You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3381 lines
114KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. */
  21. /**
  22. * @file vc1.c
  23. * VC-1 and WMV3 decoder
  24. *
  25. */
  26. #include "common.h"
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1data.h"
  31. #include "vc1acdata.h"
  32. #undef NDEBUG
  33. #include <assert.h>
  34. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  35. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  36. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  37. #define MB_INTRA_VLC_BITS 9
  38. extern VLC ff_msmp4_mb_i_vlc;
  39. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  40. #define DC_VLC_BITS 9
  41. #define AC_VLC_BITS 9
  42. static const uint16_t table_mb_intra[64][2];
  43. /** Available Profiles */
  44. //@{
  45. enum Profile {
  46. PROFILE_SIMPLE,
  47. PROFILE_MAIN,
  48. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  49. PROFILE_ADVANCED
  50. };
  51. //@}
  52. /** Sequence quantizer mode */
  53. //@{
  54. enum QuantMode {
  55. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  56. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  57. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  58. QUANT_UNIFORM ///< Uniform quant used for all frames
  59. };
  60. //@}
  61. /** Where quant can be changed */
  62. //@{
  63. enum DQProfile {
  64. DQPROFILE_FOUR_EDGES,
  65. DQPROFILE_DOUBLE_EDGES,
  66. DQPROFILE_SINGLE_EDGE,
  67. DQPROFILE_ALL_MBS
  68. };
  69. //@}
  70. /** @name Where quant can be changed
  71. */
  72. //@{
  73. enum DQSingleEdge {
  74. DQSINGLE_BEDGE_LEFT,
  75. DQSINGLE_BEDGE_TOP,
  76. DQSINGLE_BEDGE_RIGHT,
  77. DQSINGLE_BEDGE_BOTTOM
  78. };
  79. //@}
  80. /** Which pair of edges is quantized with ALTPQUANT */
  81. //@{
  82. enum DQDoubleEdge {
  83. DQDOUBLE_BEDGE_TOPLEFT,
  84. DQDOUBLE_BEDGE_TOPRIGHT,
  85. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  86. DQDOUBLE_BEDGE_BOTTOMLEFT
  87. };
  88. //@}
  89. /** MV modes for P frames */
  90. //@{
  91. enum MVModes {
  92. MV_PMODE_1MV_HPEL_BILIN,
  93. MV_PMODE_1MV,
  94. MV_PMODE_1MV_HPEL,
  95. MV_PMODE_MIXED_MV,
  96. MV_PMODE_INTENSITY_COMP
  97. };
  98. //@}
  99. /** @name MV types for B frames */
  100. //@{
  101. enum BMVTypes {
  102. BMV_TYPE_BACKWARD,
  103. BMV_TYPE_FORWARD,
  104. BMV_TYPE_INTERPOLATED
  105. };
  106. //@}
  107. /** @name Block types for P/B frames */
  108. //@{
  109. enum TransformTypes {
  110. TT_8X8,
  111. TT_8X4_BOTTOM,
  112. TT_8X4_TOP,
  113. TT_8X4, //Both halves
  114. TT_4X8_RIGHT,
  115. TT_4X8_LEFT,
  116. TT_4X8, //Both halves
  117. TT_4X4
  118. };
  119. //@}
  120. /** Table for conversion between TTBLK and TTMB */
  121. static const int ttblk_to_tt[3][8] = {
  122. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  123. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  124. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  125. };
  126. static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 };
  127. /** MV P mode - the 5th element is only used for mode 1 */
  128. static const uint8_t mv_pmode_table[2][5] = {
  129. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  130. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  131. };
  132. static const uint8_t mv_pmode_table2[2][4] = {
  133. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV },
  134. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN }
  135. };
  136. /** One more frame type */
  137. #define BI_TYPE 7
  138. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  139. fps_dr[2] = { 1000, 1001 };
  140. static const uint8_t pquant_table[3][32] = {
  141. { /* Implicit quantizer */
  142. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  143. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  144. },
  145. { /* Explicit quantizer, pquantizer uniform */
  146. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  147. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  148. },
  149. { /* Explicit quantizer, pquantizer non-uniform */
  150. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  151. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  152. }
  153. };
  154. /** @name VC-1 VLC tables and defines
  155. * @todo TODO move this into the context
  156. */
  157. //@{
  158. #define VC1_BFRACTION_VLC_BITS 7
  159. static VLC vc1_bfraction_vlc;
  160. #define VC1_IMODE_VLC_BITS 4
  161. static VLC vc1_imode_vlc;
  162. #define VC1_NORM2_VLC_BITS 3
  163. static VLC vc1_norm2_vlc;
  164. #define VC1_NORM6_VLC_BITS 9
  165. static VLC vc1_norm6_vlc;
  166. /* Could be optimized, one table only needs 8 bits */
  167. #define VC1_TTMB_VLC_BITS 9 //12
  168. static VLC vc1_ttmb_vlc[3];
  169. #define VC1_MV_DIFF_VLC_BITS 9 //15
  170. static VLC vc1_mv_diff_vlc[4];
  171. #define VC1_CBPCY_P_VLC_BITS 9 //14
  172. static VLC vc1_cbpcy_p_vlc[4];
  173. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  174. static VLC vc1_4mv_block_pattern_vlc[4];
  175. #define VC1_TTBLK_VLC_BITS 5
  176. static VLC vc1_ttblk_vlc[3];
  177. #define VC1_SUBBLKPAT_VLC_BITS 6
  178. static VLC vc1_subblkpat_vlc[3];
  179. static VLC vc1_ac_coeff_table[8];
  180. //@}
  181. enum CodingSet {
  182. CS_HIGH_MOT_INTRA = 0,
  183. CS_HIGH_MOT_INTER,
  184. CS_LOW_MOT_INTRA,
  185. CS_LOW_MOT_INTER,
  186. CS_MID_RATE_INTRA,
  187. CS_MID_RATE_INTER,
  188. CS_HIGH_RATE_INTRA,
  189. CS_HIGH_RATE_INTER
  190. };
  191. /** The VC1 Context
  192. * @fixme Change size wherever another size is more efficient
  193. * Many members are only used for Advanced Profile
  194. */
  195. typedef struct VC1Context{
  196. MpegEncContext s;
  197. int bits;
  198. /** Simple/Main Profile sequence header */
  199. //@{
  200. int res_sm; ///< reserved, 2b
  201. int res_x8; ///< reserved
  202. int multires; ///< frame-level RESPIC syntax element present
  203. int res_fasttx; ///< reserved, always 1
  204. int res_transtab; ///< reserved, always 0
  205. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  206. ///< at frame level
  207. int res_rtm_flag; ///< reserved, set to 1
  208. int reserved; ///< reserved
  209. //@}
  210. /** Advanced Profile */
  211. //@{
  212. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  213. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  214. int postprocflag; ///< Per-frame processing suggestion flag present
  215. int broadcast; ///< TFF/RFF present
  216. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  217. int tfcntrflag; ///< TFCNTR present
  218. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  219. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  220. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  221. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  222. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  223. int hrd_param_flag; ///< Presence of Hypothetical Reference
  224. ///< Decoder parameters
  225. //@}
  226. /** Sequence header data for all Profiles
  227. * TODO: choose between ints, uint8_ts and monobit flags
  228. */
  229. //@{
  230. int profile; ///< 2bits, Profile
  231. int frmrtq_postproc; ///< 3bits,
  232. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  233. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  234. int extended_mv; ///< Ext MV in P/B (not in Simple)
  235. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  236. int vstransform; ///< variable-size [48]x[48] transform type + info
  237. int overlap; ///< overlapped transforms in use
  238. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  239. int finterpflag; ///< INTERPFRM present
  240. //@}
  241. /** Frame decoding info for all profiles */
  242. //@{
  243. uint8_t mv_mode; ///< MV coding monde
  244. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  245. int k_x; ///< Number of bits for MVs (depends on MV range)
  246. int k_y; ///< Number of bits for MVs (depends on MV range)
  247. int range_x, range_y; ///< MV range
  248. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  249. /** pquant parameters */
  250. //@{
  251. uint8_t dquantfrm;
  252. uint8_t dqprofile;
  253. uint8_t dqsbedge;
  254. uint8_t dqbilevel;
  255. //@}
  256. /** AC coding set indexes
  257. * @see 8.1.1.10, p(1)10
  258. */
  259. //@{
  260. int c_ac_table_index; ///< Chroma index from ACFRM element
  261. int y_ac_table_index; ///< Luma index from AC2FRM element
  262. //@}
  263. int ttfrm; ///< Transform type info present at frame level
  264. uint8_t ttmbf; ///< Transform type flag
  265. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  266. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  267. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  268. int pqindex; ///< raw pqindex used in coding set selection
  269. int a_avail, c_avail;
  270. uint8_t *mb_type_base, *mb_type[3];
  271. /** Luma compensation parameters */
  272. //@{
  273. uint8_t lumscale;
  274. uint8_t lumshift;
  275. //@}
  276. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  277. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  278. uint8_t respic; ///< Frame-level flag for resized images
  279. int buffer_fullness; ///< HRD info
  280. /** Ranges:
  281. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  282. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  283. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  284. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  285. */
  286. uint8_t mvrange;
  287. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  288. VLC *cbpcy_vlc; ///< CBPCY VLC table
  289. int tt_index; ///< Index for Transform Type tables
  290. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  291. uint8_t* direct_mb_plane; ///< bitplane for "direct" MBs
  292. int mv_type_is_raw; ///< mv type mb plane is not coded
  293. int dmb_is_raw; ///< direct mb plane is raw
  294. int skip_is_raw; ///< skip mb plane is not coded
  295. uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation
  296. int rnd; ///< rounding control
  297. /** Frame decoding info for S/M profiles only */
  298. //@{
  299. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  300. uint8_t interpfrm;
  301. //@}
  302. /** Frame decoding info for Advanced profile */
  303. //@{
  304. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  305. uint8_t numpanscanwin;
  306. uint8_t tfcntr;
  307. uint8_t rptfrm, tff, rff;
  308. uint16_t topleftx;
  309. uint16_t toplefty;
  310. uint16_t bottomrightx;
  311. uint16_t bottomrighty;
  312. uint8_t uvsamp;
  313. uint8_t postproc;
  314. int hrd_num_leaky_buckets;
  315. uint8_t bit_rate_exponent;
  316. uint8_t buffer_size_exponent;
  317. // BitPlane ac_pred_plane; ///< AC prediction flags bitplane
  318. // BitPlane over_flags_plane; ///< Overflags bitplane
  319. uint8_t condover;
  320. uint16_t *hrd_rate, *hrd_buffer;
  321. uint8_t *hrd_fullness;
  322. uint8_t range_mapy_flag;
  323. uint8_t range_mapuv_flag;
  324. uint8_t range_mapy;
  325. uint8_t range_mapuv;
  326. //@}
  327. } VC1Context;
  328. /**
  329. * Get unary code of limited length
  330. * @fixme FIXME Slow and ugly
  331. * @param gb GetBitContext
  332. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  333. * @param[in] len Maximum length
  334. * @return Unary length/index
  335. */
  336. static int get_prefix(GetBitContext *gb, int stop, int len)
  337. {
  338. #if 1
  339. int i;
  340. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  341. return i;
  342. /* int i = 0, tmp = !stop;
  343. while (i != len && tmp != stop)
  344. {
  345. tmp = get_bits(gb, 1);
  346. i++;
  347. }
  348. if (i == len && tmp != stop) return len+1;
  349. return i;*/
  350. #else
  351. unsigned int buf;
  352. int log;
  353. OPEN_READER(re, gb);
  354. UPDATE_CACHE(re, gb);
  355. buf=GET_CACHE(re, gb); //Still not sure
  356. if (stop) buf = ~buf;
  357. log= av_log2(-buf); //FIXME: -?
  358. if (log < limit){
  359. LAST_SKIP_BITS(re, gb, log+1);
  360. CLOSE_READER(re, gb);
  361. return log;
  362. }
  363. LAST_SKIP_BITS(re, gb, limit);
  364. CLOSE_READER(re, gb);
  365. return limit;
  366. #endif
  367. }
  368. static inline int decode210(GetBitContext *gb){
  369. int n;
  370. n = get_bits1(gb);
  371. if (n == 1)
  372. return 0;
  373. else
  374. return 2 - get_bits1(gb);
  375. }
  376. /**
  377. * Init VC-1 specific tables and VC1Context members
  378. * @param v The VC1Context to initialize
  379. * @return Status
  380. */
  381. static int vc1_init_common(VC1Context *v)
  382. {
  383. static int done = 0;
  384. int i = 0;
  385. v->hrd_rate = v->hrd_buffer = NULL;
  386. /* VLC tables */
  387. if(!done)
  388. {
  389. done = 1;
  390. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  391. vc1_bfraction_bits, 1, 1,
  392. vc1_bfraction_codes, 1, 1, 1);
  393. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  394. vc1_norm2_bits, 1, 1,
  395. vc1_norm2_codes, 1, 1, 1);
  396. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  397. vc1_norm6_bits, 1, 1,
  398. vc1_norm6_codes, 2, 2, 1);
  399. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  400. vc1_imode_bits, 1, 1,
  401. vc1_imode_codes, 1, 1, 1);
  402. for (i=0; i<3; i++)
  403. {
  404. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  405. vc1_ttmb_bits[i], 1, 1,
  406. vc1_ttmb_codes[i], 2, 2, 1);
  407. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  408. vc1_ttblk_bits[i], 1, 1,
  409. vc1_ttblk_codes[i], 1, 1, 1);
  410. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  411. vc1_subblkpat_bits[i], 1, 1,
  412. vc1_subblkpat_codes[i], 1, 1, 1);
  413. }
  414. for(i=0; i<4; i++)
  415. {
  416. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  417. vc1_4mv_block_pattern_bits[i], 1, 1,
  418. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  419. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  420. vc1_cbpcy_p_bits[i], 1, 1,
  421. vc1_cbpcy_p_codes[i], 2, 2, 1);
  422. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  423. vc1_mv_diff_bits[i], 1, 1,
  424. vc1_mv_diff_codes[i], 2, 2, 1);
  425. }
  426. for(i=0; i<8; i++)
  427. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  428. &vc1_ac_tables[i][0][1], 8, 4,
  429. &vc1_ac_tables[i][0][0], 8, 4, 1);
  430. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  431. &ff_msmp4_mb_i_table[0][1], 4, 2,
  432. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  433. }
  434. /* Other defaults */
  435. v->pq = -1;
  436. v->mvrange = 0; /* 7.1.1.18, p80 */
  437. return 0;
  438. }
  439. /***********************************************************************/
  440. /**
  441. * @defgroup bitplane VC9 Bitplane decoding
  442. * @see 8.7, p56
  443. * @{
  444. */
  445. /** @addtogroup bitplane
  446. * Imode types
  447. * @{
  448. */
  449. enum Imode {
  450. IMODE_RAW,
  451. IMODE_NORM2,
  452. IMODE_DIFF2,
  453. IMODE_NORM6,
  454. IMODE_DIFF6,
  455. IMODE_ROWSKIP,
  456. IMODE_COLSKIP
  457. };
  458. /** @} */ //imode defines
  459. /** Decode rows by checking if they are skipped
  460. * @param plane Buffer to store decoded bits
  461. * @param[in] width Width of this buffer
  462. * @param[in] height Height of this buffer
  463. * @param[in] stride of this buffer
  464. */
  465. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  466. int x, y;
  467. for (y=0; y<height; y++){
  468. if (!get_bits(gb, 1)) //rowskip
  469. memset(plane, 0, width);
  470. else
  471. for (x=0; x<width; x++)
  472. plane[x] = get_bits(gb, 1);
  473. plane += stride;
  474. }
  475. }
  476. /** Decode columns by checking if they are skipped
  477. * @param plane Buffer to store decoded bits
  478. * @param[in] width Width of this buffer
  479. * @param[in] height Height of this buffer
  480. * @param[in] stride of this buffer
  481. * @fixme FIXME: Optimize
  482. */
  483. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  484. int x, y;
  485. for (x=0; x<width; x++){
  486. if (!get_bits(gb, 1)) //colskip
  487. for (y=0; y<height; y++)
  488. plane[y*stride] = 0;
  489. else
  490. for (y=0; y<height; y++)
  491. plane[y*stride] = get_bits(gb, 1);
  492. plane ++;
  493. }
  494. }
  495. /** Decode a bitplane's bits
  496. * @param bp Bitplane where to store the decode bits
  497. * @param v VC-1 context for bit reading and logging
  498. * @return Status
  499. * @fixme FIXME: Optimize
  500. * @todo TODO: Decide if a struct is needed
  501. */
  502. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  503. {
  504. GetBitContext *gb = &v->s.gb;
  505. int imode, x, y, code, offset;
  506. uint8_t invert, *planep = data;
  507. int width, height, stride;
  508. width = v->s.mb_width;
  509. height = v->s.mb_height;
  510. stride = v->s.mb_stride;
  511. invert = get_bits(gb, 1);
  512. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  513. *raw_flag = 0;
  514. switch (imode)
  515. {
  516. case IMODE_RAW:
  517. //Data is actually read in the MB layer (same for all tests == "raw")
  518. *raw_flag = 1; //invert ignored
  519. return invert;
  520. case IMODE_DIFF2:
  521. case IMODE_NORM2:
  522. if ((height * width) & 1)
  523. {
  524. *planep++ = get_bits(gb, 1);
  525. offset = 1;
  526. }
  527. else offset = 0;
  528. // decode bitplane as one long line
  529. for (y = offset; y < height * width; y += 2) {
  530. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  531. *planep++ = code & 1;
  532. offset++;
  533. if(offset == width) {
  534. offset = 0;
  535. planep += stride - width;
  536. }
  537. *planep++ = code >> 1;
  538. offset++;
  539. if(offset == width) {
  540. offset = 0;
  541. planep += stride - width;
  542. }
  543. }
  544. break;
  545. case IMODE_DIFF6:
  546. case IMODE_NORM6:
  547. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  548. for(y = 0; y < height; y+= 3) {
  549. for(x = width & 1; x < width; x += 2) {
  550. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  551. if(code < 0){
  552. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  553. return -1;
  554. }
  555. planep[x + 0] = (code >> 0) & 1;
  556. planep[x + 1] = (code >> 1) & 1;
  557. planep[x + 0 + stride] = (code >> 2) & 1;
  558. planep[x + 1 + stride] = (code >> 3) & 1;
  559. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  560. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  561. }
  562. planep += stride * 3;
  563. }
  564. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  565. } else { // 3x2
  566. planep += (height & 1) * stride;
  567. for(y = height & 1; y < height; y += 2) {
  568. for(x = width % 3; x < width; x += 3) {
  569. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  570. if(code < 0){
  571. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  572. return -1;
  573. }
  574. planep[x + 0] = (code >> 0) & 1;
  575. planep[x + 1] = (code >> 1) & 1;
  576. planep[x + 2] = (code >> 2) & 1;
  577. planep[x + 0 + stride] = (code >> 3) & 1;
  578. planep[x + 1 + stride] = (code >> 4) & 1;
  579. planep[x + 2 + stride] = (code >> 5) & 1;
  580. }
  581. planep += stride * 2;
  582. }
  583. x = width % 3;
  584. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  585. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  586. }
  587. break;
  588. case IMODE_ROWSKIP:
  589. decode_rowskip(data, width, height, stride, &v->s.gb);
  590. break;
  591. case IMODE_COLSKIP:
  592. decode_colskip(data, width, height, stride, &v->s.gb);
  593. break;
  594. default: break;
  595. }
  596. /* Applying diff operator */
  597. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  598. {
  599. planep = data;
  600. planep[0] ^= invert;
  601. for (x=1; x<width; x++)
  602. planep[x] ^= planep[x-1];
  603. for (y=1; y<height; y++)
  604. {
  605. planep += stride;
  606. planep[0] ^= planep[-stride];
  607. for (x=1; x<width; x++)
  608. {
  609. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  610. else planep[x] ^= planep[x-1];
  611. }
  612. }
  613. }
  614. else if (invert)
  615. {
  616. planep = data;
  617. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  618. }
  619. return (imode<<1) + invert;
  620. }
  621. /** @} */ //Bitplane group
  622. /***********************************************************************/
  623. /** VOP Dquant decoding
  624. * @param v VC-1 Context
  625. */
  626. static int vop_dquant_decoding(VC1Context *v)
  627. {
  628. GetBitContext *gb = &v->s.gb;
  629. int pqdiff;
  630. //variable size
  631. if (v->dquant == 2)
  632. {
  633. pqdiff = get_bits(gb, 3);
  634. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  635. else v->altpq = v->pq + pqdiff + 1;
  636. }
  637. else
  638. {
  639. v->dquantfrm = get_bits(gb, 1);
  640. if ( v->dquantfrm )
  641. {
  642. v->dqprofile = get_bits(gb, 2);
  643. switch (v->dqprofile)
  644. {
  645. case DQPROFILE_SINGLE_EDGE:
  646. case DQPROFILE_DOUBLE_EDGES:
  647. v->dqsbedge = get_bits(gb, 2);
  648. break;
  649. case DQPROFILE_ALL_MBS:
  650. v->dqbilevel = get_bits(gb, 1);
  651. default: break; //Forbidden ?
  652. }
  653. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  654. {
  655. pqdiff = get_bits(gb, 3);
  656. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  657. else v->altpq = v->pq + pqdiff + 1;
  658. }
  659. }
  660. }
  661. return 0;
  662. }
  663. /** Put block onto picture
  664. * @todo move to DSPContext
  665. */
  666. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  667. {
  668. uint8_t *Y;
  669. int ys, us, vs;
  670. DSPContext *dsp = &v->s.dsp;
  671. if(v->rangeredfrm) {
  672. int i, j, k;
  673. for(k = 0; k < 6; k++)
  674. for(j = 0; j < 8; j++)
  675. for(i = 0; i < 8; i++)
  676. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  677. }
  678. ys = v->s.current_picture.linesize[0];
  679. us = v->s.current_picture.linesize[1];
  680. vs = v->s.current_picture.linesize[2];
  681. Y = v->s.dest[0];
  682. dsp->put_pixels_clamped(block[0], Y, ys);
  683. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  684. Y += ys * 8;
  685. dsp->put_pixels_clamped(block[2], Y, ys);
  686. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  687. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  688. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  689. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  690. }
  691. }
  692. /** Do motion compensation over 1 macroblock
  693. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  694. */
  695. static void vc1_mc_1mv(VC1Context *v, int dir)
  696. {
  697. MpegEncContext *s = &v->s;
  698. DSPContext *dsp = &v->s.dsp;
  699. uint8_t *srcY, *srcU, *srcV;
  700. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  701. if(!v->s.last_picture.data[0])return;
  702. mx = s->mv[0][0][0];
  703. my = s->mv[0][0][1];
  704. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  705. uvmy = (my + ((my & 3) == 3)) >> 1;
  706. if(!dir) {
  707. srcY = s->last_picture.data[0];
  708. srcU = s->last_picture.data[1];
  709. srcV = s->last_picture.data[2];
  710. } else {
  711. srcY = s->next_picture.data[0];
  712. srcU = s->next_picture.data[1];
  713. srcV = s->next_picture.data[2];
  714. }
  715. src_x = s->mb_x * 16 + (mx >> 2);
  716. src_y = s->mb_y * 16 + (my >> 2);
  717. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  718. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  719. src_x = clip( src_x, -16, s->mb_width * 16);
  720. src_y = clip( src_y, -16, s->mb_height * 16);
  721. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  722. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  723. srcY += src_y * s->linesize + src_x;
  724. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  725. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  726. /* for grayscale we should not try to read from unknown area */
  727. if(s->flags & CODEC_FLAG_GRAY) {
  728. srcU = s->edge_emu_buffer + 18 * s->linesize;
  729. srcV = s->edge_emu_buffer + 18 * s->linesize;
  730. }
  731. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  732. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  733. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  734. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  735. srcY -= s->mspel * (1 + s->linesize);
  736. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  737. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  738. srcY = s->edge_emu_buffer;
  739. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  740. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  741. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  742. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  743. srcU = uvbuf;
  744. srcV = uvbuf + 16;
  745. /* if we deal with range reduction we need to scale source blocks */
  746. if(v->rangeredfrm) {
  747. int i, j;
  748. uint8_t *src, *src2;
  749. src = srcY;
  750. for(j = 0; j < 17 + s->mspel*2; j++) {
  751. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  752. src += s->linesize;
  753. }
  754. src = srcU; src2 = srcV;
  755. for(j = 0; j < 9; j++) {
  756. for(i = 0; i < 9; i++) {
  757. src[i] = ((src[i] - 128) >> 1) + 128;
  758. src2[i] = ((src2[i] - 128) >> 1) + 128;
  759. }
  760. src += s->uvlinesize;
  761. src2 += s->uvlinesize;
  762. }
  763. }
  764. /* if we deal with intensity compensation we need to scale source blocks */
  765. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  766. int i, j;
  767. uint8_t *src, *src2;
  768. src = srcY;
  769. for(j = 0; j < 17 + s->mspel*2; j++) {
  770. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  771. src += s->linesize;
  772. }
  773. src = srcU; src2 = srcV;
  774. for(j = 0; j < 9; j++) {
  775. for(i = 0; i < 9; i++) {
  776. src[i] = v->lutuv[src[i]];
  777. src2[i] = v->lutuv[src2[i]];
  778. }
  779. src += s->uvlinesize;
  780. src2 += s->uvlinesize;
  781. }
  782. }
  783. srcY += s->mspel * (1 + s->linesize);
  784. }
  785. if(v->fastuvmc) {
  786. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  787. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  788. }
  789. if(s->mspel) {
  790. dxy = ((my & 3) << 2) | (mx & 3);
  791. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  792. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  793. srcY += s->linesize * 8;
  794. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  795. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  796. } else if(!s->quarter_sample) { // hpel mc
  797. mx >>= 1;
  798. my >>= 1;
  799. dxy = ((my & 1) << 1) | (mx & 1);
  800. if(!v->rnd)
  801. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  802. else
  803. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  804. } else {
  805. dxy = ((my & 3) << 2) | (mx & 3);
  806. if(!v->rnd)
  807. dsp->put_qpel_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize);
  808. else
  809. dsp->put_no_rnd_qpel_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize);
  810. }
  811. if(s->flags & CODEC_FLAG_GRAY) return;
  812. /* Chroma MC always uses qpel blilinear */
  813. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  814. if(!v->rnd){
  815. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  816. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  817. }else{
  818. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  819. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  820. }
  821. }
  822. /** Do motion compensation for 4-MV macroblock - luminance block
  823. */
  824. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  825. {
  826. MpegEncContext *s = &v->s;
  827. DSPContext *dsp = &v->s.dsp;
  828. uint8_t *srcY;
  829. int dxy, mx, my, src_x, src_y;
  830. int off;
  831. if(!v->s.last_picture.data[0])return;
  832. mx = s->mv[0][n][0];
  833. my = s->mv[0][n][1];
  834. srcY = s->last_picture.data[0];
  835. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  836. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  837. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  838. src_x = clip( src_x, -16, s->mb_width * 16);
  839. src_y = clip( src_y, -16, s->mb_height * 16);
  840. srcY += src_y * s->linesize + src_x;
  841. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  842. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  843. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  844. srcY -= s->mspel * (1 + s->linesize);
  845. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  846. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  847. srcY = s->edge_emu_buffer;
  848. /* if we deal with range reduction we need to scale source blocks */
  849. if(v->rangeredfrm) {
  850. int i, j;
  851. uint8_t *src;
  852. src = srcY;
  853. for(j = 0; j < 9 + s->mspel*2; j++) {
  854. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  855. src += s->linesize;
  856. }
  857. }
  858. /* if we deal with intensity compensation we need to scale source blocks */
  859. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  860. int i, j;
  861. uint8_t *src;
  862. src = srcY;
  863. for(j = 0; j < 9 + s->mspel*2; j++) {
  864. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  865. src += s->linesize;
  866. }
  867. }
  868. srcY += s->mspel * (1 + s->linesize);
  869. }
  870. if(s->mspel) {
  871. dxy = ((my & 3) << 2) | (mx & 3);
  872. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  873. } else if(!s->quarter_sample) { // hpel mc
  874. mx >>= 1;
  875. my >>= 1;
  876. dxy = ((my & 1) << 1) | (mx & 1);
  877. if(!v->rnd)
  878. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  879. else
  880. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  881. } else {
  882. dxy = ((my & 3) << 2) | (mx & 3);
  883. if(!v->rnd)
  884. dsp->put_qpel_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize);
  885. else
  886. dsp->put_no_rnd_qpel_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize);
  887. }
  888. }
  889. static inline int median4(int a, int b, int c, int d)
  890. {
  891. if(a < b) {
  892. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  893. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  894. } else {
  895. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  896. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  897. }
  898. }
  899. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  900. */
  901. static void vc1_mc_4mv_chroma(VC1Context *v)
  902. {
  903. MpegEncContext *s = &v->s;
  904. DSPContext *dsp = &v->s.dsp;
  905. uint8_t *srcU, *srcV;
  906. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  907. int i, idx, tx = 0, ty = 0;
  908. int mvx[4], mvy[4], intra[4];
  909. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  910. if(!v->s.last_picture.data[0])return;
  911. if(s->flags & CODEC_FLAG_GRAY) return;
  912. for(i = 0; i < 4; i++) {
  913. mvx[i] = s->mv[0][i][0];
  914. mvy[i] = s->mv[0][i][1];
  915. intra[i] = v->mb_type[0][s->block_index[i]];
  916. }
  917. /* calculate chroma MV vector from four luma MVs */
  918. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  919. if(!idx) { // all blocks are inter
  920. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  921. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  922. } else if(count[idx] == 1) { // 3 inter blocks
  923. switch(idx) {
  924. case 0x1:
  925. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  926. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  927. break;
  928. case 0x2:
  929. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  930. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  931. break;
  932. case 0x4:
  933. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  934. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  935. break;
  936. case 0x8:
  937. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  938. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  939. break;
  940. }
  941. } else if(count[idx] == 2) {
  942. int t1 = 0, t2 = 0;
  943. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  944. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  945. tx = (mvx[t1] + mvx[t2]) / 2;
  946. ty = (mvy[t1] + mvy[t2]) / 2;
  947. } else
  948. return; //no need to do MC for inter blocks
  949. uvmx = (tx + ((tx&3) == 3)) >> 1;
  950. uvmy = (ty + ((ty&3) == 3)) >> 1;
  951. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  952. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  953. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  954. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  955. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  956. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  957. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  958. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  959. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  960. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  961. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  962. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  963. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  964. srcU = s->edge_emu_buffer;
  965. srcV = s->edge_emu_buffer + 16;
  966. /* if we deal with range reduction we need to scale source blocks */
  967. if(v->rangeredfrm) {
  968. int i, j;
  969. uint8_t *src, *src2;
  970. src = srcU; src2 = srcV;
  971. for(j = 0; j < 9; j++) {
  972. for(i = 0; i < 9; i++) {
  973. src[i] = ((src[i] - 128) >> 1) + 128;
  974. src2[i] = ((src2[i] - 128) >> 1) + 128;
  975. }
  976. src += s->uvlinesize;
  977. src2 += s->uvlinesize;
  978. }
  979. }
  980. /* if we deal with intensity compensation we need to scale source blocks */
  981. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  982. int i, j;
  983. uint8_t *src, *src2;
  984. src = srcU; src2 = srcV;
  985. for(j = 0; j < 9; j++) {
  986. for(i = 0; i < 9; i++) {
  987. src[i] = v->lutuv[src[i]];
  988. src2[i] = v->lutuv[src2[i]];
  989. }
  990. src += s->uvlinesize;
  991. src2 += s->uvlinesize;
  992. }
  993. }
  994. }
  995. if(v->fastuvmc) {
  996. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  997. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  998. }
  999. /* Chroma MC always uses qpel blilinear */
  1000. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1001. if(!v->rnd){
  1002. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  1003. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  1004. }else{
  1005. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  1006. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  1007. }
  1008. }
  1009. /**
  1010. * Decode Simple/Main Profiles sequence header
  1011. * @see Figure 7-8, p16-17
  1012. * @param avctx Codec context
  1013. * @param gb GetBit context initialized from Codec context extra_data
  1014. * @return Status
  1015. */
  1016. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  1017. {
  1018. VC1Context *v = avctx->priv_data;
  1019. av_log(avctx, AV_LOG_INFO, "Header: %0X\n", show_bits(gb, 32));
  1020. v->profile = get_bits(gb, 2);
  1021. if (v->profile == 2)
  1022. {
  1023. av_log(avctx, AV_LOG_ERROR, "Profile value 2 is forbidden (and WMV3 Complex Profile is unsupported)\n");
  1024. return -1;
  1025. }
  1026. if (v->profile == PROFILE_ADVANCED)
  1027. {
  1028. v->level = get_bits(gb, 3);
  1029. if(v->level >= 5)
  1030. {
  1031. av_log(avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  1032. }
  1033. v->chromaformat = get_bits(gb, 2);
  1034. if (v->chromaformat != 1)
  1035. {
  1036. av_log(avctx, AV_LOG_ERROR,
  1037. "Only 4:2:0 chroma format supported\n");
  1038. return -1;
  1039. }
  1040. }
  1041. else
  1042. {
  1043. v->res_sm = get_bits(gb, 2); //reserved
  1044. if (v->res_sm)
  1045. {
  1046. av_log(avctx, AV_LOG_ERROR,
  1047. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  1048. return -1;
  1049. }
  1050. }
  1051. // (fps-2)/4 (->30)
  1052. v->frmrtq_postproc = get_bits(gb, 3); //common
  1053. // (bitrate-32kbps)/64kbps
  1054. v->bitrtq_postproc = get_bits(gb, 5); //common
  1055. v->s.loop_filter = get_bits(gb, 1); //common
  1056. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  1057. {
  1058. av_log(avctx, AV_LOG_ERROR,
  1059. "LOOPFILTER shell not be enabled in simple profile\n");
  1060. }
  1061. if (v->profile < PROFILE_ADVANCED)
  1062. {
  1063. v->res_x8 = get_bits(gb, 1); //reserved
  1064. if (v->res_x8)
  1065. {
  1066. av_log(avctx, AV_LOG_ERROR,
  1067. "1 for reserved RES_X8 is forbidden\n");
  1068. //return -1;
  1069. }
  1070. v->multires = get_bits(gb, 1);
  1071. v->res_fasttx = get_bits(gb, 1);
  1072. if (!v->res_fasttx)
  1073. {
  1074. av_log(avctx, AV_LOG_ERROR,
  1075. "0 for reserved RES_FASTTX is forbidden\n");
  1076. //return -1;
  1077. }
  1078. }
  1079. v->fastuvmc = get_bits(gb, 1); //common
  1080. if (!v->profile && !v->fastuvmc)
  1081. {
  1082. av_log(avctx, AV_LOG_ERROR,
  1083. "FASTUVMC unavailable in Simple Profile\n");
  1084. return -1;
  1085. }
  1086. v->extended_mv = get_bits(gb, 1); //common
  1087. if (!v->profile && v->extended_mv)
  1088. {
  1089. av_log(avctx, AV_LOG_ERROR,
  1090. "Extended MVs unavailable in Simple Profile\n");
  1091. return -1;
  1092. }
  1093. v->dquant = get_bits(gb, 2); //common
  1094. v->vstransform = get_bits(gb, 1); //common
  1095. if (v->profile < PROFILE_ADVANCED)
  1096. {
  1097. v->res_transtab = get_bits(gb, 1);
  1098. if (v->res_transtab)
  1099. {
  1100. av_log(avctx, AV_LOG_ERROR,
  1101. "1 for reserved RES_TRANSTAB is forbidden\n");
  1102. return -1;
  1103. }
  1104. }
  1105. v->overlap = get_bits(gb, 1); //common
  1106. if (v->profile < PROFILE_ADVANCED)
  1107. {
  1108. v->s.resync_marker = get_bits(gb, 1);
  1109. v->rangered = get_bits(gb, 1);
  1110. if (v->rangered && v->profile == PROFILE_SIMPLE)
  1111. {
  1112. av_log(avctx, AV_LOG_INFO,
  1113. "RANGERED should be set to 0 in simple profile\n");
  1114. }
  1115. }
  1116. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  1117. v->quantizer_mode = get_bits(gb, 2); //common
  1118. if (v->profile < PROFILE_ADVANCED)
  1119. {
  1120. v->finterpflag = get_bits(gb, 1); //common
  1121. v->res_rtm_flag = get_bits(gb, 1); //reserved
  1122. if (!v->res_rtm_flag)
  1123. {
  1124. // av_log(avctx, AV_LOG_ERROR,
  1125. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  1126. av_log(avctx, AV_LOG_ERROR,
  1127. "Old WMV3 version detected, only I-frames will be decoded\n");
  1128. //return -1;
  1129. }
  1130. av_log(avctx, AV_LOG_DEBUG,
  1131. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1132. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  1133. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1134. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1135. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1136. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1137. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1138. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1139. );
  1140. return 0;
  1141. }
  1142. return -1;
  1143. }
  1144. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1145. {
  1146. int pqindex, lowquant, status;
  1147. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1148. skip_bits(gb, 2); //framecnt unused
  1149. v->rangeredfrm = 0;
  1150. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1151. v->s.pict_type = get_bits(gb, 1);
  1152. if (v->s.avctx->max_b_frames) {
  1153. if (!v->s.pict_type) {
  1154. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1155. else v->s.pict_type = B_TYPE;
  1156. } else v->s.pict_type = P_TYPE;
  1157. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1158. if(v->s.pict_type == I_TYPE)
  1159. get_bits(gb, 7); // skip buffer fullness
  1160. if(v->s.pict_type == B_TYPE) {
  1161. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1162. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1163. if(v->bfraction == -1) {
  1164. v->s.pict_type = BI_TYPE;
  1165. }
  1166. }
  1167. /* calculate RND */
  1168. if(v->s.pict_type == I_TYPE)
  1169. v->rnd = 1;
  1170. if(v->s.pict_type == P_TYPE)
  1171. v->rnd ^= 1;
  1172. /* Quantizer stuff */
  1173. pqindex = get_bits(gb, 5);
  1174. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1175. v->pq = pquant_table[0][pqindex];
  1176. else
  1177. v->pq = pquant_table[1][pqindex];
  1178. v->pquantizer = 1;
  1179. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1180. v->pquantizer = pqindex < 9;
  1181. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1182. v->pquantizer = 0;
  1183. v->pqindex = pqindex;
  1184. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1185. else v->halfpq = 0;
  1186. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1187. v->pquantizer = get_bits(gb, 1);
  1188. v->dquantfrm = 0;
  1189. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1190. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1191. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1192. v->range_x = 1 << (v->k_x - 1);
  1193. v->range_y = 1 << (v->k_y - 1);
  1194. if (v->profile == PROFILE_ADVANCED)
  1195. {
  1196. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1197. }
  1198. else
  1199. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1200. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1201. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1202. //TODO: complete parsing for P/B/BI frames
  1203. switch(v->s.pict_type) {
  1204. case P_TYPE:
  1205. if (v->pq < 5) v->tt_index = 0;
  1206. else if(v->pq < 13) v->tt_index = 1;
  1207. else v->tt_index = 2;
  1208. lowquant = (v->pq > 12) ? 0 : 1;
  1209. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1210. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1211. {
  1212. int scale, shift, i;
  1213. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1214. v->lumscale = get_bits(gb, 6);
  1215. v->lumshift = get_bits(gb, 6);
  1216. /* fill lookup tables for intensity compensation */
  1217. if(!v->lumscale) {
  1218. scale = -64;
  1219. shift = (255 - v->lumshift * 2) << 6;
  1220. if(v->lumshift > 31)
  1221. shift += 128 << 6;
  1222. } else {
  1223. scale = v->lumscale + 32;
  1224. if(v->lumshift > 31)
  1225. shift = (v->lumshift - 64) << 6;
  1226. else
  1227. shift = v->lumshift << 6;
  1228. }
  1229. for(i = 0; i < 256; i++) {
  1230. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1231. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1232. }
  1233. }
  1234. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1235. v->s.quarter_sample = 0;
  1236. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1237. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1238. v->s.quarter_sample = 0;
  1239. else
  1240. v->s.quarter_sample = 1;
  1241. } else
  1242. v->s.quarter_sample = 1;
  1243. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1244. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1245. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1246. || v->mv_mode == MV_PMODE_MIXED_MV)
  1247. {
  1248. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1249. if (status < 0) return -1;
  1250. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1251. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1252. } else {
  1253. v->mv_type_is_raw = 0;
  1254. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1255. }
  1256. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1257. if (status < 0) return -1;
  1258. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1259. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1260. /* Hopefully this is correct for P frames */
  1261. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1262. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1263. if (v->dquant)
  1264. {
  1265. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1266. vop_dquant_decoding(v);
  1267. }
  1268. v->ttfrm = 0; //FIXME Is that so ?
  1269. if (v->vstransform)
  1270. {
  1271. v->ttmbf = get_bits(gb, 1);
  1272. if (v->ttmbf)
  1273. {
  1274. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1275. }
  1276. } else {
  1277. v->ttmbf = 1;
  1278. v->ttfrm = TT_8X8;
  1279. }
  1280. break;
  1281. case B_TYPE:
  1282. if (v->pq < 5) v->tt_index = 0;
  1283. else if(v->pq < 13) v->tt_index = 1;
  1284. else v->tt_index = 2;
  1285. lowquant = (v->pq > 12) ? 0 : 1;
  1286. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1287. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1288. v->s.mspel = v->s.quarter_sample;
  1289. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1290. if (status < 0) return -1;
  1291. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1292. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1293. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1294. if (status < 0) return -1;
  1295. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1296. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1297. v->s.mv_table_index = get_bits(gb, 2);
  1298. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1299. if (v->dquant)
  1300. {
  1301. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1302. vop_dquant_decoding(v);
  1303. }
  1304. v->ttfrm = 0;
  1305. if (v->vstransform)
  1306. {
  1307. v->ttmbf = get_bits(gb, 1);
  1308. if (v->ttmbf)
  1309. {
  1310. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1311. }
  1312. } else {
  1313. v->ttmbf = 1;
  1314. v->ttfrm = TT_8X8;
  1315. }
  1316. break;
  1317. }
  1318. /* AC Syntax */
  1319. v->c_ac_table_index = decode012(gb);
  1320. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1321. {
  1322. v->y_ac_table_index = decode012(gb);
  1323. }
  1324. /* DC Syntax */
  1325. v->s.dc_table_index = get_bits(gb, 1);
  1326. return 0;
  1327. }
  1328. /***********************************************************************/
  1329. /**
  1330. * @defgroup block VC-1 Block-level functions
  1331. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1332. * @todo TODO: Integrate to MpegEncContext facilities
  1333. * @{
  1334. */
  1335. /**
  1336. * @def GET_MQUANT
  1337. * @brief Get macroblock-level quantizer scale
  1338. * @warning XXX: qdiff to the frame quant, not previous quant ?
  1339. * @fixme XXX: Don't know how to initialize mquant otherwise in last case
  1340. */
  1341. #define GET_MQUANT() \
  1342. if (v->dquantfrm) \
  1343. { \
  1344. int edges = 0; \
  1345. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1346. { \
  1347. if (v->dqbilevel) \
  1348. { \
  1349. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1350. } \
  1351. else \
  1352. { \
  1353. mqdiff = get_bits(gb, 3); \
  1354. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1355. else mquant = get_bits(gb, 5); \
  1356. } \
  1357. } \
  1358. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1359. edges = 1 << v->dqsbedge; \
  1360. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1361. edges = (3 << v->dqsbedge) % 15; \
  1362. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1363. edges = 15; \
  1364. if((edges&1) && !s->mb_x) \
  1365. mquant = v->altpq; \
  1366. if((edges&2) && s->first_slice_line) \
  1367. mquant = v->altpq; \
  1368. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1369. mquant = v->altpq; \
  1370. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1371. mquant = v->altpq; \
  1372. }
  1373. /**
  1374. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1375. * @brief Get MV differentials
  1376. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1377. * @param _dmv_x Horizontal differential for decoded MV
  1378. * @param _dmv_y Vertical differential for decoded MV
  1379. * @todo TODO: Use MpegEncContext arrays to store them
  1380. */
  1381. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1382. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1383. VC1_MV_DIFF_VLC_BITS, 2); \
  1384. if (index > 36) \
  1385. { \
  1386. mb_has_coeffs = 1; \
  1387. index -= 37; \
  1388. } \
  1389. else mb_has_coeffs = 0; \
  1390. s->mb_intra = 0; \
  1391. if (!index) { _dmv_x = _dmv_y = 0; } \
  1392. else if (index == 35) \
  1393. { \
  1394. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1395. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1396. } \
  1397. else if (index == 36) \
  1398. { \
  1399. _dmv_x = 0; \
  1400. _dmv_y = 0; \
  1401. s->mb_intra = 1; \
  1402. } \
  1403. else \
  1404. { \
  1405. index1 = index%6; \
  1406. if (!s->quarter_sample && index1 == 5) val = 1; \
  1407. else val = 0; \
  1408. if(size_table[index1] - val > 0) \
  1409. val = get_bits(gb, size_table[index1] - val); \
  1410. else val = 0; \
  1411. sign = 0 - (val&1); \
  1412. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1413. \
  1414. index1 = index/6; \
  1415. if (!s->quarter_sample && index1 == 5) val = 1; \
  1416. else val = 0; \
  1417. if(size_table[index1] - val > 0) \
  1418. val = get_bits(gb, size_table[index1] - val); \
  1419. else val = 0; \
  1420. sign = 0 - (val&1); \
  1421. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1422. }
  1423. /** Predict and set motion vector
  1424. */
  1425. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1426. {
  1427. int xy, wrap, off = 0;
  1428. int16_t *A, *B, *C;
  1429. int px, py;
  1430. int sum;
  1431. /* scale MV difference to be quad-pel */
  1432. dmv_x <<= 1 - s->quarter_sample;
  1433. dmv_y <<= 1 - s->quarter_sample;
  1434. wrap = s->b8_stride;
  1435. xy = s->block_index[n];
  1436. if(s->mb_intra){
  1437. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1438. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1439. if(mv1) { /* duplicate motion data for 1-MV block */
  1440. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1441. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1442. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1443. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1444. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1445. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1446. }
  1447. return;
  1448. }
  1449. C = s->current_picture.motion_val[0][xy - 1];
  1450. A = s->current_picture.motion_val[0][xy - wrap];
  1451. if(mv1)
  1452. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1453. else {
  1454. //in 4-MV mode different blocks have different B predictor position
  1455. switch(n){
  1456. case 0:
  1457. off = (s->mb_x > 0) ? -1 : 1;
  1458. break;
  1459. case 1:
  1460. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1461. break;
  1462. case 2:
  1463. off = 1;
  1464. break;
  1465. case 3:
  1466. off = -1;
  1467. }
  1468. }
  1469. B = s->current_picture.motion_val[0][xy - wrap + off];
  1470. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1471. if(s->mb_width == 1) {
  1472. px = A[0];
  1473. py = A[1];
  1474. } else {
  1475. px = mid_pred(A[0], B[0], C[0]);
  1476. py = mid_pred(A[1], B[1], C[1]);
  1477. }
  1478. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1479. px = C[0];
  1480. py = C[1];
  1481. } else {
  1482. px = py = 0;
  1483. }
  1484. /* Pullback MV as specified in 8.3.5.3.4 */
  1485. {
  1486. int qx, qy, X, Y;
  1487. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1488. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1489. X = (s->mb_width << 6) - 4;
  1490. Y = (s->mb_height << 6) - 4;
  1491. if(mv1) {
  1492. if(qx + px < -60) px = -60 - qx;
  1493. if(qy + py < -60) py = -60 - qy;
  1494. } else {
  1495. if(qx + px < -28) px = -28 - qx;
  1496. if(qy + py < -28) py = -28 - qy;
  1497. }
  1498. if(qx + px > X) px = X - qx;
  1499. if(qy + py > Y) py = Y - qy;
  1500. }
  1501. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1502. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1503. if(is_intra[xy - wrap])
  1504. sum = ABS(px) + ABS(py);
  1505. else
  1506. sum = ABS(px - A[0]) + ABS(py - A[1]);
  1507. if(sum > 32) {
  1508. if(get_bits1(&s->gb)) {
  1509. px = A[0];
  1510. py = A[1];
  1511. } else {
  1512. px = C[0];
  1513. py = C[1];
  1514. }
  1515. } else {
  1516. if(is_intra[xy - 1])
  1517. sum = ABS(px) + ABS(py);
  1518. else
  1519. sum = ABS(px - C[0]) + ABS(py - C[1]);
  1520. if(sum > 32) {
  1521. if(get_bits1(&s->gb)) {
  1522. px = A[0];
  1523. py = A[1];
  1524. } else {
  1525. px = C[0];
  1526. py = C[1];
  1527. }
  1528. }
  1529. }
  1530. }
  1531. /* store MV using signed modulus of MV range defined in 4.11 */
  1532. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1533. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1534. if(mv1) { /* duplicate motion data for 1-MV block */
  1535. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1536. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1537. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1538. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1539. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1540. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1541. }
  1542. }
  1543. /** Motion compensation for direct or interpolated blocks in B-frames
  1544. */
  1545. static void vc1_interp_mc(VC1Context *v)
  1546. {
  1547. MpegEncContext *s = &v->s;
  1548. DSPContext *dsp = &v->s.dsp;
  1549. uint8_t *srcY, *srcU, *srcV;
  1550. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1551. if(!v->s.next_picture.data[0])return;
  1552. mx = s->mv[1][0][0];
  1553. my = s->mv[1][0][1];
  1554. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1555. uvmy = (my + ((my & 3) == 3)) >> 1;
  1556. srcY = s->next_picture.data[0];
  1557. srcU = s->next_picture.data[1];
  1558. srcV = s->next_picture.data[2];
  1559. src_x = s->mb_x * 16 + (mx >> 2);
  1560. src_y = s->mb_y * 16 + (my >> 2);
  1561. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1562. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1563. src_x = clip( src_x, -16, s->mb_width * 16);
  1564. src_y = clip( src_y, -16, s->mb_height * 16);
  1565. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  1566. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  1567. srcY += src_y * s->linesize + src_x;
  1568. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1569. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1570. /* for grayscale we should not try to read from unknown area */
  1571. if(s->flags & CODEC_FLAG_GRAY) {
  1572. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1573. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1574. }
  1575. if(v->rangeredfrm
  1576. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1577. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1578. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1579. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17, 17,
  1580. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1581. srcY = s->edge_emu_buffer;
  1582. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1583. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1584. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1585. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1586. srcU = uvbuf;
  1587. srcV = uvbuf + 16;
  1588. /* if we deal with range reduction we need to scale source blocks */
  1589. if(v->rangeredfrm) {
  1590. int i, j;
  1591. uint8_t *src, *src2;
  1592. src = srcY;
  1593. for(j = 0; j < 17; j++) {
  1594. for(i = 0; i < 17; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1595. src += s->linesize;
  1596. }
  1597. src = srcU; src2 = srcV;
  1598. for(j = 0; j < 9; j++) {
  1599. for(i = 0; i < 9; i++) {
  1600. src[i] = ((src[i] - 128) >> 1) + 128;
  1601. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1602. }
  1603. src += s->uvlinesize;
  1604. src2 += s->uvlinesize;
  1605. }
  1606. }
  1607. }
  1608. if(v->fastuvmc) {
  1609. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  1610. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  1611. }
  1612. if(!s->quarter_sample) { // hpel mc
  1613. mx >>= 1;
  1614. my >>= 1;
  1615. dxy = ((my & 1) << 1) | (mx & 1);
  1616. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1617. } else {
  1618. dxy = ((my & 3) << 2) | (mx & 3);
  1619. dsp->avg_qpel_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize);
  1620. }
  1621. if(s->flags & CODEC_FLAG_GRAY) return;
  1622. /* Chroma MC always uses qpel blilinear */
  1623. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1624. dsp->avg_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  1625. dsp->avg_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  1626. }
  1627. /** Reconstruct motion vector for B-frame and do motion compensation
  1628. */
  1629. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1630. {
  1631. MpegEncContext *s = &v->s;
  1632. int mx[4], my[4], mv_x, mv_y;
  1633. int i;
  1634. /* scale MV difference to be quad-pel */
  1635. dmv_x[0] <<= 1 - s->quarter_sample;
  1636. dmv_y[0] <<= 1 - s->quarter_sample;
  1637. dmv_x[1] <<= 1 - s->quarter_sample;
  1638. dmv_y[1] <<= 1 - s->quarter_sample;
  1639. if(direct) {
  1640. for(i = 0; i < 4; i++) {
  1641. mx[i] = s->last_picture.motion_val[0][s->block_index[i]][0];
  1642. my[i] = s->last_picture.motion_val[0][s->block_index[i]][1];
  1643. }
  1644. mv_x = median4(mx[0], mx[1], mx[2], mx[3]);
  1645. mv_y = median4(my[0], my[1], my[2], my[3]);
  1646. s->mv[0][0][0] = (mv_x * v->bfraction + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1647. s->mv[0][0][1] = (mv_y * v->bfraction + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1648. vc1_mc_1mv(v, 0);
  1649. for(i = 0; i < 4; i++) {
  1650. mx[i] = s->next_picture.motion_val[0][s->block_index[i]][0];
  1651. my[i] = s->next_picture.motion_val[0][s->block_index[i]][1];
  1652. }
  1653. mv_x = median4(mx[0], mx[1], mx[2], mx[3]);
  1654. mv_y = median4(my[0], my[1], my[2], my[3]);
  1655. s->mv[1][0][0] = (mv_x * (B_FRACTION_DEN - v->bfraction) + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1656. s->mv[1][0][1] = (mv_y * (B_FRACTION_DEN - v->bfraction) + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1657. vc1_interp_mc(v);
  1658. return;
  1659. }
  1660. if(mode == BMV_TYPE_INTERPOLATED) {
  1661. s->mv[0][0][0] = dmv_x[0];
  1662. s->mv[0][0][1] = dmv_y[0];
  1663. vc1_mc_1mv(v, 0);
  1664. s->mv[1][0][0] = dmv_x[1];
  1665. s->mv[1][0][1] = dmv_y[1];
  1666. vc1_interp_mc(v);
  1667. return;
  1668. }
  1669. if(mode == BMV_TYPE_BACKWARD) {
  1670. for(i = 0; i < 4; i++) {
  1671. mx[i] = s->last_picture.motion_val[0][s->block_index[i]][0];
  1672. my[i] = s->last_picture.motion_val[0][s->block_index[i]][1];
  1673. }
  1674. } else {
  1675. for(i = 0; i < 4; i++) {
  1676. mx[i] = s->next_picture.motion_val[0][s->block_index[i]][0];
  1677. my[i] = s->next_picture.motion_val[0][s->block_index[i]][1];
  1678. }
  1679. }
  1680. /* XXX: not right but how to determine 4-MV intra/inter in another frame? */
  1681. mv_x = median4(mx[0], mx[1], mx[2], mx[3]);
  1682. mv_y = median4(my[0], my[1], my[2], my[3]);
  1683. s->mv[0][0][0] = mv_x;
  1684. s->mv[0][0][1] = mv_y;
  1685. vc1_mc_1mv(v, (mode == BMV_TYPE_FORWARD));
  1686. }
  1687. /** Get predicted DC value for I-frames only
  1688. * prediction dir: left=0, top=1
  1689. * @param s MpegEncContext
  1690. * @param[in] n block index in the current MB
  1691. * @param dc_val_ptr Pointer to DC predictor
  1692. * @param dir_ptr Prediction direction for use in AC prediction
  1693. */
  1694. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1695. int16_t **dc_val_ptr, int *dir_ptr)
  1696. {
  1697. int a, b, c, wrap, pred, scale;
  1698. int16_t *dc_val;
  1699. static const uint16_t dcpred[32] = {
  1700. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1701. 114, 102, 93, 85, 79, 73, 68, 64,
  1702. 60, 57, 54, 51, 49, 47, 45, 43,
  1703. 41, 39, 38, 37, 35, 34, 33
  1704. };
  1705. /* find prediction - wmv3_dc_scale always used here in fact */
  1706. if (n < 4) scale = s->y_dc_scale;
  1707. else scale = s->c_dc_scale;
  1708. wrap = s->block_wrap[n];
  1709. dc_val= s->dc_val[0] + s->block_index[n];
  1710. /* B A
  1711. * C X
  1712. */
  1713. c = dc_val[ - 1];
  1714. b = dc_val[ - 1 - wrap];
  1715. a = dc_val[ - wrap];
  1716. if (pq < 9 || !overlap)
  1717. {
  1718. /* Set outer values */
  1719. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1720. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1721. }
  1722. else
  1723. {
  1724. /* Set outer values */
  1725. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1726. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1727. }
  1728. if (abs(a - b) <= abs(b - c)) {
  1729. pred = c;
  1730. *dir_ptr = 1;//left
  1731. } else {
  1732. pred = a;
  1733. *dir_ptr = 0;//top
  1734. }
  1735. /* update predictor */
  1736. *dc_val_ptr = &dc_val[0];
  1737. return pred;
  1738. }
  1739. /** Get predicted DC value
  1740. * prediction dir: left=0, top=1
  1741. * @param s MpegEncContext
  1742. * @param[in] n block index in the current MB
  1743. * @param dc_val_ptr Pointer to DC predictor
  1744. * @param dir_ptr Prediction direction for use in AC prediction
  1745. */
  1746. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1747. int a_avail, int c_avail,
  1748. int16_t **dc_val_ptr, int *dir_ptr)
  1749. {
  1750. int a, b, c, wrap, pred, scale;
  1751. int16_t *dc_val;
  1752. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1753. int q1, q2 = 0;
  1754. /* find prediction - wmv3_dc_scale always used here in fact */
  1755. if (n < 4) scale = s->y_dc_scale;
  1756. else scale = s->c_dc_scale;
  1757. wrap = s->block_wrap[n];
  1758. dc_val= s->dc_val[0] + s->block_index[n];
  1759. /* B A
  1760. * C X
  1761. */
  1762. c = dc_val[ - 1];
  1763. b = dc_val[ - 1 - wrap];
  1764. a = dc_val[ - wrap];
  1765. /* scale predictors if needed */
  1766. q1 = s->current_picture.qscale_table[mb_pos];
  1767. if(c_avail && (n!= 1 && n!=3)) {
  1768. q2 = s->current_picture.qscale_table[mb_pos - 1];
  1769. if(q2 && q2 != q1)
  1770. c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1771. }
  1772. if(a_avail && (n!= 2 && n!=3)) {
  1773. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1774. if(q2 && q2 != q1)
  1775. a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1776. }
  1777. if(a_avail && c_avail && (n!=3)) {
  1778. int off = mb_pos;
  1779. if(n != 1) off--;
  1780. if(n != 2) off -= s->mb_stride;
  1781. q2 = s->current_picture.qscale_table[off];
  1782. if(q2 && q2 != q1)
  1783. b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1784. }
  1785. if(a_avail && c_avail) {
  1786. if(abs(a - b) <= abs(b - c)) {
  1787. pred = c;
  1788. *dir_ptr = 1;//left
  1789. } else {
  1790. pred = a;
  1791. *dir_ptr = 0;//top
  1792. }
  1793. } else if(a_avail) {
  1794. pred = a;
  1795. *dir_ptr = 0;//top
  1796. } else if(c_avail) {
  1797. pred = c;
  1798. *dir_ptr = 1;//left
  1799. } else {
  1800. pred = 0;
  1801. *dir_ptr = 1;//left
  1802. }
  1803. /* update predictor */
  1804. *dc_val_ptr = &dc_val[0];
  1805. return pred;
  1806. }
  1807. /**
  1808. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  1809. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1810. * @todo TODO: Integrate to MpegEncContext facilities
  1811. * @{
  1812. */
  1813. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  1814. {
  1815. int xy, wrap, pred, a, b, c;
  1816. xy = s->block_index[n];
  1817. wrap = s->b8_stride;
  1818. /* B C
  1819. * A X
  1820. */
  1821. a = s->coded_block[xy - 1 ];
  1822. b = s->coded_block[xy - 1 - wrap];
  1823. c = s->coded_block[xy - wrap];
  1824. if (b == c) {
  1825. pred = a;
  1826. } else {
  1827. pred = c;
  1828. }
  1829. /* store value */
  1830. *coded_block_ptr = &s->coded_block[xy];
  1831. return pred;
  1832. }
  1833. /**
  1834. * Decode one AC coefficient
  1835. * @param v The VC1 context
  1836. * @param last Last coefficient
  1837. * @param skip How much zero coefficients to skip
  1838. * @param value Decoded AC coefficient value
  1839. * @see 8.1.3.4
  1840. */
  1841. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  1842. {
  1843. GetBitContext *gb = &v->s.gb;
  1844. int index, escape, run = 0, level = 0, lst = 0;
  1845. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1846. if (index != vc1_ac_sizes[codingset] - 1) {
  1847. run = vc1_index_decode_table[codingset][index][0];
  1848. level = vc1_index_decode_table[codingset][index][1];
  1849. lst = index >= vc1_last_decode_table[codingset];
  1850. if(get_bits(gb, 1))
  1851. level = -level;
  1852. } else {
  1853. escape = decode210(gb);
  1854. if (escape != 2) {
  1855. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1856. run = vc1_index_decode_table[codingset][index][0];
  1857. level = vc1_index_decode_table[codingset][index][1];
  1858. lst = index >= vc1_last_decode_table[codingset];
  1859. if(escape == 0) {
  1860. if(lst)
  1861. level += vc1_last_delta_level_table[codingset][run];
  1862. else
  1863. level += vc1_delta_level_table[codingset][run];
  1864. } else {
  1865. if(lst)
  1866. run += vc1_last_delta_run_table[codingset][level] + 1;
  1867. else
  1868. run += vc1_delta_run_table[codingset][level] + 1;
  1869. }
  1870. if(get_bits(gb, 1))
  1871. level = -level;
  1872. } else {
  1873. int sign;
  1874. lst = get_bits(gb, 1);
  1875. if(v->s.esc3_level_length == 0) {
  1876. if(v->pq < 8 || v->dquantfrm) { // table 59
  1877. v->s.esc3_level_length = get_bits(gb, 3);
  1878. if(!v->s.esc3_level_length)
  1879. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  1880. } else { //table 60
  1881. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  1882. }
  1883. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  1884. }
  1885. run = get_bits(gb, v->s.esc3_run_length);
  1886. sign = get_bits(gb, 1);
  1887. level = get_bits(gb, v->s.esc3_level_length);
  1888. if(sign)
  1889. level = -level;
  1890. }
  1891. }
  1892. *last = lst;
  1893. *skip = run;
  1894. *value = level;
  1895. }
  1896. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1897. * @param v VC1Context
  1898. * @param block block to decode
  1899. * @param coded are AC coeffs present or not
  1900. * @param codingset set of VLC to decode data
  1901. */
  1902. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  1903. {
  1904. GetBitContext *gb = &v->s.gb;
  1905. MpegEncContext *s = &v->s;
  1906. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1907. int run_diff, i;
  1908. int16_t *dc_val;
  1909. int16_t *ac_val, *ac_val2;
  1910. int dcdiff;
  1911. /* Get DC differential */
  1912. if (n < 4) {
  1913. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1914. } else {
  1915. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1916. }
  1917. if (dcdiff < 0){
  1918. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1919. return -1;
  1920. }
  1921. if (dcdiff)
  1922. {
  1923. if (dcdiff == 119 /* ESC index value */)
  1924. {
  1925. /* TODO: Optimize */
  1926. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  1927. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  1928. else dcdiff = get_bits(gb, 8);
  1929. }
  1930. else
  1931. {
  1932. if (v->pq == 1)
  1933. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1934. else if (v->pq == 2)
  1935. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  1936. }
  1937. if (get_bits(gb, 1))
  1938. dcdiff = -dcdiff;
  1939. }
  1940. /* Prediction */
  1941. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  1942. *dc_val = dcdiff;
  1943. /* Store the quantized DC coeff, used for prediction */
  1944. if (n < 4) {
  1945. block[0] = dcdiff * s->y_dc_scale;
  1946. } else {
  1947. block[0] = dcdiff * s->c_dc_scale;
  1948. }
  1949. /* Skip ? */
  1950. run_diff = 0;
  1951. i = 0;
  1952. if (!coded) {
  1953. goto not_coded;
  1954. }
  1955. //AC Decoding
  1956. i = 1;
  1957. {
  1958. int last = 0, skip, value;
  1959. const int8_t *zz_table;
  1960. int scale;
  1961. int k;
  1962. scale = v->pq * 2 + v->halfpq;
  1963. if(v->s.ac_pred) {
  1964. if(!dc_pred_dir)
  1965. zz_table = vc1_horizontal_zz;
  1966. else
  1967. zz_table = vc1_vertical_zz;
  1968. } else
  1969. zz_table = vc1_normal_zz;
  1970. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1971. ac_val2 = ac_val;
  1972. if(dc_pred_dir) //left
  1973. ac_val -= 16;
  1974. else //top
  1975. ac_val -= 16 * s->block_wrap[n];
  1976. while (!last) {
  1977. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1978. i += skip;
  1979. if(i > 63)
  1980. break;
  1981. block[zz_table[i++]] = value;
  1982. }
  1983. /* apply AC prediction if needed */
  1984. if(s->ac_pred) {
  1985. if(dc_pred_dir) { //left
  1986. for(k = 1; k < 8; k++)
  1987. block[k << 3] += ac_val[k];
  1988. } else { //top
  1989. for(k = 1; k < 8; k++)
  1990. block[k] += ac_val[k + 8];
  1991. }
  1992. }
  1993. /* save AC coeffs for further prediction */
  1994. for(k = 1; k < 8; k++) {
  1995. ac_val2[k] = block[k << 3];
  1996. ac_val2[k + 8] = block[k];
  1997. }
  1998. /* scale AC coeffs */
  1999. for(k = 1; k < 64; k++)
  2000. if(block[k]) {
  2001. block[k] *= scale;
  2002. if(!v->pquantizer)
  2003. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2004. }
  2005. if(s->ac_pred) i = 63;
  2006. }
  2007. not_coded:
  2008. if(!coded) {
  2009. int k, scale;
  2010. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2011. ac_val2 = ac_val;
  2012. scale = v->pq * 2 + v->halfpq;
  2013. memset(ac_val2, 0, 16 * 2);
  2014. if(dc_pred_dir) {//left
  2015. ac_val -= 16;
  2016. if(s->ac_pred)
  2017. memcpy(ac_val2, ac_val, 8 * 2);
  2018. } else {//top
  2019. ac_val -= 16 * s->block_wrap[n];
  2020. if(s->ac_pred)
  2021. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2022. }
  2023. /* apply AC prediction if needed */
  2024. if(s->ac_pred) {
  2025. if(dc_pred_dir) { //left
  2026. for(k = 1; k < 8; k++) {
  2027. block[k << 3] = ac_val[k] * scale;
  2028. if(!v->pquantizer && block[k << 3])
  2029. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2030. }
  2031. } else { //top
  2032. for(k = 1; k < 8; k++) {
  2033. block[k] = ac_val[k + 8] * scale;
  2034. if(!v->pquantizer && block[k])
  2035. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2036. }
  2037. }
  2038. i = 63;
  2039. }
  2040. }
  2041. s->block_last_index[n] = i;
  2042. return 0;
  2043. }
  2044. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2045. * @param v VC1Context
  2046. * @param block block to decode
  2047. * @param coded are AC coeffs present or not
  2048. * @param mquant block quantizer
  2049. * @param codingset set of VLC to decode data
  2050. */
  2051. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2052. {
  2053. GetBitContext *gb = &v->s.gb;
  2054. MpegEncContext *s = &v->s;
  2055. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2056. int run_diff, i;
  2057. int16_t *dc_val;
  2058. int16_t *ac_val, *ac_val2;
  2059. int dcdiff;
  2060. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2061. int a_avail = v->a_avail, c_avail = v->c_avail;
  2062. int use_pred = s->ac_pred;
  2063. int scale;
  2064. int q1, q2 = 0;
  2065. /* XXX: Guard against dumb values of mquant */
  2066. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2067. /* Set DC scale - y and c use the same */
  2068. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2069. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2070. /* Get DC differential */
  2071. if (n < 4) {
  2072. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2073. } else {
  2074. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2075. }
  2076. if (dcdiff < 0){
  2077. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2078. return -1;
  2079. }
  2080. if (dcdiff)
  2081. {
  2082. if (dcdiff == 119 /* ESC index value */)
  2083. {
  2084. /* TODO: Optimize */
  2085. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2086. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2087. else dcdiff = get_bits(gb, 8);
  2088. }
  2089. else
  2090. {
  2091. if (mquant == 1)
  2092. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2093. else if (mquant == 2)
  2094. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2095. }
  2096. if (get_bits(gb, 1))
  2097. dcdiff = -dcdiff;
  2098. }
  2099. /* Prediction */
  2100. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2101. *dc_val = dcdiff;
  2102. /* Store the quantized DC coeff, used for prediction */
  2103. if (n < 4) {
  2104. block[0] = dcdiff * s->y_dc_scale;
  2105. } else {
  2106. block[0] = dcdiff * s->c_dc_scale;
  2107. }
  2108. /* Skip ? */
  2109. run_diff = 0;
  2110. i = 0;
  2111. //AC Decoding
  2112. i = 1;
  2113. /* check if AC is needed at all and adjust direction if needed */
  2114. if(!a_avail) dc_pred_dir = 1;
  2115. if(!c_avail) dc_pred_dir = 0;
  2116. if(!a_avail && !c_avail) use_pred = 0;
  2117. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2118. ac_val2 = ac_val;
  2119. scale = mquant * 2 + v->halfpq;
  2120. if(dc_pred_dir) //left
  2121. ac_val -= 16;
  2122. else //top
  2123. ac_val -= 16 * s->block_wrap[n];
  2124. q1 = s->current_picture.qscale_table[mb_pos];
  2125. if(dc_pred_dir && c_avail) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2126. if(!dc_pred_dir && a_avail) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2127. if(n && n<4) q2 = q1;
  2128. if(coded) {
  2129. int last = 0, skip, value;
  2130. const int8_t *zz_table;
  2131. int k;
  2132. zz_table = vc1_simple_progressive_8x8_zz;
  2133. while (!last) {
  2134. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2135. i += skip;
  2136. if(i > 63)
  2137. break;
  2138. block[zz_table[i++]] = value;
  2139. }
  2140. /* apply AC prediction if needed */
  2141. if(use_pred) {
  2142. /* scale predictors if needed*/
  2143. if(q2 && q1!=q2) {
  2144. q1 = q1 * 2 - 1;
  2145. q2 = q2 * 2 - 1;
  2146. if(dc_pred_dir) { //left
  2147. for(k = 1; k < 8; k++)
  2148. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2149. } else { //top
  2150. for(k = 1; k < 8; k++)
  2151. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2152. }
  2153. } else {
  2154. if(dc_pred_dir) { //left
  2155. for(k = 1; k < 8; k++)
  2156. block[k << 3] += ac_val[k];
  2157. } else { //top
  2158. for(k = 1; k < 8; k++)
  2159. block[k] += ac_val[k + 8];
  2160. }
  2161. }
  2162. }
  2163. /* save AC coeffs for further prediction */
  2164. for(k = 1; k < 8; k++) {
  2165. ac_val2[k] = block[k << 3];
  2166. ac_val2[k + 8] = block[k];
  2167. }
  2168. /* scale AC coeffs */
  2169. for(k = 1; k < 64; k++)
  2170. if(block[k]) {
  2171. block[k] *= scale;
  2172. if(!v->pquantizer)
  2173. block[k] += (block[k] < 0) ? -mquant : mquant;
  2174. }
  2175. if(use_pred) i = 63;
  2176. } else { // no AC coeffs
  2177. int k;
  2178. memset(ac_val2, 0, 16 * 2);
  2179. if(dc_pred_dir) {//left
  2180. if(use_pred) {
  2181. memcpy(ac_val2, ac_val, 8 * 2);
  2182. if(q2 && q1!=q2) {
  2183. q1 = q1 * 2 - 1;
  2184. q2 = q2 * 2 - 1;
  2185. for(k = 1; k < 8; k++)
  2186. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2187. }
  2188. }
  2189. } else {//top
  2190. if(use_pred) {
  2191. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2192. if(q2 && q1!=q2) {
  2193. q1 = q1 * 2 - 1;
  2194. q2 = q2 * 2 - 1;
  2195. for(k = 1; k < 8; k++)
  2196. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2197. }
  2198. }
  2199. }
  2200. /* apply AC prediction if needed */
  2201. if(use_pred) {
  2202. if(dc_pred_dir) { //left
  2203. for(k = 1; k < 8; k++) {
  2204. block[k << 3] = ac_val2[k] * scale;
  2205. if(!v->pquantizer && block[k << 3])
  2206. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2207. }
  2208. } else { //top
  2209. for(k = 1; k < 8; k++) {
  2210. block[k] = ac_val2[k + 8] * scale;
  2211. if(!v->pquantizer && block[k])
  2212. block[k] += (block[k] < 0) ? -mquant : mquant;
  2213. }
  2214. }
  2215. i = 63;
  2216. }
  2217. }
  2218. s->block_last_index[n] = i;
  2219. return 0;
  2220. }
  2221. /** Decode P block
  2222. */
  2223. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2224. {
  2225. MpegEncContext *s = &v->s;
  2226. GetBitContext *gb = &s->gb;
  2227. int i, j;
  2228. int subblkpat = 0;
  2229. int scale, off, idx, last, skip, value;
  2230. int ttblk = ttmb & 7;
  2231. if(ttmb == -1) {
  2232. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2233. }
  2234. if(ttblk == TT_4X4) {
  2235. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2236. }
  2237. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2238. subblkpat = decode012(gb);
  2239. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2240. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2241. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2242. }
  2243. scale = 2 * mquant + v->halfpq;
  2244. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2245. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2246. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2247. ttblk = TT_8X4;
  2248. }
  2249. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2250. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2251. ttblk = TT_4X8;
  2252. }
  2253. switch(ttblk) {
  2254. case TT_8X8:
  2255. i = 0;
  2256. last = 0;
  2257. while (!last) {
  2258. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2259. i += skip;
  2260. if(i > 63)
  2261. break;
  2262. idx = vc1_simple_progressive_8x8_zz[i++];
  2263. block[idx] = value * scale;
  2264. if(!v->pquantizer)
  2265. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2266. }
  2267. s->dsp.vc1_inv_trans_8x8(block);
  2268. break;
  2269. case TT_4X4:
  2270. for(j = 0; j < 4; j++) {
  2271. last = subblkpat & (1 << (3 - j));
  2272. i = 0;
  2273. off = (j & 1) * 4 + (j & 2) * 16;
  2274. while (!last) {
  2275. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2276. i += skip;
  2277. if(i > 15)
  2278. break;
  2279. idx = vc1_simple_progressive_4x4_zz[i++];
  2280. block[idx + off] = value * scale;
  2281. if(!v->pquantizer)
  2282. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2283. }
  2284. if(!(subblkpat & (1 << (3 - j))))
  2285. s->dsp.vc1_inv_trans_4x4(block, j);
  2286. }
  2287. break;
  2288. case TT_8X4:
  2289. for(j = 0; j < 2; j++) {
  2290. last = subblkpat & (1 << (1 - j));
  2291. i = 0;
  2292. off = j * 32;
  2293. while (!last) {
  2294. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2295. i += skip;
  2296. if(i > 31)
  2297. break;
  2298. idx = vc1_simple_progressive_8x4_zz[i++];
  2299. block[idx + off] = value * scale;
  2300. if(!v->pquantizer)
  2301. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2302. }
  2303. if(!(subblkpat & (1 << (1 - j))))
  2304. s->dsp.vc1_inv_trans_8x4(block, j);
  2305. }
  2306. break;
  2307. case TT_4X8:
  2308. for(j = 0; j < 2; j++) {
  2309. last = subblkpat & (1 << (1 - j));
  2310. i = 0;
  2311. off = j * 4;
  2312. while (!last) {
  2313. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2314. i += skip;
  2315. if(i > 31)
  2316. break;
  2317. idx = vc1_simple_progressive_4x8_zz[i++];
  2318. block[idx + off] = value * scale;
  2319. if(!v->pquantizer)
  2320. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2321. }
  2322. if(!(subblkpat & (1 << (1 - j))))
  2323. s->dsp.vc1_inv_trans_4x8(block, j);
  2324. }
  2325. break;
  2326. }
  2327. return 0;
  2328. }
  2329. /** Decode one P-frame MB (in Simple/Main profile)
  2330. * @todo TODO: Extend to AP
  2331. * @fixme FIXME: DC value for inter blocks not set
  2332. */
  2333. static int vc1_decode_p_mb(VC1Context *v)
  2334. {
  2335. MpegEncContext *s = &v->s;
  2336. GetBitContext *gb = &s->gb;
  2337. int i, j;
  2338. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2339. int cbp; /* cbp decoding stuff */
  2340. int mqdiff, mquant; /* MB quantization */
  2341. int ttmb = v->ttfrm; /* MB Transform type */
  2342. int status;
  2343. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2344. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2345. int mb_has_coeffs = 1; /* last_flag */
  2346. int dmv_x, dmv_y; /* Differential MV components */
  2347. int index, index1; /* LUT indices */
  2348. int val, sign; /* temp values */
  2349. int first_block = 1;
  2350. int dst_idx, off;
  2351. int skipped, fourmv;
  2352. mquant = v->pq; /* Loosy initialization */
  2353. if (v->mv_type_is_raw)
  2354. fourmv = get_bits1(gb);
  2355. else
  2356. fourmv = v->mv_type_mb_plane[mb_pos];
  2357. if (v->skip_is_raw)
  2358. skipped = get_bits1(gb);
  2359. else
  2360. skipped = v->s.mbskip_table[mb_pos];
  2361. s->dsp.clear_blocks(s->block[0]);
  2362. if (!fourmv) /* 1MV mode */
  2363. {
  2364. if (!skipped)
  2365. {
  2366. GET_MVDATA(dmv_x, dmv_y);
  2367. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2368. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2369. /* FIXME Set DC val for inter block ? */
  2370. if (s->mb_intra && !mb_has_coeffs)
  2371. {
  2372. GET_MQUANT();
  2373. s->ac_pred = get_bits(gb, 1);
  2374. cbp = 0;
  2375. }
  2376. else if (mb_has_coeffs)
  2377. {
  2378. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  2379. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2380. GET_MQUANT();
  2381. }
  2382. else
  2383. {
  2384. mquant = v->pq;
  2385. cbp = 0;
  2386. }
  2387. s->current_picture.qscale_table[mb_pos] = mquant;
  2388. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2389. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  2390. VC1_TTMB_VLC_BITS, 2);
  2391. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2392. dst_idx = 0;
  2393. for (i=0; i<6; i++)
  2394. {
  2395. s->dc_val[0][s->block_index[i]] = 0;
  2396. dst_idx += i >> 2;
  2397. val = ((cbp >> (5 - i)) & 1);
  2398. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2399. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2400. if(s->mb_intra) {
  2401. /* check if prediction blocks A and C are available */
  2402. v->a_avail = v->c_avail = 0;
  2403. if(i == 2 || i == 3 || !s->first_slice_line)
  2404. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2405. if(i == 1 || i == 3 || s->mb_x)
  2406. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2407. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2408. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2409. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2410. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2411. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2412. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2413. /* TODO: proper loop filtering */
  2414. if(v->pq >= 9 && v->overlap) {
  2415. if(v->a_avail)
  2416. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? ((i&1)>>1) : (s->mb_y&1));
  2417. if(v->c_avail)
  2418. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? (i&1) : (s->mb_x&1));
  2419. }
  2420. } else if(val) {
  2421. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2422. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2423. first_block = 0;
  2424. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2425. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2426. }
  2427. }
  2428. }
  2429. else //Skipped
  2430. {
  2431. s->mb_intra = 0;
  2432. for(i = 0; i < 6; i++) {
  2433. v->mb_type[0][s->block_index[i]] = 0;
  2434. s->dc_val[0][s->block_index[i]] = 0;
  2435. }
  2436. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2437. s->current_picture.qscale_table[mb_pos] = 0;
  2438. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2439. vc1_mc_1mv(v, 0);
  2440. return 0;
  2441. }
  2442. } //1MV mode
  2443. else //4MV mode
  2444. {
  2445. if (!skipped /* unskipped MB */)
  2446. {
  2447. int intra_count = 0, coded_inter = 0;
  2448. int is_intra[6], is_coded[6];
  2449. /* Get CBPCY */
  2450. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2451. for (i=0; i<6; i++)
  2452. {
  2453. val = ((cbp >> (5 - i)) & 1);
  2454. s->dc_val[0][s->block_index[i]] = 0;
  2455. s->mb_intra = 0;
  2456. if(i < 4) {
  2457. dmv_x = dmv_y = 0;
  2458. s->mb_intra = 0;
  2459. mb_has_coeffs = 0;
  2460. if(val) {
  2461. GET_MVDATA(dmv_x, dmv_y);
  2462. }
  2463. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2464. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2465. intra_count += s->mb_intra;
  2466. is_intra[i] = s->mb_intra;
  2467. is_coded[i] = mb_has_coeffs;
  2468. }
  2469. if(i&4){
  2470. is_intra[i] = (intra_count >= 3);
  2471. is_coded[i] = val;
  2472. }
  2473. if(i == 4) vc1_mc_4mv_chroma(v);
  2474. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2475. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2476. }
  2477. // if there are no coded blocks then don't do anything more
  2478. if(!intra_count && !coded_inter) return 0;
  2479. dst_idx = 0;
  2480. GET_MQUANT();
  2481. s->current_picture.qscale_table[mb_pos] = mquant;
  2482. /* test if block is intra and has pred */
  2483. {
  2484. int intrapred = 0;
  2485. for(i=0; i<6; i++)
  2486. if(is_intra[i]) {
  2487. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2488. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2489. intrapred = 1;
  2490. break;
  2491. }
  2492. }
  2493. if(intrapred)s->ac_pred = get_bits(gb, 1);
  2494. else s->ac_pred = 0;
  2495. }
  2496. if (!v->ttmbf && coded_inter)
  2497. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2498. for (i=0; i<6; i++)
  2499. {
  2500. dst_idx += i >> 2;
  2501. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2502. s->mb_intra = is_intra[i];
  2503. if (is_intra[i]) {
  2504. /* check if prediction blocks A and C are available */
  2505. v->a_avail = v->c_avail = 0;
  2506. if(i == 2 || i == 3 || !s->first_slice_line)
  2507. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2508. if(i == 1 || i == 3 || s->mb_x)
  2509. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2510. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2511. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2512. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2513. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2514. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2515. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2516. /* TODO: proper loop filtering */
  2517. if(v->pq >= 9 && v->overlap) {
  2518. if(v->a_avail)
  2519. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? ((i&1)>>1) : (s->mb_y&1));
  2520. if(v->c_avail)
  2521. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? (i&1) : (s->mb_x&1));
  2522. }
  2523. } else if(is_coded[i]) {
  2524. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2525. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2526. first_block = 0;
  2527. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2528. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2529. }
  2530. }
  2531. return status;
  2532. }
  2533. else //Skipped MB
  2534. {
  2535. s->mb_intra = 0;
  2536. s->current_picture.qscale_table[mb_pos] = 0;
  2537. for (i=0; i<6; i++) {
  2538. v->mb_type[0][s->block_index[i]] = 0;
  2539. s->dc_val[0][s->block_index[i]] = 0;
  2540. }
  2541. for (i=0; i<4; i++)
  2542. {
  2543. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2544. vc1_mc_4mv_luma(v, i);
  2545. }
  2546. vc1_mc_4mv_chroma(v);
  2547. s->current_picture.qscale_table[mb_pos] = 0;
  2548. return 0;
  2549. }
  2550. }
  2551. /* Should never happen */
  2552. return -1;
  2553. }
  2554. /** Decode one B-frame MB (in Main profile)
  2555. */
  2556. static void vc1_decode_b_mb(VC1Context *v)
  2557. {
  2558. MpegEncContext *s = &v->s;
  2559. GetBitContext *gb = &s->gb;
  2560. int i, j;
  2561. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2562. int cbp = 0; /* cbp decoding stuff */
  2563. int mqdiff, mquant; /* MB quantization */
  2564. int ttmb = v->ttfrm; /* MB Transform type */
  2565. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2566. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2567. int mb_has_coeffs = 0; /* last_flag */
  2568. int index, index1; /* LUT indices */
  2569. int val, sign; /* temp values */
  2570. int first_block = 1;
  2571. int dst_idx, off;
  2572. int skipped, direct;
  2573. int dmv_x[2], dmv_y[2];
  2574. int bmvtype = BMV_TYPE_BACKWARD; /* XXX: is it so? */
  2575. mquant = v->pq; /* Loosy initialization */
  2576. s->mb_intra = 0;
  2577. if (v->dmb_is_raw)
  2578. direct = get_bits1(gb);
  2579. else
  2580. direct = v->direct_mb_plane[mb_pos];
  2581. if (v->skip_is_raw)
  2582. skipped = get_bits1(gb);
  2583. else
  2584. skipped = v->s.mbskip_table[mb_pos];
  2585. s->dsp.clear_blocks(s->block[0]);
  2586. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  2587. for(i = 0; i < 6; i++) {
  2588. v->mb_type[0][s->block_index[i]] = 0;
  2589. s->dc_val[0][s->block_index[i]] = 0;
  2590. }
  2591. s->current_picture.qscale_table[mb_pos] = 0;
  2592. if (!direct) {
  2593. if (!skipped) {
  2594. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2595. dmv_x[1] = dmv_x[0];
  2596. dmv_y[1] = dmv_y[0];
  2597. }
  2598. if(skipped || !s->mb_intra) {
  2599. bmvtype = decode012(gb);
  2600. switch(bmvtype) {
  2601. case 0:
  2602. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  2603. break;
  2604. case 1:
  2605. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  2606. break;
  2607. case 2:
  2608. bmvtype = BMV_TYPE_INTERPOLATED;
  2609. }
  2610. }
  2611. }
  2612. if (skipped) {
  2613. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2614. return;
  2615. }
  2616. if (direct) {
  2617. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2618. GET_MQUANT();
  2619. s->mb_intra = 0;
  2620. mb_has_coeffs = 0;
  2621. s->current_picture.qscale_table[mb_pos] = mquant;
  2622. if(!v->ttmbf)
  2623. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2624. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2625. } else {
  2626. if(!mb_has_coeffs && !s->mb_intra) {
  2627. /* no coded blocks - effectively skipped */
  2628. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2629. return;
  2630. }
  2631. if(s->mb_intra && !mb_has_coeffs) {
  2632. GET_MQUANT();
  2633. s->current_picture.qscale_table[mb_pos] = mquant;
  2634. s->ac_pred = get_bits1(gb);
  2635. cbp = 0;
  2636. } else {
  2637. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  2638. GET_MVDATA(dmv_x[1], dmv_y[1]);
  2639. if(!mb_has_coeffs) {
  2640. /* interpolated skipped block */
  2641. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2642. return;
  2643. }
  2644. }
  2645. if(!s->mb_intra)
  2646. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2647. if(s->mb_intra)
  2648. s->ac_pred = get_bits1(gb);
  2649. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2650. GET_MQUANT();
  2651. s->current_picture.qscale_table[mb_pos] = mquant;
  2652. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2653. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2654. }
  2655. }
  2656. dst_idx = 0;
  2657. for (i=0; i<6; i++)
  2658. {
  2659. s->dc_val[0][s->block_index[i]] = 0;
  2660. dst_idx += i >> 2;
  2661. val = ((cbp >> (5 - i)) & 1);
  2662. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2663. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2664. if(s->mb_intra) {
  2665. /* check if prediction blocks A and C are available */
  2666. v->a_avail = v->c_avail = 0;
  2667. if(i == 2 || i == 3 || !s->first_slice_line)
  2668. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2669. if(i == 1 || i == 3 || s->mb_x)
  2670. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2671. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2672. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2673. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2674. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2675. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2676. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2677. } else if(val) {
  2678. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2679. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2680. first_block = 0;
  2681. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2682. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2683. }
  2684. }
  2685. }
  2686. /** Decode blocks of I-frame
  2687. */
  2688. static void vc1_decode_i_blocks(VC1Context *v)
  2689. {
  2690. int k, j;
  2691. MpegEncContext *s = &v->s;
  2692. int cbp, val;
  2693. uint8_t *coded_val;
  2694. int mb_pos;
  2695. /* select codingmode used for VLC tables selection */
  2696. switch(v->y_ac_table_index){
  2697. case 0:
  2698. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2699. break;
  2700. case 1:
  2701. v->codingset = CS_HIGH_MOT_INTRA;
  2702. break;
  2703. case 2:
  2704. v->codingset = CS_MID_RATE_INTRA;
  2705. break;
  2706. }
  2707. switch(v->c_ac_table_index){
  2708. case 0:
  2709. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2710. break;
  2711. case 1:
  2712. v->codingset2 = CS_HIGH_MOT_INTER;
  2713. break;
  2714. case 2:
  2715. v->codingset2 = CS_MID_RATE_INTER;
  2716. break;
  2717. }
  2718. /* Set DC scale - y and c use the same */
  2719. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2720. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2721. //do frame decode
  2722. s->mb_x = s->mb_y = 0;
  2723. s->mb_intra = 1;
  2724. s->first_slice_line = 1;
  2725. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2726. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2727. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2728. ff_init_block_index(s);
  2729. ff_update_block_index(s);
  2730. s->dsp.clear_blocks(s->block[0]);
  2731. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2732. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2733. s->current_picture.qscale_table[mb_pos] = v->pq;
  2734. // do actual MB decoding and displaying
  2735. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2736. v->s.ac_pred = get_bits(&v->s.gb, 1);
  2737. for(k = 0; k < 6; k++) {
  2738. val = ((cbp >> (5 - k)) & 1);
  2739. if (k < 4) {
  2740. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2741. val = val ^ pred;
  2742. *coded_val = val;
  2743. }
  2744. cbp |= val << (5 - k);
  2745. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  2746. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  2747. if(v->pq >= 9 && v->overlap) {
  2748. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  2749. }
  2750. }
  2751. vc1_put_block(v, s->block);
  2752. if(v->pq >= 9 && v->overlap) { /* XXX: do proper overlapping insted of loop filter */
  2753. if(!s->first_slice_line) {
  2754. s->dsp.vc1_v_overlap(s->dest[0], s->linesize, 0);
  2755. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize, 0);
  2756. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2757. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize, s->mb_y&1);
  2758. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize, s->mb_y&1);
  2759. }
  2760. }
  2761. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 1);
  2762. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
  2763. if(s->mb_x) {
  2764. s->dsp.vc1_h_overlap(s->dest[0], s->linesize, 0);
  2765. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 0);
  2766. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2767. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize, s->mb_x&1);
  2768. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize, s->mb_x&1);
  2769. }
  2770. }
  2771. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize, 1);
  2772. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
  2773. }
  2774. if(get_bits_count(&s->gb) > v->bits) {
  2775. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2776. return;
  2777. }
  2778. }
  2779. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2780. s->first_slice_line = 0;
  2781. }
  2782. }
  2783. static void vc1_decode_p_blocks(VC1Context *v)
  2784. {
  2785. MpegEncContext *s = &v->s;
  2786. /* select codingmode used for VLC tables selection */
  2787. switch(v->c_ac_table_index){
  2788. case 0:
  2789. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2790. break;
  2791. case 1:
  2792. v->codingset = CS_HIGH_MOT_INTRA;
  2793. break;
  2794. case 2:
  2795. v->codingset = CS_MID_RATE_INTRA;
  2796. break;
  2797. }
  2798. switch(v->c_ac_table_index){
  2799. case 0:
  2800. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2801. break;
  2802. case 1:
  2803. v->codingset2 = CS_HIGH_MOT_INTER;
  2804. break;
  2805. case 2:
  2806. v->codingset2 = CS_MID_RATE_INTER;
  2807. break;
  2808. }
  2809. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2810. s->first_slice_line = 1;
  2811. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2812. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2813. ff_init_block_index(s);
  2814. ff_update_block_index(s);
  2815. s->dsp.clear_blocks(s->block[0]);
  2816. vc1_decode_p_mb(v);
  2817. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2818. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2819. return;
  2820. }
  2821. }
  2822. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2823. s->first_slice_line = 0;
  2824. }
  2825. }
  2826. static void vc1_decode_b_blocks(VC1Context *v)
  2827. {
  2828. MpegEncContext *s = &v->s;
  2829. /* select codingmode used for VLC tables selection */
  2830. switch(v->c_ac_table_index){
  2831. case 0:
  2832. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2833. break;
  2834. case 1:
  2835. v->codingset = CS_HIGH_MOT_INTRA;
  2836. break;
  2837. case 2:
  2838. v->codingset = CS_MID_RATE_INTRA;
  2839. break;
  2840. }
  2841. switch(v->c_ac_table_index){
  2842. case 0:
  2843. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2844. break;
  2845. case 1:
  2846. v->codingset2 = CS_HIGH_MOT_INTER;
  2847. break;
  2848. case 2:
  2849. v->codingset2 = CS_MID_RATE_INTER;
  2850. break;
  2851. }
  2852. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2853. s->first_slice_line = 1;
  2854. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2855. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2856. ff_init_block_index(s);
  2857. ff_update_block_index(s);
  2858. s->dsp.clear_blocks(s->block[0]);
  2859. vc1_decode_b_mb(v);
  2860. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2861. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2862. return;
  2863. }
  2864. }
  2865. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2866. s->first_slice_line = 0;
  2867. }
  2868. }
  2869. static void vc1_decode_blocks(VC1Context *v)
  2870. {
  2871. v->s.esc3_level_length = 0;
  2872. switch(v->s.pict_type) {
  2873. case I_TYPE:
  2874. vc1_decode_i_blocks(v);
  2875. break;
  2876. case P_TYPE:
  2877. vc1_decode_p_blocks(v);
  2878. break;
  2879. case B_TYPE:
  2880. vc1_decode_b_blocks(v);
  2881. break;
  2882. }
  2883. }
  2884. /** Initialize a VC1/WMV3 decoder
  2885. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2886. * @todo TODO: Decypher remaining bits in extra_data
  2887. */
  2888. static int vc1_decode_init(AVCodecContext *avctx)
  2889. {
  2890. VC1Context *v = avctx->priv_data;
  2891. MpegEncContext *s = &v->s;
  2892. GetBitContext gb;
  2893. if (!avctx->extradata_size || !avctx->extradata) return -1;
  2894. if (!(avctx->flags & CODEC_FLAG_GRAY))
  2895. avctx->pix_fmt = PIX_FMT_YUV420P;
  2896. else
  2897. avctx->pix_fmt = PIX_FMT_GRAY8;
  2898. v->s.avctx = avctx;
  2899. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  2900. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  2901. if(ff_h263_decode_init(avctx) < 0)
  2902. return -1;
  2903. if (vc1_init_common(v) < 0) return -1;
  2904. avctx->coded_width = avctx->width;
  2905. avctx->coded_height = avctx->height;
  2906. if (avctx->codec_id == CODEC_ID_WMV3)
  2907. {
  2908. int count = 0;
  2909. // looks like WMV3 has a sequence header stored in the extradata
  2910. // advanced sequence header may be before the first frame
  2911. // the last byte of the extradata is a version number, 1 for the
  2912. // samples we can decode
  2913. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  2914. if (decode_sequence_header(avctx, &gb) < 0)
  2915. return -1;
  2916. count = avctx->extradata_size*8 - get_bits_count(&gb);
  2917. if (count>0)
  2918. {
  2919. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  2920. count, get_bits(&gb, count));
  2921. }
  2922. else if (count < 0)
  2923. {
  2924. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  2925. }
  2926. }
  2927. avctx->has_b_frames= !!(avctx->max_b_frames);
  2928. s->mb_width = (avctx->coded_width+15)>>4;
  2929. s->mb_height = (avctx->coded_height+15)>>4;
  2930. /* Allocate mb bitplanes */
  2931. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2932. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2933. /* allocate block type info in that way so it could be used with s->block_index[] */
  2934. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  2935. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  2936. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  2937. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  2938. /* Init coded blocks info */
  2939. if (v->profile == PROFILE_ADVANCED)
  2940. {
  2941. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  2942. // return -1;
  2943. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  2944. // return -1;
  2945. }
  2946. return 0;
  2947. }
  2948. /** Decode a VC1/WMV3 frame
  2949. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2950. * @warning Initial try at using MpegEncContext stuff
  2951. */
  2952. static int vc1_decode_frame(AVCodecContext *avctx,
  2953. void *data, int *data_size,
  2954. uint8_t *buf, int buf_size)
  2955. {
  2956. VC1Context *v = avctx->priv_data;
  2957. MpegEncContext *s = &v->s;
  2958. AVFrame *pict = data;
  2959. /* no supplementary picture */
  2960. if (buf_size == 0) {
  2961. /* special case for last picture */
  2962. if (s->low_delay==0 && s->next_picture_ptr) {
  2963. *pict= *(AVFrame*)s->next_picture_ptr;
  2964. s->next_picture_ptr= NULL;
  2965. *data_size = sizeof(AVFrame);
  2966. }
  2967. return 0;
  2968. }
  2969. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  2970. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  2971. int i= ff_find_unused_picture(s, 0);
  2972. s->current_picture_ptr= &s->picture[i];
  2973. }
  2974. avctx->has_b_frames= !s->low_delay;
  2975. init_get_bits(&s->gb, buf, buf_size*8);
  2976. // do parse frame header
  2977. if(vc1_parse_frame_header(v, &s->gb) == -1)
  2978. return -1;
  2979. if(s->pict_type != I_TYPE && !v->res_rtm_flag)return -1;
  2980. // for hurry_up==5
  2981. s->current_picture.pict_type= s->pict_type;
  2982. s->current_picture.key_frame= s->pict_type == I_TYPE;
  2983. /* skip B-frames if we don't have reference frames */
  2984. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)) return -1;//buf_size;
  2985. /* skip b frames if we are in a hurry */
  2986. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  2987. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  2988. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  2989. || avctx->skip_frame >= AVDISCARD_ALL)
  2990. return buf_size;
  2991. /* skip everything if we are in a hurry>=5 */
  2992. if(avctx->hurry_up>=5) return -1;//buf_size;
  2993. if(s->next_p_frame_damaged){
  2994. if(s->pict_type==B_TYPE)
  2995. return buf_size;
  2996. else
  2997. s->next_p_frame_damaged=0;
  2998. }
  2999. if(MPV_frame_start(s, avctx) < 0)
  3000. return -1;
  3001. ff_er_frame_start(s);
  3002. v->bits = buf_size * 8;
  3003. vc1_decode_blocks(v);
  3004. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3005. // if(get_bits_count(&s->gb) > buf_size * 8)
  3006. // return -1;
  3007. ff_er_frame_end(s);
  3008. MPV_frame_end(s);
  3009. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3010. assert(s->current_picture.pict_type == s->pict_type);
  3011. if (s->pict_type == B_TYPE || s->low_delay) {
  3012. *pict= *(AVFrame*)s->current_picture_ptr;
  3013. } else if (s->last_picture_ptr != NULL) {
  3014. *pict= *(AVFrame*)s->last_picture_ptr;
  3015. }
  3016. if(s->last_picture_ptr || s->low_delay){
  3017. *data_size = sizeof(AVFrame);
  3018. ff_print_debug_info(s, pict);
  3019. }
  3020. /* Return the Picture timestamp as the frame number */
  3021. /* we substract 1 because it is added on utils.c */
  3022. avctx->frame_number = s->picture_number - 1;
  3023. return buf_size;
  3024. }
  3025. /** Close a VC1/WMV3 decoder
  3026. * @warning Initial try at using MpegEncContext stuff
  3027. */
  3028. static int vc1_decode_end(AVCodecContext *avctx)
  3029. {
  3030. VC1Context *v = avctx->priv_data;
  3031. av_freep(&v->hrd_rate);
  3032. av_freep(&v->hrd_buffer);
  3033. MPV_common_end(&v->s);
  3034. av_freep(&v->mv_type_mb_plane);
  3035. av_freep(&v->direct_mb_plane);
  3036. av_freep(&v->mb_type_base);
  3037. return 0;
  3038. }
  3039. AVCodec vc1_decoder = {
  3040. "vc1",
  3041. CODEC_TYPE_VIDEO,
  3042. CODEC_ID_VC1,
  3043. sizeof(VC1Context),
  3044. vc1_decode_init,
  3045. NULL,
  3046. vc1_decode_end,
  3047. vc1_decode_frame,
  3048. CODEC_CAP_DELAY,
  3049. NULL
  3050. };
  3051. AVCodec wmv3_decoder = {
  3052. "wmv3",
  3053. CODEC_TYPE_VIDEO,
  3054. CODEC_ID_WMV3,
  3055. sizeof(VC1Context),
  3056. vc1_decode_init,
  3057. NULL,
  3058. vc1_decode_end,
  3059. vc1_decode_frame,
  3060. CODEC_CAP_DELAY,
  3061. NULL
  3062. };