You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

939 lines
30KB

  1. /*
  2. * 4XM codec
  3. * Copyright (c) 2003 Michael Niedermayer
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * 4XM codec.
  24. */
  25. #include "libavutil/intreadwrite.h"
  26. #include "avcodec.h"
  27. #include "dsputil.h"
  28. #include "get_bits.h"
  29. #include "bytestream.h"
  30. //#undef NDEBUG
  31. //#include <assert.h>
  32. #define BLOCK_TYPE_VLC_BITS 5
  33. #define ACDC_VLC_BITS 9
  34. #define CFRAME_BUFFER_COUNT 100
  35. static const uint8_t block_type_tab[2][4][8][2]={
  36. {
  37. { //{8,4,2}x{8,4,2}
  38. { 0,1}, { 2,2}, { 6,3}, {14,4}, {30,5}, {31,5}, { 0,0}
  39. },{ //{8,4}x1
  40. { 0,1}, { 0,0}, { 2,2}, { 6,3}, {14,4}, {15,4}, { 0,0}
  41. },{ //1x{8,4}
  42. { 0,1}, { 2,2}, { 0,0}, { 6,3}, {14,4}, {15,4}, { 0,0}
  43. },{ //1x2, 2x1
  44. { 0,1}, { 0,0}, { 0,0}, { 2,2}, { 6,3}, {14,4}, {15,4}
  45. }
  46. },{
  47. { //{8,4,2}x{8,4,2}
  48. { 1,2}, { 4,3}, { 5,3}, {0,2}, {6,3}, {7,3}, {0,0}
  49. },{//{8,4}x1
  50. { 1,2}, { 0,0}, { 2,2}, {0,2}, {6,3}, {7,3}, {0,0}
  51. },{//1x{8,4}
  52. { 1,2}, { 2,2}, { 0,0}, {0,2}, {6,3}, {7,3}, {0,0}
  53. },{//1x2, 2x1
  54. { 1,2}, { 0,0}, { 0,0}, {0,2}, {2,2}, {6,3}, {7,3}
  55. }
  56. }
  57. };
  58. static const uint8_t size2index[4][4]={
  59. {-1, 3, 1, 1},
  60. { 3, 0, 0, 0},
  61. { 2, 0, 0, 0},
  62. { 2, 0, 0, 0},
  63. };
  64. static const int8_t mv[256][2]={
  65. { 0, 0},{ 0, -1},{ -1, 0},{ 1, 0},{ 0, 1},{ -1, -1},{ 1, -1},{ -1, 1},
  66. { 1, 1},{ 0, -2},{ -2, 0},{ 2, 0},{ 0, 2},{ -1, -2},{ 1, -2},{ -2, -1},
  67. { 2, -1},{ -2, 1},{ 2, 1},{ -1, 2},{ 1, 2},{ -2, -2},{ 2, -2},{ -2, 2},
  68. { 2, 2},{ 0, -3},{ -3, 0},{ 3, 0},{ 0, 3},{ -1, -3},{ 1, -3},{ -3, -1},
  69. { 3, -1},{ -3, 1},{ 3, 1},{ -1, 3},{ 1, 3},{ -2, -3},{ 2, -3},{ -3, -2},
  70. { 3, -2},{ -3, 2},{ 3, 2},{ -2, 3},{ 2, 3},{ 0, -4},{ -4, 0},{ 4, 0},
  71. { 0, 4},{ -1, -4},{ 1, -4},{ -4, -1},{ 4, -1},{ 4, 1},{ -1, 4},{ 1, 4},
  72. { -3, -3},{ -3, 3},{ 3, 3},{ -2, -4},{ -4, -2},{ 4, -2},{ -4, 2},{ -2, 4},
  73. { 2, 4},{ -3, -4},{ 3, -4},{ 4, -3},{ -5, 0},{ -4, 3},{ -3, 4},{ 3, 4},
  74. { -1, -5},{ -5, -1},{ -5, 1},{ -1, 5},{ -2, -5},{ 2, -5},{ 5, -2},{ 5, 2},
  75. { -4, -4},{ -4, 4},{ -3, -5},{ -5, -3},{ -5, 3},{ 3, 5},{ -6, 0},{ 0, 6},
  76. { -6, -1},{ -6, 1},{ 1, 6},{ 2, -6},{ -6, 2},{ 2, 6},{ -5, -4},{ 5, 4},
  77. { 4, 5},{ -6, -3},{ 6, 3},{ -7, 0},{ -1, -7},{ 5, -5},{ -7, 1},{ -1, 7},
  78. { 4, -6},{ 6, 4},{ -2, -7},{ -7, 2},{ -3, -7},{ 7, -3},{ 3, 7},{ 6, -5},
  79. { 0, -8},{ -1, -8},{ -7, -4},{ -8, 1},{ 4, 7},{ 2, -8},{ -2, 8},{ 6, 6},
  80. { -8, 3},{ 5, -7},{ -5, 7},{ 8, -4},{ 0, -9},{ -9, -1},{ 1, 9},{ 7, -6},
  81. { -7, 6},{ -5, -8},{ -5, 8},{ -9, 3},{ 9, -4},{ 7, -7},{ 8, -6},{ 6, 8},
  82. { 10, 1},{-10, 2},{ 9, -5},{ 10, -3},{ -8, -7},{-10, -4},{ 6, -9},{-11, 0},
  83. { 11, 1},{-11, -2},{ -2, 11},{ 7, -9},{ -7, 9},{ 10, 6},{ -4, 11},{ 8, -9},
  84. { 8, 9},{ 5, 11},{ 7,-10},{ 12, -3},{ 11, 6},{ -9, -9},{ 8, 10},{ 5, 12},
  85. {-11, 7},{ 13, 2},{ 6,-12},{ 10, 9},{-11, 8},{ -7, 12},{ 0, 14},{ 14, -2},
  86. { -9, 11},{ -6, 13},{-14, -4},{ -5,-14},{ 5, 14},{-15, -1},{-14, -6},{ 3,-15},
  87. { 11,-11},{ -7, 14},{ -5, 15},{ 8,-14},{ 15, 6},{ 3, 16},{ 7,-15},{-16, 5},
  88. { 0, 17},{-16, -6},{-10, 14},{-16, 7},{ 12, 13},{-16, 8},{-17, 6},{-18, 3},
  89. { -7, 17},{ 15, 11},{ 16, 10},{ 2,-19},{ 3,-19},{-11,-16},{-18, 8},{-19, -6},
  90. { 2,-20},{-17,-11},{-10,-18},{ 8, 19},{-21, -1},{-20, 7},{ -4, 21},{ 21, 5},
  91. { 15, 16},{ 2,-22},{-10,-20},{-22, 5},{ 20,-11},{ -7,-22},{-12, 20},{ 23, -5},
  92. { 13,-20},{ 24, -2},{-15, 19},{-11, 22},{ 16, 19},{ 23,-10},{-18,-18},{ -9,-24},
  93. { 24,-10},{ -3, 26},{-23, 13},{-18,-20},{ 17, 21},{ -4, 27},{ 27, 6},{ 1,-28},
  94. {-11, 26},{-17,-23},{ 7, 28},{ 11,-27},{ 29, 5},{-23,-19},{-28,-11},{-21, 22},
  95. {-30, 7},{-17, 26},{-27, 16},{ 13, 29},{ 19,-26},{ 10,-31},{-14,-30},{ 20,-27},
  96. {-29, 18},{-16,-31},{-28,-22},{ 21,-30},{-25, 28},{ 26,-29},{ 25,-32},{-32,-32}
  97. };
  98. // this is simply the scaled down elementwise product of the standard jpeg quantizer table and the AAN premul table
  99. static const uint8_t dequant_table[64]={
  100. 16, 15, 13, 19, 24, 31, 28, 17,
  101. 17, 23, 25, 31, 36, 63, 45, 21,
  102. 18, 24, 27, 37, 52, 59, 49, 20,
  103. 16, 28, 34, 40, 60, 80, 51, 20,
  104. 18, 31, 48, 66, 68, 86, 56, 21,
  105. 19, 38, 56, 59, 64, 64, 48, 20,
  106. 27, 48, 55, 55, 56, 51, 35, 15,
  107. 20, 35, 34, 32, 31, 22, 15, 8,
  108. };
  109. static VLC block_type_vlc[2][4];
  110. typedef struct CFrameBuffer{
  111. unsigned int allocated_size;
  112. unsigned int size;
  113. int id;
  114. uint8_t *data;
  115. }CFrameBuffer;
  116. typedef struct FourXContext{
  117. AVCodecContext *avctx;
  118. DSPContext dsp;
  119. AVFrame current_picture, last_picture;
  120. GetBitContext pre_gb; ///< ac/dc prefix
  121. GetBitContext gb;
  122. GetByteContext g;
  123. GetByteContext g2;
  124. int mv[256];
  125. VLC pre_vlc;
  126. int last_dc;
  127. DECLARE_ALIGNED(16, DCTELEM, block)[6][64];
  128. void *bitstream_buffer;
  129. unsigned int bitstream_buffer_size;
  130. int version;
  131. CFrameBuffer cfrm[CFRAME_BUFFER_COUNT];
  132. } FourXContext;
  133. #define FIX_1_082392200 70936
  134. #define FIX_1_414213562 92682
  135. #define FIX_1_847759065 121095
  136. #define FIX_2_613125930 171254
  137. #define MULTIPLY(var,const) (((var)*(const)) >> 16)
  138. static void idct(DCTELEM block[64]){
  139. int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  140. int tmp10, tmp11, tmp12, tmp13;
  141. int z5, z10, z11, z12, z13;
  142. int i;
  143. int temp[64];
  144. for(i=0; i<8; i++){
  145. tmp10 = block[8*0 + i] + block[8*4 + i];
  146. tmp11 = block[8*0 + i] - block[8*4 + i];
  147. tmp13 = block[8*2 + i] + block[8*6 + i];
  148. tmp12 = MULTIPLY(block[8*2 + i] - block[8*6 + i], FIX_1_414213562) - tmp13;
  149. tmp0 = tmp10 + tmp13;
  150. tmp3 = tmp10 - tmp13;
  151. tmp1 = tmp11 + tmp12;
  152. tmp2 = tmp11 - tmp12;
  153. z13 = block[8*5 + i] + block[8*3 + i];
  154. z10 = block[8*5 + i] - block[8*3 + i];
  155. z11 = block[8*1 + i] + block[8*7 + i];
  156. z12 = block[8*1 + i] - block[8*7 + i];
  157. tmp7 = z11 + z13;
  158. tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562);
  159. z5 = MULTIPLY(z10 + z12, FIX_1_847759065);
  160. tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5;
  161. tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5;
  162. tmp6 = tmp12 - tmp7;
  163. tmp5 = tmp11 - tmp6;
  164. tmp4 = tmp10 + tmp5;
  165. temp[8*0 + i] = tmp0 + tmp7;
  166. temp[8*7 + i] = tmp0 - tmp7;
  167. temp[8*1 + i] = tmp1 + tmp6;
  168. temp[8*6 + i] = tmp1 - tmp6;
  169. temp[8*2 + i] = tmp2 + tmp5;
  170. temp[8*5 + i] = tmp2 - tmp5;
  171. temp[8*4 + i] = tmp3 + tmp4;
  172. temp[8*3 + i] = tmp3 - tmp4;
  173. }
  174. for(i=0; i<8*8; i+=8){
  175. tmp10 = temp[0 + i] + temp[4 + i];
  176. tmp11 = temp[0 + i] - temp[4 + i];
  177. tmp13 = temp[2 + i] + temp[6 + i];
  178. tmp12 = MULTIPLY(temp[2 + i] - temp[6 + i], FIX_1_414213562) - tmp13;
  179. tmp0 = tmp10 + tmp13;
  180. tmp3 = tmp10 - tmp13;
  181. tmp1 = tmp11 + tmp12;
  182. tmp2 = tmp11 - tmp12;
  183. z13 = temp[5 + i] + temp[3 + i];
  184. z10 = temp[5 + i] - temp[3 + i];
  185. z11 = temp[1 + i] + temp[7 + i];
  186. z12 = temp[1 + i] - temp[7 + i];
  187. tmp7 = z11 + z13;
  188. tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562);
  189. z5 = MULTIPLY(z10 + z12, FIX_1_847759065);
  190. tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5;
  191. tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5;
  192. tmp6 = tmp12 - tmp7;
  193. tmp5 = tmp11 - tmp6;
  194. tmp4 = tmp10 + tmp5;
  195. block[0 + i] = (tmp0 + tmp7)>>6;
  196. block[7 + i] = (tmp0 - tmp7)>>6;
  197. block[1 + i] = (tmp1 + tmp6)>>6;
  198. block[6 + i] = (tmp1 - tmp6)>>6;
  199. block[2 + i] = (tmp2 + tmp5)>>6;
  200. block[5 + i] = (tmp2 - tmp5)>>6;
  201. block[4 + i] = (tmp3 + tmp4)>>6;
  202. block[3 + i] = (tmp3 - tmp4)>>6;
  203. }
  204. }
  205. static av_cold void init_vlcs(FourXContext *f){
  206. static VLC_TYPE table[8][32][2];
  207. int i;
  208. for(i=0; i<8; i++){
  209. block_type_vlc[0][i].table= table[i];
  210. block_type_vlc[0][i].table_allocated= 32;
  211. init_vlc(&block_type_vlc[0][i], BLOCK_TYPE_VLC_BITS, 7,
  212. &block_type_tab[0][i][0][1], 2, 1,
  213. &block_type_tab[0][i][0][0], 2, 1, INIT_VLC_USE_NEW_STATIC);
  214. }
  215. }
  216. static void init_mv(FourXContext *f){
  217. int i;
  218. for(i=0; i<256; i++){
  219. if(f->version>1)
  220. f->mv[i] = mv[i][0] + mv[i][1] *f->current_picture.linesize[0]/2;
  221. else
  222. f->mv[i] = (i&15) - 8 + ((i>>4)-8)*f->current_picture.linesize[0]/2;
  223. }
  224. }
  225. #if HAVE_BIGENDIAN
  226. #define LE_CENTRIC_MUL(dst, src, scale, dc) \
  227. { \
  228. unsigned tmpval = AV_RN32(src); \
  229. tmpval = (tmpval << 16) | (tmpval >> 16); \
  230. tmpval = tmpval * (scale) + (dc); \
  231. tmpval = (tmpval << 16) | (tmpval >> 16); \
  232. AV_WN32A(dst, tmpval); \
  233. }
  234. #else
  235. #define LE_CENTRIC_MUL(dst, src, scale, dc) \
  236. { \
  237. unsigned tmpval = AV_RN32(src) * (scale) + (dc); \
  238. AV_WN32A(dst, tmpval); \
  239. }
  240. #endif
  241. static inline void mcdc(uint16_t *dst, uint16_t *src, int log2w, int h, int stride, int scale, unsigned dc){
  242. int i;
  243. dc*= 0x10001;
  244. switch(log2w){
  245. case 0:
  246. for(i=0; i<h; i++){
  247. dst[0] = scale*src[0] + dc;
  248. if(scale) src += stride;
  249. dst += stride;
  250. }
  251. break;
  252. case 1:
  253. for(i=0; i<h; i++){
  254. LE_CENTRIC_MUL(dst, src, scale, dc);
  255. if(scale) src += stride;
  256. dst += stride;
  257. }
  258. break;
  259. case 2:
  260. for(i=0; i<h; i++){
  261. LE_CENTRIC_MUL(dst, src, scale, dc);
  262. LE_CENTRIC_MUL(dst + 2, src + 2, scale, dc);
  263. if(scale) src += stride;
  264. dst += stride;
  265. }
  266. break;
  267. case 3:
  268. for(i=0; i<h; i++){
  269. LE_CENTRIC_MUL(dst, src, scale, dc);
  270. LE_CENTRIC_MUL(dst + 2, src + 2, scale, dc);
  271. LE_CENTRIC_MUL(dst + 4, src + 4, scale, dc);
  272. LE_CENTRIC_MUL(dst + 6, src + 6, scale, dc);
  273. if(scale) src += stride;
  274. dst += stride;
  275. }
  276. break;
  277. default: assert(0);
  278. }
  279. }
  280. static void decode_p_block(FourXContext *f, uint16_t *dst, uint16_t *src, int log2w, int log2h, int stride){
  281. const int index= size2index[log2h][log2w];
  282. const int h= 1<<log2h;
  283. int code= get_vlc2(&f->gb, block_type_vlc[1-(f->version>1)][index].table, BLOCK_TYPE_VLC_BITS, 1);
  284. uint16_t *start= (uint16_t*)f->last_picture.data[0];
  285. uint16_t *end= start + stride*(f->avctx->height-h+1) - (1<<log2w);
  286. assert(code>=0 && code<=6);
  287. if(code == 0){
  288. if (f->g.buffer_end - f->g.buffer < 1){
  289. av_log(f->avctx, AV_LOG_ERROR, "bytestream overread\n");
  290. return;
  291. }
  292. src += f->mv[ *f->g.buffer++ ];
  293. if(start > src || src > end){
  294. av_log(f->avctx, AV_LOG_ERROR, "mv out of pic\n");
  295. return;
  296. }
  297. mcdc(dst, src, log2w, h, stride, 1, 0);
  298. }else if(code == 1){
  299. log2h--;
  300. decode_p_block(f, dst , src , log2w, log2h, stride);
  301. decode_p_block(f, dst + (stride<<log2h), src + (stride<<log2h), log2w, log2h, stride);
  302. }else if(code == 2){
  303. log2w--;
  304. decode_p_block(f, dst , src , log2w, log2h, stride);
  305. decode_p_block(f, dst + (1<<log2w), src + (1<<log2w), log2w, log2h, stride);
  306. }else if(code == 3 && f->version<2){
  307. mcdc(dst, src, log2w, h, stride, 1, 0);
  308. }else if(code == 4){
  309. if (f->g.buffer_end - f->g.buffer < 1){
  310. av_log(f->avctx, AV_LOG_ERROR, "bytestream overread\n");
  311. return;
  312. }
  313. src += f->mv[ *f->g.buffer++ ];
  314. if(start > src || src > end){
  315. av_log(f->avctx, AV_LOG_ERROR, "mv out of pic\n");
  316. return;
  317. }
  318. if (f->g2.buffer_end - f->g2.buffer < 1){
  319. av_log(f->avctx, AV_LOG_ERROR, "wordstream overread\n");
  320. return;
  321. }
  322. mcdc(dst, src, log2w, h, stride, 1, bytestream2_get_le16(&f->g2));
  323. }else if(code == 5){
  324. if (f->g2.buffer_end - f->g2.buffer < 1){
  325. av_log(f->avctx, AV_LOG_ERROR, "wordstream overread\n");
  326. return;
  327. }
  328. mcdc(dst, src, log2w, h, stride, 0, bytestream2_get_le16(&f->g2));
  329. }else if(code == 6){
  330. if (f->g2.buffer_end - f->g2.buffer < 2){
  331. av_log(f->avctx, AV_LOG_ERROR, "wordstream overread\n");
  332. return;
  333. }
  334. if(log2w){
  335. dst[0] = bytestream2_get_le16(&f->g2);
  336. dst[1] = bytestream2_get_le16(&f->g2);
  337. }else{
  338. dst[0 ] = bytestream2_get_le16(&f->g2);
  339. dst[stride] = bytestream2_get_le16(&f->g2);
  340. }
  341. }
  342. }
  343. static int decode_p_frame(FourXContext *f, const uint8_t *buf, int length){
  344. int x, y;
  345. const int width= f->avctx->width;
  346. const int height= f->avctx->height;
  347. uint16_t *src= (uint16_t*)f->last_picture.data[0];
  348. uint16_t *dst= (uint16_t*)f->current_picture.data[0];
  349. const int stride= f->current_picture.linesize[0]>>1;
  350. unsigned int bitstream_size, bytestream_size, wordstream_size, extra, bytestream_offset, wordstream_offset;
  351. if(f->version>1){
  352. extra=20;
  353. if (length < extra)
  354. return -1;
  355. bitstream_size= AV_RL32(buf+8);
  356. wordstream_size= AV_RL32(buf+12);
  357. bytestream_size= AV_RL32(buf+16);
  358. }else{
  359. extra=0;
  360. bitstream_size = AV_RL16(buf-4);
  361. wordstream_size= AV_RL16(buf-2);
  362. bytestream_size= FFMAX(length - bitstream_size - wordstream_size, 0);
  363. }
  364. if (bitstream_size > length ||
  365. bytestream_size > length - bitstream_size ||
  366. wordstream_size > length - bytestream_size - bitstream_size ||
  367. extra > length - bytestream_size - bitstream_size - wordstream_size){
  368. av_log(f->avctx, AV_LOG_ERROR, "lengths %d %d %d %d\n", bitstream_size, bytestream_size, wordstream_size,
  369. bitstream_size+ bytestream_size+ wordstream_size - length);
  370. return -1;
  371. }
  372. av_fast_malloc(&f->bitstream_buffer, &f->bitstream_buffer_size, bitstream_size + FF_INPUT_BUFFER_PADDING_SIZE);
  373. if (!f->bitstream_buffer)
  374. return AVERROR(ENOMEM);
  375. f->dsp.bswap_buf(f->bitstream_buffer, (const uint32_t*)(buf + extra), bitstream_size/4);
  376. memset((uint8_t*)f->bitstream_buffer + bitstream_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  377. init_get_bits(&f->gb, f->bitstream_buffer, 8*bitstream_size);
  378. wordstream_offset = extra + bitstream_size;
  379. bytestream_offset = extra + bitstream_size + wordstream_size;
  380. bytestream2_init(&f->g2, buf + wordstream_offset, length - wordstream_offset);
  381. bytestream2_init(&f->g, buf + bytestream_offset, length - bytestream_offset);
  382. init_mv(f);
  383. for(y=0; y<height; y+=8){
  384. for(x=0; x<width; x+=8){
  385. decode_p_block(f, dst + x, src + x, 3, 3, stride);
  386. }
  387. src += 8*stride;
  388. dst += 8*stride;
  389. }
  390. return 0;
  391. }
  392. /**
  393. * decode block and dequantize.
  394. * Note this is almost identical to MJPEG.
  395. */
  396. static int decode_i_block(FourXContext *f, DCTELEM *block){
  397. int code, i, j, level, val;
  398. if(get_bits_left(&f->gb) < 2){
  399. av_log(f->avctx, AV_LOG_ERROR, "%d bits left before decode_i_block()\n", get_bits_left(&f->gb));
  400. return -1;
  401. }
  402. /* DC coef */
  403. val = get_vlc2(&f->pre_gb, f->pre_vlc.table, ACDC_VLC_BITS, 3);
  404. if (val>>4){
  405. av_log(f->avctx, AV_LOG_ERROR, "error dc run != 0\n");
  406. }
  407. if(val)
  408. val = get_xbits(&f->gb, val);
  409. val = val * dequant_table[0] + f->last_dc;
  410. f->last_dc =
  411. block[0] = val;
  412. /* AC coefs */
  413. i = 1;
  414. for(;;) {
  415. code = get_vlc2(&f->pre_gb, f->pre_vlc.table, ACDC_VLC_BITS, 3);
  416. /* EOB */
  417. if (code == 0)
  418. break;
  419. if (code == 0xf0) {
  420. i += 16;
  421. } else {
  422. level = get_xbits(&f->gb, code & 0xf);
  423. i += code >> 4;
  424. if (i >= 64) {
  425. av_log(f->avctx, AV_LOG_ERROR, "run %d oveflow\n", i);
  426. return 0;
  427. }
  428. j= ff_zigzag_direct[i];
  429. block[j] = level * dequant_table[j];
  430. i++;
  431. if (i >= 64)
  432. break;
  433. }
  434. }
  435. return 0;
  436. }
  437. static inline void idct_put(FourXContext *f, int x, int y){
  438. DCTELEM (*block)[64]= f->block;
  439. int stride= f->current_picture.linesize[0]>>1;
  440. int i;
  441. uint16_t *dst = ((uint16_t*)f->current_picture.data[0]) + y * stride + x;
  442. for(i=0; i<4; i++){
  443. block[i][0] += 0x80*8*8;
  444. idct(block[i]);
  445. }
  446. if(!(f->avctx->flags&CODEC_FLAG_GRAY)){
  447. for(i=4; i<6; i++) idct(block[i]);
  448. }
  449. /* Note transform is:
  450. y= ( 1b + 4g + 2r)/14
  451. cb=( 3b - 2g - 1r)/14
  452. cr=(-1b - 4g + 5r)/14
  453. */
  454. for(y=0; y<8; y++){
  455. for(x=0; x<8; x++){
  456. DCTELEM *temp= block[(x>>2) + 2*(y>>2)] + 2*(x&3) + 2*8*(y&3); //FIXME optimize
  457. int cb= block[4][x + 8*y];
  458. int cr= block[5][x + 8*y];
  459. int cg= (cb + cr)>>1;
  460. int y;
  461. cb+=cb;
  462. y = temp[0];
  463. dst[0 ]= ((y+cb)>>3) + (((y-cg)&0xFC)<<3) + (((y+cr)&0xF8)<<8);
  464. y = temp[1];
  465. dst[1 ]= ((y+cb)>>3) + (((y-cg)&0xFC)<<3) + (((y+cr)&0xF8)<<8);
  466. y = temp[8];
  467. dst[ stride]= ((y+cb)>>3) + (((y-cg)&0xFC)<<3) + (((y+cr)&0xF8)<<8);
  468. y = temp[9];
  469. dst[1+stride]= ((y+cb)>>3) + (((y-cg)&0xFC)<<3) + (((y+cr)&0xF8)<<8);
  470. dst += 2;
  471. }
  472. dst += 2*stride - 2*8;
  473. }
  474. }
  475. static int decode_i_mb(FourXContext *f){
  476. int i;
  477. f->dsp.clear_blocks(f->block[0]);
  478. for(i=0; i<6; i++){
  479. if(decode_i_block(f, f->block[i]) < 0)
  480. return -1;
  481. }
  482. return 0;
  483. }
  484. static const uint8_t *read_huffman_tables(FourXContext *f, const uint8_t * const buf, int buf_size){
  485. int frequency[512];
  486. uint8_t flag[512];
  487. int up[512];
  488. uint8_t len_tab[257];
  489. int bits_tab[257];
  490. int start, end;
  491. const uint8_t *ptr= buf;
  492. const uint8_t *ptr_end = buf + buf_size;
  493. int j;
  494. memset(frequency, 0, sizeof(frequency));
  495. memset(up, -1, sizeof(up));
  496. start= *ptr++;
  497. end= *ptr++;
  498. for(;;){
  499. int i;
  500. if (start <= end && ptr_end - ptr < end - start + 1 + 1)
  501. return NULL;
  502. for(i=start; i<=end; i++){
  503. frequency[i]= *ptr++;
  504. }
  505. start= *ptr++;
  506. if(start==0) break;
  507. end= *ptr++;
  508. }
  509. frequency[256]=1;
  510. while((ptr - buf)&3) ptr++; // 4byte align
  511. for(j=257; j<512; j++){
  512. int min_freq[2]= {256*256, 256*256};
  513. int smallest[2]= {0, 0};
  514. int i;
  515. for(i=0; i<j; i++){
  516. if(frequency[i] == 0) continue;
  517. if(frequency[i] < min_freq[1]){
  518. if(frequency[i] < min_freq[0]){
  519. min_freq[1]= min_freq[0]; smallest[1]= smallest[0];
  520. min_freq[0]= frequency[i];smallest[0]= i;
  521. }else{
  522. min_freq[1]= frequency[i];smallest[1]= i;
  523. }
  524. }
  525. }
  526. if(min_freq[1] == 256*256) break;
  527. frequency[j]= min_freq[0] + min_freq[1];
  528. flag[ smallest[0] ]= 0;
  529. flag[ smallest[1] ]= 1;
  530. up[ smallest[0] ]=
  531. up[ smallest[1] ]= j;
  532. frequency[ smallest[0] ]= frequency[ smallest[1] ]= 0;
  533. }
  534. for(j=0; j<257; j++){
  535. int node;
  536. int len=0;
  537. int bits=0;
  538. for(node= j; up[node] != -1; node= up[node]){
  539. bits += flag[node]<<len;
  540. len++;
  541. if(len > 31) av_log(f->avctx, AV_LOG_ERROR, "vlc length overflow\n"); //can this happen at all ?
  542. }
  543. bits_tab[j]= bits;
  544. len_tab[j]= len;
  545. }
  546. if (init_vlc(&f->pre_vlc, ACDC_VLC_BITS, 257,
  547. len_tab , 1, 1,
  548. bits_tab, 4, 4, 0))
  549. return NULL;
  550. return ptr;
  551. }
  552. static int mix(int c0, int c1){
  553. int blue = 2*(c0&0x001F) + (c1&0x001F);
  554. int green= (2*(c0&0x03E0) + (c1&0x03E0))>>5;
  555. int red = 2*(c0>>10) + (c1>>10);
  556. return red/3*1024 + green/3*32 + blue/3;
  557. }
  558. static int decode_i2_frame(FourXContext *f, const uint8_t *buf, int length){
  559. int x, y, x2, y2;
  560. const int width= f->avctx->width;
  561. const int height= f->avctx->height;
  562. const int mbs = (FFALIGN(width, 16) >> 4) * (FFALIGN(height, 16) >> 4);
  563. uint16_t *dst= (uint16_t*)f->current_picture.data[0];
  564. const int stride= f->current_picture.linesize[0]>>1;
  565. const uint8_t *buf_end = buf + length;
  566. GetByteContext g3;
  567. if(length < mbs * 8) {
  568. av_log(f->avctx, AV_LOG_ERROR, "packet size too small\n");
  569. return AVERROR_INVALIDDATA;
  570. }
  571. bytestream2_init(&g3, buf, length);
  572. for(y=0; y<height; y+=16){
  573. for(x=0; x<width; x+=16){
  574. unsigned int color[4], bits;
  575. if (buf_end - buf < 8)
  576. return -1;
  577. memset(color, 0, sizeof(color));
  578. //warning following is purely guessed ...
  579. color[0]= bytestream2_get_le16u(&g3);
  580. color[1]= bytestream2_get_le16u(&g3);
  581. if(color[0]&0x8000) av_log(NULL, AV_LOG_ERROR, "unk bit 1\n");
  582. if(color[1]&0x8000) av_log(NULL, AV_LOG_ERROR, "unk bit 2\n");
  583. color[2]= mix(color[0], color[1]);
  584. color[3]= mix(color[1], color[0]);
  585. bits= bytestream2_get_le32u(&g3);
  586. for(y2=0; y2<16; y2++){
  587. for(x2=0; x2<16; x2++){
  588. int index= 2*(x2>>2) + 8*(y2>>2);
  589. dst[y2*stride+x2]= color[(bits>>index)&3];
  590. }
  591. }
  592. dst+=16;
  593. }
  594. dst += 16 * stride - x;
  595. }
  596. return 0;
  597. }
  598. static int decode_i_frame(FourXContext *f, const uint8_t *buf, int length){
  599. int x, y;
  600. const int width= f->avctx->width;
  601. const int height= f->avctx->height;
  602. const unsigned int bitstream_size= AV_RL32(buf);
  603. unsigned int prestream_size;
  604. const uint8_t *prestream;
  605. if (bitstream_size > (1<<26) || length < bitstream_size + 12) {
  606. av_log(f->avctx, AV_LOG_ERROR, "packet size too small\n");
  607. return AVERROR_INVALIDDATA;
  608. }
  609. prestream_size = 4 * AV_RL32(buf + bitstream_size + 4);
  610. prestream = buf + bitstream_size + 12;
  611. if (prestream_size > (1<<26) ||
  612. prestream_size != length - (bitstream_size + 12)){
  613. av_log(f->avctx, AV_LOG_ERROR, "size mismatch %d %d %d\n", prestream_size, bitstream_size, length);
  614. return -1;
  615. }
  616. prestream= read_huffman_tables(f, prestream, buf + length - prestream);
  617. if (!prestream)
  618. return -1;
  619. init_get_bits(&f->gb, buf + 4, 8*bitstream_size);
  620. prestream_size= length + buf - prestream;
  621. av_fast_malloc(&f->bitstream_buffer, &f->bitstream_buffer_size, prestream_size + FF_INPUT_BUFFER_PADDING_SIZE);
  622. if (!f->bitstream_buffer)
  623. return AVERROR(ENOMEM);
  624. f->dsp.bswap_buf(f->bitstream_buffer, (const uint32_t*)prestream, prestream_size/4);
  625. memset((uint8_t*)f->bitstream_buffer + prestream_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  626. init_get_bits(&f->pre_gb, f->bitstream_buffer, 8*prestream_size);
  627. f->last_dc= 0*128*8*8;
  628. for(y=0; y<height; y+=16){
  629. for(x=0; x<width; x+=16){
  630. if(decode_i_mb(f) < 0)
  631. return -1;
  632. idct_put(f, x, y);
  633. }
  634. }
  635. if(get_vlc2(&f->pre_gb, f->pre_vlc.table, ACDC_VLC_BITS, 3) != 256)
  636. av_log(f->avctx, AV_LOG_ERROR, "end mismatch\n");
  637. return 0;
  638. }
  639. static int decode_frame(AVCodecContext *avctx,
  640. void *data, int *data_size,
  641. AVPacket *avpkt)
  642. {
  643. const uint8_t *buf = avpkt->data;
  644. int buf_size = avpkt->size;
  645. FourXContext * const f = avctx->priv_data;
  646. AVFrame *picture = data;
  647. AVFrame *p, temp;
  648. int i, frame_4cc, frame_size;
  649. if (buf_size < 12)
  650. return AVERROR_INVALIDDATA;
  651. frame_4cc= AV_RL32(buf);
  652. if(buf_size != AV_RL32(buf+4)+8 || buf_size < 20){
  653. av_log(f->avctx, AV_LOG_ERROR, "size mismatch %d %d\n", buf_size, AV_RL32(buf+4));
  654. }
  655. if(frame_4cc == AV_RL32("cfrm")){
  656. int free_index=-1;
  657. const int data_size= buf_size - 20;
  658. const int id= AV_RL32(buf+12);
  659. const int whole_size= AV_RL32(buf+16);
  660. CFrameBuffer *cfrm;
  661. if (data_size < 0 || whole_size < 0){
  662. av_log(f->avctx, AV_LOG_ERROR, "sizes invalid\n");
  663. return AVERROR_INVALIDDATA;
  664. }
  665. for(i=0; i<CFRAME_BUFFER_COUNT; i++){
  666. if(f->cfrm[i].id && f->cfrm[i].id < avctx->frame_number)
  667. av_log(f->avctx, AV_LOG_ERROR, "lost c frame %d\n", f->cfrm[i].id);
  668. }
  669. for(i=0; i<CFRAME_BUFFER_COUNT; i++){
  670. if(f->cfrm[i].id == id) break;
  671. if(f->cfrm[i].size == 0 ) free_index= i;
  672. }
  673. if(i>=CFRAME_BUFFER_COUNT){
  674. i= free_index;
  675. f->cfrm[i].id= id;
  676. }
  677. cfrm= &f->cfrm[i];
  678. if (data_size > UINT_MAX - cfrm->size - FF_INPUT_BUFFER_PADDING_SIZE)
  679. return AVERROR_INVALIDDATA;
  680. cfrm->data= av_fast_realloc(cfrm->data, &cfrm->allocated_size, cfrm->size + data_size + FF_INPUT_BUFFER_PADDING_SIZE);
  681. if(!cfrm->data){ //explicit check needed as memcpy below might not catch a NULL
  682. av_log(f->avctx, AV_LOG_ERROR, "realloc falure");
  683. return -1;
  684. }
  685. memcpy(cfrm->data + cfrm->size, buf+20, data_size);
  686. cfrm->size += data_size;
  687. if(cfrm->size >= whole_size){
  688. buf= cfrm->data;
  689. frame_size= cfrm->size;
  690. if(id != avctx->frame_number){
  691. av_log(f->avctx, AV_LOG_ERROR, "cframe id mismatch %d %d\n", id, avctx->frame_number);
  692. }
  693. cfrm->size= cfrm->id= 0;
  694. frame_4cc= AV_RL32("pfrm");
  695. }else
  696. return buf_size;
  697. }else{
  698. buf= buf + 12;
  699. frame_size= buf_size - 12;
  700. }
  701. temp= f->current_picture;
  702. f->current_picture= f->last_picture;
  703. f->last_picture= temp;
  704. p= &f->current_picture;
  705. avctx->coded_frame= p;
  706. avctx->flags |= CODEC_FLAG_EMU_EDGE; // alternatively we would have to use our own buffer management
  707. p->reference= 3;
  708. if (avctx->reget_buffer(avctx, p) < 0) {
  709. av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
  710. return -1;
  711. }
  712. if(frame_4cc == AV_RL32("ifr2")){
  713. p->pict_type= AV_PICTURE_TYPE_I;
  714. if(decode_i2_frame(f, buf-4, frame_size + 4) < 0) {
  715. av_log(f->avctx, AV_LOG_ERROR, "decode i2 frame failed\n");
  716. return -1;
  717. }
  718. }else if(frame_4cc == AV_RL32("ifrm")){
  719. p->pict_type= AV_PICTURE_TYPE_I;
  720. if(decode_i_frame(f, buf, frame_size) < 0){
  721. av_log(f->avctx, AV_LOG_ERROR, "decode i frame failed\n");
  722. return -1;
  723. }
  724. }else if(frame_4cc == AV_RL32("pfrm") || frame_4cc == AV_RL32("pfr2")){
  725. if(!f->last_picture.data[0]){
  726. f->last_picture.reference= 3;
  727. if(avctx->get_buffer(avctx, &f->last_picture) < 0){
  728. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  729. return -1;
  730. }
  731. }
  732. p->pict_type= AV_PICTURE_TYPE_P;
  733. if(decode_p_frame(f, buf, frame_size) < 0){
  734. av_log(f->avctx, AV_LOG_ERROR, "decode p frame failed\n");
  735. return -1;
  736. }
  737. }else if(frame_4cc == AV_RL32("snd_")){
  738. av_log(avctx, AV_LOG_ERROR, "ignoring snd_ chunk length:%d\n", buf_size);
  739. }else{
  740. av_log(avctx, AV_LOG_ERROR, "ignoring unknown chunk length:%d\n", buf_size);
  741. }
  742. p->key_frame= p->pict_type == AV_PICTURE_TYPE_I;
  743. *picture= *p;
  744. *data_size = sizeof(AVPicture);
  745. emms_c();
  746. return buf_size;
  747. }
  748. static av_cold void common_init(AVCodecContext *avctx){
  749. FourXContext * const f = avctx->priv_data;
  750. dsputil_init(&f->dsp, avctx);
  751. f->avctx= avctx;
  752. }
  753. static av_cold int decode_init(AVCodecContext *avctx){
  754. FourXContext * const f = avctx->priv_data;
  755. if(avctx->extradata_size != 4 || !avctx->extradata) {
  756. av_log(avctx, AV_LOG_ERROR, "extradata wrong or missing\n");
  757. return 1;
  758. }
  759. if((avctx->width % 16) || (avctx->height % 16)) {
  760. av_log(avctx, AV_LOG_ERROR, "unsupported width/height\n");
  761. return AVERROR_INVALIDDATA;
  762. }
  763. avcodec_get_frame_defaults(&f->current_picture);
  764. avcodec_get_frame_defaults(&f->last_picture);
  765. f->version= AV_RL32(avctx->extradata)>>16;
  766. common_init(avctx);
  767. init_vlcs(f);
  768. if(f->version>2) avctx->pix_fmt= PIX_FMT_RGB565;
  769. else avctx->pix_fmt= PIX_FMT_BGR555;
  770. return 0;
  771. }
  772. static av_cold int decode_end(AVCodecContext *avctx){
  773. FourXContext * const f = avctx->priv_data;
  774. int i;
  775. av_freep(&f->bitstream_buffer);
  776. f->bitstream_buffer_size=0;
  777. for(i=0; i<CFRAME_BUFFER_COUNT; i++){
  778. av_freep(&f->cfrm[i].data);
  779. f->cfrm[i].allocated_size= 0;
  780. }
  781. free_vlc(&f->pre_vlc);
  782. if(f->current_picture.data[0])
  783. avctx->release_buffer(avctx, &f->current_picture);
  784. if(f->last_picture.data[0])
  785. avctx->release_buffer(avctx, &f->last_picture);
  786. return 0;
  787. }
  788. AVCodec ff_fourxm_decoder = {
  789. .name = "4xm",
  790. .type = AVMEDIA_TYPE_VIDEO,
  791. .id = CODEC_ID_4XM,
  792. .priv_data_size = sizeof(FourXContext),
  793. .init = decode_init,
  794. .close = decode_end,
  795. .decode = decode_frame,
  796. .capabilities = CODEC_CAP_DR1,
  797. .long_name = NULL_IF_CONFIG_SMALL("4X Movie"),
  798. };