPS(c->srcFormat) || isNBPS(c->dstFormat)
  560. || (is16BPS(c->srcFormat) != is16BPS(c->dstFormat))
  561. ) {
  562. const int src_depth = av_pix_fmt_descriptors[c->srcFormat].comp[plane].depth_minus1 + 1;
  563. const int dst_depth = av_pix_fmt_descriptors[c->dstFormat].comp[plane].depth_minus1 + 1;
  564. const uint16_t *srcPtr2 = (const uint16_t *) srcPtr;
  565. uint16_t *dstPtr2 = (uint16_t*)dstPtr;
  566. if (dst_depth == 8) {
  567. if(isBE(c->srcFormat) == HAVE_BIGENDIAN){
  568. DITHER_COPY(dstPtr, dstStride[plane], srcPtr2, srcStride[plane]/2, , )
  569. } else {
  570. DITHER_COPY(dstPtr, dstStride[plane], srcPtr2, srcStride[plane]/2, av_bswap16, )
  571. }
  572. } else if (src_depth == 8) {
  573. for (i = 0; i < height; i++) {
  574. #define COPY816(w)\
  575. if(shiftonly){\
  576. for (j = 0; j < length; j++)\
  577. w(&dstPtr2[j], srcPtr[j]<<(dst_depth-8));\
  578. }else{\
  579. for (j = 0; j < length; j++)\
  580. w(&dstPtr2[j], (srcPtr[j]<<(dst_depth-8)) |\
  581. (srcPtr[j]>>(2*8-dst_depth)));\
  582. }
  583. if(isBE(c->dstFormat)){
  584. COPY816(AV_WB16)
  585. } else {
  586. COPY816(AV_WL16)
  587. }
  588. dstPtr2 += dstStride[plane]/2;
  589. srcPtr += srcStride[plane];
  590. }
  591. } else if (src_depth <= dst_depth) {
  592. for (i = 0; i < height; i++) {
  593. #define COPY_UP(r,w) \
  594. if(shiftonly){\
  595. for (j = 0; j < length; j++){ \
  596. unsigned int v= r(&srcPtr2[j]);\
  597. w(&dstPtr2[j], v<<(dst_depth-src_depth));\
  598. }\
  599. }else{\
  600. for (j = 0; j < length; j++){ \
  601. unsigned int v= r(&srcPtr2[j]);\
  602. w(&dstPtr2[j], (v<<(dst_depth-src_depth)) | \
  603. (v>>(2*src_depth-dst_depth)));\
  604. }\
  605. }
  606. if(isBE(c->srcFormat)){
  607. if(isBE(c->dstFormat)){
  608. COPY_UP(AV_RB16, AV_WB16)
  609. } else {
  610. COPY_UP(AV_RB16, AV_WL16)
  611. }
  612. } else {
  613. if(isBE(c->dstFormat)){
  614. COPY_UP(AV_RL16, AV_WB16)
  615. } else {
  616. COPY_UP(AV_RL16, AV_WL16)
  617. }
  618. }
  619. dstPtr2 += dstStride[plane]/2;
  620. srcPtr2 += srcStride[plane]/2;
  621. }
  622. } else {
  623. if(isBE(c->srcFormat) == HAVE_BIGENDIAN){
  624. if(isBE(c->dstFormat) == HAVE_BIGENDIAN){
  625. DITHER_COPY(dstPtr2, dstStride[plane]/2, srcPtr2, srcStride[plane]/2, , )
  626. } else {
  627. DITHER_COPY(dstPtr2, dstStride[plane]/2, srcPtr2, srcStride[plane]/2, , av_bswap16)
  628. }
  629. }else{
  630. if(isBE(c->dstFormat) == HAVE_BIGENDIAN){
  631. DITHER_COPY(dstPtr2, dstStride[plane]/2, srcPtr2, srcStride[plane]/2, av_bswap16, )
  632. } else {
  633. DITHER_COPY(dstPtr2, dstStride[plane]/2, srcPtr2, srcStride[plane]/2, av_bswap16, av_bswap16)
  634. }
  635. }
  636. }
  637. } else if (is16BPS(c->srcFormat) && is16BPS(c->dstFormat) &&
  638. isBE(c->srcFormat) != isBE(c->dstFormat)) {
  639. for (i = 0; i < height; i++) {
  640. for (j = 0; j < length; j++)
  641. ((uint16_t *) dstPtr)[j] = av_bswap16(((const uint16_t *) srcPtr)[j]);
  642. srcPtr += srcStride[plane];
  643. dstPtr += dstStride[plane];
  644. }
  645. } else if (dstStride[plane] == srcStride[plane] &&
  646. srcStride[plane] > 0 && srcStride[plane] == length) {
  647. memcpy(dst[plane] + dstStride[plane] * y, src[plane],
  648. height * dstStride[plane]);
  649. } else {
  650. if (is16BPS(c->srcFormat) && is16BPS(c->dstFormat))
  651. length *= 2;
  652. else if (!av_pix_fmt_descriptors[c->srcFormat].comp[0].depth_minus1)
  653. length >>= 3; // monowhite/black
  654. for (i = 0; i < height; i++) {
  655. memcpy(dstPtr, srcPtr, length);
  656. srcPtr += srcStride[plane];
  657. dstPtr += dstStride[plane];
  658. }
  659. }
  660. }
  661. }
  662. return srcSliceH;
  663. }
  664. #define IS_DIFFERENT_ENDIANESS(src_fmt, dst_fmt, pix_fmt) \
  665. ((src_fmt == pix_fmt ## BE && dst_fmt == pix_fmt ## LE) || \
  666. (src_fmt == pix_fmt ## LE && dst_fmt == pix_fmt ## BE))
  667. void ff_get_unscaled_swscale(SwsContext *c)
  668. {
  669. const enum PixelFormat srcFormat = c->srcFormat;
  670. const enum PixelFormat dstFormat = c->dstFormat;
  671. const int flags = c->flags;
  672. const int dstH = c->dstH;
  673. int needsDither;
  674. needsDither = isAnyRGB(dstFormat) &&
  675. c->dstFormatBpp < 24 &&
  676. (c->dstFormatBpp < c->srcFormatBpp || (!isAnyRGB(srcFormat)));
  677. /* yv12_to_nv12 */
  678. if ((srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P) &&
  679. (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21)) {
  680. c->swScale = planarToNv12Wrapper;
  681. }
  682. /* yuv2bgr */
  683. if ((srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUV422P ||
  684. srcFormat == PIX_FMT_YUVA420P) && isAnyRGB(dstFormat) &&
  685. !(flags & SWS_ACCURATE_RND) && !(dstH & 1)) {
  686. c->swScale = ff_yuv2rgb_get_func_ptr(c);
  687. }
  688. if (srcFormat == PIX_FMT_YUV410P &&
  689. (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P) &&
  690. !(flags & SWS_BITEXACT)) {
  691. c->swScale = yvu9ToYv12Wrapper;
  692. }
  693. /* bgr24toYV12 */
  694. if (srcFormat == PIX_FMT_BGR24 &&
  695. (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P) &&
  696. !(flags & SWS_ACCURATE_RND))
  697. c->swScale = bgr24ToYv12Wrapper;
  698. /* RGB/BGR -> RGB/BGR (no dither needed forms) */
  699. if (isAnyRGB(srcFormat) && isAnyRGB(dstFormat) && findRgbConvFn(c)
  700. && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  701. c->swScale= rgbToRgbWrapper;
  702. #define isByteRGB(f) (\
  703. f == PIX_FMT_RGB32 ||\
  704. f == PIX_FMT_RGB32_1 ||\
  705. f == PIX_FMT_RGB24 ||\
  706. f == PIX_FMT_BGR32 ||\
  707. f == PIX_FMT_BGR32_1 ||\
  708. f == PIX_FMT_BGR24)
  709. if (isAnyRGB(srcFormat) && isPlanar(srcFormat) && isByteRGB(dstFormat))
  710. c->swScale= planarRgbToRgbWrapper;
  711. /* bswap 16 bits per pixel/component packed formats */
  712. if (IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, PIX_FMT_BGR444) ||
  713. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, PIX_FMT_BGR48) ||
  714. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, PIX_FMT_BGR555) ||
  715. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, PIX_FMT_BGR565) ||
  716. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, PIX_FMT_GRAY16) ||
  717. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, PIX_FMT_RGB444) ||
  718. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, PIX_FMT_RGB48) ||
  719. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, PIX_FMT_RGB555) ||
  720. IS_DIFFERENT_ENDIANESS(srcFormat, dstFormat, PIX_FMT_RGB565))
  721. c->swScale = packed_16bpc_bswap;
  722. if (usePal(srcFormat) && isByteRGB(dstFormat))
  723. c->swScale = palToRgbWrapper;
  724. if (srcFormat == PIX_FMT_YUV422P) {
  725. if (dstFormat == PIX_FMT_YUYV422)
  726. c->swScale = yuv422pToYuy2Wrapper;
  727. else if (dstFormat == PIX_FMT_UYVY422)
  728. c->swScale = yuv422pToUyvyWrapper;
  729. }
  730. /* LQ converters if -sws 0 or -sws 4*/
  731. if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)) {
  732. /* yv12_to_yuy2 */
  733. if (srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P) {
  734. if (dstFormat == PIX_FMT_YUYV422)
  735. c->swScale = planarToYuy2Wrapper;
  736. else if (dstFormat == PIX_FMT_UYVY422)
  737. c->swScale = planarToUyvyWrapper;
  738. }
  739. }
  740. if (srcFormat == PIX_FMT_YUYV422 &&
  741. (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
  742. c->swScale = yuyvToYuv420Wrapper;
  743. if (srcFormat == PIX_FMT_UYVY422 &&
  744. (dstFormat == PIX_FMT_YUV420P || dstFormat == PIX_FMT_YUVA420P))
  745. c->swScale = uyvyToYuv420Wrapper;
  746. if (srcFormat == PIX_FMT_YUYV422 && dstFormat == PIX_FMT_YUV422P)
  747. c->swScale = yuyvToYuv422Wrapper;
  748. if (srcFormat == PIX_FMT_UYVY422 && dstFormat == PIX_FMT_YUV422P)
  749. c->swScale = uyvyToYuv422Wrapper;
  750. #define isPlanarGray(x) (isGray(x) && (x) != PIX_FMT_GRAY8A)
  751. /* simple copy */
  752. if ( srcFormat == dstFormat ||
  753. (srcFormat == PIX_FMT_YUVA420P && dstFormat == PIX_FMT_YUV420P) ||
  754. (srcFormat == PIX_FMT_YUV420P && dstFormat == PIX_FMT_YUVA420P) ||
  755. (isPlanarYUV(srcFormat) && isPlanarGray(dstFormat)) ||
  756. (isPlanarYUV(dstFormat) && isPlanarGray(srcFormat)) ||
  757. (isPlanarGray(dstFormat) && isPlanarGray(srcFormat)) ||
  758. (isPlanarYUV(srcFormat) && isPlanarYUV(dstFormat) &&
  759. c->chrDstHSubSample == c->chrSrcHSubSample &&
  760. c->chrDstVSubSample == c->chrSrcVSubSample &&
  761. dstFormat != PIX_FMT_NV12 && dstFormat != PIX_FMT_NV21 &&
  762. srcFormat != PIX_FMT_NV12 && srcFormat != PIX_FMT_NV21))
  763. {
  764. if (isPacked(c->srcFormat))
  765. c->swScale = packedCopyWrapper;
  766. else /* Planar YUV or gray */
  767. c->swScale = planarCopyWrapper;
  768. }
  769. if (ARCH_BFIN)
  770. ff_bfin_get_unscaled_swscale(c);
  771. if (HAVE_ALTIVEC)
  772. ff_swscale_get_unscaled_altivec(c);
  773. }
  774. static void reset_ptr(const uint8_t *src[], int format)
  775. {
  776. if (!isALPHA(format))
  777. src[3] = NULL;
  778. if (!isPlanar(format)) {
  779. src[3] = src[2] = NULL;
  780. if (!usePal(format))
  781. src[1] = NULL;
  782. }
  783. }
  784. static int check_image_pointers(const uint8_t * const data[4], enum PixelFormat pix_fmt,
  785. const int linesizes[4])
  786. {
  787. const AVPixFmtDescriptor *desc = &av_pix_fmt_descriptors[pix_fmt];
  788. int i;
  789. for (i = 0; i < 4; i++) {
  790. int plane = desc->comp[i].plane;
  791. if (!data[plane] || !linesizes[plane])
  792. return 0;
  793. }
  794. return 1;
  795. }
  796. /**
  797. * swscale wrapper, so we don't need to export the SwsContext.
  798. * Assumes planar YUV to be in YUV order instead of YVU.
  799. */
  800. int attribute_align_arg sws_scale(struct SwsContext *c,
  801. const uint8_t * const srcSlice[],
  802. const int srcStride[], int srcSliceY,
  803. int srcSliceH, uint8_t *const dst[],
  804. const int dstStride[])
  805. {
  806. int i, ret;
  807. const uint8_t *src2[4] = { srcSlice[0], srcSlice[1], srcSlice[2], srcSlice[3] };
  808. uint8_t *dst2[4] = { dst[0], dst[1], dst[2], dst[3] };
  809. uint8_t *rgb0_tmp = NULL;
  810. // do not mess up sliceDir if we have a "trailing" 0-size slice
  811. if (srcSliceH == 0)
  812. return 0;
  813. if (!check_image_pointers(srcSlice, c->srcFormat, srcStride)) {
  814. av_log(c, AV_LOG_ERROR, "bad src image pointers\n");
  815. return 0;
  816. }
  817. if (!check_image_pointers((const uint8_t* const*)dst, c->dstFormat, dstStride)) {
  818. av_log(c, AV_LOG_ERROR, "bad dst image pointers\n");
  819. return 0;
  820. }
  821. if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
  822. av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
  823. return 0;
  824. }
  825. if (c->sliceDir == 0) {
  826. if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
  827. }
  828. if (usePal(c->srcFormat)) {
  829. for (i = 0; i < 256; i++) {
  830. int p, r, g, b, y, u, v, a = 0xff;
  831. if (c->srcFormat == PIX_FMT_PAL8) {
  832. p = ((const uint32_t *)(srcSlice[1]))[i];
  833. a = (p >> 24) & 0xFF;
  834. r = (p >> 16) & 0xFF;
  835. g = (p >> 8) & 0xFF;
  836. b = p & 0xFF;
  837. } else if (c->srcFormat == PIX_FMT_RGB8) {
  838. r = ( i >> 5 ) * 36;
  839. g = ((i >> 2) & 7) * 36;
  840. b = ( i & 3) * 85;
  841. } else if (c->srcFormat == PIX_FMT_BGR8) {
  842. b = ( i >> 6 ) * 85;
  843. g = ((i >> 3) & 7) * 36;
  844. r = ( i & 7) * 36;
  845. } else if (c->srcFormat == PIX_FMT_RGB4_BYTE) {
  846. r = ( i >> 3 ) * 255;
  847. g = ((i >> 1) & 3) * 85;
  848. b = ( i & 1) * 255;
  849. } else if (c->srcFormat == PIX_FMT_GRAY8 || c->srcFormat == PIX_FMT_GRAY8A) {
  850. r = g = b = i;
  851. } else {
  852. assert(c->srcFormat == PIX_FMT_BGR4_BYTE);
  853. b = ( i >> 3 ) * 255;
  854. g = ((i >> 1) & 3) * 85;
  855. r = ( i & 1) * 255;
  856. }
  857. y = av_clip_uint8((RY * r + GY * g + BY * b + ( 33 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
  858. u = av_clip_uint8((RU * r + GU * g + BU * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
  859. v = av_clip_uint8((RV * r + GV * g + BV * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
  860. c->pal_yuv[i]= y + (u<<8) + (v<<16) + (a<<24);
  861. switch (c->dstFormat) {
  862. case PIX_FMT_BGR32:
  863. #if !HAVE_BIGENDIAN
  864. case PIX_FMT_RGB24:
  865. #endif
  866. c->pal_rgb[i]= r + (g<<8) + (b<<16) + (a<<24);
  867. break;
  868. case PIX_FMT_BGR32_1:
  869. #if HAVE_BIGENDIAN
  870. case PIX_FMT_BGR24:
  871. #endif
  872. c->pal_rgb[i]= a + (r<<8) + (g<<16) + (b<<24);
  873. break;
  874. case PIX_FMT_RGB32_1:
  875. #if HAVE_BIGENDIAN
  876. case PIX_FMT_RGB24:
  877. #endif
  878. c->pal_rgb[i]= a + (b<<8) + (g<<16) + (r<<24);
  879. break;
  880. case PIX_FMT_RGB32:
  881. #if !HAVE_BIGENDIAN
  882. case PIX_FMT_BGR24:
  883. #endif
  884. default:
  885. c->pal_rgb[i]= b + (g<<8) + (r<<16) + (a<<24);
  886. }
  887. }
  888. }
  889. if (c->src0Alpha && !c->dst0Alpha && isALPHA(c->dstFormat)) {
  890. uint8_t *base;
  891. int x,y;
  892. rgb0_tmp = av_malloc(FFABS(srcStride[0]) * srcSliceH + 32);
  893. base = srcStride[0] < 0 ? rgb0_tmp - srcStride[0] * (srcSliceH-1) : rgb0_tmp;
  894. for (y=0; y<srcSliceH; y++){
  895. memcpy(base + srcStride[0]*y, src2[0] + srcStride[0]*y, 4*c->srcW);
  896. for (x=c->src0Alpha-1; x<4*c->srcW; x+=4) {
  897. base[ srcStride[0]*y + x] = 0xFF;
  898. }
  899. }
  900. src2[0] = base;
  901. }
  902. // copy strides, so they can safely be modified
  903. if (c->sliceDir == 1) {
  904. // slices go from top to bottom
  905. int srcStride2[4] = { srcStride[0], srcStride[1], srcStride[2],
  906. srcStride[3] };
  907. int dstStride2[4] = { dstStride[0], dstStride[1], dstStride[2],
  908. dstStride[3] };
  909. reset_ptr(src2, c->srcFormat);
  910. reset_ptr((void*)dst2, c->dstFormat);
  911. /* reset slice direction at end of frame */
  912. if (srcSliceY + srcSliceH == c->srcH)
  913. c->sliceDir = 0;
  914. ret = c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst2,
  915. dstStride2);
  916. } else {
  917. // slices go from bottom to top => we flip the image internally
  918. int srcStride2[4] = { -srcStride[0], -srcStride[1], -srcStride[2],
  919. -srcStride[3] };
  920. int dstStride2[4] = { -dstStride[0], -dstStride[1], -dstStride[2],
  921. -dstStride[3] };
  922. src2[0] += (srcSliceH - 1) * srcStride[0];
  923. if (!usePal(c->srcFormat))
  924. src2[1] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[1];
  925. src2[2] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[2];
  926. src2[3] += (srcSliceH - 1) * srcStride[3];
  927. dst2[0] += ( c->dstH - 1) * dstStride[0];
  928. dst2[1] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[1];
  929. dst2[2] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[2];
  930. dst2[3] += ( c->dstH - 1) * dstStride[3];
  931. reset_ptr(src2, c->srcFormat);
  932. reset_ptr((void*)dst2, c->dstFormat);
  933. /* reset slice direction at end of frame */
  934. if (!srcSliceY)
  935. c->sliceDir = 0;
  936. ret = c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH,
  937. srcSliceH, dst2, dstStride2);
  938. }
  939. av_free(rgb0_tmp);
  940. return ret;
  941. }
  942. /* Convert the palette to the same packed 32-bit format as the palette */
  943. void sws_convertPalette8ToPacked32(const uint8_t *src, uint8_t *dst,
  944. int num_pixels, const uint8_t *palette)
  945. {
  946. int i;
  947. for (i = 0; i < num_pixels; i++)
  948. ((uint32_t *) dst)[i] = ((const uint32_t *) palette)[src[i]];
  949. }
  950. /* Palette format: ABCD -> dst format: ABC */
  951. void sws_convertPalette8ToPacked24(const uint8_t *src, uint8_t *dst,
  952. int num_pixels, const uint8_t *palette)
  953. {
  954. int i;
  955. for (i = 0; i < num_pixels; i++) {
  956. //FIXME slow?
  957. dst[0] = palette[src[i] * 4 + 0];
  958. dst[1] = palette[src[i] * 4 + 1];
  959. dst[2] = palette[src[i] * 4 + 2];
  960. dst += 3;
  961. }
  962. }