You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3338 lines
93KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} option of the ff*
  16. tools, and by the @code{avfilter_graph_parse()} function defined in
  17. @file{libavfilter/avfiltergraph.h}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your FFmpeg build, you can disable any of the
  77. existing filters using @code{--disable-filters}.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section aconvert
  82. Convert the input audio format to the specified formats.
  83. The filter accepts a string of the form:
  84. "@var{sample_format}:@var{channel_layout}:@var{packing_format}".
  85. @var{sample_format} specifies the sample format, and can be a string or
  86. the corresponding numeric value defined in @file{libavutil/samplefmt.h}.
  87. @var{channel_layout} specifies the channel layout, and can be a string
  88. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  89. @var{packing_format} specifies the type of packing in output, can be one
  90. of "planar" or "packed", or the corresponding numeric values "0" or "1".
  91. The special parameter "auto", signifies that the filter will
  92. automatically select the output format depending on the output filter.
  93. Some examples follow.
  94. @itemize
  95. @item
  96. Convert input to unsigned 8-bit, stereo, packed:
  97. @example
  98. aconvert=u8:stereo:packed
  99. @end example
  100. @item
  101. Convert input to unsigned 8-bit, automatically select out channel layout
  102. and packing format:
  103. @example
  104. aconvert=u8:auto:auto
  105. @end example
  106. @end itemize
  107. @section aformat
  108. Convert the input audio to one of the specified formats. The framework will
  109. negotiate the most appropriate format to minimize conversions.
  110. The filter accepts three lists of formats, separated by ":", in the form:
  111. "@var{sample_formats}:@var{channel_layouts}:@var{packing_formats}".
  112. Elements in each list are separated by "," which has to be escaped in the
  113. filtergraph specification.
  114. The special parameter "all", in place of a list of elements, signifies all
  115. supported formats.
  116. Some examples follow:
  117. @example
  118. aformat=u8\\,s16:mono:packed
  119. aformat=s16:mono\\,stereo:all
  120. @end example
  121. @section amerge
  122. Merge two audio streams into a single multi-channel stream.
  123. This filter does not need any argument.
  124. If the channel layouts of the inputs are disjoint, and therefore compatible,
  125. the channel layout of the output will be set accordingly and the channels
  126. will be reordered as necessary. If the channel layouts of the inputs are not
  127. disjoint, the output will have all the channels of the first input then all
  128. the channels of the second input, in that order, and the channel layout of
  129. the output will be the default value corresponding to the total number of
  130. channels.
  131. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  132. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  133. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  134. first input, b1 is the first channel of the second input).
  135. On the other hand, if both input are in stereo, the output channels will be
  136. in the default order: a1, a2, b1, b2, and the channel layout will be
  137. arbitrarily set to 4.0, which may or may not be the expected value.
  138. Both inputs must have the same sample rate, format and packing.
  139. If inputs do not have the same duration, the output will stop with the
  140. shortest.
  141. Example: merge two mono files into a stereo stream:
  142. @example
  143. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  144. @end example
  145. @section anull
  146. Pass the audio source unchanged to the output.
  147. @section aresample
  148. Resample the input audio to the specified sample rate.
  149. The filter accepts exactly one parameter, the output sample rate. If not
  150. specified then the filter will automatically convert between its input
  151. and output sample rates.
  152. For example, to resample the input audio to 44100Hz:
  153. @example
  154. aresample=44100
  155. @end example
  156. @section ashowinfo
  157. Show a line containing various information for each input audio frame.
  158. The input audio is not modified.
  159. The shown line contains a sequence of key/value pairs of the form
  160. @var{key}:@var{value}.
  161. A description of each shown parameter follows:
  162. @table @option
  163. @item n
  164. sequential number of the input frame, starting from 0
  165. @item pts
  166. presentation TimeStamp of the input frame, expressed as a number of
  167. time base units. The time base unit depends on the filter input pad, and
  168. is usually 1/@var{sample_rate}.
  169. @item pts_time
  170. presentation TimeStamp of the input frame, expressed as a number of
  171. seconds
  172. @item pos
  173. position of the frame in the input stream, -1 if this information in
  174. unavailable and/or meaningless (for example in case of synthetic audio)
  175. @item fmt
  176. sample format name
  177. @item chlayout
  178. channel layout description
  179. @item nb_samples
  180. number of samples (per each channel) contained in the filtered frame
  181. @item rate
  182. sample rate for the audio frame
  183. @item planar
  184. if the packing format is planar, 0 if packed
  185. @item checksum
  186. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  187. @item plane_checksum
  188. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  189. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  190. @var{c6} @var{c7}]"
  191. @end table
  192. @section asplit
  193. Pass on the input audio to two outputs. Both outputs are identical to
  194. the input audio.
  195. For example:
  196. @example
  197. [in] asplit[out0], showaudio[out1]
  198. @end example
  199. will create two separate outputs from the same input, one cropped and
  200. one padded.
  201. @section astreamsync
  202. Forward two audio streams and control the order the buffers are forwarded.
  203. The argument to the filter is an expression deciding which stream should be
  204. forwarded next: if the result is negative, the first stream is forwarded; if
  205. the result is positive or zero, the second stream is forwarded. It can use
  206. the following variables:
  207. @table @var
  208. @item b1 b2
  209. number of buffers forwarded so far on each stream
  210. @item s1 s2
  211. number of samples forwarded so far on each stream
  212. @item t1 t2
  213. current timestamp of each stream
  214. @end table
  215. The default value is @code{t1-t2}, which means to always forward the stream
  216. that has a smaller timestamp.
  217. Example: stress-test @code{amerge} by randomly sending buffers on the wrong
  218. input, while avoiding too much of a desynchronization:
  219. @example
  220. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  221. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  222. [a2] [b2] amerge
  223. @end example
  224. @section earwax
  225. Make audio easier to listen to on headphones.
  226. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  227. so that when listened to on headphones the stereo image is moved from
  228. inside your head (standard for headphones) to outside and in front of
  229. the listener (standard for speakers).
  230. Ported from SoX.
  231. @section pan
  232. Mix channels with specific gain levels. The filter accepts the output
  233. channel layout followed by a set of channels definitions.
  234. This filter is also designed to remap efficiently the channels of an audio
  235. stream.
  236. The filter accepts parameters of the form:
  237. "@var{l}:@var{outdef}:@var{outdef}:..."
  238. @table @option
  239. @item l
  240. output channel layout or number of channels
  241. @item outdef
  242. output channel specification, of the form:
  243. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  244. @item out_name
  245. output channel to define, either a channel name (FL, FR, etc.) or a channel
  246. number (c0, c1, etc.)
  247. @item gain
  248. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  249. @item in_name
  250. input channel to use, see out_name for details; it is not possible to mix
  251. named and numbered input channels
  252. @end table
  253. If the `=' in a channel specification is replaced by `<', then the gains for
  254. that specification will be renormalized so that the total is 1, thus
  255. avoiding clipping noise.
  256. @subsection Mixing examples
  257. For example, if you want to down-mix from stereo to mono, but with a bigger
  258. factor for the left channel:
  259. @example
  260. pan=1:c0=0.9*c0+0.1*c1
  261. @end example
  262. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  263. 7-channels surround:
  264. @example
  265. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  266. @end example
  267. Note that @command{ffmpeg} integrates a default down-mix (and up-mix) system
  268. that should be preferred (see "-ac" option) unless you have very specific
  269. needs.
  270. @subsection Remapping examples
  271. The channel remapping will be effective if, and only if:
  272. @itemize
  273. @item gain coefficients are zeroes or ones,
  274. @item only one input per channel output,
  275. @item the number of output channels is supported by libswresample (16 at the
  276. moment)
  277. @c if SWR_CH_MAX changes, fix the line above.
  278. @end itemize
  279. If all these conditions are satisfied, the filter will notify the user ("Pure
  280. channel mapping detected"), and use an optimized and lossless method to do the
  281. remapping.
  282. For example, if you have a 5.1 source and want a stereo audio stream by
  283. dropping the extra channels:
  284. @example
  285. pan="stereo: c0=FL : c1=FR"
  286. @end example
  287. Given the same source, you can also switch front left and front right channels
  288. and keep the input channel layout:
  289. @example
  290. pan="5.1: c0=c1 : c1=c0 : c2=c2 : c3=c3 : c4=c4 : c5=c5"
  291. @end example
  292. If the input is a stereo audio stream, you can mute the front left channel (and
  293. still keep the stereo channel layout) with:
  294. @example
  295. pan="stereo:c1=c1"
  296. @end example
  297. Still with a stereo audio stream input, you can copy the right channel in both
  298. front left and right:
  299. @example
  300. pan="stereo: c0=FR : c1=FR"
  301. @end example
  302. @section silencedetect
  303. Detect silence in an audio stream.
  304. This filter logs a message when it detects that the input audio volume is less
  305. or equal to a noise tolerance value for a duration greater or equal to the
  306. minimum detected noise duration.
  307. The printed times and duration are expressed in seconds.
  308. @table @option
  309. @item duration, d
  310. Set silence duration until notification (default is 2 seconds).
  311. @item noise, n
  312. Set noise tolerance. Can be specified in dB (in case "dB" is appended to the
  313. specified value) or amplitude ratio. Default is -60dB, or 0.001.
  314. @end table
  315. Detect 5 seconds of silence with -50dB noise tolerance:
  316. @example
  317. silencedetect=n=-50dB:d=5
  318. @end example
  319. Complete example with @command{ffmpeg} to detect silence with 0.0001 noise
  320. tolerance in @file{silence.mp3}:
  321. @example
  322. ffmpeg -f lavfi -i amovie=silence.mp3,silencedetect=noise=0.0001 -f null -
  323. @end example
  324. @section volume
  325. Adjust the input audio volume.
  326. The filter accepts exactly one parameter @var{vol}, which expresses
  327. how the audio volume will be increased or decreased.
  328. Output values are clipped to the maximum value.
  329. If @var{vol} is expressed as a decimal number, the output audio
  330. volume is given by the relation:
  331. @example
  332. @var{output_volume} = @var{vol} * @var{input_volume}
  333. @end example
  334. If @var{vol} is expressed as a decimal number followed by the string
  335. "dB", the value represents the requested change in decibels of the
  336. input audio power, and the output audio volume is given by the
  337. relation:
  338. @example
  339. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  340. @end example
  341. Otherwise @var{vol} is considered an expression and its evaluated
  342. value is used for computing the output audio volume according to the
  343. first relation.
  344. Default value for @var{vol} is 1.0.
  345. @subsection Examples
  346. @itemize
  347. @item
  348. Half the input audio volume:
  349. @example
  350. volume=0.5
  351. @end example
  352. The above example is equivalent to:
  353. @example
  354. volume=1/2
  355. @end example
  356. @item
  357. Decrease input audio power by 12 decibels:
  358. @example
  359. volume=-12dB
  360. @end example
  361. @end itemize
  362. @c man end AUDIO FILTERS
  363. @chapter Audio Sources
  364. @c man begin AUDIO SOURCES
  365. Below is a description of the currently available audio sources.
  366. @section abuffer
  367. Buffer audio frames, and make them available to the filter chain.
  368. This source is mainly intended for a programmatic use, in particular
  369. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  370. It accepts the following mandatory parameters:
  371. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}:@var{packing}
  372. @table @option
  373. @item sample_rate
  374. The sample rate of the incoming audio buffers.
  375. @item sample_fmt
  376. The sample format of the incoming audio buffers.
  377. Either a sample format name or its corresponging integer representation from
  378. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  379. @item channel_layout
  380. The channel layout of the incoming audio buffers.
  381. Either a channel layout name from channel_layout_map in
  382. @file{libavutil/audioconvert.c} or its corresponding integer representation
  383. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  384. @item packing
  385. Either "packed" or "planar", or their integer representation: 0 or 1
  386. respectively.
  387. @end table
  388. For example:
  389. @example
  390. abuffer=44100:s16:stereo:planar
  391. @end example
  392. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  393. Since the sample format with name "s16" corresponds to the number
  394. 1 and the "stereo" channel layout corresponds to the value 3, this is
  395. equivalent to:
  396. @example
  397. abuffer=44100:1:3:1
  398. @end example
  399. @section aevalsrc
  400. Generate an audio signal specified by an expression.
  401. This source accepts in input one or more expressions (one for each
  402. channel), which are evaluated and used to generate a corresponding
  403. audio signal.
  404. It accepts the syntax: @var{exprs}[::@var{options}].
  405. @var{exprs} is a list of expressions separated by ":", one for each
  406. separate channel. The output channel layout depends on the number of
  407. provided expressions, up to 8 channels are supported.
  408. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  409. separated by ":".
  410. The description of the accepted options follows.
  411. @table @option
  412. @item duration, d
  413. Set the minimum duration of the sourced audio. See the function
  414. @code{av_parse_time()} for the accepted format.
  415. Note that the resulting duration may be greater than the specified
  416. duration, as the generated audio is always cut at the end of a
  417. complete frame.
  418. If not specified, or the expressed duration is negative, the audio is
  419. supposed to be generated forever.
  420. @item nb_samples, n
  421. Set the number of samples per channel per each output frame,
  422. default to 1024.
  423. @item sample_rate, s
  424. Specify the sample rate, default to 44100.
  425. @end table
  426. Each expression in @var{exprs} can contain the following constants:
  427. @table @option
  428. @item n
  429. number of the evaluated sample, starting from 0
  430. @item t
  431. time of the evaluated sample expressed in seconds, starting from 0
  432. @item s
  433. sample rate
  434. @end table
  435. @subsection Examples
  436. @itemize
  437. @item
  438. Generate silence:
  439. @example
  440. aevalsrc=0
  441. @end example
  442. @item
  443. Generate a sin signal with frequency of 440 Hz, set sample rate to
  444. 8000 Hz:
  445. @example
  446. aevalsrc="sin(440*2*PI*t)::s=8000"
  447. @end example
  448. @item
  449. Generate white noise:
  450. @example
  451. aevalsrc="-2+random(0)"
  452. @end example
  453. @item
  454. Generate an amplitude modulated signal:
  455. @example
  456. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  457. @end example
  458. @item
  459. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  460. @example
  461. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  462. @end example
  463. @end itemize
  464. @section amovie
  465. Read an audio stream from a movie container.
  466. It accepts the syntax: @var{movie_name}[:@var{options}] where
  467. @var{movie_name} is the name of the resource to read (not necessarily
  468. a file but also a device or a stream accessed through some protocol),
  469. and @var{options} is an optional sequence of @var{key}=@var{value}
  470. pairs, separated by ":".
  471. The description of the accepted options follows.
  472. @table @option
  473. @item format_name, f
  474. Specify the format assumed for the movie to read, and can be either
  475. the name of a container or an input device. If not specified the
  476. format is guessed from @var{movie_name} or by probing.
  477. @item seek_point, sp
  478. Specify the seek point in seconds, the frames will be output
  479. starting from this seek point, the parameter is evaluated with
  480. @code{av_strtod} so the numerical value may be suffixed by an IS
  481. postfix. Default value is "0".
  482. @item stream_index, si
  483. Specify the index of the audio stream to read. If the value is -1,
  484. the best suited audio stream will be automatically selected. Default
  485. value is "-1".
  486. @end table
  487. @section anullsrc
  488. Null audio source, return unprocessed audio frames. It is mainly useful
  489. as a template and to be employed in analysis / debugging tools, or as
  490. the source for filters which ignore the input data (for example the sox
  491. synth filter).
  492. It accepts an optional sequence of @var{key}=@var{value} pairs,
  493. separated by ":".
  494. The description of the accepted options follows.
  495. @table @option
  496. @item sample_rate, s
  497. Specify the sample rate, and defaults to 44100.
  498. @item channel_layout, cl
  499. Specify the channel layout, and can be either an integer or a string
  500. representing a channel layout. The default value of @var{channel_layout}
  501. is "stereo".
  502. Check the channel_layout_map definition in
  503. @file{libavcodec/audioconvert.c} for the mapping between strings and
  504. channel layout values.
  505. @item nb_samples, n
  506. Set the number of samples per requested frames.
  507. @end table
  508. Follow some examples:
  509. @example
  510. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  511. anullsrc=r=48000:cl=4
  512. # same as
  513. anullsrc=r=48000:cl=mono
  514. @end example
  515. @c man end AUDIO SOURCES
  516. @chapter Audio Sinks
  517. @c man begin AUDIO SINKS
  518. Below is a description of the currently available audio sinks.
  519. @section abuffersink
  520. Buffer audio frames, and make them available to the end of filter chain.
  521. This sink is mainly intended for programmatic use, in particular
  522. through the interface defined in @file{libavfilter/buffersink.h}.
  523. It requires a pointer to an AVABufferSinkContext structure, which
  524. defines the incoming buffers' formats, to be passed as the opaque
  525. parameter to @code{avfilter_init_filter} for initialization.
  526. @section anullsink
  527. Null audio sink, do absolutely nothing with the input audio. It is
  528. mainly useful as a template and to be employed in analysis / debugging
  529. tools.
  530. @c man end AUDIO SINKS
  531. @chapter Video Filters
  532. @c man begin VIDEO FILTERS
  533. When you configure your FFmpeg build, you can disable any of the
  534. existing filters using @code{--disable-filters}.
  535. The configure output will show the video filters included in your
  536. build.
  537. Below is a description of the currently available video filters.
  538. @section ass
  539. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  540. using the libass library.
  541. To enable compilation of this filter you need to configure FFmpeg with
  542. @code{--enable-libass}.
  543. This filter accepts in input the name of the ass file to render.
  544. For example, to render the file @file{sub.ass} on top of the input
  545. video, use the command:
  546. @example
  547. ass=sub.ass
  548. @end example
  549. @section blackframe
  550. Detect frames that are (almost) completely black. Can be useful to
  551. detect chapter transitions or commercials. Output lines consist of
  552. the frame number of the detected frame, the percentage of blackness,
  553. the position in the file if known or -1 and the timestamp in seconds.
  554. In order to display the output lines, you need to set the loglevel at
  555. least to the AV_LOG_INFO value.
  556. The filter accepts the syntax:
  557. @example
  558. blackframe[=@var{amount}:[@var{threshold}]]
  559. @end example
  560. @var{amount} is the percentage of the pixels that have to be below the
  561. threshold, and defaults to 98.
  562. @var{threshold} is the threshold below which a pixel value is
  563. considered black, and defaults to 32.
  564. @section boxblur
  565. Apply boxblur algorithm to the input video.
  566. This filter accepts the parameters:
  567. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  568. Chroma and alpha parameters are optional, if not specified they default
  569. to the corresponding values set for @var{luma_radius} and
  570. @var{luma_power}.
  571. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  572. the radius in pixels of the box used for blurring the corresponding
  573. input plane. They are expressions, and can contain the following
  574. constants:
  575. @table @option
  576. @item w, h
  577. the input width and height in pixels
  578. @item cw, ch
  579. the input chroma image width and height in pixels
  580. @item hsub, vsub
  581. horizontal and vertical chroma subsample values. For example for the
  582. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  583. @end table
  584. The radius must be a non-negative number, and must not be greater than
  585. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  586. and of @code{min(cw,ch)/2} for the chroma planes.
  587. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  588. how many times the boxblur filter is applied to the corresponding
  589. plane.
  590. Some examples follow:
  591. @itemize
  592. @item
  593. Apply a boxblur filter with luma, chroma, and alpha radius
  594. set to 2:
  595. @example
  596. boxblur=2:1
  597. @end example
  598. @item
  599. Set luma radius to 2, alpha and chroma radius to 0
  600. @example
  601. boxblur=2:1:0:0:0:0
  602. @end example
  603. @item
  604. Set luma and chroma radius to a fraction of the video dimension
  605. @example
  606. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  607. @end example
  608. @end itemize
  609. @section copy
  610. Copy the input source unchanged to the output. Mainly useful for
  611. testing purposes.
  612. @section crop
  613. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  614. The parameters are expressions containing the following constants:
  615. @table @option
  616. @item x, y
  617. the computed values for @var{x} and @var{y}. They are evaluated for
  618. each new frame.
  619. @item in_w, in_h
  620. the input width and height
  621. @item iw, ih
  622. same as @var{in_w} and @var{in_h}
  623. @item out_w, out_h
  624. the output (cropped) width and height
  625. @item ow, oh
  626. same as @var{out_w} and @var{out_h}
  627. @item a
  628. same as @var{iw} / @var{ih}
  629. @item sar
  630. input sample aspect ratio
  631. @item dar
  632. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  633. @item hsub, vsub
  634. horizontal and vertical chroma subsample values. For example for the
  635. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  636. @item n
  637. the number of input frame, starting from 0
  638. @item pos
  639. the position in the file of the input frame, NAN if unknown
  640. @item t
  641. timestamp expressed in seconds, NAN if the input timestamp is unknown
  642. @end table
  643. The @var{out_w} and @var{out_h} parameters specify the expressions for
  644. the width and height of the output (cropped) video. They are
  645. evaluated just at the configuration of the filter.
  646. The default value of @var{out_w} is "in_w", and the default value of
  647. @var{out_h} is "in_h".
  648. The expression for @var{out_w} may depend on the value of @var{out_h},
  649. and the expression for @var{out_h} may depend on @var{out_w}, but they
  650. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  651. evaluated after @var{out_w} and @var{out_h}.
  652. The @var{x} and @var{y} parameters specify the expressions for the
  653. position of the top-left corner of the output (non-cropped) area. They
  654. are evaluated for each frame. If the evaluated value is not valid, it
  655. is approximated to the nearest valid value.
  656. The default value of @var{x} is "(in_w-out_w)/2", and the default
  657. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  658. the center of the input image.
  659. The expression for @var{x} may depend on @var{y}, and the expression
  660. for @var{y} may depend on @var{x}.
  661. Follow some examples:
  662. @example
  663. # crop the central input area with size 100x100
  664. crop=100:100
  665. # crop the central input area with size 2/3 of the input video
  666. "crop=2/3*in_w:2/3*in_h"
  667. # crop the input video central square
  668. crop=in_h
  669. # delimit the rectangle with the top-left corner placed at position
  670. # 100:100 and the right-bottom corner corresponding to the right-bottom
  671. # corner of the input image.
  672. crop=in_w-100:in_h-100:100:100
  673. # crop 10 pixels from the left and right borders, and 20 pixels from
  674. # the top and bottom borders
  675. "crop=in_w-2*10:in_h-2*20"
  676. # keep only the bottom right quarter of the input image
  677. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  678. # crop height for getting Greek harmony
  679. "crop=in_w:1/PHI*in_w"
  680. # trembling effect
  681. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  682. # erratic camera effect depending on timestamp
  683. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  684. # set x depending on the value of y
  685. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  686. @end example
  687. @section cropdetect
  688. Auto-detect crop size.
  689. Calculate necessary cropping parameters and prints the recommended
  690. parameters through the logging system. The detected dimensions
  691. correspond to the non-black area of the input video.
  692. It accepts the syntax:
  693. @example
  694. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  695. @end example
  696. @table @option
  697. @item limit
  698. Threshold, which can be optionally specified from nothing (0) to
  699. everything (255), defaults to 24.
  700. @item round
  701. Value which the width/height should be divisible by, defaults to
  702. 16. The offset is automatically adjusted to center the video. Use 2 to
  703. get only even dimensions (needed for 4:2:2 video). 16 is best when
  704. encoding to most video codecs.
  705. @item reset
  706. Counter that determines after how many frames cropdetect will reset
  707. the previously detected largest video area and start over to detect
  708. the current optimal crop area. Defaults to 0.
  709. This can be useful when channel logos distort the video area. 0
  710. indicates never reset and return the largest area encountered during
  711. playback.
  712. @end table
  713. @section delogo
  714. Suppress a TV station logo by a simple interpolation of the surrounding
  715. pixels. Just set a rectangle covering the logo and watch it disappear
  716. (and sometimes something even uglier appear - your mileage may vary).
  717. The filter accepts parameters as a string of the form
  718. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  719. @var{key}=@var{value} pairs, separated by ":".
  720. The description of the accepted parameters follows.
  721. @table @option
  722. @item x, y
  723. Specify the top left corner coordinates of the logo. They must be
  724. specified.
  725. @item w, h
  726. Specify the width and height of the logo to clear. They must be
  727. specified.
  728. @item band, t
  729. Specify the thickness of the fuzzy edge of the rectangle (added to
  730. @var{w} and @var{h}). The default value is 4.
  731. @item show
  732. When set to 1, a green rectangle is drawn on the screen to simplify
  733. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  734. @var{band} is set to 4. The default value is 0.
  735. @end table
  736. Some examples follow.
  737. @itemize
  738. @item
  739. Set a rectangle covering the area with top left corner coordinates 0,0
  740. and size 100x77, setting a band of size 10:
  741. @example
  742. delogo=0:0:100:77:10
  743. @end example
  744. @item
  745. As the previous example, but use named options:
  746. @example
  747. delogo=x=0:y=0:w=100:h=77:band=10
  748. @end example
  749. @end itemize
  750. @section deshake
  751. Attempt to fix small changes in horizontal and/or vertical shift. This
  752. filter helps remove camera shake from hand-holding a camera, bumping a
  753. tripod, moving on a vehicle, etc.
  754. The filter accepts parameters as a string of the form
  755. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  756. A description of the accepted parameters follows.
  757. @table @option
  758. @item x, y, w, h
  759. Specify a rectangular area where to limit the search for motion
  760. vectors.
  761. If desired the search for motion vectors can be limited to a
  762. rectangular area of the frame defined by its top left corner, width
  763. and height. These parameters have the same meaning as the drawbox
  764. filter which can be used to visualise the position of the bounding
  765. box.
  766. This is useful when simultaneous movement of subjects within the frame
  767. might be confused for camera motion by the motion vector search.
  768. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  769. then the full frame is used. This allows later options to be set
  770. without specifying the bounding box for the motion vector search.
  771. Default - search the whole frame.
  772. @item rx, ry
  773. Specify the maximum extent of movement in x and y directions in the
  774. range 0-64 pixels. Default 16.
  775. @item edge
  776. Specify how to generate pixels to fill blanks at the edge of the
  777. frame. An integer from 0 to 3 as follows:
  778. @table @option
  779. @item 0
  780. Fill zeroes at blank locations
  781. @item 1
  782. Original image at blank locations
  783. @item 2
  784. Extruded edge value at blank locations
  785. @item 3
  786. Mirrored edge at blank locations
  787. @end table
  788. The default setting is mirror edge at blank locations.
  789. @item blocksize
  790. Specify the blocksize to use for motion search. Range 4-128 pixels,
  791. default 8.
  792. @item contrast
  793. Specify the contrast threshold for blocks. Only blocks with more than
  794. the specified contrast (difference between darkest and lightest
  795. pixels) will be considered. Range 1-255, default 125.
  796. @item search
  797. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  798. search. Default - exhaustive search.
  799. @item filename
  800. If set then a detailed log of the motion search is written to the
  801. specified file.
  802. @end table
  803. @section drawbox
  804. Draw a colored box on the input image.
  805. It accepts the syntax:
  806. @example
  807. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  808. @end example
  809. @table @option
  810. @item x, y
  811. Specify the top left corner coordinates of the box. Default to 0.
  812. @item width, height
  813. Specify the width and height of the box, if 0 they are interpreted as
  814. the input width and height. Default to 0.
  815. @item color
  816. Specify the color of the box to write, it can be the name of a color
  817. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  818. @end table
  819. Follow some examples:
  820. @example
  821. # draw a black box around the edge of the input image
  822. drawbox
  823. # draw a box with color red and an opacity of 50%
  824. drawbox=10:20:200:60:red@@0.5"
  825. @end example
  826. @section drawtext
  827. Draw text string or text from specified file on top of video using the
  828. libfreetype library.
  829. To enable compilation of this filter you need to configure FFmpeg with
  830. @code{--enable-libfreetype}.
  831. The filter also recognizes strftime() sequences in the provided text
  832. and expands them accordingly. Check the documentation of strftime().
  833. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  834. separated by ":".
  835. The description of the accepted parameters follows.
  836. @table @option
  837. @item fontfile
  838. The font file to be used for drawing text. Path must be included.
  839. This parameter is mandatory.
  840. @item text
  841. The text string to be drawn. The text must be a sequence of UTF-8
  842. encoded characters.
  843. This parameter is mandatory if no file is specified with the parameter
  844. @var{textfile}.
  845. @item textfile
  846. A text file containing text to be drawn. The text must be a sequence
  847. of UTF-8 encoded characters.
  848. This parameter is mandatory if no text string is specified with the
  849. parameter @var{text}.
  850. If both text and textfile are specified, an error is thrown.
  851. @item x, y
  852. The expressions which specify the offsets where text will be drawn
  853. within the video frame. They are relative to the top/left border of the
  854. output image.
  855. The default value of @var{x} and @var{y} is "0".
  856. See below for the list of accepted constants.
  857. @item fontsize
  858. The font size to be used for drawing text.
  859. The default value of @var{fontsize} is 16.
  860. @item fontcolor
  861. The color to be used for drawing fonts.
  862. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  863. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  864. The default value of @var{fontcolor} is "black".
  865. @item boxcolor
  866. The color to be used for drawing box around text.
  867. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  868. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  869. The default value of @var{boxcolor} is "white".
  870. @item box
  871. Used to draw a box around text using background color.
  872. Value should be either 1 (enable) or 0 (disable).
  873. The default value of @var{box} is 0.
  874. @item shadowx, shadowy
  875. The x and y offsets for the text shadow position with respect to the
  876. position of the text. They can be either positive or negative
  877. values. Default value for both is "0".
  878. @item shadowcolor
  879. The color to be used for drawing a shadow behind the drawn text. It
  880. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  881. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  882. The default value of @var{shadowcolor} is "black".
  883. @item ft_load_flags
  884. Flags to be used for loading the fonts.
  885. The flags map the corresponding flags supported by libfreetype, and are
  886. a combination of the following values:
  887. @table @var
  888. @item default
  889. @item no_scale
  890. @item no_hinting
  891. @item render
  892. @item no_bitmap
  893. @item vertical_layout
  894. @item force_autohint
  895. @item crop_bitmap
  896. @item pedantic
  897. @item ignore_global_advance_width
  898. @item no_recurse
  899. @item ignore_transform
  900. @item monochrome
  901. @item linear_design
  902. @item no_autohint
  903. @item end table
  904. @end table
  905. Default value is "render".
  906. For more information consult the documentation for the FT_LOAD_*
  907. libfreetype flags.
  908. @item tabsize
  909. The size in number of spaces to use for rendering the tab.
  910. Default value is 4.
  911. @end table
  912. The parameters for @var{x} and @var{y} are expressions containing the
  913. following constants:
  914. @table @option
  915. @item W, H
  916. the input width and height
  917. @item tw, text_w
  918. the width of the rendered text
  919. @item th, text_h
  920. the height of the rendered text
  921. @item lh, line_h
  922. the height of each text line
  923. @item sar
  924. input sample aspect ratio
  925. @item dar
  926. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  927. @item hsub, vsub
  928. horizontal and vertical chroma subsample values. For example for the
  929. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  930. @item max_glyph_w
  931. maximum glyph width, that is the maximum width for all the glyphs
  932. contained in the rendered text
  933. @item max_glyph_h
  934. maximum glyph height, that is the maximum height for all the glyphs
  935. contained in the rendered text, it is equivalent to @var{ascent} -
  936. @var{descent}.
  937. @item max_glyph_a, ascent
  938. the maximum distance from the baseline to the highest/upper grid
  939. coordinate used to place a glyph outline point, for all the rendered
  940. glyphs.
  941. It is a positive value, due to the grid's orientation with the Y axis
  942. upwards.
  943. @item max_glyph_d, descent
  944. the maximum distance from the baseline to the lowest grid coordinate
  945. used to place a glyph outline point, for all the rendered glyphs.
  946. This is a negative value, due to the grid's orientation, with the Y axis
  947. upwards.
  948. @item n
  949. the number of input frame, starting from 0
  950. @item t
  951. timestamp expressed in seconds, NAN if the input timestamp is unknown
  952. @item timecode
  953. initial timecode representation in "hh:mm:ss[:;.]ff" format. It can be used
  954. with or without text parameter. @var{rate} option must be specified.
  955. Note that timecode options are @emph{not} effective if FFmpeg is build with
  956. @code{--disable-avcodec}.
  957. @item r, rate
  958. frame rate (timecode only)
  959. @end table
  960. Some examples follow.
  961. @itemize
  962. @item
  963. Draw "Test Text" with font FreeSerif, using the default values for the
  964. optional parameters.
  965. @example
  966. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  967. @end example
  968. @item
  969. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  970. and y=50 (counting from the top-left corner of the screen), text is
  971. yellow with a red box around it. Both the text and the box have an
  972. opacity of 20%.
  973. @example
  974. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  975. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  976. @end example
  977. Note that the double quotes are not necessary if spaces are not used
  978. within the parameter list.
  979. @item
  980. Show the text at the center of the video frame:
  981. @example
  982. drawtext=fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  983. @end example
  984. @item
  985. Show a text line sliding from right to left in the last row of the video
  986. frame. The file @file{LONG_LINE} is assumed to contain a single line
  987. with no newlines.
  988. @example
  989. drawtext=fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t
  990. @end example
  991. @item
  992. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  993. @example
  994. drawtext=fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  995. @end example
  996. @item
  997. Draw a single green letter "g", at the center of the input video.
  998. The glyph baseline is placed at half screen height.
  999. @example
  1000. drawtext=fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent
  1001. @end example
  1002. @end itemize
  1003. For more information about libfreetype, check:
  1004. @url{http://www.freetype.org/}.
  1005. @section fade
  1006. Apply fade-in/out effect to input video.
  1007. It accepts the parameters:
  1008. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  1009. @var{type} specifies if the effect type, can be either "in" for
  1010. fade-in, or "out" for a fade-out effect.
  1011. @var{start_frame} specifies the number of the start frame for starting
  1012. to apply the fade effect.
  1013. @var{nb_frames} specifies the number of frames for which the fade
  1014. effect has to last. At the end of the fade-in effect the output video
  1015. will have the same intensity as the input video, at the end of the
  1016. fade-out transition the output video will be completely black.
  1017. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  1018. separated by ":". The description of the accepted options follows.
  1019. @table @option
  1020. @item type, t
  1021. See @var{type}.
  1022. @item start_frame, s
  1023. See @var{start_frame}.
  1024. @item nb_frames, n
  1025. See @var{nb_frames}.
  1026. @item alpha
  1027. If set to 1, fade only alpha channel, if one exists on the input.
  1028. Default value is 0.
  1029. @end table
  1030. A few usage examples follow, usable too as test scenarios.
  1031. @example
  1032. # fade in first 30 frames of video
  1033. fade=in:0:30
  1034. # fade out last 45 frames of a 200-frame video
  1035. fade=out:155:45
  1036. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  1037. fade=in:0:25, fade=out:975:25
  1038. # make first 5 frames black, then fade in from frame 5-24
  1039. fade=in:5:20
  1040. # fade in alpha over first 25 frames of video
  1041. fade=in:0:25:alpha=1
  1042. @end example
  1043. @section fieldorder
  1044. Transform the field order of the input video.
  1045. It accepts one parameter which specifies the required field order that
  1046. the input interlaced video will be transformed to. The parameter can
  1047. assume one of the following values:
  1048. @table @option
  1049. @item 0 or bff
  1050. output bottom field first
  1051. @item 1 or tff
  1052. output top field first
  1053. @end table
  1054. Default value is "tff".
  1055. Transformation is achieved by shifting the picture content up or down
  1056. by one line, and filling the remaining line with appropriate picture content.
  1057. This method is consistent with most broadcast field order converters.
  1058. If the input video is not flagged as being interlaced, or it is already
  1059. flagged as being of the required output field order then this filter does
  1060. not alter the incoming video.
  1061. This filter is very useful when converting to or from PAL DV material,
  1062. which is bottom field first.
  1063. For example:
  1064. @example
  1065. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  1066. @end example
  1067. @section fifo
  1068. Buffer input images and send them when they are requested.
  1069. This filter is mainly useful when auto-inserted by the libavfilter
  1070. framework.
  1071. The filter does not take parameters.
  1072. @section format
  1073. Convert the input video to one of the specified pixel formats.
  1074. Libavfilter will try to pick one that is supported for the input to
  1075. the next filter.
  1076. The filter accepts a list of pixel format names, separated by ":",
  1077. for example "yuv420p:monow:rgb24".
  1078. Some examples follow:
  1079. @example
  1080. # convert the input video to the format "yuv420p"
  1081. format=yuv420p
  1082. # convert the input video to any of the formats in the list
  1083. format=yuv420p:yuv444p:yuv410p
  1084. @end example
  1085. @anchor{frei0r}
  1086. @section frei0r
  1087. Apply a frei0r effect to the input video.
  1088. To enable compilation of this filter you need to install the frei0r
  1089. header and configure FFmpeg with @code{--enable-frei0r}.
  1090. The filter supports the syntax:
  1091. @example
  1092. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  1093. @end example
  1094. @var{filter_name} is the name to the frei0r effect to load. If the
  1095. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  1096. is searched in each one of the directories specified by the colon
  1097. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  1098. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  1099. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  1100. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  1101. for the frei0r effect.
  1102. A frei0r effect parameter can be a boolean (whose values are specified
  1103. with "y" and "n"), a double, a color (specified by the syntax
  1104. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1105. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1106. description), a position (specified by the syntax @var{X}/@var{Y},
  1107. @var{X} and @var{Y} being float numbers) and a string.
  1108. The number and kind of parameters depend on the loaded effect. If an
  1109. effect parameter is not specified the default value is set.
  1110. Some examples follow:
  1111. @example
  1112. # apply the distort0r effect, set the first two double parameters
  1113. frei0r=distort0r:0.5:0.01
  1114. # apply the colordistance effect, takes a color as first parameter
  1115. frei0r=colordistance:0.2/0.3/0.4
  1116. frei0r=colordistance:violet
  1117. frei0r=colordistance:0x112233
  1118. # apply the perspective effect, specify the top left and top right
  1119. # image positions
  1120. frei0r=perspective:0.2/0.2:0.8/0.2
  1121. @end example
  1122. For more information see:
  1123. @url{http://piksel.org/frei0r}
  1124. @section gradfun
  1125. Fix the banding artifacts that are sometimes introduced into nearly flat
  1126. regions by truncation to 8bit color depth.
  1127. Interpolate the gradients that should go where the bands are, and
  1128. dither them.
  1129. This filter is designed for playback only. Do not use it prior to
  1130. lossy compression, because compression tends to lose the dither and
  1131. bring back the bands.
  1132. The filter takes two optional parameters, separated by ':':
  1133. @var{strength}:@var{radius}
  1134. @var{strength} is the maximum amount by which the filter will change
  1135. any one pixel. Also the threshold for detecting nearly flat
  1136. regions. Acceptable values range from .51 to 255, default value is
  1137. 1.2, out-of-range values will be clipped to the valid range.
  1138. @var{radius} is the neighborhood to fit the gradient to. A larger
  1139. radius makes for smoother gradients, but also prevents the filter from
  1140. modifying the pixels near detailed regions. Acceptable values are
  1141. 8-32, default value is 16, out-of-range values will be clipped to the
  1142. valid range.
  1143. @example
  1144. # default parameters
  1145. gradfun=1.2:16
  1146. # omitting radius
  1147. gradfun=1.2
  1148. @end example
  1149. @section hflip
  1150. Flip the input video horizontally.
  1151. For example to horizontally flip the input video with @command{ffmpeg}:
  1152. @example
  1153. ffmpeg -i in.avi -vf "hflip" out.avi
  1154. @end example
  1155. @section hqdn3d
  1156. High precision/quality 3d denoise filter. This filter aims to reduce
  1157. image noise producing smooth images and making still images really
  1158. still. It should enhance compressibility.
  1159. It accepts the following optional parameters:
  1160. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1161. @table @option
  1162. @item luma_spatial
  1163. a non-negative float number which specifies spatial luma strength,
  1164. defaults to 4.0
  1165. @item chroma_spatial
  1166. a non-negative float number which specifies spatial chroma strength,
  1167. defaults to 3.0*@var{luma_spatial}/4.0
  1168. @item luma_tmp
  1169. a float number which specifies luma temporal strength, defaults to
  1170. 6.0*@var{luma_spatial}/4.0
  1171. @item chroma_tmp
  1172. a float number which specifies chroma temporal strength, defaults to
  1173. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1174. @end table
  1175. @section lut, lutrgb, lutyuv
  1176. Compute a look-up table for binding each pixel component input value
  1177. to an output value, and apply it to input video.
  1178. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1179. to an RGB input video.
  1180. These filters accept in input a ":"-separated list of options, which
  1181. specify the expressions used for computing the lookup table for the
  1182. corresponding pixel component values.
  1183. The @var{lut} filter requires either YUV or RGB pixel formats in
  1184. input, and accepts the options:
  1185. @table @option
  1186. @item c0
  1187. first pixel component
  1188. @item c1
  1189. second pixel component
  1190. @item c2
  1191. third pixel component
  1192. @item c3
  1193. fourth pixel component, corresponds to the alpha component
  1194. @end table
  1195. The exact component associated to each option depends on the format in
  1196. input.
  1197. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1198. accepts the options:
  1199. @table @option
  1200. @item r
  1201. red component
  1202. @item g
  1203. green component
  1204. @item b
  1205. blue component
  1206. @item a
  1207. alpha component
  1208. @end table
  1209. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1210. accepts the options:
  1211. @table @option
  1212. @item y
  1213. Y/luminance component
  1214. @item u
  1215. U/Cb component
  1216. @item v
  1217. V/Cr component
  1218. @item a
  1219. alpha component
  1220. @end table
  1221. The expressions can contain the following constants and functions:
  1222. @table @option
  1223. @item w, h
  1224. the input width and height
  1225. @item val
  1226. input value for the pixel component
  1227. @item clipval
  1228. the input value clipped in the @var{minval}-@var{maxval} range
  1229. @item maxval
  1230. maximum value for the pixel component
  1231. @item minval
  1232. minimum value for the pixel component
  1233. @item negval
  1234. the negated value for the pixel component value clipped in the
  1235. @var{minval}-@var{maxval} range , it corresponds to the expression
  1236. "maxval-clipval+minval"
  1237. @item clip(val)
  1238. the computed value in @var{val} clipped in the
  1239. @var{minval}-@var{maxval} range
  1240. @item gammaval(gamma)
  1241. the computed gamma correction value of the pixel component value
  1242. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1243. expression
  1244. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1245. @end table
  1246. All expressions default to "val".
  1247. Some examples follow:
  1248. @example
  1249. # negate input video
  1250. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1251. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1252. # the above is the same as
  1253. lutrgb="r=negval:g=negval:b=negval"
  1254. lutyuv="y=negval:u=negval:v=negval"
  1255. # negate luminance
  1256. lutyuv=y=negval
  1257. # remove chroma components, turns the video into a graytone image
  1258. lutyuv="u=128:v=128"
  1259. # apply a luma burning effect
  1260. lutyuv="y=2*val"
  1261. # remove green and blue components
  1262. lutrgb="g=0:b=0"
  1263. # set a constant alpha channel value on input
  1264. format=rgba,lutrgb=a="maxval-minval/2"
  1265. # correct luminance gamma by a 0.5 factor
  1266. lutyuv=y=gammaval(0.5)
  1267. @end example
  1268. @section mp
  1269. Apply an MPlayer filter to the input video.
  1270. This filter provides a wrapper around most of the filters of
  1271. MPlayer/MEncoder.
  1272. This wrapper is considered experimental. Some of the wrapped filters
  1273. may not work properly and we may drop support for them, as they will
  1274. be implemented natively into FFmpeg. Thus you should avoid
  1275. depending on them when writing portable scripts.
  1276. The filters accepts the parameters:
  1277. @var{filter_name}[:=]@var{filter_params}
  1278. @var{filter_name} is the name of a supported MPlayer filter,
  1279. @var{filter_params} is a string containing the parameters accepted by
  1280. the named filter.
  1281. The list of the currently supported filters follows:
  1282. @table @var
  1283. @item 2xsai
  1284. @item decimate
  1285. @item denoise3d
  1286. @item detc
  1287. @item dint
  1288. @item divtc
  1289. @item down3dright
  1290. @item dsize
  1291. @item eq2
  1292. @item eq
  1293. @item field
  1294. @item fil
  1295. @item fixpts
  1296. @item framestep
  1297. @item fspp
  1298. @item geq
  1299. @item harddup
  1300. @item hqdn3d
  1301. @item hue
  1302. @item il
  1303. @item ilpack
  1304. @item ivtc
  1305. @item kerndeint
  1306. @item mcdeint
  1307. @item mirror
  1308. @item noise
  1309. @item ow
  1310. @item palette
  1311. @item perspective
  1312. @item phase
  1313. @item pp7
  1314. @item pullup
  1315. @item qp
  1316. @item rectangle
  1317. @item remove-logo
  1318. @item rotate
  1319. @item sab
  1320. @item screenshot
  1321. @item smartblur
  1322. @item softpulldown
  1323. @item softskip
  1324. @item spp
  1325. @item swapuv
  1326. @item telecine
  1327. @item tile
  1328. @item tinterlace
  1329. @item unsharp
  1330. @item uspp
  1331. @item yuvcsp
  1332. @item yvu9
  1333. @end table
  1334. The parameter syntax and behavior for the listed filters are the same
  1335. of the corresponding MPlayer filters. For detailed instructions check
  1336. the "VIDEO FILTERS" section in the MPlayer manual.
  1337. Some examples follow:
  1338. @example
  1339. # remove a logo by interpolating the surrounding pixels
  1340. mp=delogo=200:200:80:20:1
  1341. # adjust gamma, brightness, contrast
  1342. mp=eq2=1.0:2:0.5
  1343. # tweak hue and saturation
  1344. mp=hue=100:-10
  1345. @end example
  1346. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1347. @section negate
  1348. Negate input video.
  1349. This filter accepts an integer in input, if non-zero it negates the
  1350. alpha component (if available). The default value in input is 0.
  1351. @section noformat
  1352. Force libavfilter not to use any of the specified pixel formats for the
  1353. input to the next filter.
  1354. The filter accepts a list of pixel format names, separated by ":",
  1355. for example "yuv420p:monow:rgb24".
  1356. Some examples follow:
  1357. @example
  1358. # force libavfilter to use a format different from "yuv420p" for the
  1359. # input to the vflip filter
  1360. noformat=yuv420p,vflip
  1361. # convert the input video to any of the formats not contained in the list
  1362. noformat=yuv420p:yuv444p:yuv410p
  1363. @end example
  1364. @section null
  1365. Pass the video source unchanged to the output.
  1366. @section ocv
  1367. Apply video transform using libopencv.
  1368. To enable this filter install libopencv library and headers and
  1369. configure FFmpeg with @code{--enable-libopencv}.
  1370. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1371. @var{filter_name} is the name of the libopencv filter to apply.
  1372. @var{filter_params} specifies the parameters to pass to the libopencv
  1373. filter. If not specified the default values are assumed.
  1374. Refer to the official libopencv documentation for more precise
  1375. information:
  1376. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1377. Follows the list of supported libopencv filters.
  1378. @anchor{dilate}
  1379. @subsection dilate
  1380. Dilate an image by using a specific structuring element.
  1381. This filter corresponds to the libopencv function @code{cvDilate}.
  1382. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1383. @var{struct_el} represents a structuring element, and has the syntax:
  1384. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1385. @var{cols} and @var{rows} represent the number of columns and rows of
  1386. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1387. point, and @var{shape} the shape for the structuring element, and
  1388. can be one of the values "rect", "cross", "ellipse", "custom".
  1389. If the value for @var{shape} is "custom", it must be followed by a
  1390. string of the form "=@var{filename}". The file with name
  1391. @var{filename} is assumed to represent a binary image, with each
  1392. printable character corresponding to a bright pixel. When a custom
  1393. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1394. or columns and rows of the read file are assumed instead.
  1395. The default value for @var{struct_el} is "3x3+0x0/rect".
  1396. @var{nb_iterations} specifies the number of times the transform is
  1397. applied to the image, and defaults to 1.
  1398. Follow some example:
  1399. @example
  1400. # use the default values
  1401. ocv=dilate
  1402. # dilate using a structuring element with a 5x5 cross, iterate two times
  1403. ocv=dilate=5x5+2x2/cross:2
  1404. # read the shape from the file diamond.shape, iterate two times
  1405. # the file diamond.shape may contain a pattern of characters like this:
  1406. # *
  1407. # ***
  1408. # *****
  1409. # ***
  1410. # *
  1411. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1412. ocv=0x0+2x2/custom=diamond.shape:2
  1413. @end example
  1414. @subsection erode
  1415. Erode an image by using a specific structuring element.
  1416. This filter corresponds to the libopencv function @code{cvErode}.
  1417. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1418. with the same syntax and semantics as the @ref{dilate} filter.
  1419. @subsection smooth
  1420. Smooth the input video.
  1421. The filter takes the following parameters:
  1422. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1423. @var{type} is the type of smooth filter to apply, and can be one of
  1424. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1425. "bilateral". The default value is "gaussian".
  1426. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1427. parameters whose meanings depend on smooth type. @var{param1} and
  1428. @var{param2} accept integer positive values or 0, @var{param3} and
  1429. @var{param4} accept float values.
  1430. The default value for @var{param1} is 3, the default value for the
  1431. other parameters is 0.
  1432. These parameters correspond to the parameters assigned to the
  1433. libopencv function @code{cvSmooth}.
  1434. @anchor{overlay}
  1435. @section overlay
  1436. Overlay one video on top of another.
  1437. It takes two inputs and one output, the first input is the "main"
  1438. video on which the second input is overlayed.
  1439. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  1440. @var{x} is the x coordinate of the overlayed video on the main video,
  1441. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  1442. the following parameters:
  1443. @table @option
  1444. @item main_w, main_h
  1445. main input width and height
  1446. @item W, H
  1447. same as @var{main_w} and @var{main_h}
  1448. @item overlay_w, overlay_h
  1449. overlay input width and height
  1450. @item w, h
  1451. same as @var{overlay_w} and @var{overlay_h}
  1452. @end table
  1453. @var{options} is an optional list of @var{key}=@var{value} pairs,
  1454. separated by ":".
  1455. The description of the accepted options follows.
  1456. @table @option
  1457. @item rgb
  1458. If set to 1, force the filter to accept inputs in the RGB
  1459. color space. Default value is 0.
  1460. @end table
  1461. Be aware that frames are taken from each input video in timestamp
  1462. order, hence, if their initial timestamps differ, it is a a good idea
  1463. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1464. have them begin in the same zero timestamp, as it does the example for
  1465. the @var{movie} filter.
  1466. Follow some examples:
  1467. @example
  1468. # draw the overlay at 10 pixels from the bottom right
  1469. # corner of the main video.
  1470. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1471. # insert a transparent PNG logo in the bottom left corner of the input
  1472. movie=logo.png [logo];
  1473. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  1474. # insert 2 different transparent PNG logos (second logo on bottom
  1475. # right corner):
  1476. movie=logo1.png [logo1];
  1477. movie=logo2.png [logo2];
  1478. [in][logo1] overlay=10:H-h-10 [in+logo1];
  1479. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  1480. # add a transparent color layer on top of the main video,
  1481. # WxH specifies the size of the main input to the overlay filter
  1482. color=red@.3:WxH [over]; [in][over] overlay [out]
  1483. @end example
  1484. You can chain together more overlays but the efficiency of such
  1485. approach is yet to be tested.
  1486. @section pad
  1487. Add paddings to the input image, and places the original input at the
  1488. given coordinates @var{x}, @var{y}.
  1489. It accepts the following parameters:
  1490. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1491. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1492. expressions containing the following constants:
  1493. @table @option
  1494. @item in_w, in_h
  1495. the input video width and height
  1496. @item iw, ih
  1497. same as @var{in_w} and @var{in_h}
  1498. @item out_w, out_h
  1499. the output width and height, that is the size of the padded area as
  1500. specified by the @var{width} and @var{height} expressions
  1501. @item ow, oh
  1502. same as @var{out_w} and @var{out_h}
  1503. @item x, y
  1504. x and y offsets as specified by the @var{x} and @var{y}
  1505. expressions, or NAN if not yet specified
  1506. @item a
  1507. same as @var{iw} / @var{ih}
  1508. @item sar
  1509. input sample aspect ratio
  1510. @item dar
  1511. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1512. @item hsub, vsub
  1513. horizontal and vertical chroma subsample values. For example for the
  1514. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1515. @end table
  1516. Follows the description of the accepted parameters.
  1517. @table @option
  1518. @item width, height
  1519. Specify the size of the output image with the paddings added. If the
  1520. value for @var{width} or @var{height} is 0, the corresponding input size
  1521. is used for the output.
  1522. The @var{width} expression can reference the value set by the
  1523. @var{height} expression, and vice versa.
  1524. The default value of @var{width} and @var{height} is 0.
  1525. @item x, y
  1526. Specify the offsets where to place the input image in the padded area
  1527. with respect to the top/left border of the output image.
  1528. The @var{x} expression can reference the value set by the @var{y}
  1529. expression, and vice versa.
  1530. The default value of @var{x} and @var{y} is 0.
  1531. @item color
  1532. Specify the color of the padded area, it can be the name of a color
  1533. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1534. The default value of @var{color} is "black".
  1535. @end table
  1536. Some examples follow:
  1537. @example
  1538. # Add paddings with color "violet" to the input video. Output video
  1539. # size is 640x480, the top-left corner of the input video is placed at
  1540. # column 0, row 40.
  1541. pad=640:480:0:40:violet
  1542. # pad the input to get an output with dimensions increased bt 3/2,
  1543. # and put the input video at the center of the padded area
  1544. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1545. # pad the input to get a squared output with size equal to the maximum
  1546. # value between the input width and height, and put the input video at
  1547. # the center of the padded area
  1548. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1549. # pad the input to get a final w/h ratio of 16:9
  1550. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1551. # for anamorphic video, in order to set the output display aspect ratio,
  1552. # it is necessary to use sar in the expression, according to the relation:
  1553. # (ih * X / ih) * sar = output_dar
  1554. # X = output_dar / sar
  1555. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  1556. # double output size and put the input video in the bottom-right
  1557. # corner of the output padded area
  1558. pad="2*iw:2*ih:ow-iw:oh-ih"
  1559. @end example
  1560. @section pixdesctest
  1561. Pixel format descriptor test filter, mainly useful for internal
  1562. testing. The output video should be equal to the input video.
  1563. For example:
  1564. @example
  1565. format=monow, pixdesctest
  1566. @end example
  1567. can be used to test the monowhite pixel format descriptor definition.
  1568. @section scale
  1569. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  1570. The parameters @var{width} and @var{height} are expressions containing
  1571. the following constants:
  1572. @table @option
  1573. @item in_w, in_h
  1574. the input width and height
  1575. @item iw, ih
  1576. same as @var{in_w} and @var{in_h}
  1577. @item out_w, out_h
  1578. the output (cropped) width and height
  1579. @item ow, oh
  1580. same as @var{out_w} and @var{out_h}
  1581. @item a
  1582. same as @var{iw} / @var{ih}
  1583. @item sar
  1584. input sample aspect ratio
  1585. @item dar
  1586. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1587. @item hsub, vsub
  1588. horizontal and vertical chroma subsample values. For example for the
  1589. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1590. @end table
  1591. If the input image format is different from the format requested by
  1592. the next filter, the scale filter will convert the input to the
  1593. requested format.
  1594. If the value for @var{width} or @var{height} is 0, the respective input
  1595. size is used for the output.
  1596. If the value for @var{width} or @var{height} is -1, the scale filter will
  1597. use, for the respective output size, a value that maintains the aspect
  1598. ratio of the input image.
  1599. The default value of @var{width} and @var{height} is 0.
  1600. Valid values for the optional parameter @var{interl} are:
  1601. @table @option
  1602. @item 1
  1603. force interlaced aware scaling
  1604. @item -1
  1605. select interlaced aware scaling depending on whether the source frames
  1606. are flagged as interlaced or not
  1607. @end table
  1608. Some examples follow:
  1609. @example
  1610. # scale the input video to a size of 200x100.
  1611. scale=200:100
  1612. # scale the input to 2x
  1613. scale=2*iw:2*ih
  1614. # the above is the same as
  1615. scale=2*in_w:2*in_h
  1616. # scale the input to half size
  1617. scale=iw/2:ih/2
  1618. # increase the width, and set the height to the same size
  1619. scale=3/2*iw:ow
  1620. # seek for Greek harmony
  1621. scale=iw:1/PHI*iw
  1622. scale=ih*PHI:ih
  1623. # increase the height, and set the width to 3/2 of the height
  1624. scale=3/2*oh:3/5*ih
  1625. # increase the size, but make the size a multiple of the chroma
  1626. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1627. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1628. scale='min(500\, iw*3/2):-1'
  1629. @end example
  1630. @section select
  1631. Select frames to pass in output.
  1632. It accepts in input an expression, which is evaluated for each input
  1633. frame. If the expression is evaluated to a non-zero value, the frame
  1634. is selected and passed to the output, otherwise it is discarded.
  1635. The expression can contain the following constants:
  1636. @table @option
  1637. @item n
  1638. the sequential number of the filtered frame, starting from 0
  1639. @item selected_n
  1640. the sequential number of the selected frame, starting from 0
  1641. @item prev_selected_n
  1642. the sequential number of the last selected frame, NAN if undefined
  1643. @item TB
  1644. timebase of the input timestamps
  1645. @item pts
  1646. the PTS (Presentation TimeStamp) of the filtered video frame,
  1647. expressed in @var{TB} units, NAN if undefined
  1648. @item t
  1649. the PTS (Presentation TimeStamp) of the filtered video frame,
  1650. expressed in seconds, NAN if undefined
  1651. @item prev_pts
  1652. the PTS of the previously filtered video frame, NAN if undefined
  1653. @item prev_selected_pts
  1654. the PTS of the last previously filtered video frame, NAN if undefined
  1655. @item prev_selected_t
  1656. the PTS of the last previously selected video frame, NAN if undefined
  1657. @item start_pts
  1658. the PTS of the first video frame in the video, NAN if undefined
  1659. @item start_t
  1660. the time of the first video frame in the video, NAN if undefined
  1661. @item pict_type
  1662. the type of the filtered frame, can assume one of the following
  1663. values:
  1664. @table @option
  1665. @item I
  1666. @item P
  1667. @item B
  1668. @item S
  1669. @item SI
  1670. @item SP
  1671. @item BI
  1672. @end table
  1673. @item interlace_type
  1674. the frame interlace type, can assume one of the following values:
  1675. @table @option
  1676. @item PROGRESSIVE
  1677. the frame is progressive (not interlaced)
  1678. @item TOPFIRST
  1679. the frame is top-field-first
  1680. @item BOTTOMFIRST
  1681. the frame is bottom-field-first
  1682. @end table
  1683. @item key
  1684. 1 if the filtered frame is a key-frame, 0 otherwise
  1685. @item pos
  1686. the position in the file of the filtered frame, -1 if the information
  1687. is not available (e.g. for synthetic video)
  1688. @end table
  1689. The default value of the select expression is "1".
  1690. Some examples follow:
  1691. @example
  1692. # select all frames in input
  1693. select
  1694. # the above is the same as:
  1695. select=1
  1696. # skip all frames:
  1697. select=0
  1698. # select only I-frames
  1699. select='eq(pict_type\,I)'
  1700. # select one frame every 100
  1701. select='not(mod(n\,100))'
  1702. # select only frames contained in the 10-20 time interval
  1703. select='gte(t\,10)*lte(t\,20)'
  1704. # select only I frames contained in the 10-20 time interval
  1705. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1706. # select frames with a minimum distance of 10 seconds
  1707. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1708. @end example
  1709. @anchor{setdar}
  1710. @section setdar
  1711. Set the Display Aspect Ratio for the filter output video.
  1712. This is done by changing the specified Sample (aka Pixel) Aspect
  1713. Ratio, according to the following equation:
  1714. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1715. Keep in mind that this filter does not modify the pixel dimensions of
  1716. the video frame. Also the display aspect ratio set by this filter may
  1717. be changed by later filters in the filterchain, e.g. in case of
  1718. scaling or if another "setdar" or a "setsar" filter is applied.
  1719. The filter accepts a parameter string which represents the wanted
  1720. display aspect ratio.
  1721. The parameter can be a floating point number string, or an expression
  1722. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1723. numerator and denominator of the aspect ratio.
  1724. If the parameter is not specified, it is assumed the value "0:1".
  1725. For example to change the display aspect ratio to 16:9, specify:
  1726. @example
  1727. setdar=16:9
  1728. # the above is equivalent to
  1729. setdar=1.77777
  1730. @end example
  1731. See also the @ref{setsar} filter documentation.
  1732. @section setpts
  1733. Change the PTS (presentation timestamp) of the input video frames.
  1734. Accept in input an expression evaluated through the eval API, which
  1735. can contain the following constants:
  1736. @table @option
  1737. @item PTS
  1738. the presentation timestamp in input
  1739. @item N
  1740. the count of the input frame, starting from 0.
  1741. @item STARTPTS
  1742. the PTS of the first video frame
  1743. @item INTERLACED
  1744. tell if the current frame is interlaced
  1745. @item POS
  1746. original position in the file of the frame, or undefined if undefined
  1747. for the current frame
  1748. @item PREV_INPTS
  1749. previous input PTS
  1750. @item PREV_OUTPTS
  1751. previous output PTS
  1752. @end table
  1753. Some examples follow:
  1754. @example
  1755. # start counting PTS from zero
  1756. setpts=PTS-STARTPTS
  1757. # fast motion
  1758. setpts=0.5*PTS
  1759. # slow motion
  1760. setpts=2.0*PTS
  1761. # fixed rate 25 fps
  1762. setpts=N/(25*TB)
  1763. # fixed rate 25 fps with some jitter
  1764. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1765. @end example
  1766. @anchor{setsar}
  1767. @section setsar
  1768. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1769. Note that as a consequence of the application of this filter, the
  1770. output display aspect ratio will change according to the following
  1771. equation:
  1772. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1773. Keep in mind that the sample aspect ratio set by this filter may be
  1774. changed by later filters in the filterchain, e.g. if another "setsar"
  1775. or a "setdar" filter is applied.
  1776. The filter accepts a parameter string which represents the wanted
  1777. sample aspect ratio.
  1778. The parameter can be a floating point number string, or an expression
  1779. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1780. numerator and denominator of the aspect ratio.
  1781. If the parameter is not specified, it is assumed the value "0:1".
  1782. For example to change the sample aspect ratio to 10:11, specify:
  1783. @example
  1784. setsar=10:11
  1785. @end example
  1786. @section settb
  1787. Set the timebase to use for the output frames timestamps.
  1788. It is mainly useful for testing timebase configuration.
  1789. It accepts in input an arithmetic expression representing a rational.
  1790. The expression can contain the constants "AVTB" (the
  1791. default timebase), and "intb" (the input timebase).
  1792. The default value for the input is "intb".
  1793. Follow some examples.
  1794. @example
  1795. # set the timebase to 1/25
  1796. settb=1/25
  1797. # set the timebase to 1/10
  1798. settb=0.1
  1799. #set the timebase to 1001/1000
  1800. settb=1+0.001
  1801. #set the timebase to 2*intb
  1802. settb=2*intb
  1803. #set the default timebase value
  1804. settb=AVTB
  1805. @end example
  1806. @section showinfo
  1807. Show a line containing various information for each input video frame.
  1808. The input video is not modified.
  1809. The shown line contains a sequence of key/value pairs of the form
  1810. @var{key}:@var{value}.
  1811. A description of each shown parameter follows:
  1812. @table @option
  1813. @item n
  1814. sequential number of the input frame, starting from 0
  1815. @item pts
  1816. Presentation TimeStamp of the input frame, expressed as a number of
  1817. time base units. The time base unit depends on the filter input pad.
  1818. @item pts_time
  1819. Presentation TimeStamp of the input frame, expressed as a number of
  1820. seconds
  1821. @item pos
  1822. position of the frame in the input stream, -1 if this information in
  1823. unavailable and/or meaningless (for example in case of synthetic video)
  1824. @item fmt
  1825. pixel format name
  1826. @item sar
  1827. sample aspect ratio of the input frame, expressed in the form
  1828. @var{num}/@var{den}
  1829. @item s
  1830. size of the input frame, expressed in the form
  1831. @var{width}x@var{height}
  1832. @item i
  1833. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1834. for bottom field first)
  1835. @item iskey
  1836. 1 if the frame is a key frame, 0 otherwise
  1837. @item type
  1838. picture type of the input frame ("I" for an I-frame, "P" for a
  1839. P-frame, "B" for a B-frame, "?" for unknown type).
  1840. Check also the documentation of the @code{AVPictureType} enum and of
  1841. the @code{av_get_picture_type_char} function defined in
  1842. @file{libavutil/avutil.h}.
  1843. @item checksum
  1844. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  1845. @item plane_checksum
  1846. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  1847. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1848. @end table
  1849. @section slicify
  1850. Pass the images of input video on to next video filter as multiple
  1851. slices.
  1852. @example
  1853. ffmpeg -i in.avi -vf "slicify=32" out.avi
  1854. @end example
  1855. The filter accepts the slice height as parameter. If the parameter is
  1856. not specified it will use the default value of 16.
  1857. Adding this in the beginning of filter chains should make filtering
  1858. faster due to better use of the memory cache.
  1859. @section split
  1860. Pass on the input video to two outputs. Both outputs are identical to
  1861. the input video.
  1862. For example:
  1863. @example
  1864. [in] split [splitout1][splitout2];
  1865. [splitout1] crop=100:100:0:0 [cropout];
  1866. [splitout2] pad=200:200:100:100 [padout];
  1867. @end example
  1868. will create two separate outputs from the same input, one cropped and
  1869. one padded.
  1870. @section thumbnail
  1871. Select the most representative frame in a given sequence of consecutive frames.
  1872. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  1873. in a set of @var{N} frames, the filter will pick one of them, and then handle
  1874. the next batch of @var{N} frames until the end.
  1875. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  1876. value will result in a higher memory usage, so a high value is not recommended.
  1877. The following example extract one picture each 50 frames:
  1878. @example
  1879. thumbnail=50
  1880. @end example
  1881. Complete example of a thumbnail creation with @command{ffmpeg}:
  1882. @example
  1883. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  1884. @end example
  1885. @section tinterlace
  1886. Perform various types of temporal field interlacing.
  1887. Frames are counted starting from 1, so the first input frame is
  1888. considered odd.
  1889. This filter accepts a single parameter specifying the mode. Available
  1890. modes are:
  1891. @table @samp
  1892. @item 0
  1893. Move odd frames into the upper field, even into the lower field,
  1894. generating a double height frame at half framerate.
  1895. @item 1
  1896. Only output even frames, odd frames are dropped, generating a frame with
  1897. unchanged height at half framerate.
  1898. @item 2
  1899. Only output odd frames, even frames are dropped, generating a frame with
  1900. unchanged height at half framerate.
  1901. @item 3
  1902. Expand each frame to full height, but pad alternate lines with black,
  1903. generating a frame with double height at the same input framerate.
  1904. @item 4
  1905. Interleave the upper field from odd frames with the lower field from
  1906. even frames, generating a frame with unchanged height at half framerate.
  1907. @item 5
  1908. Interleave the lower field from odd frames with the upper field from
  1909. even frames, generating a frame with unchanged height at half framerate.
  1910. @end table
  1911. Default mode is 0.
  1912. @section transpose
  1913. Transpose rows with columns in the input video and optionally flip it.
  1914. It accepts a parameter representing an integer, which can assume the
  1915. values:
  1916. @table @samp
  1917. @item 0
  1918. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1919. @example
  1920. L.R L.l
  1921. . . -> . .
  1922. l.r R.r
  1923. @end example
  1924. @item 1
  1925. Rotate by 90 degrees clockwise, that is:
  1926. @example
  1927. L.R l.L
  1928. . . -> . .
  1929. l.r r.R
  1930. @end example
  1931. @item 2
  1932. Rotate by 90 degrees counterclockwise, that is:
  1933. @example
  1934. L.R R.r
  1935. . . -> . .
  1936. l.r L.l
  1937. @end example
  1938. @item 3
  1939. Rotate by 90 degrees clockwise and vertically flip, that is:
  1940. @example
  1941. L.R r.R
  1942. . . -> . .
  1943. l.r l.L
  1944. @end example
  1945. @end table
  1946. @section unsharp
  1947. Sharpen or blur the input video.
  1948. It accepts the following parameters:
  1949. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1950. Negative values for the amount will blur the input video, while positive
  1951. values will sharpen. All parameters are optional and default to the
  1952. equivalent of the string '5:5:1.0:5:5:0.0'.
  1953. @table @option
  1954. @item luma_msize_x
  1955. Set the luma matrix horizontal size. It can be an integer between 3
  1956. and 13, default value is 5.
  1957. @item luma_msize_y
  1958. Set the luma matrix vertical size. It can be an integer between 3
  1959. and 13, default value is 5.
  1960. @item luma_amount
  1961. Set the luma effect strength. It can be a float number between -2.0
  1962. and 5.0, default value is 1.0.
  1963. @item chroma_msize_x
  1964. Set the chroma matrix horizontal size. It can be an integer between 3
  1965. and 13, default value is 5.
  1966. @item chroma_msize_y
  1967. Set the chroma matrix vertical size. It can be an integer between 3
  1968. and 13, default value is 5.
  1969. @item chroma_amount
  1970. Set the chroma effect strength. It can be a float number between -2.0
  1971. and 5.0, default value is 0.0.
  1972. @end table
  1973. @example
  1974. # Strong luma sharpen effect parameters
  1975. unsharp=7:7:2.5
  1976. # Strong blur of both luma and chroma parameters
  1977. unsharp=7:7:-2:7:7:-2
  1978. # Use the default values with @command{ffmpeg}
  1979. ffmpeg -i in.avi -vf "unsharp" out.mp4
  1980. @end example
  1981. @section vflip
  1982. Flip the input video vertically.
  1983. @example
  1984. ffmpeg -i in.avi -vf "vflip" out.avi
  1985. @end example
  1986. @section yadif
  1987. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1988. filter").
  1989. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  1990. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  1991. following values:
  1992. @table @option
  1993. @item 0
  1994. output 1 frame for each frame
  1995. @item 1
  1996. output 1 frame for each field
  1997. @item 2
  1998. like 0 but skips spatial interlacing check
  1999. @item 3
  2000. like 1 but skips spatial interlacing check
  2001. @end table
  2002. Default value is 0.
  2003. @var{parity} specifies the picture field parity assumed for the input
  2004. interlaced video, accepts one of the following values:
  2005. @table @option
  2006. @item 0
  2007. assume top field first
  2008. @item 1
  2009. assume bottom field first
  2010. @item -1
  2011. enable automatic detection
  2012. @end table
  2013. Default value is -1.
  2014. If interlacing is unknown or decoder does not export this information,
  2015. top field first will be assumed.
  2016. @var{auto} specifies if deinterlacer should trust the interlaced flag
  2017. and only deinterlace frames marked as interlaced
  2018. @table @option
  2019. @item 0
  2020. deinterlace all frames
  2021. @item 1
  2022. only deinterlace frames marked as interlaced
  2023. @end table
  2024. Default value is 0.
  2025. @c man end VIDEO FILTERS
  2026. @chapter Video Sources
  2027. @c man begin VIDEO SOURCES
  2028. Below is a description of the currently available video sources.
  2029. @section buffer
  2030. Buffer video frames, and make them available to the filter chain.
  2031. This source is mainly intended for a programmatic use, in particular
  2032. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  2033. It accepts the following parameters:
  2034. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}:@var{scale_params}
  2035. All the parameters but @var{scale_params} need to be explicitly
  2036. defined.
  2037. Follows the list of the accepted parameters.
  2038. @table @option
  2039. @item width, height
  2040. Specify the width and height of the buffered video frames.
  2041. @item pix_fmt_string
  2042. A string representing the pixel format of the buffered video frames.
  2043. It may be a number corresponding to a pixel format, or a pixel format
  2044. name.
  2045. @item timebase_num, timebase_den
  2046. Specify numerator and denomitor of the timebase assumed by the
  2047. timestamps of the buffered frames.
  2048. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  2049. Specify numerator and denominator of the sample aspect ratio assumed
  2050. by the video frames.
  2051. @item scale_params
  2052. Specify the optional parameters to be used for the scale filter which
  2053. is automatically inserted when an input change is detected in the
  2054. input size or format.
  2055. @end table
  2056. For example:
  2057. @example
  2058. buffer=320:240:yuv410p:1:24:1:1
  2059. @end example
  2060. will instruct the source to accept video frames with size 320x240 and
  2061. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2062. square pixels (1:1 sample aspect ratio).
  2063. Since the pixel format with name "yuv410p" corresponds to the number 6
  2064. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  2065. this example corresponds to:
  2066. @example
  2067. buffer=320:240:6:1:24:1:1
  2068. @end example
  2069. @section cellauto
  2070. Create a pattern generated by an elementary cellular automaton.
  2071. The initial state of the cellular automaton can be defined through the
  2072. @option{filename}, and @option{pattern} options. If such options are
  2073. not specified an initial state is created randomly.
  2074. At each new frame a new row in the video is filled with the result of
  2075. the cellular automaton next generation. The behavior when the whole
  2076. frame is filled is defined by the @option{scroll} option.
  2077. This source accepts a list of options in the form of
  2078. @var{key}=@var{value} pairs separated by ":". A description of the
  2079. accepted options follows.
  2080. @table @option
  2081. @item filename, f
  2082. Read the initial cellular automaton state, i.e. the starting row, from
  2083. the specified file.
  2084. In the file, each non-whitespace character is considered an alive
  2085. cell, a newline will terminate the row, and further characters in the
  2086. file will be ignored.
  2087. @item pattern, p
  2088. Read the initial cellular automaton state, i.e. the starting row, from
  2089. the specified string.
  2090. Each non-whitespace character in the string is considered an alive
  2091. cell, a newline will terminate the row, and further characters in the
  2092. string will be ignored.
  2093. @item rate, r
  2094. Set the video rate, that is the number of frames generated per second.
  2095. Default is 25.
  2096. @item random_fill_ratio, ratio
  2097. Set the random fill ratio for the initial cellular automaton row. It
  2098. is a floating point number value ranging from 0 to 1, defaults to
  2099. 1/PHI.
  2100. This option is ignored when a file or a pattern is specified.
  2101. @item random_seed, seed
  2102. Set the seed for filling randomly the initial row, must be an integer
  2103. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2104. set to -1, the filter will try to use a good random seed on a best
  2105. effort basis.
  2106. @item rule
  2107. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  2108. Default value is 110.
  2109. @item size, s
  2110. Set the size of the output video.
  2111. If @option{filename} or @option{pattern} is specified, the size is set
  2112. by default to the width of the specified initial state row, and the
  2113. height is set to @var{width} * PHI.
  2114. If @option{size} is set, it must contain the width of the specified
  2115. pattern string, and the specified pattern will be centered in the
  2116. larger row.
  2117. If a filename or a pattern string is not specified, the size value
  2118. defaults to "320x518" (used for a randomly generated initial state).
  2119. @item scroll
  2120. If set to 1, scroll the output upward when all the rows in the output
  2121. have been already filled. If set to 0, the new generated row will be
  2122. written over the top row just after the bottom row is filled.
  2123. Defaults to 1.
  2124. @item start_full, full
  2125. If set to 1, completely fill the output with generated rows before
  2126. outputting the first frame.
  2127. This is the default behavior, for disabling set the value to 0.
  2128. @item stitch
  2129. If set to 1, stitch the left and right row edges together.
  2130. This is the default behavior, for disabling set the value to 0.
  2131. @end table
  2132. @subsection Examples
  2133. @itemize
  2134. @item
  2135. Read the initial state from @file{pattern}, and specify an output of
  2136. size 200x400.
  2137. @example
  2138. cellauto=f=pattern:s=200x400
  2139. @end example
  2140. @item
  2141. Generate a random initial row with a width of 200 cells, with a fill
  2142. ratio of 2/3:
  2143. @example
  2144. cellauto=ratio=2/3:s=200x200
  2145. @end example
  2146. @item
  2147. Create a pattern generated by rule 18 starting by a single alive cell
  2148. centered on an initial row with width 100:
  2149. @example
  2150. cellauto=p=@@:s=100x400:full=0:rule=18
  2151. @end example
  2152. @item
  2153. Specify a more elaborated initial pattern:
  2154. @example
  2155. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  2156. @end example
  2157. @end itemize
  2158. @section color
  2159. Provide an uniformly colored input.
  2160. It accepts the following parameters:
  2161. @var{color}:@var{frame_size}:@var{frame_rate}
  2162. Follows the description of the accepted parameters.
  2163. @table @option
  2164. @item color
  2165. Specify the color of the source. It can be the name of a color (case
  2166. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  2167. alpha specifier. The default value is "black".
  2168. @item frame_size
  2169. Specify the size of the sourced video, it may be a string of the form
  2170. @var{width}x@var{height}, or the name of a size abbreviation. The
  2171. default value is "320x240".
  2172. @item frame_rate
  2173. Specify the frame rate of the sourced video, as the number of frames
  2174. generated per second. It has to be a string in the format
  2175. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2176. number or a valid video frame rate abbreviation. The default value is
  2177. "25".
  2178. @end table
  2179. For example the following graph description will generate a red source
  2180. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  2181. frames per second, which will be overlayed over the source connected
  2182. to the pad with identifier "in".
  2183. @example
  2184. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  2185. @end example
  2186. @section movie
  2187. Read a video stream from a movie container.
  2188. It accepts the syntax: @var{movie_name}[:@var{options}] where
  2189. @var{movie_name} is the name of the resource to read (not necessarily
  2190. a file but also a device or a stream accessed through some protocol),
  2191. and @var{options} is an optional sequence of @var{key}=@var{value}
  2192. pairs, separated by ":".
  2193. The description of the accepted options follows.
  2194. @table @option
  2195. @item format_name, f
  2196. Specifies the format assumed for the movie to read, and can be either
  2197. the name of a container or an input device. If not specified the
  2198. format is guessed from @var{movie_name} or by probing.
  2199. @item seek_point, sp
  2200. Specifies the seek point in seconds, the frames will be output
  2201. starting from this seek point, the parameter is evaluated with
  2202. @code{av_strtod} so the numerical value may be suffixed by an IS
  2203. postfix. Default value is "0".
  2204. @item stream_index, si
  2205. Specifies the index of the video stream to read. If the value is -1,
  2206. the best suited video stream will be automatically selected. Default
  2207. value is "-1".
  2208. @end table
  2209. This filter allows to overlay a second video on top of main input of
  2210. a filtergraph as shown in this graph:
  2211. @example
  2212. input -----------> deltapts0 --> overlay --> output
  2213. ^
  2214. |
  2215. movie --> scale--> deltapts1 -------+
  2216. @end example
  2217. Some examples follow:
  2218. @example
  2219. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  2220. # on top of the input labelled as "in".
  2221. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2222. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2223. # read from a video4linux2 device, and overlay it on top of the input
  2224. # labelled as "in"
  2225. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2226. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2227. @end example
  2228. @section mptestsrc
  2229. Generate various test patterns, as generated by the MPlayer test filter.
  2230. The size of the generated video is fixed, and is 256x256.
  2231. This source is useful in particular for testing encoding features.
  2232. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  2233. separated by ":". The description of the accepted options follows.
  2234. @table @option
  2235. @item rate, r
  2236. Specify the frame rate of the sourced video, as the number of frames
  2237. generated per second. It has to be a string in the format
  2238. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2239. number or a valid video frame rate abbreviation. The default value is
  2240. "25".
  2241. @item duration, d
  2242. Set the video duration of the sourced video. The accepted syntax is:
  2243. @example
  2244. [-]HH[:MM[:SS[.m...]]]
  2245. [-]S+[.m...]
  2246. @end example
  2247. See also the function @code{av_parse_time()}.
  2248. If not specified, or the expressed duration is negative, the video is
  2249. supposed to be generated forever.
  2250. @item test, t
  2251. Set the number or the name of the test to perform. Supported tests are:
  2252. @table @option
  2253. @item dc_luma
  2254. @item dc_chroma
  2255. @item freq_luma
  2256. @item freq_chroma
  2257. @item amp_luma
  2258. @item amp_chroma
  2259. @item cbp
  2260. @item mv
  2261. @item ring1
  2262. @item ring2
  2263. @item all
  2264. @end table
  2265. Default value is "all", which will cycle through the list of all tests.
  2266. @end table
  2267. For example the following:
  2268. @example
  2269. testsrc=t=dc_luma
  2270. @end example
  2271. will generate a "dc_luma" test pattern.
  2272. @section frei0r_src
  2273. Provide a frei0r source.
  2274. To enable compilation of this filter you need to install the frei0r
  2275. header and configure FFmpeg with @code{--enable-frei0r}.
  2276. The source supports the syntax:
  2277. @example
  2278. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  2279. @end example
  2280. @var{size} is the size of the video to generate, may be a string of the
  2281. form @var{width}x@var{height} or a frame size abbreviation.
  2282. @var{rate} is the rate of the video to generate, may be a string of
  2283. the form @var{num}/@var{den} or a frame rate abbreviation.
  2284. @var{src_name} is the name to the frei0r source to load. For more
  2285. information regarding frei0r and how to set the parameters read the
  2286. section @ref{frei0r} in the description of the video filters.
  2287. Some examples follow:
  2288. @example
  2289. # generate a frei0r partik0l source with size 200x200 and frame rate 10
  2290. # which is overlayed on the overlay filter main input
  2291. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  2292. @end example
  2293. @section life
  2294. Generate a life pattern.
  2295. This source is based on a generalization of John Conway's life game.
  2296. The sourced input represents a life grid, each pixel represents a cell
  2297. which can be in one of two possible states, alive or dead. Every cell
  2298. interacts with its eight neighbours, which are the cells that are
  2299. horizontally, vertically, or diagonally adjacent.
  2300. At each interaction the grid evolves according to the adopted rule,
  2301. which specifies the number of neighbor alive cells which will make a
  2302. cell stay alive or born. The @option{rule} option allows to specify
  2303. the rule to adopt.
  2304. This source accepts a list of options in the form of
  2305. @var{key}=@var{value} pairs separated by ":". A description of the
  2306. accepted options follows.
  2307. @table @option
  2308. @item filename, f
  2309. Set the file from which to read the initial grid state. In the file,
  2310. each non-whitespace character is considered an alive cell, and newline
  2311. is used to delimit the end of each row.
  2312. If this option is not specified, the initial grid is generated
  2313. randomly.
  2314. @item rate, r
  2315. Set the video rate, that is the number of frames generated per second.
  2316. Default is 25.
  2317. @item random_fill_ratio, ratio
  2318. Set the random fill ratio for the initial random grid. It is a
  2319. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  2320. It is ignored when a file is specified.
  2321. @item random_seed, seed
  2322. Set the seed for filling the initial random grid, must be an integer
  2323. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2324. set to -1, the filter will try to use a good random seed on a best
  2325. effort basis.
  2326. @item rule
  2327. Set the life rule.
  2328. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  2329. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  2330. @var{NS} specifies the number of alive neighbor cells which make a
  2331. live cell stay alive, and @var{NB} the number of alive neighbor cells
  2332. which make a dead cell to become alive (i.e. to "born").
  2333. "s" and "b" can be used in place of "S" and "B", respectively.
  2334. Alternatively a rule can be specified by an 18-bits integer. The 9
  2335. high order bits are used to encode the next cell state if it is alive
  2336. for each number of neighbor alive cells, the low order bits specify
  2337. the rule for "borning" new cells. Higher order bits encode for an
  2338. higher number of neighbor cells.
  2339. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  2340. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  2341. Default value is "S23/B3", which is the original Conway's game of life
  2342. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  2343. cells, and will born a new cell if there are three alive cells around
  2344. a dead cell.
  2345. @item size, s
  2346. Set the size of the output video.
  2347. If @option{filename} is specified, the size is set by default to the
  2348. same size of the input file. If @option{size} is set, it must contain
  2349. the size specified in the input file, and the initial grid defined in
  2350. that file is centered in the larger resulting area.
  2351. If a filename is not specified, the size value defaults to "320x240"
  2352. (used for a randomly generated initial grid).
  2353. @item stitch
  2354. If set to 1, stitch the left and right grid edges together, and the
  2355. top and bottom edges also. Defaults to 1.
  2356. @item mold
  2357. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  2358. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  2359. value from 0 to 255.
  2360. @item life_color
  2361. Set the color of living (or new born) cells.
  2362. @item death_color
  2363. Set the color of dead cells. If @option{mold} is set, this is the first color
  2364. used to represent a dead cell.
  2365. @item mold_color
  2366. Set mold color, for definitely dead and moldy cells.
  2367. @end table
  2368. @subsection Examples
  2369. @itemize
  2370. @item
  2371. Read a grid from @file{pattern}, and center it on a grid of size
  2372. 300x300 pixels:
  2373. @example
  2374. life=f=pattern:s=300x300
  2375. @end example
  2376. @item
  2377. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  2378. @example
  2379. life=ratio=2/3:s=200x200
  2380. @end example
  2381. @item
  2382. Specify a custom rule for evolving a randomly generated grid:
  2383. @example
  2384. life=rule=S14/B34
  2385. @end example
  2386. @item
  2387. Full example with slow death effect (mold) using @command{ffplay}:
  2388. @example
  2389. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  2390. @end example
  2391. @end itemize
  2392. @section nullsrc, rgbtestsrc, testsrc
  2393. The @code{nullsrc} source returns unprocessed video frames. It is
  2394. mainly useful to be employed in analysis / debugging tools, or as the
  2395. source for filters which ignore the input data.
  2396. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2397. detecting RGB vs BGR issues. You should see a red, green and blue
  2398. stripe from top to bottom.
  2399. The @code{testsrc} source generates a test video pattern, showing a
  2400. color pattern, a scrolling gradient and a timestamp. This is mainly
  2401. intended for testing purposes.
  2402. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  2403. separated by ":". The description of the accepted options follows.
  2404. @table @option
  2405. @item size, s
  2406. Specify the size of the sourced video, it may be a string of the form
  2407. @var{width}x@var{height}, or the name of a size abbreviation. The
  2408. default value is "320x240".
  2409. @item rate, r
  2410. Specify the frame rate of the sourced video, as the number of frames
  2411. generated per second. It has to be a string in the format
  2412. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2413. number or a valid video frame rate abbreviation. The default value is
  2414. "25".
  2415. @item sar
  2416. Set the sample aspect ratio of the sourced video.
  2417. @item duration, d
  2418. Set the video duration of the sourced video. The accepted syntax is:
  2419. @example
  2420. [-]HH[:MM[:SS[.m...]]]
  2421. [-]S+[.m...]
  2422. @end example
  2423. See also the function @code{av_parse_time()}.
  2424. If not specified, or the expressed duration is negative, the video is
  2425. supposed to be generated forever.
  2426. @item decimals, n
  2427. Set the number of decimals to show in the timestamp, only used in the
  2428. @code{testsrc} source.
  2429. The displayed timestamp value will correspond to the original
  2430. timestamp value multiplied by the power of 10 of the specified
  2431. value. Default value is 0.
  2432. @end table
  2433. For example the following:
  2434. @example
  2435. testsrc=duration=5.3:size=qcif:rate=10
  2436. @end example
  2437. will generate a video with a duration of 5.3 seconds, with size
  2438. 176x144 and a frame rate of 10 frames per second.
  2439. If the input content is to be ignored, @code{nullsrc} can be used. The
  2440. following command generates noise in the luminance plane by employing
  2441. the @code{mp=geq} filter:
  2442. @example
  2443. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  2444. @end example
  2445. @c man end VIDEO SOURCES
  2446. @chapter Video Sinks
  2447. @c man begin VIDEO SINKS
  2448. Below is a description of the currently available video sinks.
  2449. @section buffersink
  2450. Buffer video frames, and make them available to the end of the filter
  2451. graph.
  2452. This sink is mainly intended for a programmatic use, in particular
  2453. through the interface defined in @file{libavfilter/buffersink.h}.
  2454. It does not require a string parameter in input, but you need to
  2455. specify a pointer to a list of supported pixel formats terminated by
  2456. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  2457. when initializing this sink.
  2458. @section nullsink
  2459. Null video sink, do absolutely nothing with the input video. It is
  2460. mainly useful as a template and to be employed in analysis / debugging
  2461. tools.
  2462. @c man end VIDEO SINKS