You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1286 lines
44KB

  1. /*
  2. * COOK compatible decoder
  3. * Copyright (c) 2003 Sascha Sommer
  4. * Copyright (c) 2005 Benjamin Larsson
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Cook compatible decoder. Bastardization of the G.722.1 standard.
  25. * This decoder handles RealNetworks, RealAudio G2 data.
  26. * Cook is identified by the codec name cook in RM files.
  27. *
  28. * To use this decoder, a calling application must supply the extradata
  29. * bytes provided from the RM container; 8+ bytes for mono streams and
  30. * 16+ for stereo streams (maybe more).
  31. *
  32. * Codec technicalities (all this assume a buffer length of 1024):
  33. * Cook works with several different techniques to achieve its compression.
  34. * In the timedomain the buffer is divided into 8 pieces and quantized. If
  35. * two neighboring pieces have different quantization index a smooth
  36. * quantization curve is used to get a smooth overlap between the different
  37. * pieces.
  38. * To get to the transformdomain Cook uses a modulated lapped transform.
  39. * The transform domain has 50 subbands with 20 elements each. This
  40. * means only a maximum of 50*20=1000 coefficients are used out of the 1024
  41. * available.
  42. */
  43. #include "libavutil/lfg.h"
  44. #include "avcodec.h"
  45. #include "get_bits.h"
  46. #include "dsputil.h"
  47. #include "bytestream.h"
  48. #include "fft.h"
  49. #include "libavutil/audioconvert.h"
  50. #include "sinewin.h"
  51. #include "cookdata.h"
  52. /* the different Cook versions */
  53. #define MONO 0x1000001
  54. #define STEREO 0x1000002
  55. #define JOINT_STEREO 0x1000003
  56. #define MC_COOK 0x2000000 // multichannel Cook, not supported
  57. #define SUBBAND_SIZE 20
  58. #define MAX_SUBPACKETS 5
  59. typedef struct {
  60. int *now;
  61. int *previous;
  62. } cook_gains;
  63. typedef struct {
  64. int ch_idx;
  65. int size;
  66. int num_channels;
  67. int cookversion;
  68. int samples_per_frame;
  69. int subbands;
  70. int js_subband_start;
  71. int js_vlc_bits;
  72. int samples_per_channel;
  73. int log2_numvector_size;
  74. unsigned int channel_mask;
  75. VLC ccpl; ///< channel coupling
  76. int joint_stereo;
  77. int bits_per_subpacket;
  78. int bits_per_subpdiv;
  79. int total_subbands;
  80. int numvector_size; ///< 1 << log2_numvector_size;
  81. float mono_previous_buffer1[1024];
  82. float mono_previous_buffer2[1024];
  83. /** gain buffers */
  84. cook_gains gains1;
  85. cook_gains gains2;
  86. int gain_1[9];
  87. int gain_2[9];
  88. int gain_3[9];
  89. int gain_4[9];
  90. } COOKSubpacket;
  91. typedef struct cook {
  92. /*
  93. * The following 5 functions provide the lowlevel arithmetic on
  94. * the internal audio buffers.
  95. */
  96. void (*scalar_dequant)(struct cook *q, int index, int quant_index,
  97. int *subband_coef_index, int *subband_coef_sign,
  98. float *mlt_p);
  99. void (*decouple)(struct cook *q,
  100. COOKSubpacket *p,
  101. int subband,
  102. float f1, float f2,
  103. float *decode_buffer,
  104. float *mlt_buffer1, float *mlt_buffer2);
  105. void (*imlt_window)(struct cook *q, float *buffer1,
  106. cook_gains *gains_ptr, float *previous_buffer);
  107. void (*interpolate)(struct cook *q, float *buffer,
  108. int gain_index, int gain_index_next);
  109. void (*saturate_output)(struct cook *q, int chan, float *out);
  110. AVCodecContext* avctx;
  111. AVFrame frame;
  112. GetBitContext gb;
  113. /* stream data */
  114. int nb_channels;
  115. int bit_rate;
  116. int sample_rate;
  117. int num_vectors;
  118. int samples_per_channel;
  119. /* states */
  120. AVLFG random_state;
  121. int discarded_packets;
  122. /* transform data */
  123. FFTContext mdct_ctx;
  124. float* mlt_window;
  125. /* VLC data */
  126. VLC envelope_quant_index[13];
  127. VLC sqvh[7]; // scalar quantization
  128. /* generatable tables and related variables */
  129. int gain_size_factor;
  130. float gain_table[23];
  131. /* data buffers */
  132. uint8_t* decoded_bytes_buffer;
  133. DECLARE_ALIGNED(32, float, mono_mdct_output)[2048];
  134. float decode_buffer_1[1024];
  135. float decode_buffer_2[1024];
  136. float decode_buffer_0[1060]; /* static allocation for joint decode */
  137. const float *cplscales[5];
  138. int num_subpackets;
  139. COOKSubpacket subpacket[MAX_SUBPACKETS];
  140. } COOKContext;
  141. static float pow2tab[127];
  142. static float rootpow2tab[127];
  143. /*************** init functions ***************/
  144. /* table generator */
  145. static av_cold void init_pow2table(void)
  146. {
  147. int i;
  148. for (i = -63; i < 64; i++) {
  149. pow2tab[63 + i] = pow(2, i);
  150. rootpow2tab[63 + i] = sqrt(pow(2, i));
  151. }
  152. }
  153. /* table generator */
  154. static av_cold void init_gain_table(COOKContext *q)
  155. {
  156. int i;
  157. q->gain_size_factor = q->samples_per_channel / 8;
  158. for (i = 0; i < 23; i++)
  159. q->gain_table[i] = pow(pow2tab[i + 52],
  160. (1.0 / (double) q->gain_size_factor));
  161. }
  162. static av_cold int init_cook_vlc_tables(COOKContext *q)
  163. {
  164. int i, result;
  165. result = 0;
  166. for (i = 0; i < 13; i++) {
  167. result |= init_vlc(&q->envelope_quant_index[i], 9, 24,
  168. envelope_quant_index_huffbits[i], 1, 1,
  169. envelope_quant_index_huffcodes[i], 2, 2, 0);
  170. }
  171. av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
  172. for (i = 0; i < 7; i++) {
  173. result |= init_vlc(&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
  174. cvh_huffbits[i], 1, 1,
  175. cvh_huffcodes[i], 2, 2, 0);
  176. }
  177. for (i = 0; i < q->num_subpackets; i++) {
  178. if (q->subpacket[i].joint_stereo == 1) {
  179. result |= init_vlc(&q->subpacket[i].ccpl, 6, (1 << q->subpacket[i].js_vlc_bits) - 1,
  180. ccpl_huffbits[q->subpacket[i].js_vlc_bits - 2], 1, 1,
  181. ccpl_huffcodes[q->subpacket[i].js_vlc_bits - 2], 2, 2, 0);
  182. av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
  183. }
  184. }
  185. av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
  186. return result;
  187. }
  188. static av_cold int init_cook_mlt(COOKContext *q)
  189. {
  190. int j, ret;
  191. int mlt_size = q->samples_per_channel;
  192. if ((q->mlt_window = av_malloc(mlt_size * sizeof(*q->mlt_window))) == 0)
  193. return AVERROR(ENOMEM);
  194. /* Initialize the MLT window: simple sine window. */
  195. ff_sine_window_init(q->mlt_window, mlt_size);
  196. for (j = 0; j < mlt_size; j++)
  197. q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
  198. /* Initialize the MDCT. */
  199. if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0))) {
  200. av_free(q->mlt_window);
  201. return ret;
  202. }
  203. av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
  204. av_log2(mlt_size) + 1);
  205. return 0;
  206. }
  207. static const float *maybe_reformat_buffer32(COOKContext *q, const float *ptr, int n)
  208. {
  209. if (1)
  210. return ptr;
  211. }
  212. static av_cold void init_cplscales_table(COOKContext *q)
  213. {
  214. int i;
  215. for (i = 0; i < 5; i++)
  216. q->cplscales[i] = maybe_reformat_buffer32(q, cplscales[i], (1 << (i + 2)) - 1);
  217. }
  218. /*************** init functions end ***********/
  219. #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
  220. #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
  221. /**
  222. * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
  223. * Why? No idea, some checksum/error detection method maybe.
  224. *
  225. * Out buffer size: extra bytes are needed to cope with
  226. * padding/misalignment.
  227. * Subpackets passed to the decoder can contain two, consecutive
  228. * half-subpackets, of identical but arbitrary size.
  229. * 1234 1234 1234 1234 extraA extraB
  230. * Case 1: AAAA BBBB 0 0
  231. * Case 2: AAAA ABBB BB-- 3 3
  232. * Case 3: AAAA AABB BBBB 2 2
  233. * Case 4: AAAA AAAB BBBB BB-- 1 5
  234. *
  235. * Nice way to waste CPU cycles.
  236. *
  237. * @param inbuffer pointer to byte array of indata
  238. * @param out pointer to byte array of outdata
  239. * @param bytes number of bytes
  240. */
  241. static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
  242. {
  243. static const uint32_t tab[4] = {
  244. AV_BE2NE32C(0x37c511f2), AV_BE2NE32C(0xf237c511),
  245. AV_BE2NE32C(0x11f237c5), AV_BE2NE32C(0xc511f237),
  246. };
  247. int i, off;
  248. uint32_t c;
  249. const uint32_t *buf;
  250. uint32_t *obuf = (uint32_t *) out;
  251. /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
  252. * I'm too lazy though, should be something like
  253. * for (i = 0; i < bitamount / 64; i++)
  254. * (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
  255. * Buffer alignment needs to be checked. */
  256. off = (intptr_t) inbuffer & 3;
  257. buf = (const uint32_t *) (inbuffer - off);
  258. c = tab[off];
  259. bytes += 3 + off;
  260. for (i = 0; i < bytes / 4; i++)
  261. obuf[i] = c ^ buf[i];
  262. return off;
  263. }
  264. /**
  265. * Cook uninit
  266. */
  267. static av_cold int cook_decode_close(AVCodecContext *avctx)
  268. {
  269. int i;
  270. COOKContext *q = avctx->priv_data;
  271. av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
  272. /* Free allocated memory buffers. */
  273. av_free(q->mlt_window);
  274. av_free(q->decoded_bytes_buffer);
  275. /* Free the transform. */
  276. ff_mdct_end(&q->mdct_ctx);
  277. /* Free the VLC tables. */
  278. for (i = 0; i < 13; i++)
  279. free_vlc(&q->envelope_quant_index[i]);
  280. for (i = 0; i < 7; i++)
  281. free_vlc(&q->sqvh[i]);
  282. for (i = 0; i < q->num_subpackets; i++)
  283. free_vlc(&q->subpacket[i].ccpl);
  284. av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
  285. return 0;
  286. }
  287. /**
  288. * Fill the gain array for the timedomain quantization.
  289. *
  290. * @param gb pointer to the GetBitContext
  291. * @param gaininfo array[9] of gain indexes
  292. */
  293. static void decode_gain_info(GetBitContext *gb, int *gaininfo)
  294. {
  295. int i, n;
  296. while (get_bits1(gb)) {
  297. /* NOTHING */
  298. }
  299. n = get_bits_count(gb) - 1; // amount of elements*2 to update
  300. i = 0;
  301. while (n--) {
  302. int index = get_bits(gb, 3);
  303. int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
  304. while (i <= index)
  305. gaininfo[i++] = gain;
  306. }
  307. while (i <= 8)
  308. gaininfo[i++] = 0;
  309. }
  310. /**
  311. * Create the quant index table needed for the envelope.
  312. *
  313. * @param q pointer to the COOKContext
  314. * @param quant_index_table pointer to the array
  315. */
  316. static void decode_envelope(COOKContext *q, COOKSubpacket *p,
  317. int *quant_index_table)
  318. {
  319. int i, j, vlc_index;
  320. quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
  321. for (i = 1; i < p->total_subbands; i++) {
  322. vlc_index = i;
  323. if (i >= p->js_subband_start * 2) {
  324. vlc_index -= p->js_subband_start;
  325. } else {
  326. vlc_index /= 2;
  327. if (vlc_index < 1)
  328. vlc_index = 1;
  329. }
  330. if (vlc_index > 13)
  331. vlc_index = 13; // the VLC tables >13 are identical to No. 13
  332. j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
  333. q->envelope_quant_index[vlc_index - 1].bits, 2);
  334. quant_index_table[i] = quant_index_table[i - 1] + j - 12; // differential encoding
  335. }
  336. }
  337. /**
  338. * Calculate the category and category_index vector.
  339. *
  340. * @param q pointer to the COOKContext
  341. * @param quant_index_table pointer to the array
  342. * @param category pointer to the category array
  343. * @param category_index pointer to the category_index array
  344. */
  345. static void categorize(COOKContext *q, COOKSubpacket *p, int *quant_index_table,
  346. int *category, int *category_index)
  347. {
  348. int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
  349. int exp_index2[102];
  350. int exp_index1[102];
  351. int tmp_categorize_array[128 * 2];
  352. int tmp_categorize_array1_idx = p->numvector_size;
  353. int tmp_categorize_array2_idx = p->numvector_size;
  354. bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
  355. if (bits_left > q->samples_per_channel) {
  356. bits_left = q->samples_per_channel +
  357. ((bits_left - q->samples_per_channel) * 5) / 8;
  358. //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
  359. }
  360. memset(&exp_index1, 0, sizeof(exp_index1));
  361. memset(&exp_index2, 0, sizeof(exp_index2));
  362. memset(&tmp_categorize_array, 0, sizeof(tmp_categorize_array));
  363. bias = -32;
  364. /* Estimate bias. */
  365. for (i = 32; i > 0; i = i / 2) {
  366. num_bits = 0;
  367. index = 0;
  368. for (j = p->total_subbands; j > 0; j--) {
  369. exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
  370. index++;
  371. num_bits += expbits_tab[exp_idx];
  372. }
  373. if (num_bits >= bits_left - 32)
  374. bias += i;
  375. }
  376. /* Calculate total number of bits. */
  377. num_bits = 0;
  378. for (i = 0; i < p->total_subbands; i++) {
  379. exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
  380. num_bits += expbits_tab[exp_idx];
  381. exp_index1[i] = exp_idx;
  382. exp_index2[i] = exp_idx;
  383. }
  384. tmpbias1 = tmpbias2 = num_bits;
  385. for (j = 1; j < p->numvector_size; j++) {
  386. if (tmpbias1 + tmpbias2 > 2 * bits_left) { /* ---> */
  387. int max = -999999;
  388. index = -1;
  389. for (i = 0; i < p->total_subbands; i++) {
  390. if (exp_index1[i] < 7) {
  391. v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
  392. if (v >= max) {
  393. max = v;
  394. index = i;
  395. }
  396. }
  397. }
  398. if (index == -1)
  399. break;
  400. tmp_categorize_array[tmp_categorize_array1_idx++] = index;
  401. tmpbias1 -= expbits_tab[exp_index1[index]] -
  402. expbits_tab[exp_index1[index] + 1];
  403. ++exp_index1[index];
  404. } else { /* <--- */
  405. int min = 999999;
  406. index = -1;
  407. for (i = 0; i < p->total_subbands; i++) {
  408. if (exp_index2[i] > 0) {
  409. v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
  410. if (v < min) {
  411. min = v;
  412. index = i;
  413. }
  414. }
  415. }
  416. if (index == -1)
  417. break;
  418. tmp_categorize_array[--tmp_categorize_array2_idx] = index;
  419. tmpbias2 -= expbits_tab[exp_index2[index]] -
  420. expbits_tab[exp_index2[index] - 1];
  421. --exp_index2[index];
  422. }
  423. }
  424. for (i = 0; i < p->total_subbands; i++)
  425. category[i] = exp_index2[i];
  426. for (i = 0; i < p->numvector_size - 1; i++)
  427. category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
  428. }
  429. /**
  430. * Expand the category vector.
  431. *
  432. * @param q pointer to the COOKContext
  433. * @param category pointer to the category array
  434. * @param category_index pointer to the category_index array
  435. */
  436. static inline void expand_category(COOKContext *q, int *category,
  437. int *category_index)
  438. {
  439. int i;
  440. for (i = 0; i < q->num_vectors; i++)
  441. ++category[category_index[i]];
  442. }
  443. /**
  444. * The real requantization of the mltcoefs
  445. *
  446. * @param q pointer to the COOKContext
  447. * @param index index
  448. * @param quant_index quantisation index
  449. * @param subband_coef_index array of indexes to quant_centroid_tab
  450. * @param subband_coef_sign signs of coefficients
  451. * @param mlt_p pointer into the mlt buffer
  452. */
  453. static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
  454. int *subband_coef_index, int *subband_coef_sign,
  455. float *mlt_p)
  456. {
  457. int i;
  458. float f1;
  459. for (i = 0; i < SUBBAND_SIZE; i++) {
  460. if (subband_coef_index[i]) {
  461. f1 = quant_centroid_tab[index][subband_coef_index[i]];
  462. if (subband_coef_sign[i])
  463. f1 = -f1;
  464. } else {
  465. /* noise coding if subband_coef_index[i] == 0 */
  466. f1 = dither_tab[index];
  467. if (av_lfg_get(&q->random_state) < 0x80000000)
  468. f1 = -f1;
  469. }
  470. mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
  471. }
  472. }
  473. /**
  474. * Unpack the subband_coef_index and subband_coef_sign vectors.
  475. *
  476. * @param q pointer to the COOKContext
  477. * @param category pointer to the category array
  478. * @param subband_coef_index array of indexes to quant_centroid_tab
  479. * @param subband_coef_sign signs of coefficients
  480. */
  481. static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
  482. int *subband_coef_index, int *subband_coef_sign)
  483. {
  484. int i, j;
  485. int vlc, vd, tmp, result;
  486. vd = vd_tab[category];
  487. result = 0;
  488. for (i = 0; i < vpr_tab[category]; i++) {
  489. vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
  490. if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
  491. vlc = 0;
  492. result = 1;
  493. }
  494. for (j = vd - 1; j >= 0; j--) {
  495. tmp = (vlc * invradix_tab[category]) / 0x100000;
  496. subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
  497. vlc = tmp;
  498. }
  499. for (j = 0; j < vd; j++) {
  500. if (subband_coef_index[i * vd + j]) {
  501. if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
  502. subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
  503. } else {
  504. result = 1;
  505. subband_coef_sign[i * vd + j] = 0;
  506. }
  507. } else {
  508. subband_coef_sign[i * vd + j] = 0;
  509. }
  510. }
  511. }
  512. return result;
  513. }
  514. /**
  515. * Fill the mlt_buffer with mlt coefficients.
  516. *
  517. * @param q pointer to the COOKContext
  518. * @param category pointer to the category array
  519. * @param quant_index_table pointer to the array
  520. * @param mlt_buffer pointer to mlt coefficients
  521. */
  522. static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
  523. int *quant_index_table, float *mlt_buffer)
  524. {
  525. /* A zero in this table means that the subband coefficient is
  526. random noise coded. */
  527. int subband_coef_index[SUBBAND_SIZE];
  528. /* A zero in this table means that the subband coefficient is a
  529. positive multiplicator. */
  530. int subband_coef_sign[SUBBAND_SIZE];
  531. int band, j;
  532. int index = 0;
  533. for (band = 0; band < p->total_subbands; band++) {
  534. index = category[band];
  535. if (category[band] < 7) {
  536. if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
  537. index = 7;
  538. for (j = 0; j < p->total_subbands; j++)
  539. category[band + j] = 7;
  540. }
  541. }
  542. if (index >= 7) {
  543. memset(subband_coef_index, 0, sizeof(subband_coef_index));
  544. memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
  545. }
  546. q->scalar_dequant(q, index, quant_index_table[band],
  547. subband_coef_index, subband_coef_sign,
  548. &mlt_buffer[band * SUBBAND_SIZE]);
  549. }
  550. /* FIXME: should this be removed, or moved into loop above? */
  551. if (p->total_subbands * SUBBAND_SIZE >= q->samples_per_channel)
  552. return;
  553. }
  554. /**
  555. * function for decoding mono data
  556. *
  557. * @param q pointer to the COOKContext
  558. * @param mlt_buffer pointer to mlt coefficients
  559. */
  560. static void mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
  561. {
  562. int category_index[128];
  563. int quant_index_table[102];
  564. int category[128];
  565. memset(&category, 0, sizeof(category));
  566. memset(&category_index, 0, sizeof(category_index));
  567. decode_envelope(q, p, quant_index_table);
  568. q->num_vectors = get_bits(&q->gb, p->log2_numvector_size);
  569. categorize(q, p, quant_index_table, category, category_index);
  570. expand_category(q, category, category_index);
  571. decode_vectors(q, p, category, quant_index_table, mlt_buffer);
  572. }
  573. /**
  574. * the actual requantization of the timedomain samples
  575. *
  576. * @param q pointer to the COOKContext
  577. * @param buffer pointer to the timedomain buffer
  578. * @param gain_index index for the block multiplier
  579. * @param gain_index_next index for the next block multiplier
  580. */
  581. static void interpolate_float(COOKContext *q, float *buffer,
  582. int gain_index, int gain_index_next)
  583. {
  584. int i;
  585. float fc1, fc2;
  586. fc1 = pow2tab[gain_index + 63];
  587. if (gain_index == gain_index_next) { // static gain
  588. for (i = 0; i < q->gain_size_factor; i++)
  589. buffer[i] *= fc1;
  590. } else { // smooth gain
  591. fc2 = q->gain_table[11 + (gain_index_next - gain_index)];
  592. for (i = 0; i < q->gain_size_factor; i++) {
  593. buffer[i] *= fc1;
  594. fc1 *= fc2;
  595. }
  596. }
  597. }
  598. /**
  599. * Apply transform window, overlap buffers.
  600. *
  601. * @param q pointer to the COOKContext
  602. * @param inbuffer pointer to the mltcoefficients
  603. * @param gains_ptr current and previous gains
  604. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  605. */
  606. static void imlt_window_float(COOKContext *q, float *inbuffer,
  607. cook_gains *gains_ptr, float *previous_buffer)
  608. {
  609. const float fc = pow2tab[gains_ptr->previous[0] + 63];
  610. int i;
  611. /* The weird thing here, is that the two halves of the time domain
  612. * buffer are swapped. Also, the newest data, that we save away for
  613. * next frame, has the wrong sign. Hence the subtraction below.
  614. * Almost sounds like a complex conjugate/reverse data/FFT effect.
  615. */
  616. /* Apply window and overlap */
  617. for (i = 0; i < q->samples_per_channel; i++)
  618. inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
  619. previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
  620. }
  621. /**
  622. * The modulated lapped transform, this takes transform coefficients
  623. * and transforms them into timedomain samples.
  624. * Apply transform window, overlap buffers, apply gain profile
  625. * and buffer management.
  626. *
  627. * @param q pointer to the COOKContext
  628. * @param inbuffer pointer to the mltcoefficients
  629. * @param gains_ptr current and previous gains
  630. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  631. */
  632. static void imlt_gain(COOKContext *q, float *inbuffer,
  633. cook_gains *gains_ptr, float *previous_buffer)
  634. {
  635. float *buffer0 = q->mono_mdct_output;
  636. float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
  637. int i;
  638. /* Inverse modified discrete cosine transform */
  639. q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
  640. q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
  641. /* Apply gain profile */
  642. for (i = 0; i < 8; i++)
  643. if (gains_ptr->now[i] || gains_ptr->now[i + 1])
  644. q->interpolate(q, &buffer1[q->gain_size_factor * i],
  645. gains_ptr->now[i], gains_ptr->now[i + 1]);
  646. /* Save away the current to be previous block. */
  647. memcpy(previous_buffer, buffer0,
  648. q->samples_per_channel * sizeof(*previous_buffer));
  649. }
  650. /**
  651. * function for getting the jointstereo coupling information
  652. *
  653. * @param q pointer to the COOKContext
  654. * @param decouple_tab decoupling array
  655. *
  656. */
  657. static void decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
  658. {
  659. int i;
  660. int vlc = get_bits1(&q->gb);
  661. int start = cplband[p->js_subband_start];
  662. int end = cplband[p->subbands - 1];
  663. int length = end - start + 1;
  664. if (start > end)
  665. return;
  666. if (vlc)
  667. for (i = 0; i < length; i++)
  668. decouple_tab[start + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2);
  669. else
  670. for (i = 0; i < length; i++)
  671. decouple_tab[start + i] = get_bits(&q->gb, p->js_vlc_bits);
  672. }
  673. /*
  674. * function decouples a pair of signals from a single signal via multiplication.
  675. *
  676. * @param q pointer to the COOKContext
  677. * @param subband index of the current subband
  678. * @param f1 multiplier for channel 1 extraction
  679. * @param f2 multiplier for channel 2 extraction
  680. * @param decode_buffer input buffer
  681. * @param mlt_buffer1 pointer to left channel mlt coefficients
  682. * @param mlt_buffer2 pointer to right channel mlt coefficients
  683. */
  684. static void decouple_float(COOKContext *q,
  685. COOKSubpacket *p,
  686. int subband,
  687. float f1, float f2,
  688. float *decode_buffer,
  689. float *mlt_buffer1, float *mlt_buffer2)
  690. {
  691. int j, tmp_idx;
  692. for (j = 0; j < SUBBAND_SIZE; j++) {
  693. tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
  694. mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
  695. mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
  696. }
  697. }
  698. /**
  699. * function for decoding joint stereo data
  700. *
  701. * @param q pointer to the COOKContext
  702. * @param mlt_buffer1 pointer to left channel mlt coefficients
  703. * @param mlt_buffer2 pointer to right channel mlt coefficients
  704. */
  705. static void joint_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer1,
  706. float *mlt_buffer2)
  707. {
  708. int i, j;
  709. int decouple_tab[SUBBAND_SIZE];
  710. float *decode_buffer = q->decode_buffer_0;
  711. int idx, cpl_tmp;
  712. float f1, f2;
  713. const float *cplscale;
  714. memset(decouple_tab, 0, sizeof(decouple_tab));
  715. memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
  716. /* Make sure the buffers are zeroed out. */
  717. memset(mlt_buffer1, 0, 1024 * sizeof(*mlt_buffer1));
  718. memset(mlt_buffer2, 0, 1024 * sizeof(*mlt_buffer2));
  719. decouple_info(q, p, decouple_tab);
  720. mono_decode(q, p, decode_buffer);
  721. /* The two channels are stored interleaved in decode_buffer. */
  722. for (i = 0; i < p->js_subband_start; i++) {
  723. for (j = 0; j < SUBBAND_SIZE; j++) {
  724. mlt_buffer1[i * 20 + j] = decode_buffer[i * 40 + j];
  725. mlt_buffer2[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
  726. }
  727. }
  728. /* When we reach js_subband_start (the higher frequencies)
  729. the coefficients are stored in a coupling scheme. */
  730. idx = (1 << p->js_vlc_bits) - 1;
  731. for (i = p->js_subband_start; i < p->subbands; i++) {
  732. cpl_tmp = cplband[i];
  733. idx -= decouple_tab[cpl_tmp];
  734. cplscale = q->cplscales[p->js_vlc_bits - 2]; // choose decoupler table
  735. f1 = cplscale[decouple_tab[cpl_tmp]];
  736. f2 = cplscale[idx - 1];
  737. q->decouple(q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
  738. idx = (1 << p->js_vlc_bits) - 1;
  739. }
  740. }
  741. /**
  742. * First part of subpacket decoding:
  743. * decode raw stream bytes and read gain info.
  744. *
  745. * @param q pointer to the COOKContext
  746. * @param inbuffer pointer to raw stream data
  747. * @param gains_ptr array of current/prev gain pointers
  748. */
  749. static inline void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p,
  750. const uint8_t *inbuffer,
  751. cook_gains *gains_ptr)
  752. {
  753. int offset;
  754. offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
  755. p->bits_per_subpacket / 8);
  756. init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
  757. p->bits_per_subpacket);
  758. decode_gain_info(&q->gb, gains_ptr->now);
  759. /* Swap current and previous gains */
  760. FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
  761. }
  762. /**
  763. * Saturate the output signal and interleave.
  764. *
  765. * @param q pointer to the COOKContext
  766. * @param chan channel to saturate
  767. * @param out pointer to the output vector
  768. */
  769. static void saturate_output_float(COOKContext *q, int chan, float *out)
  770. {
  771. int j;
  772. float *output = q->mono_mdct_output + q->samples_per_channel;
  773. for (j = 0; j < q->samples_per_channel; j++) {
  774. out[chan + q->nb_channels * j] = av_clipf(output[j], -1.0, 1.0);
  775. }
  776. }
  777. /**
  778. * Final part of subpacket decoding:
  779. * Apply modulated lapped transform, gain compensation,
  780. * clip and convert to integer.
  781. *
  782. * @param q pointer to the COOKContext
  783. * @param decode_buffer pointer to the mlt coefficients
  784. * @param gains_ptr array of current/prev gain pointers
  785. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  786. * @param out pointer to the output buffer
  787. * @param chan 0: left or single channel, 1: right channel
  788. */
  789. static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
  790. cook_gains *gains_ptr, float *previous_buffer,
  791. float *out, int chan)
  792. {
  793. imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
  794. if (out)
  795. q->saturate_output(q, chan, out);
  796. }
  797. /**
  798. * Cook subpacket decoding. This function returns one decoded subpacket,
  799. * usually 1024 samples per channel.
  800. *
  801. * @param q pointer to the COOKContext
  802. * @param inbuffer pointer to the inbuffer
  803. * @param outbuffer pointer to the outbuffer
  804. */
  805. static void decode_subpacket(COOKContext *q, COOKSubpacket *p,
  806. const uint8_t *inbuffer, float *outbuffer)
  807. {
  808. int sub_packet_size = p->size;
  809. /* packet dump */
  810. // for (i = 0; i < sub_packet_size ; i++)
  811. // av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
  812. // av_log(q->avctx, AV_LOG_ERROR, "\n");
  813. memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
  814. decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
  815. if (p->joint_stereo) {
  816. joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2);
  817. } else {
  818. mono_decode(q, p, q->decode_buffer_1);
  819. if (p->num_channels == 2) {
  820. decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
  821. mono_decode(q, p, q->decode_buffer_2);
  822. }
  823. }
  824. mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
  825. p->mono_previous_buffer1, outbuffer, p->ch_idx);
  826. if (p->num_channels == 2)
  827. if (p->joint_stereo)
  828. mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
  829. p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
  830. else
  831. mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
  832. p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
  833. }
  834. /**
  835. * Cook frame decoding
  836. *
  837. * @param avctx pointer to the AVCodecContext
  838. */
  839. static int cook_decode_frame(AVCodecContext *avctx, void *data,
  840. int *got_frame_ptr, AVPacket *avpkt)
  841. {
  842. const uint8_t *buf = avpkt->data;
  843. int buf_size = avpkt->size;
  844. COOKContext *q = avctx->priv_data;
  845. float *samples = NULL;
  846. int i, ret;
  847. int offset = 0;
  848. int chidx = 0;
  849. if (buf_size < avctx->block_align)
  850. return buf_size;
  851. /* get output buffer */
  852. if (q->discarded_packets >= 2) {
  853. q->frame.nb_samples = q->samples_per_channel;
  854. if ((ret = avctx->get_buffer(avctx, &q->frame)) < 0) {
  855. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  856. return ret;
  857. }
  858. samples = (float *) q->frame.data[0];
  859. }
  860. /* estimate subpacket sizes */
  861. q->subpacket[0].size = avctx->block_align;
  862. for (i = 1; i < q->num_subpackets; i++) {
  863. q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
  864. q->subpacket[0].size -= q->subpacket[i].size + 1;
  865. if (q->subpacket[0].size < 0) {
  866. av_log(avctx, AV_LOG_DEBUG,
  867. "frame subpacket size total > avctx->block_align!\n");
  868. return AVERROR_INVALIDDATA;
  869. }
  870. }
  871. /* decode supbackets */
  872. for (i = 0; i < q->num_subpackets; i++) {
  873. q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
  874. q->subpacket[i].bits_per_subpdiv;
  875. q->subpacket[i].ch_idx = chidx;
  876. av_log(avctx, AV_LOG_DEBUG,
  877. "subpacket[%i] size %i js %i %i block_align %i\n",
  878. i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
  879. avctx->block_align);
  880. decode_subpacket(q, &q->subpacket[i], buf + offset, samples);
  881. offset += q->subpacket[i].size;
  882. chidx += q->subpacket[i].num_channels;
  883. av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
  884. i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
  885. }
  886. /* Discard the first two frames: no valid audio. */
  887. if (q->discarded_packets < 2) {
  888. q->discarded_packets++;
  889. *got_frame_ptr = 0;
  890. return avctx->block_align;
  891. }
  892. *got_frame_ptr = 1;
  893. *(AVFrame *) data = q->frame;
  894. return avctx->block_align;
  895. }
  896. #ifdef DEBUG
  897. static void dump_cook_context(COOKContext *q)
  898. {
  899. //int i=0;
  900. #define PRINT(a, b) av_log(q->avctx, AV_LOG_ERROR, " %s = %d\n", a, b);
  901. av_log(q->avctx, AV_LOG_ERROR, "COOKextradata\n");
  902. av_log(q->avctx, AV_LOG_ERROR, "cookversion=%x\n", q->subpacket[0].cookversion);
  903. if (q->subpacket[0].cookversion > STEREO) {
  904. PRINT("js_subband_start", q->subpacket[0].js_subband_start);
  905. PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
  906. }
  907. av_log(q->avctx, AV_LOG_ERROR, "COOKContext\n");
  908. PRINT("nb_channels", q->nb_channels);
  909. PRINT("bit_rate", q->bit_rate);
  910. PRINT("sample_rate", q->sample_rate);
  911. PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
  912. PRINT("samples_per_frame", q->subpacket[0].samples_per_frame);
  913. PRINT("subbands", q->subpacket[0].subbands);
  914. PRINT("js_subband_start", q->subpacket[0].js_subband_start);
  915. PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
  916. PRINT("numvector_size", q->subpacket[0].numvector_size);
  917. PRINT("total_subbands", q->subpacket[0].total_subbands);
  918. }
  919. #endif
  920. static av_cold int cook_count_channels(unsigned int mask)
  921. {
  922. int i;
  923. int channels = 0;
  924. for (i = 0; i < 32; i++)
  925. if (mask & (1 << i))
  926. ++channels;
  927. return channels;
  928. }
  929. /**
  930. * Cook initialization
  931. *
  932. * @param avctx pointer to the AVCodecContext
  933. */
  934. static av_cold int cook_decode_init(AVCodecContext *avctx)
  935. {
  936. COOKContext *q = avctx->priv_data;
  937. const uint8_t *edata_ptr = avctx->extradata;
  938. const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
  939. int extradata_size = avctx->extradata_size;
  940. int s = 0;
  941. unsigned int channel_mask = 0;
  942. int ret;
  943. q->avctx = avctx;
  944. /* Take care of the codec specific extradata. */
  945. if (extradata_size <= 0) {
  946. av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
  947. return AVERROR_INVALIDDATA;
  948. }
  949. av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
  950. /* Take data from the AVCodecContext (RM container). */
  951. q->sample_rate = avctx->sample_rate;
  952. q->nb_channels = avctx->channels;
  953. q->bit_rate = avctx->bit_rate;
  954. /* Initialize RNG. */
  955. av_lfg_init(&q->random_state, 0);
  956. while (edata_ptr < edata_ptr_end) {
  957. /* 8 for mono, 16 for stereo, ? for multichannel
  958. Swap to right endianness so we don't need to care later on. */
  959. if (extradata_size >= 8) {
  960. q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
  961. q->subpacket[s].samples_per_frame = bytestream_get_be16(&edata_ptr);
  962. q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
  963. extradata_size -= 8;
  964. }
  965. if (extradata_size >= 8) {
  966. bytestream_get_be32(&edata_ptr); // Unknown unused
  967. q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
  968. q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
  969. extradata_size -= 8;
  970. }
  971. /* Initialize extradata related variables. */
  972. q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame / q->nb_channels;
  973. q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
  974. /* Initialize default data states. */
  975. q->subpacket[s].log2_numvector_size = 5;
  976. q->subpacket[s].total_subbands = q->subpacket[s].subbands;
  977. q->subpacket[s].num_channels = 1;
  978. /* Initialize version-dependent variables */
  979. av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
  980. q->subpacket[s].cookversion);
  981. q->subpacket[s].joint_stereo = 0;
  982. switch (q->subpacket[s].cookversion) {
  983. case MONO:
  984. if (q->nb_channels != 1) {
  985. av_log_ask_for_sample(avctx, "Container channels != 1.\n");
  986. return AVERROR_PATCHWELCOME;
  987. }
  988. av_log(avctx, AV_LOG_DEBUG, "MONO\n");
  989. break;
  990. case STEREO:
  991. if (q->nb_channels != 1) {
  992. q->subpacket[s].bits_per_subpdiv = 1;
  993. q->subpacket[s].num_channels = 2;
  994. }
  995. av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
  996. break;
  997. case JOINT_STEREO:
  998. if (q->nb_channels != 2) {
  999. av_log_ask_for_sample(avctx, "Container channels != 2.\n");
  1000. return AVERROR_PATCHWELCOME;
  1001. }
  1002. av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
  1003. if (avctx->extradata_size >= 16) {
  1004. q->subpacket[s].total_subbands = q->subpacket[s].subbands +
  1005. q->subpacket[s].js_subband_start;
  1006. q->subpacket[s].joint_stereo = 1;
  1007. q->subpacket[s].num_channels = 2;
  1008. }
  1009. if (q->subpacket[s].samples_per_channel > 256) {
  1010. q->subpacket[s].log2_numvector_size = 6;
  1011. }
  1012. if (q->subpacket[s].samples_per_channel > 512) {
  1013. q->subpacket[s].log2_numvector_size = 7;
  1014. }
  1015. break;
  1016. case MC_COOK:
  1017. av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
  1018. if (extradata_size >= 4)
  1019. channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
  1020. if (cook_count_channels(q->subpacket[s].channel_mask) > 1) {
  1021. q->subpacket[s].total_subbands = q->subpacket[s].subbands +
  1022. q->subpacket[s].js_subband_start;
  1023. q->subpacket[s].joint_stereo = 1;
  1024. q->subpacket[s].num_channels = 2;
  1025. q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame >> 1;
  1026. if (q->subpacket[s].samples_per_channel > 256) {
  1027. q->subpacket[s].log2_numvector_size = 6;
  1028. }
  1029. if (q->subpacket[s].samples_per_channel > 512) {
  1030. q->subpacket[s].log2_numvector_size = 7;
  1031. }
  1032. } else
  1033. q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame;
  1034. break;
  1035. default:
  1036. av_log_ask_for_sample(avctx, "Unknown Cook version.\n");
  1037. return AVERROR_PATCHWELCOME;
  1038. }
  1039. if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
  1040. av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
  1041. return AVERROR_INVALIDDATA;
  1042. } else
  1043. q->samples_per_channel = q->subpacket[0].samples_per_channel;
  1044. /* Initialize variable relations */
  1045. q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
  1046. /* Try to catch some obviously faulty streams, othervise it might be exploitable */
  1047. if (q->subpacket[s].total_subbands > 53) {
  1048. av_log_ask_for_sample(avctx, "total_subbands > 53\n");
  1049. return AVERROR_PATCHWELCOME;
  1050. }
  1051. if ((q->subpacket[s].js_vlc_bits > 6) ||
  1052. (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
  1053. av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
  1054. q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
  1055. return AVERROR_INVALIDDATA;
  1056. }
  1057. if (q->subpacket[s].subbands > 50) {
  1058. av_log_ask_for_sample(avctx, "subbands > 50\n");
  1059. return AVERROR_PATCHWELCOME;
  1060. }
  1061. q->subpacket[s].gains1.now = q->subpacket[s].gain_1;
  1062. q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
  1063. q->subpacket[s].gains2.now = q->subpacket[s].gain_3;
  1064. q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
  1065. q->num_subpackets++;
  1066. s++;
  1067. if (s > MAX_SUBPACKETS) {
  1068. av_log_ask_for_sample(avctx, "Too many subpackets > 5\n");
  1069. return AVERROR_PATCHWELCOME;
  1070. }
  1071. }
  1072. /* Generate tables */
  1073. init_pow2table();
  1074. init_gain_table(q);
  1075. init_cplscales_table(q);
  1076. if ((ret = init_cook_vlc_tables(q)))
  1077. return ret;
  1078. if (avctx->block_align >= UINT_MAX / 2)
  1079. return AVERROR(EINVAL);
  1080. /* Pad the databuffer with:
  1081. DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
  1082. FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
  1083. q->decoded_bytes_buffer =
  1084. av_mallocz(avctx->block_align
  1085. + DECODE_BYTES_PAD1(avctx->block_align)
  1086. + FF_INPUT_BUFFER_PADDING_SIZE);
  1087. if (q->decoded_bytes_buffer == NULL)
  1088. return AVERROR(ENOMEM);
  1089. /* Initialize transform. */
  1090. if ((ret = init_cook_mlt(q)))
  1091. return ret;
  1092. /* Initialize COOK signal arithmetic handling */
  1093. if (1) {
  1094. q->scalar_dequant = scalar_dequant_float;
  1095. q->decouple = decouple_float;
  1096. q->imlt_window = imlt_window_float;
  1097. q->interpolate = interpolate_float;
  1098. q->saturate_output = saturate_output_float;
  1099. }
  1100. /* Try to catch some obviously faulty streams, othervise it might be exploitable */
  1101. if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512)
  1102. || (q->samples_per_channel == 1024)) {
  1103. } else {
  1104. av_log_ask_for_sample(avctx,
  1105. "unknown amount of samples_per_channel = %d\n",
  1106. q->samples_per_channel);
  1107. return AVERROR_PATCHWELCOME;
  1108. }
  1109. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  1110. if (channel_mask)
  1111. avctx->channel_layout = channel_mask;
  1112. else
  1113. avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
  1114. avcodec_get_frame_defaults(&q->frame);
  1115. avctx->coded_frame = &q->frame;
  1116. #ifdef DEBUG
  1117. dump_cook_context(q);
  1118. #endif
  1119. return 0;
  1120. }
  1121. AVCodec ff_cook_decoder = {
  1122. .name = "cook",
  1123. .type = AVMEDIA_TYPE_AUDIO,
  1124. .id = CODEC_ID_COOK,
  1125. .priv_data_size = sizeof(COOKContext),
  1126. .init = cook_decode_init,
  1127. .close = cook_decode_close,
  1128. .decode = cook_decode_frame,
  1129. .capabilities = CODEC_CAP_DR1,
  1130. .long_name = NULL_IF_CONFIG_SMALL("COOK"),
  1131. };