You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1989 lines
73KB

  1. /*
  2. * DCA compatible decoder
  3. * Copyright (C) 2004 Gildas Bazin
  4. * Copyright (C) 2004 Benjamin Zores
  5. * Copyright (C) 2006 Benjamin Larsson
  6. * Copyright (C) 2007 Konstantin Shishkov
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include <math.h>
  25. #include <stddef.h>
  26. #include <stdio.h>
  27. #include "libavutil/common.h"
  28. #include "libavutil/intmath.h"
  29. #include "libavutil/intreadwrite.h"
  30. #include "libavutil/audioconvert.h"
  31. #include "avcodec.h"
  32. #include "dsputil.h"
  33. #include "fft.h"
  34. #include "get_bits.h"
  35. #include "put_bits.h"
  36. #include "dcadata.h"
  37. #include "dcahuff.h"
  38. #include "dca.h"
  39. #include "synth_filter.h"
  40. #include "dcadsp.h"
  41. #include "fmtconvert.h"
  42. #if ARCH_ARM
  43. # include "arm/dca.h"
  44. #endif
  45. //#define TRACE
  46. #define DCA_PRIM_CHANNELS_MAX (7)
  47. #define DCA_SUBBANDS (32)
  48. #define DCA_ABITS_MAX (32) /* Should be 28 */
  49. #define DCA_SUBSUBFRAMES_MAX (4)
  50. #define DCA_SUBFRAMES_MAX (16)
  51. #define DCA_BLOCKS_MAX (16)
  52. #define DCA_LFE_MAX (3)
  53. enum DCAMode {
  54. DCA_MONO = 0,
  55. DCA_CHANNEL,
  56. DCA_STEREO,
  57. DCA_STEREO_SUMDIFF,
  58. DCA_STEREO_TOTAL,
  59. DCA_3F,
  60. DCA_2F1R,
  61. DCA_3F1R,
  62. DCA_2F2R,
  63. DCA_3F2R,
  64. DCA_4F2R
  65. };
  66. /* these are unconfirmed but should be mostly correct */
  67. enum DCAExSSSpeakerMask {
  68. DCA_EXSS_FRONT_CENTER = 0x0001,
  69. DCA_EXSS_FRONT_LEFT_RIGHT = 0x0002,
  70. DCA_EXSS_SIDE_REAR_LEFT_RIGHT = 0x0004,
  71. DCA_EXSS_LFE = 0x0008,
  72. DCA_EXSS_REAR_CENTER = 0x0010,
  73. DCA_EXSS_FRONT_HIGH_LEFT_RIGHT = 0x0020,
  74. DCA_EXSS_REAR_LEFT_RIGHT = 0x0040,
  75. DCA_EXSS_FRONT_HIGH_CENTER = 0x0080,
  76. DCA_EXSS_OVERHEAD = 0x0100,
  77. DCA_EXSS_CENTER_LEFT_RIGHT = 0x0200,
  78. DCA_EXSS_WIDE_LEFT_RIGHT = 0x0400,
  79. DCA_EXSS_SIDE_LEFT_RIGHT = 0x0800,
  80. DCA_EXSS_LFE2 = 0x1000,
  81. DCA_EXSS_SIDE_HIGH_LEFT_RIGHT = 0x2000,
  82. DCA_EXSS_REAR_HIGH_CENTER = 0x4000,
  83. DCA_EXSS_REAR_HIGH_LEFT_RIGHT = 0x8000,
  84. };
  85. enum DCAExtensionMask {
  86. DCA_EXT_CORE = 0x001, ///< core in core substream
  87. DCA_EXT_XXCH = 0x002, ///< XXCh channels extension in core substream
  88. DCA_EXT_X96 = 0x004, ///< 96/24 extension in core substream
  89. DCA_EXT_XCH = 0x008, ///< XCh channel extension in core substream
  90. DCA_EXT_EXSS_CORE = 0x010, ///< core in ExSS (extension substream)
  91. DCA_EXT_EXSS_XBR = 0x020, ///< extended bitrate extension in ExSS
  92. DCA_EXT_EXSS_XXCH = 0x040, ///< XXCh channels extension in ExSS
  93. DCA_EXT_EXSS_X96 = 0x080, ///< 96/24 extension in ExSS
  94. DCA_EXT_EXSS_LBR = 0x100, ///< low bitrate component in ExSS
  95. DCA_EXT_EXSS_XLL = 0x200, ///< lossless extension in ExSS
  96. };
  97. /* -1 are reserved or unknown */
  98. static const int dca_ext_audio_descr_mask[] = {
  99. DCA_EXT_XCH,
  100. -1,
  101. DCA_EXT_X96,
  102. DCA_EXT_XCH | DCA_EXT_X96,
  103. -1,
  104. -1,
  105. DCA_EXT_XXCH,
  106. -1,
  107. };
  108. /* extensions that reside in core substream */
  109. #define DCA_CORE_EXTS (DCA_EXT_XCH | DCA_EXT_XXCH | DCA_EXT_X96)
  110. /* Tables for mapping dts channel configurations to libavcodec multichannel api.
  111. * Some compromises have been made for special configurations. Most configurations
  112. * are never used so complete accuracy is not needed.
  113. *
  114. * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
  115. * S -> side, when both rear and back are configured move one of them to the side channel
  116. * OV -> center back
  117. * All 2 channel configurations -> AV_CH_LAYOUT_STEREO
  118. */
  119. static const uint64_t dca_core_channel_layout[] = {
  120. AV_CH_FRONT_CENTER, ///< 1, A
  121. AV_CH_LAYOUT_STEREO, ///< 2, A + B (dual mono)
  122. AV_CH_LAYOUT_STEREO, ///< 2, L + R (stereo)
  123. AV_CH_LAYOUT_STEREO, ///< 2, (L + R) + (L - R) (sum-difference)
  124. AV_CH_LAYOUT_STEREO, ///< 2, LT + RT (left and right total)
  125. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER, ///< 3, C + L + R
  126. AV_CH_LAYOUT_STEREO | AV_CH_BACK_CENTER, ///< 3, L + R + S
  127. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 4, C + L + R + S
  128. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 4, L + R + SL + SR
  129. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT |
  130. AV_CH_SIDE_RIGHT, ///< 5, C + L + R + SL + SR
  131. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  132. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER, ///< 6, CL + CR + L + R + SL + SR
  133. AV_CH_LAYOUT_STEREO | AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT |
  134. AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 6, C + L + R + LR + RR + OV
  135. AV_CH_FRONT_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  136. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_BACK_CENTER |
  137. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 6, CF + CR + LF + RF + LR + RR
  138. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  139. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  140. AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR
  141. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  142. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  143. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2 + SR1 + SR2
  144. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  145. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  146. AV_CH_SIDE_LEFT | AV_CH_BACK_CENTER | AV_CH_SIDE_RIGHT, ///< 8, CL + C + CR + L + R + SL + S + SR
  147. };
  148. static const int8_t dca_lfe_index[] = {
  149. 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 1, 3, 2, 3
  150. };
  151. static const int8_t dca_channel_reorder_lfe[][9] = {
  152. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  153. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  154. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  155. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  156. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  157. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  158. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  159. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  160. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  161. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  162. { 3, 4, 0, 1, 5, 6, -1, -1, -1},
  163. { 2, 0, 1, 4, 5, 6, -1, -1, -1},
  164. { 0, 6, 4, 5, 2, 3, -1, -1, -1},
  165. { 4, 2, 5, 0, 1, 6, 7, -1, -1},
  166. { 5, 6, 0, 1, 7, 3, 8, 4, -1},
  167. { 4, 2, 5, 0, 1, 6, 8, 7, -1},
  168. };
  169. static const int8_t dca_channel_reorder_lfe_xch[][9] = {
  170. { 0, 2, -1, -1, -1, -1, -1, -1, -1},
  171. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  172. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  173. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  174. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  175. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  176. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  177. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  178. { 0, 1, 4, 5, 3, -1, -1, -1, -1},
  179. { 2, 0, 1, 5, 6, 4, -1, -1, -1},
  180. { 3, 4, 0, 1, 6, 7, 5, -1, -1},
  181. { 2, 0, 1, 4, 5, 6, 7, -1, -1},
  182. { 0, 6, 4, 5, 2, 3, 7, -1, -1},
  183. { 4, 2, 5, 0, 1, 7, 8, 6, -1},
  184. { 5, 6, 0, 1, 8, 3, 9, 4, 7},
  185. { 4, 2, 5, 0, 1, 6, 9, 8, 7},
  186. };
  187. static const int8_t dca_channel_reorder_nolfe[][9] = {
  188. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  189. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  190. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  191. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  192. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  193. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  194. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  195. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  196. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  197. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  198. { 2, 3, 0, 1, 4, 5, -1, -1, -1},
  199. { 2, 0, 1, 3, 4, 5, -1, -1, -1},
  200. { 0, 5, 3, 4, 1, 2, -1, -1, -1},
  201. { 3, 2, 4, 0, 1, 5, 6, -1, -1},
  202. { 4, 5, 0, 1, 6, 2, 7, 3, -1},
  203. { 3, 2, 4, 0, 1, 5, 7, 6, -1},
  204. };
  205. static const int8_t dca_channel_reorder_nolfe_xch[][9] = {
  206. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  207. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  208. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  209. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  210. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  211. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  212. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  213. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  214. { 0, 1, 3, 4, 2, -1, -1, -1, -1},
  215. { 2, 0, 1, 4, 5, 3, -1, -1, -1},
  216. { 2, 3, 0, 1, 5, 6, 4, -1, -1},
  217. { 2, 0, 1, 3, 4, 5, 6, -1, -1},
  218. { 0, 5, 3, 4, 1, 2, 6, -1, -1},
  219. { 3, 2, 4, 0, 1, 6, 7, 5, -1},
  220. { 4, 5, 0, 1, 7, 2, 8, 3, 6},
  221. { 3, 2, 4, 0, 1, 5, 8, 7, 6},
  222. };
  223. #define DCA_DOLBY 101 /* FIXME */
  224. #define DCA_CHANNEL_BITS 6
  225. #define DCA_CHANNEL_MASK 0x3F
  226. #define DCA_LFE 0x80
  227. #define HEADER_SIZE 14
  228. #define DCA_MAX_FRAME_SIZE 16384
  229. #define DCA_MAX_EXSS_HEADER_SIZE 4096
  230. #define DCA_BUFFER_PADDING_SIZE 1024
  231. /** Bit allocation */
  232. typedef struct {
  233. int offset; ///< code values offset
  234. int maxbits[8]; ///< max bits in VLC
  235. int wrap; ///< wrap for get_vlc2()
  236. VLC vlc[8]; ///< actual codes
  237. } BitAlloc;
  238. static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
  239. static BitAlloc dca_tmode; ///< transition mode VLCs
  240. static BitAlloc dca_scalefactor; ///< scalefactor VLCs
  241. static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
  242. static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
  243. int idx)
  244. {
  245. return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
  246. ba->offset;
  247. }
  248. typedef struct {
  249. AVCodecContext *avctx;
  250. AVFrame frame;
  251. /* Frame header */
  252. int frame_type; ///< type of the current frame
  253. int samples_deficit; ///< deficit sample count
  254. int crc_present; ///< crc is present in the bitstream
  255. int sample_blocks; ///< number of PCM sample blocks
  256. int frame_size; ///< primary frame byte size
  257. int amode; ///< audio channels arrangement
  258. int sample_rate; ///< audio sampling rate
  259. int bit_rate; ///< transmission bit rate
  260. int bit_rate_index; ///< transmission bit rate index
  261. int downmix; ///< embedded downmix enabled
  262. int dynrange; ///< embedded dynamic range flag
  263. int timestamp; ///< embedded time stamp flag
  264. int aux_data; ///< auxiliary data flag
  265. int hdcd; ///< source material is mastered in HDCD
  266. int ext_descr; ///< extension audio descriptor flag
  267. int ext_coding; ///< extended coding flag
  268. int aspf; ///< audio sync word insertion flag
  269. int lfe; ///< low frequency effects flag
  270. int predictor_history; ///< predictor history flag
  271. int header_crc; ///< header crc check bytes
  272. int multirate_inter; ///< multirate interpolator switch
  273. int version; ///< encoder software revision
  274. int copy_history; ///< copy history
  275. int source_pcm_res; ///< source pcm resolution
  276. int front_sum; ///< front sum/difference flag
  277. int surround_sum; ///< surround sum/difference flag
  278. int dialog_norm; ///< dialog normalisation parameter
  279. /* Primary audio coding header */
  280. int subframes; ///< number of subframes
  281. int total_channels; ///< number of channels including extensions
  282. int prim_channels; ///< number of primary audio channels
  283. int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count
  284. int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband
  285. int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index
  286. int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book
  287. int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
  288. int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select
  289. int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
  290. float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment
  291. /* Primary audio coding side information */
  292. int subsubframes[DCA_SUBFRAMES_MAX]; ///< number of subsubframes
  293. int partial_samples[DCA_SUBFRAMES_MAX]; ///< partial subsubframe samples count
  294. int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not)
  295. int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction VQ coefs
  296. int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< bit allocation index
  297. int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< transition mode (transients)
  298. int scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2]; ///< scale factors (2 if transient)
  299. int joint_huff[DCA_PRIM_CHANNELS_MAX]; ///< joint subband scale factors codebook
  300. int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
  301. int downmix_coef[DCA_PRIM_CHANNELS_MAX][2]; ///< stereo downmix coefficients
  302. int dynrange_coef; ///< dynamic range coefficient
  303. int high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< VQ encoded high frequency subbands
  304. float lfe_data[2 * DCA_LFE_MAX * (DCA_BLOCKS_MAX + 4)]; ///< Low frequency effect data
  305. int lfe_scale_factor;
  306. /* Subband samples history (for ADPCM) */
  307. DECLARE_ALIGNED(16, float, subband_samples_hist)[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
  308. DECLARE_ALIGNED(32, float, subband_fir_hist)[DCA_PRIM_CHANNELS_MAX][512];
  309. DECLARE_ALIGNED(32, float, subband_fir_noidea)[DCA_PRIM_CHANNELS_MAX][32];
  310. int hist_index[DCA_PRIM_CHANNELS_MAX];
  311. DECLARE_ALIGNED(32, float, raXin)[32];
  312. int output; ///< type of output
  313. float scale_bias; ///< output scale
  314. DECLARE_ALIGNED(32, float, subband_samples)[DCA_BLOCKS_MAX][DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
  315. DECLARE_ALIGNED(32, float, samples)[(DCA_PRIM_CHANNELS_MAX + 1) * 256];
  316. const float *samples_chanptr[DCA_PRIM_CHANNELS_MAX + 1];
  317. uint8_t dca_buffer[DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE + DCA_BUFFER_PADDING_SIZE];
  318. int dca_buffer_size; ///< how much data is in the dca_buffer
  319. const int8_t *channel_order_tab; ///< channel reordering table, lfe and non lfe
  320. GetBitContext gb;
  321. /* Current position in DCA frame */
  322. int current_subframe;
  323. int current_subsubframe;
  324. int core_ext_mask; ///< present extensions in the core substream
  325. /* XCh extension information */
  326. int xch_present; ///< XCh extension present and valid
  327. int xch_base_channel; ///< index of first (only) channel containing XCH data
  328. /* ExSS header parser */
  329. int static_fields; ///< static fields present
  330. int mix_metadata; ///< mixing metadata present
  331. int num_mix_configs; ///< number of mix out configurations
  332. int mix_config_num_ch[4]; ///< number of channels in each mix out configuration
  333. int profile;
  334. int debug_flag; ///< used for suppressing repeated error messages output
  335. DSPContext dsp;
  336. FFTContext imdct;
  337. SynthFilterContext synth;
  338. DCADSPContext dcadsp;
  339. FmtConvertContext fmt_conv;
  340. } DCAContext;
  341. static const uint16_t dca_vlc_offs[] = {
  342. 0, 512, 640, 768, 1282, 1794, 2436, 3080, 3770, 4454, 5364,
  343. 5372, 5380, 5388, 5392, 5396, 5412, 5420, 5428, 5460, 5492, 5508,
  344. 5572, 5604, 5668, 5796, 5860, 5892, 6412, 6668, 6796, 7308, 7564,
  345. 7820, 8076, 8620, 9132, 9388, 9910, 10166, 10680, 11196, 11726, 12240,
  346. 12752, 13298, 13810, 14326, 14840, 15500, 16022, 16540, 17158, 17678, 18264,
  347. 18796, 19352, 19926, 20468, 21472, 22398, 23014, 23622,
  348. };
  349. static av_cold void dca_init_vlcs(void)
  350. {
  351. static int vlcs_initialized = 0;
  352. int i, j, c = 14;
  353. static VLC_TYPE dca_table[23622][2];
  354. if (vlcs_initialized)
  355. return;
  356. dca_bitalloc_index.offset = 1;
  357. dca_bitalloc_index.wrap = 2;
  358. for (i = 0; i < 5; i++) {
  359. dca_bitalloc_index.vlc[i].table = &dca_table[dca_vlc_offs[i]];
  360. dca_bitalloc_index.vlc[i].table_allocated = dca_vlc_offs[i + 1] - dca_vlc_offs[i];
  361. init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
  362. bitalloc_12_bits[i], 1, 1,
  363. bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  364. }
  365. dca_scalefactor.offset = -64;
  366. dca_scalefactor.wrap = 2;
  367. for (i = 0; i < 5; i++) {
  368. dca_scalefactor.vlc[i].table = &dca_table[dca_vlc_offs[i + 5]];
  369. dca_scalefactor.vlc[i].table_allocated = dca_vlc_offs[i + 6] - dca_vlc_offs[i + 5];
  370. init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
  371. scales_bits[i], 1, 1,
  372. scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  373. }
  374. dca_tmode.offset = 0;
  375. dca_tmode.wrap = 1;
  376. for (i = 0; i < 4; i++) {
  377. dca_tmode.vlc[i].table = &dca_table[dca_vlc_offs[i + 10]];
  378. dca_tmode.vlc[i].table_allocated = dca_vlc_offs[i + 11] - dca_vlc_offs[i + 10];
  379. init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
  380. tmode_bits[i], 1, 1,
  381. tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  382. }
  383. for (i = 0; i < 10; i++)
  384. for (j = 0; j < 7; j++) {
  385. if (!bitalloc_codes[i][j])
  386. break;
  387. dca_smpl_bitalloc[i + 1].offset = bitalloc_offsets[i];
  388. dca_smpl_bitalloc[i + 1].wrap = 1 + (j > 4);
  389. dca_smpl_bitalloc[i + 1].vlc[j].table = &dca_table[dca_vlc_offs[c]];
  390. dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = dca_vlc_offs[c + 1] - dca_vlc_offs[c];
  391. init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
  392. bitalloc_sizes[i],
  393. bitalloc_bits[i][j], 1, 1,
  394. bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
  395. c++;
  396. }
  397. vlcs_initialized = 1;
  398. }
  399. static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
  400. {
  401. while (len--)
  402. *dst++ = get_bits(gb, bits);
  403. }
  404. static int dca_parse_audio_coding_header(DCAContext *s, int base_channel)
  405. {
  406. int i, j;
  407. static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
  408. static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
  409. static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
  410. s->total_channels = get_bits(&s->gb, 3) + 1 + base_channel;
  411. s->prim_channels = s->total_channels;
  412. if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
  413. s->prim_channels = DCA_PRIM_CHANNELS_MAX;
  414. for (i = base_channel; i < s->prim_channels; i++) {
  415. s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
  416. if (s->subband_activity[i] > DCA_SUBBANDS)
  417. s->subband_activity[i] = DCA_SUBBANDS;
  418. }
  419. for (i = base_channel; i < s->prim_channels; i++) {
  420. s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
  421. if (s->vq_start_subband[i] > DCA_SUBBANDS)
  422. s->vq_start_subband[i] = DCA_SUBBANDS;
  423. }
  424. get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3);
  425. get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2);
  426. get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
  427. get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3);
  428. /* Get codebooks quantization indexes */
  429. if (!base_channel)
  430. memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
  431. for (j = 1; j < 11; j++)
  432. for (i = base_channel; i < s->prim_channels; i++)
  433. s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
  434. /* Get scale factor adjustment */
  435. for (j = 0; j < 11; j++)
  436. for (i = base_channel; i < s->prim_channels; i++)
  437. s->scalefactor_adj[i][j] = 1;
  438. for (j = 1; j < 11; j++)
  439. for (i = base_channel; i < s->prim_channels; i++)
  440. if (s->quant_index_huffman[i][j] < thr[j])
  441. s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
  442. if (s->crc_present) {
  443. /* Audio header CRC check */
  444. get_bits(&s->gb, 16);
  445. }
  446. s->current_subframe = 0;
  447. s->current_subsubframe = 0;
  448. #ifdef TRACE
  449. av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
  450. av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
  451. for (i = base_channel; i < s->prim_channels; i++) {
  452. av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n",
  453. s->subband_activity[i]);
  454. av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n",
  455. s->vq_start_subband[i]);
  456. av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n",
  457. s->joint_intensity[i]);
  458. av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n",
  459. s->transient_huffman[i]);
  460. av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n",
  461. s->scalefactor_huffman[i]);
  462. av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n",
  463. s->bitalloc_huffman[i]);
  464. av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
  465. for (j = 0; j < 11; j++)
  466. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->quant_index_huffman[i][j]);
  467. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  468. av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
  469. for (j = 0; j < 11; j++)
  470. av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
  471. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  472. }
  473. #endif
  474. return 0;
  475. }
  476. static int dca_parse_frame_header(DCAContext *s)
  477. {
  478. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  479. /* Sync code */
  480. skip_bits_long(&s->gb, 32);
  481. /* Frame header */
  482. s->frame_type = get_bits(&s->gb, 1);
  483. s->samples_deficit = get_bits(&s->gb, 5) + 1;
  484. s->crc_present = get_bits(&s->gb, 1);
  485. s->sample_blocks = get_bits(&s->gb, 7) + 1;
  486. s->frame_size = get_bits(&s->gb, 14) + 1;
  487. if (s->frame_size < 95)
  488. return AVERROR_INVALIDDATA;
  489. s->amode = get_bits(&s->gb, 6);
  490. s->sample_rate = dca_sample_rates[get_bits(&s->gb, 4)];
  491. if (!s->sample_rate)
  492. return AVERROR_INVALIDDATA;
  493. s->bit_rate_index = get_bits(&s->gb, 5);
  494. s->bit_rate = dca_bit_rates[s->bit_rate_index];
  495. if (!s->bit_rate)
  496. return AVERROR_INVALIDDATA;
  497. s->downmix = get_bits(&s->gb, 1);
  498. s->dynrange = get_bits(&s->gb, 1);
  499. s->timestamp = get_bits(&s->gb, 1);
  500. s->aux_data = get_bits(&s->gb, 1);
  501. s->hdcd = get_bits(&s->gb, 1);
  502. s->ext_descr = get_bits(&s->gb, 3);
  503. s->ext_coding = get_bits(&s->gb, 1);
  504. s->aspf = get_bits(&s->gb, 1);
  505. s->lfe = get_bits(&s->gb, 2);
  506. s->predictor_history = get_bits(&s->gb, 1);
  507. /* TODO: check CRC */
  508. if (s->crc_present)
  509. s->header_crc = get_bits(&s->gb, 16);
  510. s->multirate_inter = get_bits(&s->gb, 1);
  511. s->version = get_bits(&s->gb, 4);
  512. s->copy_history = get_bits(&s->gb, 2);
  513. s->source_pcm_res = get_bits(&s->gb, 3);
  514. s->front_sum = get_bits(&s->gb, 1);
  515. s->surround_sum = get_bits(&s->gb, 1);
  516. s->dialog_norm = get_bits(&s->gb, 4);
  517. /* FIXME: channels mixing levels */
  518. s->output = s->amode;
  519. if (s->lfe)
  520. s->output |= DCA_LFE;
  521. #ifdef TRACE
  522. av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
  523. av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
  524. av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
  525. av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
  526. s->sample_blocks, s->sample_blocks * 32);
  527. av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
  528. av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
  529. s->amode, dca_channels[s->amode]);
  530. av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n",
  531. s->sample_rate);
  532. av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n",
  533. s->bit_rate);
  534. av_log(s->avctx, AV_LOG_DEBUG, "downmix: %i\n", s->downmix);
  535. av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
  536. av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
  537. av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
  538. av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
  539. av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
  540. av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
  541. av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
  542. av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
  543. av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
  544. s->predictor_history);
  545. av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
  546. av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
  547. s->multirate_inter);
  548. av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
  549. av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
  550. av_log(s->avctx, AV_LOG_DEBUG,
  551. "source pcm resolution: %i (%i bits/sample)\n",
  552. s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
  553. av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
  554. av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
  555. av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
  556. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  557. #endif
  558. /* Primary audio coding header */
  559. s->subframes = get_bits(&s->gb, 4) + 1;
  560. return dca_parse_audio_coding_header(s, 0);
  561. }
  562. static inline int get_scale(GetBitContext *gb, int level, int value)
  563. {
  564. if (level < 5) {
  565. /* huffman encoded */
  566. value += get_bitalloc(gb, &dca_scalefactor, level);
  567. } else if (level < 8)
  568. value = get_bits(gb, level + 1);
  569. return value;
  570. }
  571. static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
  572. {
  573. /* Primary audio coding side information */
  574. int j, k;
  575. if (get_bits_left(&s->gb) < 0)
  576. return AVERROR_INVALIDDATA;
  577. if (!base_channel) {
  578. s->subsubframes[s->current_subframe] = get_bits(&s->gb, 2) + 1;
  579. s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
  580. }
  581. for (j = base_channel; j < s->prim_channels; j++) {
  582. for (k = 0; k < s->subband_activity[j]; k++)
  583. s->prediction_mode[j][k] = get_bits(&s->gb, 1);
  584. }
  585. /* Get prediction codebook */
  586. for (j = base_channel; j < s->prim_channels; j++) {
  587. for (k = 0; k < s->subband_activity[j]; k++) {
  588. if (s->prediction_mode[j][k] > 0) {
  589. /* (Prediction coefficient VQ address) */
  590. s->prediction_vq[j][k] = get_bits(&s->gb, 12);
  591. }
  592. }
  593. }
  594. /* Bit allocation index */
  595. for (j = base_channel; j < s->prim_channels; j++) {
  596. for (k = 0; k < s->vq_start_subband[j]; k++) {
  597. if (s->bitalloc_huffman[j] == 6)
  598. s->bitalloc[j][k] = get_bits(&s->gb, 5);
  599. else if (s->bitalloc_huffman[j] == 5)
  600. s->bitalloc[j][k] = get_bits(&s->gb, 4);
  601. else if (s->bitalloc_huffman[j] == 7) {
  602. av_log(s->avctx, AV_LOG_ERROR,
  603. "Invalid bit allocation index\n");
  604. return AVERROR_INVALIDDATA;
  605. } else {
  606. s->bitalloc[j][k] =
  607. get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
  608. }
  609. if (s->bitalloc[j][k] > 26) {
  610. // av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index [%i][%i] too big (%i)\n",
  611. // j, k, s->bitalloc[j][k]);
  612. return AVERROR_INVALIDDATA;
  613. }
  614. }
  615. }
  616. /* Transition mode */
  617. for (j = base_channel; j < s->prim_channels; j++) {
  618. for (k = 0; k < s->subband_activity[j]; k++) {
  619. s->transition_mode[j][k] = 0;
  620. if (s->subsubframes[s->current_subframe] > 1 &&
  621. k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
  622. s->transition_mode[j][k] =
  623. get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
  624. }
  625. }
  626. }
  627. if (get_bits_left(&s->gb) < 0)
  628. return AVERROR_INVALIDDATA;
  629. for (j = base_channel; j < s->prim_channels; j++) {
  630. const uint32_t *scale_table;
  631. int scale_sum;
  632. memset(s->scale_factor[j], 0,
  633. s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
  634. if (s->scalefactor_huffman[j] == 6)
  635. scale_table = scale_factor_quant7;
  636. else
  637. scale_table = scale_factor_quant6;
  638. /* When huffman coded, only the difference is encoded */
  639. scale_sum = 0;
  640. for (k = 0; k < s->subband_activity[j]; k++) {
  641. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
  642. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum);
  643. s->scale_factor[j][k][0] = scale_table[scale_sum];
  644. }
  645. if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
  646. /* Get second scale factor */
  647. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum);
  648. s->scale_factor[j][k][1] = scale_table[scale_sum];
  649. }
  650. }
  651. }
  652. /* Joint subband scale factor codebook select */
  653. for (j = base_channel; j < s->prim_channels; j++) {
  654. /* Transmitted only if joint subband coding enabled */
  655. if (s->joint_intensity[j] > 0)
  656. s->joint_huff[j] = get_bits(&s->gb, 3);
  657. }
  658. if (get_bits_left(&s->gb) < 0)
  659. return AVERROR_INVALIDDATA;
  660. /* Scale factors for joint subband coding */
  661. for (j = base_channel; j < s->prim_channels; j++) {
  662. int source_channel;
  663. /* Transmitted only if joint subband coding enabled */
  664. if (s->joint_intensity[j] > 0) {
  665. int scale = 0;
  666. source_channel = s->joint_intensity[j] - 1;
  667. /* When huffman coded, only the difference is encoded
  668. * (is this valid as well for joint scales ???) */
  669. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
  670. scale = get_scale(&s->gb, s->joint_huff[j], 0);
  671. scale += 64; /* bias */
  672. s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
  673. }
  674. if (!(s->debug_flag & 0x02)) {
  675. av_log(s->avctx, AV_LOG_DEBUG,
  676. "Joint stereo coding not supported\n");
  677. s->debug_flag |= 0x02;
  678. }
  679. }
  680. }
  681. /* Stereo downmix coefficients */
  682. if (!base_channel && s->prim_channels > 2) {
  683. if (s->downmix) {
  684. for (j = base_channel; j < s->prim_channels; j++) {
  685. s->downmix_coef[j][0] = get_bits(&s->gb, 7);
  686. s->downmix_coef[j][1] = get_bits(&s->gb, 7);
  687. }
  688. } else {
  689. int am = s->amode & DCA_CHANNEL_MASK;
  690. for (j = base_channel; j < s->prim_channels; j++) {
  691. s->downmix_coef[j][0] = dca_default_coeffs[am][j][0];
  692. s->downmix_coef[j][1] = dca_default_coeffs[am][j][1];
  693. }
  694. }
  695. }
  696. /* Dynamic range coefficient */
  697. if (!base_channel && s->dynrange)
  698. s->dynrange_coef = get_bits(&s->gb, 8);
  699. /* Side information CRC check word */
  700. if (s->crc_present) {
  701. get_bits(&s->gb, 16);
  702. }
  703. /*
  704. * Primary audio data arrays
  705. */
  706. /* VQ encoded high frequency subbands */
  707. for (j = base_channel; j < s->prim_channels; j++)
  708. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  709. /* 1 vector -> 32 samples */
  710. s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
  711. /* Low frequency effect data */
  712. if (!base_channel && s->lfe) {
  713. /* LFE samples */
  714. int lfe_samples = 2 * s->lfe * (4 + block_index);
  715. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  716. float lfe_scale;
  717. for (j = lfe_samples; j < lfe_end_sample; j++) {
  718. /* Signed 8 bits int */
  719. s->lfe_data[j] = get_sbits(&s->gb, 8);
  720. }
  721. /* Scale factor index */
  722. s->lfe_scale_factor = scale_factor_quant7[get_bits(&s->gb, 8)];
  723. /* Quantization step size * scale factor */
  724. lfe_scale = 0.035 * s->lfe_scale_factor;
  725. for (j = lfe_samples; j < lfe_end_sample; j++)
  726. s->lfe_data[j] *= lfe_scale;
  727. }
  728. #ifdef TRACE
  729. av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n",
  730. s->subsubframes[s->current_subframe]);
  731. av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
  732. s->partial_samples[s->current_subframe]);
  733. for (j = base_channel; j < s->prim_channels; j++) {
  734. av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
  735. for (k = 0; k < s->subband_activity[j]; k++)
  736. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
  737. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  738. }
  739. for (j = base_channel; j < s->prim_channels; j++) {
  740. for (k = 0; k < s->subband_activity[j]; k++)
  741. av_log(s->avctx, AV_LOG_DEBUG,
  742. "prediction coefs: %f, %f, %f, %f\n",
  743. (float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
  744. (float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
  745. (float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
  746. (float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
  747. }
  748. for (j = base_channel; j < s->prim_channels; j++) {
  749. av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
  750. for (k = 0; k < s->vq_start_subband[j]; k++)
  751. av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
  752. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  753. }
  754. for (j = base_channel; j < s->prim_channels; j++) {
  755. av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
  756. for (k = 0; k < s->subband_activity[j]; k++)
  757. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
  758. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  759. }
  760. for (j = base_channel; j < s->prim_channels; j++) {
  761. av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
  762. for (k = 0; k < s->subband_activity[j]; k++) {
  763. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
  764. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
  765. if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
  766. av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
  767. }
  768. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  769. }
  770. for (j = base_channel; j < s->prim_channels; j++) {
  771. if (s->joint_intensity[j] > 0) {
  772. int source_channel = s->joint_intensity[j] - 1;
  773. av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
  774. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
  775. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
  776. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  777. }
  778. }
  779. if (!base_channel && s->prim_channels > 2 && s->downmix) {
  780. av_log(s->avctx, AV_LOG_DEBUG, "Downmix coeffs:\n");
  781. for (j = 0; j < s->prim_channels; j++) {
  782. av_log(s->avctx, AV_LOG_DEBUG, "Channel 0, %d = %f\n", j,
  783. dca_downmix_coeffs[s->downmix_coef[j][0]]);
  784. av_log(s->avctx, AV_LOG_DEBUG, "Channel 1, %d = %f\n", j,
  785. dca_downmix_coeffs[s->downmix_coef[j][1]]);
  786. }
  787. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  788. }
  789. for (j = base_channel; j < s->prim_channels; j++)
  790. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  791. av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
  792. if (!base_channel && s->lfe) {
  793. int lfe_samples = 2 * s->lfe * (4 + block_index);
  794. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  795. av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
  796. for (j = lfe_samples; j < lfe_end_sample; j++)
  797. av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
  798. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  799. }
  800. #endif
  801. return 0;
  802. }
  803. static void qmf_32_subbands(DCAContext *s, int chans,
  804. float samples_in[32][8], float *samples_out,
  805. float scale)
  806. {
  807. const float *prCoeff;
  808. int i;
  809. int sb_act = s->subband_activity[chans];
  810. int subindex;
  811. scale *= sqrt(1 / 8.0);
  812. /* Select filter */
  813. if (!s->multirate_inter) /* Non-perfect reconstruction */
  814. prCoeff = fir_32bands_nonperfect;
  815. else /* Perfect reconstruction */
  816. prCoeff = fir_32bands_perfect;
  817. for (i = sb_act; i < 32; i++)
  818. s->raXin[i] = 0.0;
  819. /* Reconstructed channel sample index */
  820. for (subindex = 0; subindex < 8; subindex++) {
  821. /* Load in one sample from each subband and clear inactive subbands */
  822. for (i = 0; i < sb_act; i++) {
  823. unsigned sign = (i - 1) & 2;
  824. uint32_t v = AV_RN32A(&samples_in[i][subindex]) ^ sign << 30;
  825. AV_WN32A(&s->raXin[i], v);
  826. }
  827. s->synth.synth_filter_float(&s->imdct,
  828. s->subband_fir_hist[chans],
  829. &s->hist_index[chans],
  830. s->subband_fir_noidea[chans], prCoeff,
  831. samples_out, s->raXin, scale);
  832. samples_out += 32;
  833. }
  834. }
  835. static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
  836. int num_deci_sample, float *samples_in,
  837. float *samples_out, float scale)
  838. {
  839. /* samples_in: An array holding decimated samples.
  840. * Samples in current subframe starts from samples_in[0],
  841. * while samples_in[-1], samples_in[-2], ..., stores samples
  842. * from last subframe as history.
  843. *
  844. * samples_out: An array holding interpolated samples
  845. */
  846. int decifactor;
  847. const float *prCoeff;
  848. int deciindex;
  849. /* Select decimation filter */
  850. if (decimation_select == 1) {
  851. decifactor = 64;
  852. prCoeff = lfe_fir_128;
  853. } else {
  854. decifactor = 32;
  855. prCoeff = lfe_fir_64;
  856. }
  857. /* Interpolation */
  858. for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
  859. s->dcadsp.lfe_fir(samples_out, samples_in, prCoeff, decifactor, scale);
  860. samples_in++;
  861. samples_out += 2 * decifactor;
  862. }
  863. }
  864. /* downmixing routines */
  865. #define MIX_REAR1(samples, si1, rs, coef) \
  866. samples[i] += samples[si1] * coef[rs][0]; \
  867. samples[i+256] += samples[si1] * coef[rs][1];
  868. #define MIX_REAR2(samples, si1, si2, rs, coef) \
  869. samples[i] += samples[si1] * coef[rs][0] + samples[si2] * coef[rs + 1][0]; \
  870. samples[i+256] += samples[si1] * coef[rs][1] + samples[si2] * coef[rs + 1][1];
  871. #define MIX_FRONT3(samples, coef) \
  872. t = samples[i + c]; \
  873. u = samples[i + l]; \
  874. v = samples[i + r]; \
  875. samples[i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \
  876. samples[i+256] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
  877. #define DOWNMIX_TO_STEREO(op1, op2) \
  878. for (i = 0; i < 256; i++) { \
  879. op1 \
  880. op2 \
  881. }
  882. static void dca_downmix(float *samples, int srcfmt,
  883. int downmix_coef[DCA_PRIM_CHANNELS_MAX][2],
  884. const int8_t *channel_mapping)
  885. {
  886. int c, l, r, sl, sr, s;
  887. int i;
  888. float t, u, v;
  889. float coef[DCA_PRIM_CHANNELS_MAX][2];
  890. for (i = 0; i < DCA_PRIM_CHANNELS_MAX; i++) {
  891. coef[i][0] = dca_downmix_coeffs[downmix_coef[i][0]];
  892. coef[i][1] = dca_downmix_coeffs[downmix_coef[i][1]];
  893. }
  894. switch (srcfmt) {
  895. case DCA_MONO:
  896. case DCA_CHANNEL:
  897. case DCA_STEREO_TOTAL:
  898. case DCA_STEREO_SUMDIFF:
  899. case DCA_4F2R:
  900. av_log(NULL, 0, "Not implemented!\n");
  901. break;
  902. case DCA_STEREO:
  903. break;
  904. case DCA_3F:
  905. c = channel_mapping[0] * 256;
  906. l = channel_mapping[1] * 256;
  907. r = channel_mapping[2] * 256;
  908. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
  909. break;
  910. case DCA_2F1R:
  911. s = channel_mapping[2] * 256;
  912. DOWNMIX_TO_STEREO(MIX_REAR1(samples, i + s, 2, coef), );
  913. break;
  914. case DCA_3F1R:
  915. c = channel_mapping[0] * 256;
  916. l = channel_mapping[1] * 256;
  917. r = channel_mapping[2] * 256;
  918. s = channel_mapping[3] * 256;
  919. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  920. MIX_REAR1(samples, i + s, 3, coef));
  921. break;
  922. case DCA_2F2R:
  923. sl = channel_mapping[2] * 256;
  924. sr = channel_mapping[3] * 256;
  925. DOWNMIX_TO_STEREO(MIX_REAR2(samples, i + sl, i + sr, 2, coef), );
  926. break;
  927. case DCA_3F2R:
  928. c = channel_mapping[0] * 256;
  929. l = channel_mapping[1] * 256;
  930. r = channel_mapping[2] * 256;
  931. sl = channel_mapping[3] * 256;
  932. sr = channel_mapping[4] * 256;
  933. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  934. MIX_REAR2(samples, i + sl, i + sr, 3, coef));
  935. break;
  936. }
  937. }
  938. #ifndef decode_blockcodes
  939. /* Very compact version of the block code decoder that does not use table
  940. * look-up but is slightly slower */
  941. static int decode_blockcode(int code, int levels, int *values)
  942. {
  943. int i;
  944. int offset = (levels - 1) >> 1;
  945. for (i = 0; i < 4; i++) {
  946. int div = FASTDIV(code, levels);
  947. values[i] = code - offset - div * levels;
  948. code = div;
  949. }
  950. return code;
  951. }
  952. static int decode_blockcodes(int code1, int code2, int levels, int *values)
  953. {
  954. return decode_blockcode(code1, levels, values) |
  955. decode_blockcode(code2, levels, values + 4);
  956. }
  957. #endif
  958. static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
  959. static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
  960. #ifndef int8x8_fmul_int32
  961. static inline void int8x8_fmul_int32(float *dst, const int8_t *src, int scale)
  962. {
  963. float fscale = scale / 16.0;
  964. int i;
  965. for (i = 0; i < 8; i++)
  966. dst[i] = src[i] * fscale;
  967. }
  968. #endif
  969. static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
  970. {
  971. int k, l;
  972. int subsubframe = s->current_subsubframe;
  973. const float *quant_step_table;
  974. /* FIXME */
  975. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  976. LOCAL_ALIGNED_16(int, block, [8]);
  977. /*
  978. * Audio data
  979. */
  980. /* Select quantization step size table */
  981. if (s->bit_rate_index == 0x1f)
  982. quant_step_table = lossless_quant_d;
  983. else
  984. quant_step_table = lossy_quant_d;
  985. for (k = base_channel; k < s->prim_channels; k++) {
  986. if (get_bits_left(&s->gb) < 0)
  987. return AVERROR_INVALIDDATA;
  988. for (l = 0; l < s->vq_start_subband[k]; l++) {
  989. int m;
  990. /* Select the mid-tread linear quantizer */
  991. int abits = s->bitalloc[k][l];
  992. float quant_step_size = quant_step_table[abits];
  993. /*
  994. * Determine quantization index code book and its type
  995. */
  996. /* Select quantization index code book */
  997. int sel = s->quant_index_huffman[k][abits];
  998. /*
  999. * Extract bits from the bit stream
  1000. */
  1001. if (!abits) {
  1002. memset(subband_samples[k][l], 0, 8 * sizeof(subband_samples[0][0][0]));
  1003. } else {
  1004. /* Deal with transients */
  1005. int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
  1006. float rscale = quant_step_size * s->scale_factor[k][l][sfi] *
  1007. s->scalefactor_adj[k][sel];
  1008. if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
  1009. if (abits <= 7) {
  1010. /* Block code */
  1011. int block_code1, block_code2, size, levels, err;
  1012. size = abits_sizes[abits - 1];
  1013. levels = abits_levels[abits - 1];
  1014. block_code1 = get_bits(&s->gb, size);
  1015. block_code2 = get_bits(&s->gb, size);
  1016. err = decode_blockcodes(block_code1, block_code2,
  1017. levels, block);
  1018. if (err) {
  1019. av_log(s->avctx, AV_LOG_ERROR,
  1020. "ERROR: block code look-up failed\n");
  1021. return AVERROR_INVALIDDATA;
  1022. }
  1023. } else {
  1024. /* no coding */
  1025. for (m = 0; m < 8; m++)
  1026. block[m] = get_sbits(&s->gb, abits - 3);
  1027. }
  1028. } else {
  1029. /* Huffman coded */
  1030. for (m = 0; m < 8; m++)
  1031. block[m] = get_bitalloc(&s->gb,
  1032. &dca_smpl_bitalloc[abits], sel);
  1033. }
  1034. s->fmt_conv.int32_to_float_fmul_scalar(subband_samples[k][l],
  1035. block, rscale, 8);
  1036. }
  1037. /*
  1038. * Inverse ADPCM if in prediction mode
  1039. */
  1040. if (s->prediction_mode[k][l]) {
  1041. int n;
  1042. for (m = 0; m < 8; m++) {
  1043. for (n = 1; n <= 4; n++)
  1044. if (m >= n)
  1045. subband_samples[k][l][m] +=
  1046. (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1047. subband_samples[k][l][m - n] / 8192);
  1048. else if (s->predictor_history)
  1049. subband_samples[k][l][m] +=
  1050. (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1051. s->subband_samples_hist[k][l][m - n + 4] / 8192);
  1052. }
  1053. }
  1054. }
  1055. /*
  1056. * Decode VQ encoded high frequencies
  1057. */
  1058. for (l = s->vq_start_subband[k]; l < s->subband_activity[k]; l++) {
  1059. /* 1 vector -> 32 samples but we only need the 8 samples
  1060. * for this subsubframe. */
  1061. int hfvq = s->high_freq_vq[k][l];
  1062. if (!s->debug_flag & 0x01) {
  1063. av_log(s->avctx, AV_LOG_DEBUG,
  1064. "Stream with high frequencies VQ coding\n");
  1065. s->debug_flag |= 0x01;
  1066. }
  1067. int8x8_fmul_int32(subband_samples[k][l],
  1068. &high_freq_vq[hfvq][subsubframe * 8],
  1069. s->scale_factor[k][l][0]);
  1070. }
  1071. }
  1072. /* Check for DSYNC after subsubframe */
  1073. if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
  1074. if (0xFFFF == get_bits(&s->gb, 16)) { /* 0xFFFF */
  1075. #ifdef TRACE
  1076. av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
  1077. #endif
  1078. } else {
  1079. av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
  1080. }
  1081. }
  1082. /* Backup predictor history for adpcm */
  1083. for (k = base_channel; k < s->prim_channels; k++)
  1084. for (l = 0; l < s->vq_start_subband[k]; l++)
  1085. memcpy(s->subband_samples_hist[k][l],
  1086. &subband_samples[k][l][4],
  1087. 4 * sizeof(subband_samples[0][0][0]));
  1088. return 0;
  1089. }
  1090. static int dca_filter_channels(DCAContext *s, int block_index)
  1091. {
  1092. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  1093. int k;
  1094. /* 32 subbands QMF */
  1095. for (k = 0; k < s->prim_channels; k++) {
  1096. /* static float pcm_to_double[8] = { 32768.0, 32768.0, 524288.0, 524288.0,
  1097. 0, 8388608.0, 8388608.0 };*/
  1098. qmf_32_subbands(s, k, subband_samples[k],
  1099. &s->samples[256 * s->channel_order_tab[k]],
  1100. M_SQRT1_2 * s->scale_bias /* pcm_to_double[s->source_pcm_res] */);
  1101. }
  1102. /* Down mixing */
  1103. if (s->avctx->request_channels == 2 && s->prim_channels > 2) {
  1104. dca_downmix(s->samples, s->amode, s->downmix_coef, s->channel_order_tab);
  1105. }
  1106. /* Generate LFE samples for this subsubframe FIXME!!! */
  1107. if (s->output & DCA_LFE) {
  1108. lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
  1109. s->lfe_data + 2 * s->lfe * (block_index + 4),
  1110. &s->samples[256 * dca_lfe_index[s->amode]],
  1111. (1.0 / 256.0) * s->scale_bias);
  1112. /* Outputs 20bits pcm samples */
  1113. }
  1114. return 0;
  1115. }
  1116. static int dca_subframe_footer(DCAContext *s, int base_channel)
  1117. {
  1118. int aux_data_count = 0, i;
  1119. /*
  1120. * Unpack optional information
  1121. */
  1122. /* presumably optional information only appears in the core? */
  1123. if (!base_channel) {
  1124. if (s->timestamp)
  1125. skip_bits_long(&s->gb, 32);
  1126. if (s->aux_data)
  1127. aux_data_count = get_bits(&s->gb, 6);
  1128. for (i = 0; i < aux_data_count; i++)
  1129. get_bits(&s->gb, 8);
  1130. if (s->crc_present && (s->downmix || s->dynrange))
  1131. get_bits(&s->gb, 16);
  1132. }
  1133. return 0;
  1134. }
  1135. /**
  1136. * Decode a dca frame block
  1137. *
  1138. * @param s pointer to the DCAContext
  1139. */
  1140. static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
  1141. {
  1142. int ret;
  1143. /* Sanity check */
  1144. if (s->current_subframe >= s->subframes) {
  1145. av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
  1146. s->current_subframe, s->subframes);
  1147. return AVERROR_INVALIDDATA;
  1148. }
  1149. if (!s->current_subsubframe) {
  1150. #ifdef TRACE
  1151. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
  1152. #endif
  1153. /* Read subframe header */
  1154. if ((ret = dca_subframe_header(s, base_channel, block_index)))
  1155. return ret;
  1156. }
  1157. /* Read subsubframe */
  1158. #ifdef TRACE
  1159. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
  1160. #endif
  1161. if ((ret = dca_subsubframe(s, base_channel, block_index)))
  1162. return ret;
  1163. /* Update state */
  1164. s->current_subsubframe++;
  1165. if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
  1166. s->current_subsubframe = 0;
  1167. s->current_subframe++;
  1168. }
  1169. if (s->current_subframe >= s->subframes) {
  1170. #ifdef TRACE
  1171. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
  1172. #endif
  1173. /* Read subframe footer */
  1174. if ((ret = dca_subframe_footer(s, base_channel)))
  1175. return ret;
  1176. }
  1177. return 0;
  1178. }
  1179. /**
  1180. * Convert bitstream to one representation based on sync marker
  1181. */
  1182. static int dca_convert_bitstream(const uint8_t *src, int src_size, uint8_t *dst,
  1183. int max_size)
  1184. {
  1185. uint32_t mrk;
  1186. int i, tmp;
  1187. const uint16_t *ssrc = (const uint16_t *) src;
  1188. uint16_t *sdst = (uint16_t *) dst;
  1189. PutBitContext pb;
  1190. if ((unsigned) src_size > (unsigned) max_size) {
  1191. // av_log(NULL, AV_LOG_ERROR, "Input frame size larger than DCA_MAX_FRAME_SIZE!\n");
  1192. // return -1;
  1193. src_size = max_size;
  1194. }
  1195. mrk = AV_RB32(src);
  1196. switch (mrk) {
  1197. case DCA_MARKER_RAW_BE:
  1198. memcpy(dst, src, src_size);
  1199. return src_size;
  1200. case DCA_MARKER_RAW_LE:
  1201. for (i = 0; i < (src_size + 1) >> 1; i++)
  1202. *sdst++ = av_bswap16(*ssrc++);
  1203. return src_size;
  1204. case DCA_MARKER_14B_BE:
  1205. case DCA_MARKER_14B_LE:
  1206. init_put_bits(&pb, dst, max_size);
  1207. for (i = 0; i < (src_size + 1) >> 1; i++, src += 2) {
  1208. tmp = ((mrk == DCA_MARKER_14B_BE) ? AV_RB16(src) : AV_RL16(src)) & 0x3FFF;
  1209. put_bits(&pb, 14, tmp);
  1210. }
  1211. flush_put_bits(&pb);
  1212. return (put_bits_count(&pb) + 7) >> 3;
  1213. default:
  1214. return AVERROR_INVALIDDATA;
  1215. }
  1216. }
  1217. /**
  1218. * Return the number of channels in an ExSS speaker mask (HD)
  1219. */
  1220. static int dca_exss_mask2count(int mask)
  1221. {
  1222. /* count bits that mean speaker pairs twice */
  1223. return av_popcount(mask) +
  1224. av_popcount(mask & (DCA_EXSS_CENTER_LEFT_RIGHT |
  1225. DCA_EXSS_FRONT_LEFT_RIGHT |
  1226. DCA_EXSS_FRONT_HIGH_LEFT_RIGHT |
  1227. DCA_EXSS_WIDE_LEFT_RIGHT |
  1228. DCA_EXSS_SIDE_LEFT_RIGHT |
  1229. DCA_EXSS_SIDE_HIGH_LEFT_RIGHT |
  1230. DCA_EXSS_SIDE_REAR_LEFT_RIGHT |
  1231. DCA_EXSS_REAR_LEFT_RIGHT |
  1232. DCA_EXSS_REAR_HIGH_LEFT_RIGHT));
  1233. }
  1234. /**
  1235. * Skip mixing coefficients of a single mix out configuration (HD)
  1236. */
  1237. static void dca_exss_skip_mix_coeffs(GetBitContext *gb, int channels, int out_ch)
  1238. {
  1239. int i;
  1240. for (i = 0; i < channels; i++) {
  1241. int mix_map_mask = get_bits(gb, out_ch);
  1242. int num_coeffs = av_popcount(mix_map_mask);
  1243. skip_bits_long(gb, num_coeffs * 6);
  1244. }
  1245. }
  1246. /**
  1247. * Parse extension substream asset header (HD)
  1248. */
  1249. static int dca_exss_parse_asset_header(DCAContext *s)
  1250. {
  1251. int header_pos = get_bits_count(&s->gb);
  1252. int header_size;
  1253. int channels = 0;
  1254. int embedded_stereo = 0;
  1255. int embedded_6ch = 0;
  1256. int drc_code_present;
  1257. int av_uninit(extensions_mask);
  1258. int i, j;
  1259. if (get_bits_left(&s->gb) < 16)
  1260. return -1;
  1261. /* We will parse just enough to get to the extensions bitmask with which
  1262. * we can set the profile value. */
  1263. header_size = get_bits(&s->gb, 9) + 1;
  1264. skip_bits(&s->gb, 3); // asset index
  1265. if (s->static_fields) {
  1266. if (get_bits1(&s->gb))
  1267. skip_bits(&s->gb, 4); // asset type descriptor
  1268. if (get_bits1(&s->gb))
  1269. skip_bits_long(&s->gb, 24); // language descriptor
  1270. if (get_bits1(&s->gb)) {
  1271. /* How can one fit 1024 bytes of text here if the maximum value
  1272. * for the asset header size field above was 512 bytes? */
  1273. int text_length = get_bits(&s->gb, 10) + 1;
  1274. if (get_bits_left(&s->gb) < text_length * 8)
  1275. return -1;
  1276. skip_bits_long(&s->gb, text_length * 8); // info text
  1277. }
  1278. skip_bits(&s->gb, 5); // bit resolution - 1
  1279. skip_bits(&s->gb, 4); // max sample rate code
  1280. channels = get_bits(&s->gb, 8) + 1;
  1281. if (get_bits1(&s->gb)) { // 1-to-1 channels to speakers
  1282. int spkr_remap_sets;
  1283. int spkr_mask_size = 16;
  1284. int num_spkrs[7];
  1285. if (channels > 2)
  1286. embedded_stereo = get_bits1(&s->gb);
  1287. if (channels > 6)
  1288. embedded_6ch = get_bits1(&s->gb);
  1289. if (get_bits1(&s->gb)) {
  1290. spkr_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1291. skip_bits(&s->gb, spkr_mask_size); // spkr activity mask
  1292. }
  1293. spkr_remap_sets = get_bits(&s->gb, 3);
  1294. for (i = 0; i < spkr_remap_sets; i++) {
  1295. /* std layout mask for each remap set */
  1296. num_spkrs[i] = dca_exss_mask2count(get_bits(&s->gb, spkr_mask_size));
  1297. }
  1298. for (i = 0; i < spkr_remap_sets; i++) {
  1299. int num_dec_ch_remaps = get_bits(&s->gb, 5) + 1;
  1300. if (get_bits_left(&s->gb) < 0)
  1301. return -1;
  1302. for (j = 0; j < num_spkrs[i]; j++) {
  1303. int remap_dec_ch_mask = get_bits_long(&s->gb, num_dec_ch_remaps);
  1304. int num_dec_ch = av_popcount(remap_dec_ch_mask);
  1305. skip_bits_long(&s->gb, num_dec_ch * 5); // remap codes
  1306. }
  1307. }
  1308. } else {
  1309. skip_bits(&s->gb, 3); // representation type
  1310. }
  1311. }
  1312. drc_code_present = get_bits1(&s->gb);
  1313. if (drc_code_present)
  1314. get_bits(&s->gb, 8); // drc code
  1315. if (get_bits1(&s->gb))
  1316. skip_bits(&s->gb, 5); // dialog normalization code
  1317. if (drc_code_present && embedded_stereo)
  1318. get_bits(&s->gb, 8); // drc stereo code
  1319. if (s->mix_metadata && get_bits1(&s->gb)) {
  1320. skip_bits(&s->gb, 1); // external mix
  1321. skip_bits(&s->gb, 6); // post mix gain code
  1322. if (get_bits(&s->gb, 2) != 3) // mixer drc code
  1323. skip_bits(&s->gb, 3); // drc limit
  1324. else
  1325. skip_bits(&s->gb, 8); // custom drc code
  1326. if (get_bits1(&s->gb)) // channel specific scaling
  1327. for (i = 0; i < s->num_mix_configs; i++)
  1328. skip_bits_long(&s->gb, s->mix_config_num_ch[i] * 6); // scale codes
  1329. else
  1330. skip_bits_long(&s->gb, s->num_mix_configs * 6); // scale codes
  1331. for (i = 0; i < s->num_mix_configs; i++) {
  1332. if (get_bits_left(&s->gb) < 0)
  1333. return -1;
  1334. dca_exss_skip_mix_coeffs(&s->gb, channels, s->mix_config_num_ch[i]);
  1335. if (embedded_6ch)
  1336. dca_exss_skip_mix_coeffs(&s->gb, 6, s->mix_config_num_ch[i]);
  1337. if (embedded_stereo)
  1338. dca_exss_skip_mix_coeffs(&s->gb, 2, s->mix_config_num_ch[i]);
  1339. }
  1340. }
  1341. switch (get_bits(&s->gb, 2)) {
  1342. case 0: extensions_mask = get_bits(&s->gb, 12); break;
  1343. case 1: extensions_mask = DCA_EXT_EXSS_XLL; break;
  1344. case 2: extensions_mask = DCA_EXT_EXSS_LBR; break;
  1345. case 3: extensions_mask = 0; /* aux coding */ break;
  1346. }
  1347. /* not parsed further, we were only interested in the extensions mask */
  1348. if (get_bits_left(&s->gb) < 0)
  1349. return -1;
  1350. if (get_bits_count(&s->gb) - header_pos > header_size * 8) {
  1351. av_log(s->avctx, AV_LOG_WARNING, "Asset header size mismatch.\n");
  1352. return -1;
  1353. }
  1354. skip_bits_long(&s->gb, header_pos + header_size * 8 - get_bits_count(&s->gb));
  1355. if (extensions_mask & DCA_EXT_EXSS_XLL)
  1356. s->profile = FF_PROFILE_DTS_HD_MA;
  1357. else if (extensions_mask & (DCA_EXT_EXSS_XBR | DCA_EXT_EXSS_X96 |
  1358. DCA_EXT_EXSS_XXCH))
  1359. s->profile = FF_PROFILE_DTS_HD_HRA;
  1360. if (!(extensions_mask & DCA_EXT_CORE))
  1361. av_log(s->avctx, AV_LOG_WARNING, "DTS core detection mismatch.\n");
  1362. if ((extensions_mask & DCA_CORE_EXTS) != s->core_ext_mask)
  1363. av_log(s->avctx, AV_LOG_WARNING,
  1364. "DTS extensions detection mismatch (%d, %d)\n",
  1365. extensions_mask & DCA_CORE_EXTS, s->core_ext_mask);
  1366. return 0;
  1367. }
  1368. /**
  1369. * Parse extension substream header (HD)
  1370. */
  1371. static void dca_exss_parse_header(DCAContext *s)
  1372. {
  1373. int ss_index;
  1374. int blownup;
  1375. int num_audiop = 1;
  1376. int num_assets = 1;
  1377. int active_ss_mask[8];
  1378. int i, j;
  1379. if (get_bits_left(&s->gb) < 52)
  1380. return;
  1381. skip_bits(&s->gb, 8); // user data
  1382. ss_index = get_bits(&s->gb, 2);
  1383. blownup = get_bits1(&s->gb);
  1384. skip_bits(&s->gb, 8 + 4 * blownup); // header_size
  1385. skip_bits(&s->gb, 16 + 4 * blownup); // hd_size
  1386. s->static_fields = get_bits1(&s->gb);
  1387. if (s->static_fields) {
  1388. skip_bits(&s->gb, 2); // reference clock code
  1389. skip_bits(&s->gb, 3); // frame duration code
  1390. if (get_bits1(&s->gb))
  1391. skip_bits_long(&s->gb, 36); // timestamp
  1392. /* a single stream can contain multiple audio assets that can be
  1393. * combined to form multiple audio presentations */
  1394. num_audiop = get_bits(&s->gb, 3) + 1;
  1395. if (num_audiop > 1) {
  1396. av_log_ask_for_sample(s->avctx, "Multiple DTS-HD audio presentations.");
  1397. /* ignore such streams for now */
  1398. return;
  1399. }
  1400. num_assets = get_bits(&s->gb, 3) + 1;
  1401. if (num_assets > 1) {
  1402. av_log_ask_for_sample(s->avctx, "Multiple DTS-HD audio assets.");
  1403. /* ignore such streams for now */
  1404. return;
  1405. }
  1406. for (i = 0; i < num_audiop; i++)
  1407. active_ss_mask[i] = get_bits(&s->gb, ss_index + 1);
  1408. for (i = 0; i < num_audiop; i++)
  1409. for (j = 0; j <= ss_index; j++)
  1410. if (active_ss_mask[i] & (1 << j))
  1411. skip_bits(&s->gb, 8); // active asset mask
  1412. s->mix_metadata = get_bits1(&s->gb);
  1413. if (s->mix_metadata) {
  1414. int mix_out_mask_size;
  1415. skip_bits(&s->gb, 2); // adjustment level
  1416. mix_out_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1417. s->num_mix_configs = get_bits(&s->gb, 2) + 1;
  1418. for (i = 0; i < s->num_mix_configs; i++) {
  1419. int mix_out_mask = get_bits(&s->gb, mix_out_mask_size);
  1420. s->mix_config_num_ch[i] = dca_exss_mask2count(mix_out_mask);
  1421. }
  1422. }
  1423. }
  1424. for (i = 0; i < num_assets; i++)
  1425. skip_bits_long(&s->gb, 16 + 4 * blownup); // asset size
  1426. for (i = 0; i < num_assets; i++) {
  1427. if (dca_exss_parse_asset_header(s))
  1428. return;
  1429. }
  1430. /* not parsed further, we were only interested in the extensions mask
  1431. * from the asset header */
  1432. }
  1433. /**
  1434. * Main frame decoding function
  1435. * FIXME add arguments
  1436. */
  1437. static int dca_decode_frame(AVCodecContext *avctx, void *data,
  1438. int *got_frame_ptr, AVPacket *avpkt)
  1439. {
  1440. const uint8_t *buf = avpkt->data;
  1441. int buf_size = avpkt->size;
  1442. int lfe_samples;
  1443. int num_core_channels = 0;
  1444. int i, ret;
  1445. float *samples_flt;
  1446. int16_t *samples_s16;
  1447. DCAContext *s = avctx->priv_data;
  1448. int channels;
  1449. int core_ss_end;
  1450. s->xch_present = 0;
  1451. s->dca_buffer_size = dca_convert_bitstream(buf, buf_size, s->dca_buffer,
  1452. DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
  1453. if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
  1454. av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
  1455. return AVERROR_INVALIDDATA;
  1456. }
  1457. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  1458. if ((ret = dca_parse_frame_header(s)) < 0) {
  1459. //seems like the frame is corrupt, try with the next one
  1460. return ret;
  1461. }
  1462. //set AVCodec values with parsed data
  1463. avctx->sample_rate = s->sample_rate;
  1464. avctx->bit_rate = s->bit_rate;
  1465. avctx->frame_size = s->sample_blocks * 32;
  1466. s->profile = FF_PROFILE_DTS;
  1467. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1468. if ((ret = dca_decode_block(s, 0, i))) {
  1469. av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
  1470. return ret;
  1471. }
  1472. }
  1473. /* record number of core channels incase less than max channels are requested */
  1474. num_core_channels = s->prim_channels;
  1475. if (s->ext_coding)
  1476. s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
  1477. else
  1478. s->core_ext_mask = 0;
  1479. core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
  1480. /* only scan for extensions if ext_descr was unknown or indicated a
  1481. * supported XCh extension */
  1482. if (s->core_ext_mask < 0 || s->core_ext_mask & DCA_EXT_XCH) {
  1483. /* if ext_descr was unknown, clear s->core_ext_mask so that the
  1484. * extensions scan can fill it up */
  1485. s->core_ext_mask = FFMAX(s->core_ext_mask, 0);
  1486. /* extensions start at 32-bit boundaries into bitstream */
  1487. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1488. while (core_ss_end - get_bits_count(&s->gb) >= 32) {
  1489. uint32_t bits = get_bits_long(&s->gb, 32);
  1490. switch (bits) {
  1491. case 0x5a5a5a5a: {
  1492. int ext_amode, xch_fsize;
  1493. s->xch_base_channel = s->prim_channels;
  1494. /* validate sync word using XCHFSIZE field */
  1495. xch_fsize = show_bits(&s->gb, 10);
  1496. if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
  1497. (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
  1498. continue;
  1499. /* skip length-to-end-of-frame field for the moment */
  1500. skip_bits(&s->gb, 10);
  1501. s->core_ext_mask |= DCA_EXT_XCH;
  1502. /* extension amode(number of channels in extension) should be 1 */
  1503. /* AFAIK XCh is not used for more channels */
  1504. if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
  1505. av_log(avctx, AV_LOG_ERROR, "XCh extension amode %d not"
  1506. " supported!\n", ext_amode);
  1507. continue;
  1508. }
  1509. /* much like core primary audio coding header */
  1510. dca_parse_audio_coding_header(s, s->xch_base_channel);
  1511. for (i = 0; i < (s->sample_blocks / 8); i++)
  1512. if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
  1513. av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
  1514. continue;
  1515. }
  1516. s->xch_present = 1;
  1517. break;
  1518. }
  1519. case 0x47004a03:
  1520. /* XXCh: extended channels */
  1521. /* usually found either in core or HD part in DTS-HD HRA streams,
  1522. * but not in DTS-ES which contains XCh extensions instead */
  1523. s->core_ext_mask |= DCA_EXT_XXCH;
  1524. break;
  1525. case 0x1d95f262: {
  1526. int fsize96 = show_bits(&s->gb, 12) + 1;
  1527. if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
  1528. continue;
  1529. av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
  1530. get_bits_count(&s->gb));
  1531. skip_bits(&s->gb, 12);
  1532. av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
  1533. av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
  1534. s->core_ext_mask |= DCA_EXT_X96;
  1535. break;
  1536. }
  1537. }
  1538. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1539. }
  1540. } else {
  1541. /* no supported extensions, skip the rest of the core substream */
  1542. skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
  1543. }
  1544. if (s->core_ext_mask & DCA_EXT_X96)
  1545. s->profile = FF_PROFILE_DTS_96_24;
  1546. else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
  1547. s->profile = FF_PROFILE_DTS_ES;
  1548. /* check for ExSS (HD part) */
  1549. if (s->dca_buffer_size - s->frame_size > 32 &&
  1550. get_bits_long(&s->gb, 32) == DCA_HD_MARKER)
  1551. dca_exss_parse_header(s);
  1552. avctx->profile = s->profile;
  1553. channels = s->prim_channels + !!s->lfe;
  1554. if (s->amode < 16) {
  1555. avctx->channel_layout = dca_core_channel_layout[s->amode];
  1556. if (s->xch_present && (!avctx->request_channels ||
  1557. avctx->request_channels > num_core_channels + !!s->lfe)) {
  1558. avctx->channel_layout |= AV_CH_BACK_CENTER;
  1559. if (s->lfe) {
  1560. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1561. s->channel_order_tab = dca_channel_reorder_lfe_xch[s->amode];
  1562. } else {
  1563. s->channel_order_tab = dca_channel_reorder_nolfe_xch[s->amode];
  1564. }
  1565. } else {
  1566. channels = num_core_channels + !!s->lfe;
  1567. s->xch_present = 0; /* disable further xch processing */
  1568. if (s->lfe) {
  1569. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1570. s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
  1571. } else
  1572. s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
  1573. }
  1574. if (channels > !!s->lfe &&
  1575. s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
  1576. return AVERROR_INVALIDDATA;
  1577. if (avctx->request_channels == 2 && s->prim_channels > 2) {
  1578. channels = 2;
  1579. s->output = DCA_STEREO;
  1580. avctx->channel_layout = AV_CH_LAYOUT_STEREO;
  1581. }
  1582. else if (avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE) {
  1583. static const int8_t dca_channel_order_native[9] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
  1584. s->channel_order_tab = dca_channel_order_native;
  1585. }
  1586. } else {
  1587. av_log(avctx, AV_LOG_ERROR, "Non standard configuration %d !\n", s->amode);
  1588. return AVERROR_INVALIDDATA;
  1589. }
  1590. if (avctx->channels != channels) {
  1591. if (avctx->channels)
  1592. av_log(avctx, AV_LOG_INFO, "Number of channels changed in DCA decoder (%d -> %d)\n", avctx->channels, channels);
  1593. avctx->channels = channels;
  1594. }
  1595. /* get output buffer */
  1596. s->frame.nb_samples = 256 * (s->sample_blocks / 8);
  1597. if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
  1598. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1599. return ret;
  1600. }
  1601. samples_flt = (float *) s->frame.data[0];
  1602. samples_s16 = (int16_t *) s->frame.data[0];
  1603. /* filter to get final output */
  1604. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1605. dca_filter_channels(s, i);
  1606. /* If this was marked as a DTS-ES stream we need to subtract back- */
  1607. /* channel from SL & SR to remove matrixed back-channel signal */
  1608. if ((s->source_pcm_res & 1) && s->xch_present) {
  1609. float *back_chan = s->samples + s->channel_order_tab[s->xch_base_channel] * 256;
  1610. float *lt_chan = s->samples + s->channel_order_tab[s->xch_base_channel - 2] * 256;
  1611. float *rt_chan = s->samples + s->channel_order_tab[s->xch_base_channel - 1] * 256;
  1612. s->dsp.vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
  1613. s->dsp.vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
  1614. }
  1615. if (avctx->sample_fmt == AV_SAMPLE_FMT_FLT) {
  1616. s->fmt_conv.float_interleave(samples_flt, s->samples_chanptr, 256,
  1617. channels);
  1618. samples_flt += 256 * channels;
  1619. } else {
  1620. s->fmt_conv.float_to_int16_interleave(samples_s16,
  1621. s->samples_chanptr, 256,
  1622. channels);
  1623. samples_s16 += 256 * channels;
  1624. }
  1625. }
  1626. /* update lfe history */
  1627. lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
  1628. for (i = 0; i < 2 * s->lfe * 4; i++)
  1629. s->lfe_data[i] = s->lfe_data[i + lfe_samples];
  1630. *got_frame_ptr = 1;
  1631. *(AVFrame *) data = s->frame;
  1632. return buf_size;
  1633. }
  1634. /**
  1635. * DCA initialization
  1636. *
  1637. * @param avctx pointer to the AVCodecContext
  1638. */
  1639. static av_cold int dca_decode_init(AVCodecContext *avctx)
  1640. {
  1641. DCAContext *s = avctx->priv_data;
  1642. int i;
  1643. s->avctx = avctx;
  1644. dca_init_vlcs();
  1645. dsputil_init(&s->dsp, avctx);
  1646. ff_mdct_init(&s->imdct, 6, 1, 1.0);
  1647. ff_synth_filter_init(&s->synth);
  1648. ff_dcadsp_init(&s->dcadsp);
  1649. ff_fmt_convert_init(&s->fmt_conv, avctx);
  1650. for (i = 0; i < DCA_PRIM_CHANNELS_MAX + 1; i++)
  1651. s->samples_chanptr[i] = s->samples + i * 256;
  1652. if (avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT) {
  1653. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  1654. s->scale_bias = 1.0 / 32768.0;
  1655. } else {
  1656. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  1657. s->scale_bias = 1.0;
  1658. }
  1659. /* allow downmixing to stereo */
  1660. if (avctx->channels > 0 && avctx->request_channels < avctx->channels &&
  1661. avctx->request_channels == 2) {
  1662. avctx->channels = avctx->request_channels;
  1663. }
  1664. avcodec_get_frame_defaults(&s->frame);
  1665. avctx->coded_frame = &s->frame;
  1666. return 0;
  1667. }
  1668. static av_cold int dca_decode_end(AVCodecContext *avctx)
  1669. {
  1670. DCAContext *s = avctx->priv_data;
  1671. ff_mdct_end(&s->imdct);
  1672. return 0;
  1673. }
  1674. static const AVProfile profiles[] = {
  1675. { FF_PROFILE_DTS, "DTS" },
  1676. { FF_PROFILE_DTS_ES, "DTS-ES" },
  1677. { FF_PROFILE_DTS_96_24, "DTS 96/24" },
  1678. { FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
  1679. { FF_PROFILE_DTS_HD_MA, "DTS-HD MA" },
  1680. { FF_PROFILE_UNKNOWN },
  1681. };
  1682. AVCodec ff_dca_decoder = {
  1683. .name = "dca",
  1684. .type = AVMEDIA_TYPE_AUDIO,
  1685. .id = CODEC_ID_DTS,
  1686. .priv_data_size = sizeof(DCAContext),
  1687. .init = dca_decode_init,
  1688. .decode = dca_decode_frame,
  1689. .close = dca_decode_end,
  1690. .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
  1691. .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
  1692. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLT,
  1693. AV_SAMPLE_FMT_S16,
  1694. AV_SAMPLE_FMT_NONE },
  1695. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  1696. };