You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

547 lines
20KB

  1. /*
  2. * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "libavutil/intmath.h"
  21. #include "libavutil/log.h"
  22. #include "libavutil/opt.h"
  23. #include "avcodec.h"
  24. #include "dsputil.h"
  25. #include "dwt.h"
  26. #include "snow.h"
  27. #include "rangecoder.h"
  28. #include "mathops.h"
  29. #include "mpegvideo.h"
  30. #include "h263.h"
  31. #undef NDEBUG
  32. #include <assert.h>
  33. static av_always_inline void predict_slice_buffered(SnowContext *s, slice_buffer * sb, IDWTELEM * old_buffer, int plane_index, int add, int mb_y){
  34. Plane *p= &s->plane[plane_index];
  35. const int mb_w= s->b_width << s->block_max_depth;
  36. const int mb_h= s->b_height << s->block_max_depth;
  37. int x, y, mb_x;
  38. int block_size = MB_SIZE >> s->block_max_depth;
  39. int block_w = plane_index ? block_size/2 : block_size;
  40. const uint8_t *obmc = plane_index ? obmc_tab[s->block_max_depth+1] : obmc_tab[s->block_max_depth];
  41. int obmc_stride= plane_index ? block_size : 2*block_size;
  42. int ref_stride= s->current_picture.linesize[plane_index];
  43. uint8_t *dst8= s->current_picture.data[plane_index];
  44. int w= p->width;
  45. int h= p->height;
  46. if(s->keyframe || (s->avctx->debug&512)){
  47. if(mb_y==mb_h)
  48. return;
  49. if(add){
  50. for(y=block_w*mb_y; y<FFMIN(h,block_w*(mb_y+1)); y++){
  51. // DWTELEM * line = slice_buffer_get_line(sb, y);
  52. IDWTELEM * line = sb->line[y];
  53. for(x=0; x<w; x++){
  54. // int v= buf[x + y*w] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
  55. int v= line[x] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
  56. v >>= FRAC_BITS;
  57. if(v&(~255)) v= ~(v>>31);
  58. dst8[x + y*ref_stride]= v;
  59. }
  60. }
  61. }else{
  62. for(y=block_w*mb_y; y<FFMIN(h,block_w*(mb_y+1)); y++){
  63. // DWTELEM * line = slice_buffer_get_line(sb, y);
  64. IDWTELEM * line = sb->line[y];
  65. for(x=0; x<w; x++){
  66. line[x] -= 128 << FRAC_BITS;
  67. // buf[x + y*w]-= 128<<FRAC_BITS;
  68. }
  69. }
  70. }
  71. return;
  72. }
  73. for(mb_x=0; mb_x<=mb_w; mb_x++){
  74. add_yblock(s, 1, sb, old_buffer, dst8, obmc,
  75. block_w*mb_x - block_w/2,
  76. block_w*mb_y - block_w/2,
  77. block_w, block_w,
  78. w, h,
  79. w, ref_stride, obmc_stride,
  80. mb_x - 1, mb_y - 1,
  81. add, 0, plane_index);
  82. }
  83. }
  84. static inline void decode_subband_slice_buffered(SnowContext *s, SubBand *b, slice_buffer * sb, int start_y, int h, int save_state[1]){
  85. const int w= b->width;
  86. int y;
  87. const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
  88. int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
  89. int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
  90. int new_index = 0;
  91. if(b->ibuf == s->spatial_idwt_buffer || s->qlog == LOSSLESS_QLOG){
  92. qadd= 0;
  93. qmul= 1<<QEXPSHIFT;
  94. }
  95. /* If we are on the second or later slice, restore our index. */
  96. if (start_y != 0)
  97. new_index = save_state[0];
  98. for(y=start_y; y<h; y++){
  99. int x = 0;
  100. int v;
  101. IDWTELEM * line = slice_buffer_get_line(sb, y * b->stride_line + b->buf_y_offset) + b->buf_x_offset;
  102. memset(line, 0, b->width*sizeof(IDWTELEM));
  103. v = b->x_coeff[new_index].coeff;
  104. x = b->x_coeff[new_index++].x;
  105. while(x < w){
  106. register int t= ( (v>>1)*qmul + qadd)>>QEXPSHIFT;
  107. register int u= -(v&1);
  108. line[x] = (t^u) - u;
  109. v = b->x_coeff[new_index].coeff;
  110. x = b->x_coeff[new_index++].x;
  111. }
  112. }
  113. /* Save our variables for the next slice. */
  114. save_state[0] = new_index;
  115. return;
  116. }
  117. static void decode_q_branch(SnowContext *s, int level, int x, int y){
  118. const int w= s->b_width << s->block_max_depth;
  119. const int rem_depth= s->block_max_depth - level;
  120. const int index= (x + y*w) << rem_depth;
  121. int trx= (x+1)<<rem_depth;
  122. const BlockNode *left = x ? &s->block[index-1] : &null_block;
  123. const BlockNode *top = y ? &s->block[index-w] : &null_block;
  124. const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
  125. const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
  126. int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
  127. if(s->keyframe){
  128. set_blocks(s, level, x, y, null_block.color[0], null_block.color[1], null_block.color[2], null_block.mx, null_block.my, null_block.ref, BLOCK_INTRA);
  129. return;
  130. }
  131. if(level==s->block_max_depth || get_rac(&s->c, &s->block_state[4 + s_context])){
  132. int type, mx, my;
  133. int l = left->color[0];
  134. int cb= left->color[1];
  135. int cr= left->color[2];
  136. int ref = 0;
  137. int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
  138. int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 0*av_log2(2*FFABS(tr->mx - top->mx));
  139. int my_context= av_log2(2*FFABS(left->my - top->my)) + 0*av_log2(2*FFABS(tr->my - top->my));
  140. type= get_rac(&s->c, &s->block_state[1 + left->type + top->type]) ? BLOCK_INTRA : 0;
  141. if(type){
  142. pred_mv(s, &mx, &my, 0, left, top, tr);
  143. l += get_symbol(&s->c, &s->block_state[32], 1);
  144. cb+= get_symbol(&s->c, &s->block_state[64], 1);
  145. cr+= get_symbol(&s->c, &s->block_state[96], 1);
  146. }else{
  147. if(s->ref_frames > 1)
  148. ref= get_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], 0);
  149. pred_mv(s, &mx, &my, ref, left, top, tr);
  150. mx+= get_symbol(&s->c, &s->block_state[128 + 32*(mx_context + 16*!!ref)], 1);
  151. my+= get_symbol(&s->c, &s->block_state[128 + 32*(my_context + 16*!!ref)], 1);
  152. }
  153. set_blocks(s, level, x, y, l, cb, cr, mx, my, ref, type);
  154. }else{
  155. decode_q_branch(s, level+1, 2*x+0, 2*y+0);
  156. decode_q_branch(s, level+1, 2*x+1, 2*y+0);
  157. decode_q_branch(s, level+1, 2*x+0, 2*y+1);
  158. decode_q_branch(s, level+1, 2*x+1, 2*y+1);
  159. }
  160. }
  161. static void dequantize_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int start_y, int end_y){
  162. const int w= b->width;
  163. const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
  164. const int qmul= qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
  165. const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
  166. int x,y;
  167. if(s->qlog == LOSSLESS_QLOG) return;
  168. for(y=start_y; y<end_y; y++){
  169. // DWTELEM * line = slice_buffer_get_line_from_address(sb, src + (y * stride));
  170. IDWTELEM * line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
  171. for(x=0; x<w; x++){
  172. int i= line[x];
  173. if(i<0){
  174. line[x]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
  175. }else if(i>0){
  176. line[x]= (( i*qmul + qadd)>>(QEXPSHIFT));
  177. }
  178. }
  179. }
  180. }
  181. static void correlate_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median, int start_y, int end_y){
  182. const int w= b->width;
  183. int x,y;
  184. IDWTELEM * line=0; // silence silly "could be used without having been initialized" warning
  185. IDWTELEM * prev;
  186. if (start_y != 0)
  187. line = slice_buffer_get_line(sb, ((start_y - 1) * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
  188. for(y=start_y; y<end_y; y++){
  189. prev = line;
  190. // line = slice_buffer_get_line_from_address(sb, src + (y * stride));
  191. line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
  192. for(x=0; x<w; x++){
  193. if(x){
  194. if(use_median){
  195. if(y && x+1<w) line[x] += mid_pred(line[x - 1], prev[x], prev[x + 1]);
  196. else line[x] += line[x - 1];
  197. }else{
  198. if(y) line[x] += mid_pred(line[x - 1], prev[x], line[x - 1] + prev[x] - prev[x - 1]);
  199. else line[x] += line[x - 1];
  200. }
  201. }else{
  202. if(y) line[x] += prev[x];
  203. }
  204. }
  205. }
  206. }
  207. static void decode_qlogs(SnowContext *s){
  208. int plane_index, level, orientation;
  209. for(plane_index=0; plane_index<3; plane_index++){
  210. for(level=0; level<s->spatial_decomposition_count; level++){
  211. for(orientation=level ? 1:0; orientation<4; orientation++){
  212. int q;
  213. if (plane_index==2) q= s->plane[1].band[level][orientation].qlog;
  214. else if(orientation==2) q= s->plane[plane_index].band[level][1].qlog;
  215. else q= get_symbol(&s->c, s->header_state, 1);
  216. s->plane[plane_index].band[level][orientation].qlog= q;
  217. }
  218. }
  219. }
  220. }
  221. #define GET_S(dst, check) \
  222. tmp= get_symbol(&s->c, s->header_state, 0);\
  223. if(!(check)){\
  224. av_log(s->avctx, AV_LOG_ERROR, "Error " #dst " is %d\n", tmp);\
  225. return -1;\
  226. }\
  227. dst= tmp;
  228. static int decode_header(SnowContext *s){
  229. int plane_index, tmp;
  230. uint8_t kstate[32];
  231. memset(kstate, MID_STATE, sizeof(kstate));
  232. s->keyframe= get_rac(&s->c, kstate);
  233. if(s->keyframe || s->always_reset){
  234. ff_snow_reset_contexts(s);
  235. s->spatial_decomposition_type=
  236. s->qlog=
  237. s->qbias=
  238. s->mv_scale=
  239. s->block_max_depth= 0;
  240. }
  241. if(s->keyframe){
  242. GET_S(s->version, tmp <= 0U)
  243. s->always_reset= get_rac(&s->c, s->header_state);
  244. s->temporal_decomposition_type= get_symbol(&s->c, s->header_state, 0);
  245. s->temporal_decomposition_count= get_symbol(&s->c, s->header_state, 0);
  246. GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS)
  247. s->colorspace_type= get_symbol(&s->c, s->header_state, 0);
  248. s->chroma_h_shift= get_symbol(&s->c, s->header_state, 0);
  249. s->chroma_v_shift= get_symbol(&s->c, s->header_state, 0);
  250. s->spatial_scalability= get_rac(&s->c, s->header_state);
  251. // s->rate_scalability= get_rac(&s->c, s->header_state);
  252. GET_S(s->max_ref_frames, tmp < (unsigned)MAX_REF_FRAMES)
  253. s->max_ref_frames++;
  254. decode_qlogs(s);
  255. }
  256. if(!s->keyframe){
  257. if(get_rac(&s->c, s->header_state)){
  258. for(plane_index=0; plane_index<2; plane_index++){
  259. int htaps, i, sum=0;
  260. Plane *p= &s->plane[plane_index];
  261. p->diag_mc= get_rac(&s->c, s->header_state);
  262. htaps= get_symbol(&s->c, s->header_state, 0)*2 + 2;
  263. if((unsigned)htaps > HTAPS_MAX || htaps==0)
  264. return -1;
  265. p->htaps= htaps;
  266. for(i= htaps/2; i; i--){
  267. p->hcoeff[i]= get_symbol(&s->c, s->header_state, 0) * (1-2*(i&1));
  268. sum += p->hcoeff[i];
  269. }
  270. p->hcoeff[0]= 32-sum;
  271. }
  272. s->plane[2].diag_mc= s->plane[1].diag_mc;
  273. s->plane[2].htaps = s->plane[1].htaps;
  274. memcpy(s->plane[2].hcoeff, s->plane[1].hcoeff, sizeof(s->plane[1].hcoeff));
  275. }
  276. if(get_rac(&s->c, s->header_state)){
  277. GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS)
  278. decode_qlogs(s);
  279. }
  280. }
  281. s->spatial_decomposition_type+= get_symbol(&s->c, s->header_state, 1);
  282. if(s->spatial_decomposition_type > 1U){
  283. av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_type %d not supported", s->spatial_decomposition_type);
  284. return -1;
  285. }
  286. if(FFMIN(s->avctx-> width>>s->chroma_h_shift,
  287. s->avctx->height>>s->chroma_v_shift) >> (s->spatial_decomposition_count-1) <= 0){
  288. av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_count %d too large for size", s->spatial_decomposition_count);
  289. return -1;
  290. }
  291. s->qlog += get_symbol(&s->c, s->header_state, 1);
  292. s->mv_scale += get_symbol(&s->c, s->header_state, 1);
  293. s->qbias += get_symbol(&s->c, s->header_state, 1);
  294. s->block_max_depth+= get_symbol(&s->c, s->header_state, 1);
  295. if(s->block_max_depth > 1 || s->block_max_depth < 0){
  296. av_log(s->avctx, AV_LOG_ERROR, "block_max_depth= %d is too large", s->block_max_depth);
  297. s->block_max_depth= 0;
  298. return -1;
  299. }
  300. return 0;
  301. }
  302. static av_cold int decode_init(AVCodecContext *avctx)
  303. {
  304. avctx->pix_fmt= PIX_FMT_YUV420P;
  305. ff_snow_common_init(avctx);
  306. return 0;
  307. }
  308. static void decode_blocks(SnowContext *s){
  309. int x, y;
  310. int w= s->b_width;
  311. int h= s->b_height;
  312. for(y=0; y<h; y++){
  313. for(x=0; x<w; x++){
  314. decode_q_branch(s, 0, x, y);
  315. }
  316. }
  317. }
  318. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  319. const uint8_t *buf = avpkt->data;
  320. int buf_size = avpkt->size;
  321. SnowContext *s = avctx->priv_data;
  322. RangeCoder * const c= &s->c;
  323. int bytes_read;
  324. AVFrame *picture = data;
  325. int level, orientation, plane_index;
  326. ff_init_range_decoder(c, buf, buf_size);
  327. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  328. s->current_picture.pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P
  329. if(decode_header(s)<0)
  330. return -1;
  331. ff_snow_common_init_after_header(avctx);
  332. // realloc slice buffer for the case that spatial_decomposition_count changed
  333. ff_slice_buffer_destroy(&s->sb);
  334. ff_slice_buffer_init(&s->sb, s->plane[0].height, (MB_SIZE >> s->block_max_depth) + s->spatial_decomposition_count * 8 + 1, s->plane[0].width, s->spatial_idwt_buffer);
  335. for(plane_index=0; plane_index<3; plane_index++){
  336. Plane *p= &s->plane[plane_index];
  337. p->fast_mc= p->diag_mc && p->htaps==6 && p->hcoeff[0]==40
  338. && p->hcoeff[1]==-10
  339. && p->hcoeff[2]==2;
  340. }
  341. ff_snow_alloc_blocks(s);
  342. if(ff_snow_frame_start(s) < 0)
  343. return -1;
  344. //keyframe flag duplication mess FIXME
  345. if(avctx->debug&FF_DEBUG_PICT_INFO)
  346. av_log(avctx, AV_LOG_ERROR, "keyframe:%d qlog:%d\n", s->keyframe, s->qlog);
  347. decode_blocks(s);
  348. for(plane_index=0; plane_index<3; plane_index++){
  349. Plane *p= &s->plane[plane_index];
  350. int w= p->width;
  351. int h= p->height;
  352. int x, y;
  353. int decode_state[MAX_DECOMPOSITIONS][4][1]; /* Stored state info for unpack_coeffs. 1 variable per instance. */
  354. if(s->avctx->debug&2048){
  355. memset(s->spatial_dwt_buffer, 0, sizeof(DWTELEM)*w*h);
  356. predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
  357. for(y=0; y<h; y++){
  358. for(x=0; x<w; x++){
  359. int v= s->current_picture.data[plane_index][y*s->current_picture.linesize[plane_index] + x];
  360. s->mconly_picture.data[plane_index][y*s->mconly_picture.linesize[plane_index] + x]= v;
  361. }
  362. }
  363. }
  364. {
  365. for(level=0; level<s->spatial_decomposition_count; level++){
  366. for(orientation=level ? 1 : 0; orientation<4; orientation++){
  367. SubBand *b= &p->band[level][orientation];
  368. unpack_coeffs(s, b, b->parent, orientation);
  369. }
  370. }
  371. }
  372. {
  373. const int mb_h= s->b_height << s->block_max_depth;
  374. const int block_size = MB_SIZE >> s->block_max_depth;
  375. const int block_w = plane_index ? block_size/2 : block_size;
  376. int mb_y;
  377. DWTCompose cs[MAX_DECOMPOSITIONS];
  378. int yd=0, yq=0;
  379. int y;
  380. int end_y;
  381. ff_spatial_idwt_buffered_init(cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count);
  382. for(mb_y=0; mb_y<=mb_h; mb_y++){
  383. int slice_starty = block_w*mb_y;
  384. int slice_h = block_w*(mb_y+1);
  385. if (!(s->keyframe || s->avctx->debug&512)){
  386. slice_starty = FFMAX(0, slice_starty - (block_w >> 1));
  387. slice_h -= (block_w >> 1);
  388. }
  389. for(level=0; level<s->spatial_decomposition_count; level++){
  390. for(orientation=level ? 1 : 0; orientation<4; orientation++){
  391. SubBand *b= &p->band[level][orientation];
  392. int start_y;
  393. int end_y;
  394. int our_mb_start = mb_y;
  395. int our_mb_end = (mb_y + 1);
  396. const int extra= 3;
  397. start_y = (mb_y ? ((block_w * our_mb_start) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra: 0);
  398. end_y = (((block_w * our_mb_end) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra);
  399. if (!(s->keyframe || s->avctx->debug&512)){
  400. start_y = FFMAX(0, start_y - (block_w >> (1+s->spatial_decomposition_count - level)));
  401. end_y = FFMAX(0, end_y - (block_w >> (1+s->spatial_decomposition_count - level)));
  402. }
  403. start_y = FFMIN(b->height, start_y);
  404. end_y = FFMIN(b->height, end_y);
  405. if (start_y != end_y){
  406. if (orientation == 0){
  407. SubBand * correlate_band = &p->band[0][0];
  408. int correlate_end_y = FFMIN(b->height, end_y + 1);
  409. int correlate_start_y = FFMIN(b->height, (start_y ? start_y + 1 : 0));
  410. decode_subband_slice_buffered(s, correlate_band, &s->sb, correlate_start_y, correlate_end_y, decode_state[0][0]);
  411. correlate_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, 1, 0, correlate_start_y, correlate_end_y);
  412. dequantize_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, start_y, end_y);
  413. }
  414. else
  415. decode_subband_slice_buffered(s, b, &s->sb, start_y, end_y, decode_state[level][orientation]);
  416. }
  417. }
  418. }
  419. for(; yd<slice_h; yd+=4){
  420. ff_spatial_idwt_buffered_slice(&s->dwt, cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count, yd);
  421. }
  422. if(s->qlog == LOSSLESS_QLOG){
  423. for(; yq<slice_h && yq<h; yq++){
  424. IDWTELEM * line = slice_buffer_get_line(&s->sb, yq);
  425. for(x=0; x<w; x++){
  426. line[x] <<= FRAC_BITS;
  427. }
  428. }
  429. }
  430. predict_slice_buffered(s, &s->sb, s->spatial_idwt_buffer, plane_index, 1, mb_y);
  431. y = FFMIN(p->height, slice_starty);
  432. end_y = FFMIN(p->height, slice_h);
  433. while(y < end_y)
  434. ff_slice_buffer_release(&s->sb, y++);
  435. }
  436. ff_slice_buffer_flush(&s->sb);
  437. }
  438. }
  439. emms_c();
  440. ff_snow_release_buffer(avctx);
  441. if(!(s->avctx->debug&2048))
  442. *picture= s->current_picture;
  443. else
  444. *picture= s->mconly_picture;
  445. *data_size = sizeof(AVFrame);
  446. bytes_read= c->bytestream - c->bytestream_start;
  447. if(bytes_read ==0) av_log(s->avctx, AV_LOG_ERROR, "error at end of frame\n"); //FIXME
  448. return bytes_read;
  449. }
  450. static av_cold int decode_end(AVCodecContext *avctx)
  451. {
  452. SnowContext *s = avctx->priv_data;
  453. ff_slice_buffer_destroy(&s->sb);
  454. ff_snow_common_end(s);
  455. return 0;
  456. }
  457. AVCodec ff_snow_decoder = {
  458. .name = "snow",
  459. .type = AVMEDIA_TYPE_VIDEO,
  460. .id = CODEC_ID_SNOW,
  461. .priv_data_size = sizeof(SnowContext),
  462. .init = decode_init,
  463. .close = decode_end,
  464. .decode = decode_frame,
  465. .capabilities = CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/,
  466. .long_name = NULL_IF_CONFIG_SMALL("Snow"),
  467. };