You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1554 lines
51KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "get_bits.h"
  31. #include "put_bits.h"
  32. #include "dsputil.h"
  33. #include "thread.h"
  34. #define VLC_BITS 11
  35. #if HAVE_BIGENDIAN
  36. #define B 3
  37. #define G 2
  38. #define R 1
  39. #define A 0
  40. #else
  41. #define B 0
  42. #define G 1
  43. #define R 2
  44. #define A 3
  45. #endif
  46. typedef enum Predictor{
  47. LEFT= 0,
  48. PLANE,
  49. MEDIAN,
  50. } Predictor;
  51. typedef struct HYuvContext{
  52. AVCodecContext *avctx;
  53. Predictor predictor;
  54. GetBitContext gb;
  55. PutBitContext pb;
  56. int interlaced;
  57. int decorrelate;
  58. int bitstream_bpp;
  59. int version;
  60. int yuy2; //use yuy2 instead of 422P
  61. int bgr32; //use bgr32 instead of bgr24
  62. int width, height;
  63. int flags;
  64. int context;
  65. int picture_number;
  66. int last_slice_end;
  67. uint8_t *temp[3];
  68. uint64_t stats[3][256];
  69. uint8_t len[3][256];
  70. uint32_t bits[3][256];
  71. uint32_t pix_bgr_map[1<<VLC_BITS];
  72. VLC vlc[6]; //Y,U,V,YY,YU,YV
  73. AVFrame picture;
  74. uint8_t *bitstream_buffer;
  75. unsigned int bitstream_buffer_size;
  76. DSPContext dsp;
  77. }HYuvContext;
  78. static const unsigned char classic_shift_luma[] = {
  79. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  80. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  81. 69,68, 0
  82. };
  83. static const unsigned char classic_shift_chroma[] = {
  84. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  85. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  86. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  87. };
  88. static const unsigned char classic_add_luma[256] = {
  89. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  90. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  91. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  92. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  93. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  94. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  95. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  96. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  97. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  98. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  99. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  100. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  101. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  102. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  103. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  104. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  105. };
  106. static const unsigned char classic_add_chroma[256] = {
  107. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  108. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  109. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  110. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  111. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  112. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  113. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  114. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  115. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  116. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  117. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  118. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  119. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  120. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  121. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  122. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  123. };
  124. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  125. int i;
  126. if(w<32){
  127. for(i=0; i<w; i++){
  128. const int temp= src[i];
  129. dst[i]= temp - left;
  130. left= temp;
  131. }
  132. return left;
  133. }else{
  134. for(i=0; i<16; i++){
  135. const int temp= src[i];
  136. dst[i]= temp - left;
  137. left= temp;
  138. }
  139. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  140. return src[w-1];
  141. }
  142. }
  143. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue, int *alpha){
  144. int i;
  145. int r,g,b,a;
  146. r= *red;
  147. g= *green;
  148. b= *blue;
  149. a= *alpha;
  150. for(i=0; i<FFMIN(w,4); i++){
  151. const int rt= src[i*4+R];
  152. const int gt= src[i*4+G];
  153. const int bt= src[i*4+B];
  154. const int at= src[i*4+A];
  155. dst[i*4+R]= rt - r;
  156. dst[i*4+G]= gt - g;
  157. dst[i*4+B]= bt - b;
  158. dst[i*4+A]= at - a;
  159. r = rt;
  160. g = gt;
  161. b = bt;
  162. a = at;
  163. }
  164. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  165. *red= src[(w-1)*4+R];
  166. *green= src[(w-1)*4+G];
  167. *blue= src[(w-1)*4+B];
  168. *alpha= src[(w-1)*4+A];
  169. }
  170. static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  171. int i;
  172. int r,g,b;
  173. r= *red;
  174. g= *green;
  175. b= *blue;
  176. for(i=0; i<FFMIN(w,16); i++){
  177. const int rt= src[i*3+0];
  178. const int gt= src[i*3+1];
  179. const int bt= src[i*3+2];
  180. dst[i*3+0]= rt - r;
  181. dst[i*3+1]= gt - g;
  182. dst[i*3+2]= bt - b;
  183. r = rt;
  184. g = gt;
  185. b = bt;
  186. }
  187. s->dsp.diff_bytes(dst+48, src+48, src+48-3, w*3-48);
  188. *red= src[(w-1)*3+0];
  189. *green= src[(w-1)*3+1];
  190. *blue= src[(w-1)*3+2];
  191. }
  192. static int read_len_table(uint8_t *dst, GetBitContext *gb){
  193. int i, val, repeat;
  194. for(i=0; i<256;){
  195. repeat= get_bits(gb, 3);
  196. val = get_bits(gb, 5);
  197. if(repeat==0)
  198. repeat= get_bits(gb, 8);
  199. //printf("%d %d\n", val, repeat);
  200. if(i+repeat > 256) {
  201. av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
  202. return -1;
  203. }
  204. while (repeat--)
  205. dst[i++] = val;
  206. }
  207. return 0;
  208. }
  209. static int generate_bits_table(uint32_t *dst, const uint8_t *len_table){
  210. int len, index;
  211. uint32_t bits=0;
  212. for(len=32; len>0; len--){
  213. for(index=0; index<256; index++){
  214. if(len_table[index]==len)
  215. dst[index]= bits++;
  216. }
  217. if(bits & 1){
  218. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  219. return -1;
  220. }
  221. bits >>= 1;
  222. }
  223. return 0;
  224. }
  225. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  226. typedef struct {
  227. uint64_t val;
  228. int name;
  229. } HeapElem;
  230. static void heap_sift(HeapElem *h, int root, int size)
  231. {
  232. while(root*2+1 < size) {
  233. int child = root*2+1;
  234. if(child < size-1 && h[child].val > h[child+1].val)
  235. child++;
  236. if(h[root].val > h[child].val) {
  237. FFSWAP(HeapElem, h[root], h[child]);
  238. root = child;
  239. } else
  240. break;
  241. }
  242. }
  243. static void generate_len_table(uint8_t *dst, const uint64_t *stats){
  244. HeapElem h[256];
  245. int up[2*256];
  246. int len[2*256];
  247. int offset, i, next;
  248. int size = 256;
  249. for(offset=1; ; offset<<=1){
  250. for(i=0; i<size; i++){
  251. h[i].name = i;
  252. h[i].val = (stats[i] << 8) + offset;
  253. }
  254. for(i=size/2-1; i>=0; i--)
  255. heap_sift(h, i, size);
  256. for(next=size; next<size*2-1; next++){
  257. // merge the two smallest entries, and put it back in the heap
  258. uint64_t min1v = h[0].val;
  259. up[h[0].name] = next;
  260. h[0].val = INT64_MAX;
  261. heap_sift(h, 0, size);
  262. up[h[0].name] = next;
  263. h[0].name = next;
  264. h[0].val += min1v;
  265. heap_sift(h, 0, size);
  266. }
  267. len[2*size-2] = 0;
  268. for(i=2*size-3; i>=size; i--)
  269. len[i] = len[up[i]] + 1;
  270. for(i=0; i<size; i++) {
  271. dst[i] = len[up[i]] + 1;
  272. if(dst[i] >= 32) break;
  273. }
  274. if(i==size) break;
  275. }
  276. }
  277. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  278. static void generate_joint_tables(HYuvContext *s){
  279. uint16_t symbols[1<<VLC_BITS];
  280. uint16_t bits[1<<VLC_BITS];
  281. uint8_t len[1<<VLC_BITS];
  282. if(s->bitstream_bpp < 24){
  283. int p, i, y, u;
  284. for(p=0; p<3; p++){
  285. for(i=y=0; y<256; y++){
  286. int len0 = s->len[0][y];
  287. int limit = VLC_BITS - len0;
  288. if(limit <= 0)
  289. continue;
  290. for(u=0; u<256; u++){
  291. int len1 = s->len[p][u];
  292. if(len1 > limit)
  293. continue;
  294. len[i] = len0 + len1;
  295. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  296. symbols[i] = (y<<8) + u;
  297. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  298. i++;
  299. }
  300. }
  301. free_vlc(&s->vlc[3+p]);
  302. init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0);
  303. }
  304. }else{
  305. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  306. int i, b, g, r, code;
  307. int p0 = s->decorrelate;
  308. int p1 = !s->decorrelate;
  309. // restrict the range to +/-16 becaues that's pretty much guaranteed to
  310. // cover all the combinations that fit in 11 bits total, and it doesn't
  311. // matter if we miss a few rare codes.
  312. for(i=0, g=-16; g<16; g++){
  313. int len0 = s->len[p0][g&255];
  314. int limit0 = VLC_BITS - len0;
  315. if(limit0 < 2)
  316. continue;
  317. for(b=-16; b<16; b++){
  318. int len1 = s->len[p1][b&255];
  319. int limit1 = limit0 - len1;
  320. if(limit1 < 1)
  321. continue;
  322. code = (s->bits[p0][g&255] << len1) + s->bits[p1][b&255];
  323. for(r=-16; r<16; r++){
  324. int len2 = s->len[2][r&255];
  325. if(len2 > limit1)
  326. continue;
  327. len[i] = len0 + len1 + len2;
  328. bits[i] = (code << len2) + s->bits[2][r&255];
  329. if(s->decorrelate){
  330. map[i][G] = g;
  331. map[i][B] = g+b;
  332. map[i][R] = g+r;
  333. }else{
  334. map[i][B] = g;
  335. map[i][G] = b;
  336. map[i][R] = r;
  337. }
  338. i++;
  339. }
  340. }
  341. }
  342. free_vlc(&s->vlc[3]);
  343. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  344. }
  345. }
  346. static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length){
  347. GetBitContext gb;
  348. int i;
  349. init_get_bits(&gb, src, length*8);
  350. for(i=0; i<3; i++){
  351. if(read_len_table(s->len[i], &gb)<0)
  352. return -1;
  353. if(generate_bits_table(s->bits[i], s->len[i])<0){
  354. return -1;
  355. }
  356. free_vlc(&s->vlc[i]);
  357. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  358. }
  359. generate_joint_tables(s);
  360. return (get_bits_count(&gb)+7)/8;
  361. }
  362. static int read_old_huffman_tables(HYuvContext *s){
  363. #if 1
  364. GetBitContext gb;
  365. int i;
  366. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  367. if(read_len_table(s->len[0], &gb)<0)
  368. return -1;
  369. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  370. if(read_len_table(s->len[1], &gb)<0)
  371. return -1;
  372. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  373. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  374. if(s->bitstream_bpp >= 24){
  375. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  376. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  377. }
  378. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  379. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  380. for(i=0; i<3; i++){
  381. free_vlc(&s->vlc[i]);
  382. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  383. }
  384. generate_joint_tables(s);
  385. return 0;
  386. #else
  387. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  388. return -1;
  389. #endif
  390. }
  391. static av_cold void alloc_temp(HYuvContext *s){
  392. int i;
  393. if(s->bitstream_bpp<24){
  394. for(i=0; i<3; i++){
  395. s->temp[i]= av_malloc(s->width + 16);
  396. }
  397. }else{
  398. s->temp[0]= av_mallocz(4*s->width + 16);
  399. }
  400. }
  401. static av_cold int common_init(AVCodecContext *avctx){
  402. HYuvContext *s = avctx->priv_data;
  403. s->avctx= avctx;
  404. s->flags= avctx->flags;
  405. dsputil_init(&s->dsp, avctx);
  406. s->width= avctx->width;
  407. s->height= avctx->height;
  408. assert(s->width>0 && s->height>0);
  409. return 0;
  410. }
  411. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  412. static av_cold int decode_init(AVCodecContext *avctx)
  413. {
  414. HYuvContext *s = avctx->priv_data;
  415. common_init(avctx);
  416. memset(s->vlc, 0, 3*sizeof(VLC));
  417. avctx->coded_frame= &s->picture;
  418. avcodec_get_frame_defaults(&s->picture);
  419. s->interlaced= s->height > 288;
  420. s->bgr32=1;
  421. //if(avctx->extradata)
  422. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  423. if(avctx->extradata_size){
  424. if((avctx->bits_per_coded_sample&7) && avctx->bits_per_coded_sample != 12)
  425. s->version=1; // do such files exist at all?
  426. else
  427. s->version=2;
  428. }else
  429. s->version=0;
  430. if(s->version==2){
  431. int method, interlace;
  432. if (avctx->extradata_size < 4)
  433. return -1;
  434. method= ((uint8_t*)avctx->extradata)[0];
  435. s->decorrelate= method&64 ? 1 : 0;
  436. s->predictor= method&63;
  437. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  438. if(s->bitstream_bpp==0)
  439. s->bitstream_bpp= avctx->bits_per_coded_sample&~7;
  440. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  441. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  442. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  443. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size-4) < 0)
  444. return -1;
  445. }else{
  446. switch(avctx->bits_per_coded_sample&7){
  447. case 1:
  448. s->predictor= LEFT;
  449. s->decorrelate= 0;
  450. break;
  451. case 2:
  452. s->predictor= LEFT;
  453. s->decorrelate= 1;
  454. break;
  455. case 3:
  456. s->predictor= PLANE;
  457. s->decorrelate= avctx->bits_per_coded_sample >= 24;
  458. break;
  459. case 4:
  460. s->predictor= MEDIAN;
  461. s->decorrelate= 0;
  462. break;
  463. default:
  464. s->predictor= LEFT; //OLD
  465. s->decorrelate= 0;
  466. break;
  467. }
  468. s->bitstream_bpp= avctx->bits_per_coded_sample & ~7;
  469. s->context= 0;
  470. if(read_old_huffman_tables(s) < 0)
  471. return -1;
  472. }
  473. switch(s->bitstream_bpp){
  474. case 12:
  475. avctx->pix_fmt = PIX_FMT_YUV420P;
  476. break;
  477. case 16:
  478. if(s->yuy2){
  479. avctx->pix_fmt = PIX_FMT_YUYV422;
  480. }else{
  481. avctx->pix_fmt = PIX_FMT_YUV422P;
  482. }
  483. break;
  484. case 24:
  485. case 32:
  486. if(s->bgr32){
  487. avctx->pix_fmt = PIX_FMT_RGB32;
  488. }else{
  489. avctx->pix_fmt = PIX_FMT_BGR24;
  490. }
  491. break;
  492. default:
  493. assert(0);
  494. }
  495. alloc_temp(s);
  496. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  497. return 0;
  498. }
  499. static av_cold int decode_init_thread_copy(AVCodecContext *avctx)
  500. {
  501. HYuvContext *s = avctx->priv_data;
  502. int i;
  503. avctx->coded_frame= &s->picture;
  504. alloc_temp(s);
  505. for (i = 0; i < 6; i++)
  506. s->vlc[i].table = NULL;
  507. if(s->version==2){
  508. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  509. return -1;
  510. }else{
  511. if(read_old_huffman_tables(s) < 0)
  512. return -1;
  513. }
  514. return 0;
  515. }
  516. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  517. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  518. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf){
  519. int i;
  520. int index= 0;
  521. for(i=0; i<256;){
  522. int val= len[i];
  523. int repeat=0;
  524. for(; i<256 && len[i]==val && repeat<255; i++)
  525. repeat++;
  526. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  527. if(repeat>7){
  528. buf[index++]= val;
  529. buf[index++]= repeat;
  530. }else{
  531. buf[index++]= val | (repeat<<5);
  532. }
  533. }
  534. return index;
  535. }
  536. static av_cold int encode_init(AVCodecContext *avctx)
  537. {
  538. HYuvContext *s = avctx->priv_data;
  539. int i, j;
  540. common_init(avctx);
  541. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  542. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  543. s->version=2;
  544. avctx->coded_frame= &s->picture;
  545. switch(avctx->pix_fmt){
  546. case PIX_FMT_YUV420P:
  547. s->bitstream_bpp= 12;
  548. break;
  549. case PIX_FMT_YUV422P:
  550. s->bitstream_bpp= 16;
  551. break;
  552. case PIX_FMT_RGB32:
  553. s->bitstream_bpp= 32;
  554. break;
  555. case PIX_FMT_RGB24:
  556. s->bitstream_bpp= 24;
  557. break;
  558. default:
  559. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  560. return -1;
  561. }
  562. avctx->bits_per_coded_sample= s->bitstream_bpp;
  563. s->decorrelate= s->bitstream_bpp >= 24;
  564. s->predictor= avctx->prediction_method;
  565. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  566. if(avctx->context_model==1){
  567. s->context= avctx->context_model;
  568. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  569. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  570. return -1;
  571. }
  572. }else s->context= 0;
  573. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  574. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  575. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  576. return -1;
  577. }
  578. if(avctx->context_model){
  579. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  580. return -1;
  581. }
  582. if(s->interlaced != ( s->height > 288 ))
  583. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  584. }
  585. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  586. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  587. return -1;
  588. }
  589. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  590. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  591. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  592. if(s->context)
  593. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  594. ((uint8_t*)avctx->extradata)[3]= 0;
  595. s->avctx->extradata_size= 4;
  596. if(avctx->stats_in){
  597. char *p= avctx->stats_in;
  598. for(i=0; i<3; i++)
  599. for(j=0; j<256; j++)
  600. s->stats[i][j]= 1;
  601. for(;;){
  602. for(i=0; i<3; i++){
  603. char *next;
  604. for(j=0; j<256; j++){
  605. s->stats[i][j]+= strtol(p, &next, 0);
  606. if(next==p) return -1;
  607. p=next;
  608. }
  609. }
  610. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  611. }
  612. }else{
  613. for(i=0; i<3; i++)
  614. for(j=0; j<256; j++){
  615. int d= FFMIN(j, 256-j);
  616. s->stats[i][j]= 100000000/(d+1);
  617. }
  618. }
  619. for(i=0; i<3; i++){
  620. generate_len_table(s->len[i], s->stats[i]);
  621. if(generate_bits_table(s->bits[i], s->len[i])<0){
  622. return -1;
  623. }
  624. s->avctx->extradata_size+=
  625. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  626. }
  627. if(s->context){
  628. for(i=0; i<3; i++){
  629. int pels = s->width*s->height / (i?40:10);
  630. for(j=0; j<256; j++){
  631. int d= FFMIN(j, 256-j);
  632. s->stats[i][j]= pels/(d+1);
  633. }
  634. }
  635. }else{
  636. for(i=0; i<3; i++)
  637. for(j=0; j<256; j++)
  638. s->stats[i][j]= 0;
  639. }
  640. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  641. alloc_temp(s);
  642. s->picture_number=0;
  643. return 0;
  644. }
  645. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  646. /* TODO instead of restarting the read when the code isn't in the first level
  647. * of the joint table, jump into the 2nd level of the individual table. */
  648. #define READ_2PIX(dst0, dst1, plane1){\
  649. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  650. if(code != 0xffff){\
  651. dst0 = code>>8;\
  652. dst1 = code;\
  653. }else{\
  654. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  655. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  656. }\
  657. }
  658. static void decode_422_bitstream(HYuvContext *s, int count){
  659. int i;
  660. count/=2;
  661. if(count >= (get_bits_left(&s->gb))/(31*4)){
  662. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  663. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  664. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  665. }
  666. }else{
  667. for(i=0; i<count; i++){
  668. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  669. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  670. }
  671. }
  672. }
  673. static void decode_gray_bitstream(HYuvContext *s, int count){
  674. int i;
  675. count/=2;
  676. if(count >= (get_bits_left(&s->gb))/(31*2)){
  677. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  678. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  679. }
  680. }else{
  681. for(i=0; i<count; i++){
  682. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  683. }
  684. }
  685. }
  686. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  687. static int encode_422_bitstream(HYuvContext *s, int offset, int count){
  688. int i;
  689. const uint8_t *y = s->temp[0] + offset;
  690. const uint8_t *u = s->temp[1] + offset/2;
  691. const uint8_t *v = s->temp[2] + offset/2;
  692. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  693. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  694. return -1;
  695. }
  696. #define LOAD4\
  697. int y0 = y[2*i];\
  698. int y1 = y[2*i+1];\
  699. int u0 = u[i];\
  700. int v0 = v[i];
  701. count/=2;
  702. if(s->flags&CODEC_FLAG_PASS1){
  703. for(i=0; i<count; i++){
  704. LOAD4;
  705. s->stats[0][y0]++;
  706. s->stats[1][u0]++;
  707. s->stats[0][y1]++;
  708. s->stats[2][v0]++;
  709. }
  710. }
  711. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  712. return 0;
  713. if(s->context){
  714. for(i=0; i<count; i++){
  715. LOAD4;
  716. s->stats[0][y0]++;
  717. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  718. s->stats[1][u0]++;
  719. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  720. s->stats[0][y1]++;
  721. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  722. s->stats[2][v0]++;
  723. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  724. }
  725. }else{
  726. for(i=0; i<count; i++){
  727. LOAD4;
  728. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  729. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  730. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  731. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  732. }
  733. }
  734. return 0;
  735. }
  736. static int encode_gray_bitstream(HYuvContext *s, int count){
  737. int i;
  738. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  739. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  740. return -1;
  741. }
  742. #define LOAD2\
  743. int y0 = s->temp[0][2*i];\
  744. int y1 = s->temp[0][2*i+1];
  745. #define STAT2\
  746. s->stats[0][y0]++;\
  747. s->stats[0][y1]++;
  748. #define WRITE2\
  749. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  750. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  751. count/=2;
  752. if(s->flags&CODEC_FLAG_PASS1){
  753. for(i=0; i<count; i++){
  754. LOAD2;
  755. STAT2;
  756. }
  757. }
  758. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  759. return 0;
  760. if(s->context){
  761. for(i=0; i<count; i++){
  762. LOAD2;
  763. STAT2;
  764. WRITE2;
  765. }
  766. }else{
  767. for(i=0; i<count; i++){
  768. LOAD2;
  769. WRITE2;
  770. }
  771. }
  772. return 0;
  773. }
  774. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  775. static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha){
  776. int i;
  777. for(i=0; i<count; i++){
  778. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  779. if(code != -1){
  780. *(uint32_t*)&s->temp[0][4*i] = s->pix_bgr_map[code];
  781. }else if(decorrelate){
  782. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  783. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  784. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  785. }else{
  786. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  787. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  788. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  789. }
  790. if(alpha)
  791. s->temp[0][4*i+A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  792. }
  793. }
  794. static void decode_bgr_bitstream(HYuvContext *s, int count){
  795. if(s->decorrelate){
  796. if(s->bitstream_bpp==24)
  797. decode_bgr_1(s, count, 1, 0);
  798. else
  799. decode_bgr_1(s, count, 1, 1);
  800. }else{
  801. if(s->bitstream_bpp==24)
  802. decode_bgr_1(s, count, 0, 0);
  803. else
  804. decode_bgr_1(s, count, 0, 1);
  805. }
  806. }
  807. static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes){
  808. int i;
  809. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*planes*count){
  810. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  811. return -1;
  812. }
  813. #define LOAD3\
  814. int g= s->temp[0][planes==3 ? 3*i+1 : 4*i+G];\
  815. int b= (s->temp[0][planes==3 ? 3*i+2 : 4*i+B] - g) & 0xff;\
  816. int r= (s->temp[0][planes==3 ? 3*i+0 : 4*i+R] - g) & 0xff;\
  817. int a= s->temp[0][planes*i+A];
  818. #define STAT3\
  819. s->stats[0][b]++;\
  820. s->stats[1][g]++;\
  821. s->stats[2][r]++;\
  822. if(planes==4) s->stats[2][a]++;
  823. #define WRITE3\
  824. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  825. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  826. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);\
  827. if(planes==4) put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
  828. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  829. for(i=0; i<count; i++){
  830. LOAD3;
  831. STAT3;
  832. }
  833. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  834. for(i=0; i<count; i++){
  835. LOAD3;
  836. STAT3;
  837. WRITE3;
  838. }
  839. }else{
  840. for(i=0; i<count; i++){
  841. LOAD3;
  842. WRITE3;
  843. }
  844. }
  845. return 0;
  846. }
  847. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  848. static void draw_slice(HYuvContext *s, int y){
  849. int h, cy, i;
  850. int offset[AV_NUM_DATA_POINTERS];
  851. if(s->avctx->draw_horiz_band==NULL)
  852. return;
  853. h= y - s->last_slice_end;
  854. y -= h;
  855. if(s->bitstream_bpp==12){
  856. cy= y>>1;
  857. }else{
  858. cy= y;
  859. }
  860. offset[0] = s->picture.linesize[0]*y;
  861. offset[1] = s->picture.linesize[1]*cy;
  862. offset[2] = s->picture.linesize[2]*cy;
  863. for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
  864. offset[i] = 0;
  865. emms_c();
  866. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  867. s->last_slice_end= y + h;
  868. }
  869. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  870. const uint8_t *buf = avpkt->data;
  871. int buf_size = avpkt->size;
  872. HYuvContext *s = avctx->priv_data;
  873. const int width= s->width;
  874. const int width2= s->width>>1;
  875. const int height= s->height;
  876. int fake_ystride, fake_ustride, fake_vstride;
  877. AVFrame * const p= &s->picture;
  878. int table_size= 0;
  879. AVFrame *picture = data;
  880. av_fast_malloc(&s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  881. if (!s->bitstream_buffer)
  882. return AVERROR(ENOMEM);
  883. memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  884. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size/4);
  885. if(p->data[0])
  886. ff_thread_release_buffer(avctx, p);
  887. p->reference= 0;
  888. if(ff_thread_get_buffer(avctx, p) < 0){
  889. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  890. return -1;
  891. }
  892. if(s->context){
  893. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  894. if(table_size < 0)
  895. return -1;
  896. }
  897. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  898. return -1;
  899. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  900. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  901. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  902. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  903. s->last_slice_end= 0;
  904. if(s->bitstream_bpp<24){
  905. int y, cy;
  906. int lefty, leftu, leftv;
  907. int lefttopy, lefttopu, lefttopv;
  908. if(s->yuy2){
  909. p->data[0][3]= get_bits(&s->gb, 8);
  910. p->data[0][2]= get_bits(&s->gb, 8);
  911. p->data[0][1]= get_bits(&s->gb, 8);
  912. p->data[0][0]= get_bits(&s->gb, 8);
  913. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  914. return -1;
  915. }else{
  916. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  917. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  918. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  919. p->data[0][0]= get_bits(&s->gb, 8);
  920. switch(s->predictor){
  921. case LEFT:
  922. case PLANE:
  923. decode_422_bitstream(s, width-2);
  924. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  925. if(!(s->flags&CODEC_FLAG_GRAY)){
  926. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  927. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  928. }
  929. for(cy=y=1; y<s->height; y++,cy++){
  930. uint8_t *ydst, *udst, *vdst;
  931. if(s->bitstream_bpp==12){
  932. decode_gray_bitstream(s, width);
  933. ydst= p->data[0] + p->linesize[0]*y;
  934. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  935. if(s->predictor == PLANE){
  936. if(y>s->interlaced)
  937. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  938. }
  939. y++;
  940. if(y>=s->height) break;
  941. }
  942. draw_slice(s, y);
  943. ydst= p->data[0] + p->linesize[0]*y;
  944. udst= p->data[1] + p->linesize[1]*cy;
  945. vdst= p->data[2] + p->linesize[2]*cy;
  946. decode_422_bitstream(s, width);
  947. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  948. if(!(s->flags&CODEC_FLAG_GRAY)){
  949. leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu);
  950. leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv);
  951. }
  952. if(s->predictor == PLANE){
  953. if(cy>s->interlaced){
  954. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  955. if(!(s->flags&CODEC_FLAG_GRAY)){
  956. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  957. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  958. }
  959. }
  960. }
  961. }
  962. draw_slice(s, height);
  963. break;
  964. case MEDIAN:
  965. /* first line except first 2 pixels is left predicted */
  966. decode_422_bitstream(s, width-2);
  967. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  968. if(!(s->flags&CODEC_FLAG_GRAY)){
  969. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  970. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  971. }
  972. cy=y=1;
  973. /* second line is left predicted for interlaced case */
  974. if(s->interlaced){
  975. decode_422_bitstream(s, width);
  976. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  977. if(!(s->flags&CODEC_FLAG_GRAY)){
  978. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  979. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  980. }
  981. y++; cy++;
  982. }
  983. /* next 4 pixels are left predicted too */
  984. decode_422_bitstream(s, 4);
  985. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  986. if(!(s->flags&CODEC_FLAG_GRAY)){
  987. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  988. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  989. }
  990. /* next line except the first 4 pixels is median predicted */
  991. lefttopy= p->data[0][3];
  992. decode_422_bitstream(s, width-4);
  993. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  994. if(!(s->flags&CODEC_FLAG_GRAY)){
  995. lefttopu= p->data[1][1];
  996. lefttopv= p->data[2][1];
  997. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  998. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  999. }
  1000. y++; cy++;
  1001. for(; y<height; y++,cy++){
  1002. uint8_t *ydst, *udst, *vdst;
  1003. if(s->bitstream_bpp==12){
  1004. while(2*cy > y){
  1005. decode_gray_bitstream(s, width);
  1006. ydst= p->data[0] + p->linesize[0]*y;
  1007. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  1008. y++;
  1009. }
  1010. if(y>=height) break;
  1011. }
  1012. draw_slice(s, y);
  1013. decode_422_bitstream(s, width);
  1014. ydst= p->data[0] + p->linesize[0]*y;
  1015. udst= p->data[1] + p->linesize[1]*cy;
  1016. vdst= p->data[2] + p->linesize[2]*cy;
  1017. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  1018. if(!(s->flags&CODEC_FLAG_GRAY)){
  1019. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  1020. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  1021. }
  1022. }
  1023. draw_slice(s, height);
  1024. break;
  1025. }
  1026. }
  1027. }else{
  1028. int y;
  1029. int leftr, leftg, leftb, lefta;
  1030. const int last_line= (height-1)*p->linesize[0];
  1031. if(s->bitstream_bpp==32){
  1032. lefta= p->data[0][last_line+A]= get_bits(&s->gb, 8);
  1033. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1034. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1035. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1036. }else{
  1037. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1038. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1039. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1040. lefta= p->data[0][last_line+A]= 255;
  1041. skip_bits(&s->gb, 8);
  1042. }
  1043. if(s->bgr32){
  1044. switch(s->predictor){
  1045. case LEFT:
  1046. case PLANE:
  1047. decode_bgr_bitstream(s, width-1);
  1048. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb, &lefta);
  1049. for(y=s->height-2; y>=0; y--){ //Yes it is stored upside down.
  1050. decode_bgr_bitstream(s, width);
  1051. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta);
  1052. if(s->predictor == PLANE){
  1053. if(s->bitstream_bpp!=32) lefta=0;
  1054. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  1055. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  1056. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  1057. }
  1058. }
  1059. }
  1060. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  1061. break;
  1062. default:
  1063. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  1064. }
  1065. }else{
  1066. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  1067. return -1;
  1068. }
  1069. }
  1070. emms_c();
  1071. *picture= *p;
  1072. *data_size = sizeof(AVFrame);
  1073. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  1074. }
  1075. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1076. static int common_end(HYuvContext *s){
  1077. int i;
  1078. for(i=0; i<3; i++){
  1079. av_freep(&s->temp[i]);
  1080. }
  1081. return 0;
  1082. }
  1083. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1084. static av_cold int decode_end(AVCodecContext *avctx)
  1085. {
  1086. HYuvContext *s = avctx->priv_data;
  1087. int i;
  1088. if (s->picture.data[0])
  1089. avctx->release_buffer(avctx, &s->picture);
  1090. common_end(s);
  1091. av_freep(&s->bitstream_buffer);
  1092. for(i=0; i<6; i++){
  1093. free_vlc(&s->vlc[i]);
  1094. }
  1095. return 0;
  1096. }
  1097. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1098. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1099. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  1100. HYuvContext *s = avctx->priv_data;
  1101. AVFrame *pict = data;
  1102. const int width= s->width;
  1103. const int width2= s->width>>1;
  1104. const int height= s->height;
  1105. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1106. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1107. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1108. AVFrame * const p= &s->picture;
  1109. int i, j, size=0;
  1110. *p = *pict;
  1111. p->pict_type= AV_PICTURE_TYPE_I;
  1112. p->key_frame= 1;
  1113. if(s->context){
  1114. for(i=0; i<3; i++){
  1115. generate_len_table(s->len[i], s->stats[i]);
  1116. if(generate_bits_table(s->bits[i], s->len[i])<0)
  1117. return -1;
  1118. size+= store_table(s, s->len[i], &buf[size]);
  1119. }
  1120. for(i=0; i<3; i++)
  1121. for(j=0; j<256; j++)
  1122. s->stats[i][j] >>= 1;
  1123. }
  1124. init_put_bits(&s->pb, buf+size, buf_size-size);
  1125. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1126. int lefty, leftu, leftv, y, cy;
  1127. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1128. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1129. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1130. put_bits(&s->pb, 8, p->data[0][0]);
  1131. lefty= sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  1132. leftu= sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  1133. leftv= sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  1134. encode_422_bitstream(s, 2, width-2);
  1135. if(s->predictor==MEDIAN){
  1136. int lefttopy, lefttopu, lefttopv;
  1137. cy=y=1;
  1138. if(s->interlaced){
  1139. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1140. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1141. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1142. encode_422_bitstream(s, 0, width);
  1143. y++; cy++;
  1144. }
  1145. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1146. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1147. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1148. encode_422_bitstream(s, 0, 4);
  1149. lefttopy= p->data[0][3];
  1150. lefttopu= p->data[1][1];
  1151. lefttopv= p->data[2][1];
  1152. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1153. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1154. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1155. encode_422_bitstream(s, 0, width-4);
  1156. y++; cy++;
  1157. for(; y<height; y++,cy++){
  1158. uint8_t *ydst, *udst, *vdst;
  1159. if(s->bitstream_bpp==12){
  1160. while(2*cy > y){
  1161. ydst= p->data[0] + p->linesize[0]*y;
  1162. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1163. encode_gray_bitstream(s, width);
  1164. y++;
  1165. }
  1166. if(y>=height) break;
  1167. }
  1168. ydst= p->data[0] + p->linesize[0]*y;
  1169. udst= p->data[1] + p->linesize[1]*cy;
  1170. vdst= p->data[2] + p->linesize[2]*cy;
  1171. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1172. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1173. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1174. encode_422_bitstream(s, 0, width);
  1175. }
  1176. }else{
  1177. for(cy=y=1; y<height; y++,cy++){
  1178. uint8_t *ydst, *udst, *vdst;
  1179. /* encode a luma only line & y++ */
  1180. if(s->bitstream_bpp==12){
  1181. ydst= p->data[0] + p->linesize[0]*y;
  1182. if(s->predictor == PLANE && s->interlaced < y){
  1183. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1184. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1185. }else{
  1186. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1187. }
  1188. encode_gray_bitstream(s, width);
  1189. y++;
  1190. if(y>=height) break;
  1191. }
  1192. ydst= p->data[0] + p->linesize[0]*y;
  1193. udst= p->data[1] + p->linesize[1]*cy;
  1194. vdst= p->data[2] + p->linesize[2]*cy;
  1195. if(s->predictor == PLANE && s->interlaced < cy){
  1196. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1197. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1198. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1199. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1200. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1201. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1202. }else{
  1203. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1204. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1205. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1206. }
  1207. encode_422_bitstream(s, 0, width);
  1208. }
  1209. }
  1210. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1211. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1212. const int stride = -p->linesize[0];
  1213. const int fake_stride = -fake_ystride;
  1214. int y;
  1215. int leftr, leftg, leftb, lefta;
  1216. put_bits(&s->pb, 8, lefta= data[A]);
  1217. put_bits(&s->pb, 8, leftr= data[R]);
  1218. put_bits(&s->pb, 8, leftg= data[G]);
  1219. put_bits(&s->pb, 8, leftb= data[B]);
  1220. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb, &lefta);
  1221. encode_bgra_bitstream(s, width-1, 4);
  1222. for(y=1; y<s->height; y++){
  1223. uint8_t *dst = data + y*stride;
  1224. if(s->predictor == PLANE && s->interlaced < y){
  1225. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1226. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb, &lefta);
  1227. }else{
  1228. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb, &lefta);
  1229. }
  1230. encode_bgra_bitstream(s, width, 4);
  1231. }
  1232. }else if(avctx->pix_fmt == PIX_FMT_RGB24){
  1233. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1234. const int stride = -p->linesize[0];
  1235. const int fake_stride = -fake_ystride;
  1236. int y;
  1237. int leftr, leftg, leftb;
  1238. put_bits(&s->pb, 8, leftr= data[0]);
  1239. put_bits(&s->pb, 8, leftg= data[1]);
  1240. put_bits(&s->pb, 8, leftb= data[2]);
  1241. put_bits(&s->pb, 8, 0);
  1242. sub_left_prediction_rgb24(s, s->temp[0], data+3, width-1, &leftr, &leftg, &leftb);
  1243. encode_bgra_bitstream(s, width-1, 3);
  1244. for(y=1; y<s->height; y++){
  1245. uint8_t *dst = data + y*stride;
  1246. if(s->predictor == PLANE && s->interlaced < y){
  1247. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*3);
  1248. sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1249. }else{
  1250. sub_left_prediction_rgb24(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1251. }
  1252. encode_bgra_bitstream(s, width, 3);
  1253. }
  1254. }else{
  1255. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1256. }
  1257. emms_c();
  1258. size+= (put_bits_count(&s->pb)+31)/8;
  1259. put_bits(&s->pb, 16, 0);
  1260. put_bits(&s->pb, 15, 0);
  1261. size/= 4;
  1262. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1263. int j;
  1264. char *p= avctx->stats_out;
  1265. char *end= p + 1024*30;
  1266. for(i=0; i<3; i++){
  1267. for(j=0; j<256; j++){
  1268. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1269. p+= strlen(p);
  1270. s->stats[i][j]= 0;
  1271. }
  1272. snprintf(p, end-p, "\n");
  1273. p++;
  1274. }
  1275. } else
  1276. avctx->stats_out[0] = '\0';
  1277. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1278. flush_put_bits(&s->pb);
  1279. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1280. }
  1281. s->picture_number++;
  1282. return size*4;
  1283. }
  1284. static av_cold int encode_end(AVCodecContext *avctx)
  1285. {
  1286. HYuvContext *s = avctx->priv_data;
  1287. common_end(s);
  1288. av_freep(&avctx->extradata);
  1289. av_freep(&avctx->stats_out);
  1290. return 0;
  1291. }
  1292. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1293. #if CONFIG_HUFFYUV_DECODER
  1294. AVCodec ff_huffyuv_decoder = {
  1295. .name = "huffyuv",
  1296. .type = AVMEDIA_TYPE_VIDEO,
  1297. .id = CODEC_ID_HUFFYUV,
  1298. .priv_data_size = sizeof(HYuvContext),
  1299. .init = decode_init,
  1300. .close = decode_end,
  1301. .decode = decode_frame,
  1302. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
  1303. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1304. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1305. };
  1306. #endif
  1307. #if CONFIG_FFVHUFF_DECODER
  1308. AVCodec ff_ffvhuff_decoder = {
  1309. .name = "ffvhuff",
  1310. .type = AVMEDIA_TYPE_VIDEO,
  1311. .id = CODEC_ID_FFVHUFF,
  1312. .priv_data_size = sizeof(HYuvContext),
  1313. .init = decode_init,
  1314. .close = decode_end,
  1315. .decode = decode_frame,
  1316. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
  1317. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1318. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1319. };
  1320. #endif
  1321. #if CONFIG_HUFFYUV_ENCODER
  1322. AVCodec ff_huffyuv_encoder = {
  1323. .name = "huffyuv",
  1324. .type = AVMEDIA_TYPE_VIDEO,
  1325. .id = CODEC_ID_HUFFYUV,
  1326. .priv_data_size = sizeof(HYuvContext),
  1327. .init = encode_init,
  1328. .encode = encode_frame,
  1329. .close = encode_end,
  1330. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB24, PIX_FMT_RGB32, PIX_FMT_NONE},
  1331. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1332. };
  1333. #endif
  1334. #if CONFIG_FFVHUFF_ENCODER
  1335. AVCodec ff_ffvhuff_encoder = {
  1336. .name = "ffvhuff",
  1337. .type = AVMEDIA_TYPE_VIDEO,
  1338. .id = CODEC_ID_FFVHUFF,
  1339. .priv_data_size = sizeof(HYuvContext),
  1340. .init = encode_init,
  1341. .encode = encode_frame,
  1342. .close = encode_end,
  1343. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB24, PIX_FMT_RGB32, PIX_FMT_NONE},
  1344. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1345. };
  1346. #endif