You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3416 lines
133KB

  1. /*
  2. * HEVC video Decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2012 - 2013 Mickael Raulet
  6. * Copyright (C) 2012 - 2013 Gildas Cocherel
  7. * Copyright (C) 2012 - 2013 Wassim Hamidouche
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/display.h"
  28. #include "libavutil/internal.h"
  29. #include "libavutil/mastering_display_metadata.h"
  30. #include "libavutil/md5.h"
  31. #include "libavutil/opt.h"
  32. #include "libavutil/pixdesc.h"
  33. #include "libavutil/stereo3d.h"
  34. #include "bswapdsp.h"
  35. #include "bytestream.h"
  36. #include "cabac_functions.h"
  37. #include "golomb.h"
  38. #include "hevc.h"
  39. #include "hevc_data.h"
  40. #include "hevc_parse.h"
  41. #include "hevcdec.h"
  42. #include "profiles.h"
  43. const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
  44. /**
  45. * NOTE: Each function hls_foo correspond to the function foo in the
  46. * specification (HLS stands for High Level Syntax).
  47. */
  48. /**
  49. * Section 5.7
  50. */
  51. /* free everything allocated by pic_arrays_init() */
  52. static void pic_arrays_free(HEVCContext *s)
  53. {
  54. av_freep(&s->sao);
  55. av_freep(&s->deblock);
  56. av_freep(&s->skip_flag);
  57. av_freep(&s->tab_ct_depth);
  58. av_freep(&s->tab_ipm);
  59. av_freep(&s->cbf_luma);
  60. av_freep(&s->is_pcm);
  61. av_freep(&s->qp_y_tab);
  62. av_freep(&s->tab_slice_address);
  63. av_freep(&s->filter_slice_edges);
  64. av_freep(&s->horizontal_bs);
  65. av_freep(&s->vertical_bs);
  66. av_freep(&s->sh.entry_point_offset);
  67. av_freep(&s->sh.size);
  68. av_freep(&s->sh.offset);
  69. av_buffer_pool_uninit(&s->tab_mvf_pool);
  70. av_buffer_pool_uninit(&s->rpl_tab_pool);
  71. }
  72. /* allocate arrays that depend on frame dimensions */
  73. static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
  74. {
  75. int log2_min_cb_size = sps->log2_min_cb_size;
  76. int width = sps->width;
  77. int height = sps->height;
  78. int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
  79. ((height >> log2_min_cb_size) + 1);
  80. int ctb_count = sps->ctb_width * sps->ctb_height;
  81. int min_pu_size = sps->min_pu_width * sps->min_pu_height;
  82. s->bs_width = (width >> 2) + 1;
  83. s->bs_height = (height >> 2) + 1;
  84. s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
  85. s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
  86. if (!s->sao || !s->deblock)
  87. goto fail;
  88. s->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  89. s->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  90. if (!s->skip_flag || !s->tab_ct_depth)
  91. goto fail;
  92. s->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height);
  93. s->tab_ipm = av_mallocz(min_pu_size);
  94. s->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1);
  95. if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
  96. goto fail;
  97. s->filter_slice_edges = av_mallocz(ctb_count);
  98. s->tab_slice_address = av_malloc_array(pic_size_in_ctb,
  99. sizeof(*s->tab_slice_address));
  100. s->qp_y_tab = av_malloc_array(pic_size_in_ctb,
  101. sizeof(*s->qp_y_tab));
  102. if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
  103. goto fail;
  104. s->horizontal_bs = av_mallocz_array(s->bs_width, s->bs_height);
  105. s->vertical_bs = av_mallocz_array(s->bs_width, s->bs_height);
  106. if (!s->horizontal_bs || !s->vertical_bs)
  107. goto fail;
  108. s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
  109. av_buffer_allocz);
  110. s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
  111. av_buffer_allocz);
  112. if (!s->tab_mvf_pool || !s->rpl_tab_pool)
  113. goto fail;
  114. return 0;
  115. fail:
  116. pic_arrays_free(s);
  117. return AVERROR(ENOMEM);
  118. }
  119. static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
  120. {
  121. int i = 0;
  122. int j = 0;
  123. uint8_t luma_weight_l0_flag[16];
  124. uint8_t chroma_weight_l0_flag[16];
  125. uint8_t luma_weight_l1_flag[16];
  126. uint8_t chroma_weight_l1_flag[16];
  127. int luma_log2_weight_denom;
  128. luma_log2_weight_denom = get_ue_golomb_long(gb);
  129. if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7)
  130. av_log(s->avctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom);
  131. s->sh.luma_log2_weight_denom = av_clip_uintp2(luma_log2_weight_denom, 3);
  132. if (s->ps.sps->chroma_format_idc != 0) {
  133. int delta = get_se_golomb(gb);
  134. s->sh.chroma_log2_weight_denom = av_clip_uintp2(s->sh.luma_log2_weight_denom + delta, 3);
  135. }
  136. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  137. luma_weight_l0_flag[i] = get_bits1(gb);
  138. if (!luma_weight_l0_flag[i]) {
  139. s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
  140. s->sh.luma_offset_l0[i] = 0;
  141. }
  142. }
  143. if (s->ps.sps->chroma_format_idc != 0) {
  144. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  145. chroma_weight_l0_flag[i] = get_bits1(gb);
  146. } else {
  147. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  148. chroma_weight_l0_flag[i] = 0;
  149. }
  150. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  151. if (luma_weight_l0_flag[i]) {
  152. int delta_luma_weight_l0 = get_se_golomb(gb);
  153. s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
  154. s->sh.luma_offset_l0[i] = get_se_golomb(gb);
  155. }
  156. if (chroma_weight_l0_flag[i]) {
  157. for (j = 0; j < 2; j++) {
  158. int delta_chroma_weight_l0 = get_se_golomb(gb);
  159. int delta_chroma_offset_l0 = get_se_golomb(gb);
  160. s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
  161. s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
  162. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  163. }
  164. } else {
  165. s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  166. s->sh.chroma_offset_l0[i][0] = 0;
  167. s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  168. s->sh.chroma_offset_l0[i][1] = 0;
  169. }
  170. }
  171. if (s->sh.slice_type == HEVC_SLICE_B) {
  172. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  173. luma_weight_l1_flag[i] = get_bits1(gb);
  174. if (!luma_weight_l1_flag[i]) {
  175. s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
  176. s->sh.luma_offset_l1[i] = 0;
  177. }
  178. }
  179. if (s->ps.sps->chroma_format_idc != 0) {
  180. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  181. chroma_weight_l1_flag[i] = get_bits1(gb);
  182. } else {
  183. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  184. chroma_weight_l1_flag[i] = 0;
  185. }
  186. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  187. if (luma_weight_l1_flag[i]) {
  188. int delta_luma_weight_l1 = get_se_golomb(gb);
  189. s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
  190. s->sh.luma_offset_l1[i] = get_se_golomb(gb);
  191. }
  192. if (chroma_weight_l1_flag[i]) {
  193. for (j = 0; j < 2; j++) {
  194. int delta_chroma_weight_l1 = get_se_golomb(gb);
  195. int delta_chroma_offset_l1 = get_se_golomb(gb);
  196. s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
  197. s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
  198. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  199. }
  200. } else {
  201. s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  202. s->sh.chroma_offset_l1[i][0] = 0;
  203. s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  204. s->sh.chroma_offset_l1[i][1] = 0;
  205. }
  206. }
  207. }
  208. }
  209. static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
  210. {
  211. const HEVCSPS *sps = s->ps.sps;
  212. int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
  213. int prev_delta_msb = 0;
  214. unsigned int nb_sps = 0, nb_sh;
  215. int i;
  216. rps->nb_refs = 0;
  217. if (!sps->long_term_ref_pics_present_flag)
  218. return 0;
  219. if (sps->num_long_term_ref_pics_sps > 0)
  220. nb_sps = get_ue_golomb_long(gb);
  221. nb_sh = get_ue_golomb_long(gb);
  222. if (nb_sps > sps->num_long_term_ref_pics_sps)
  223. return AVERROR_INVALIDDATA;
  224. if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc))
  225. return AVERROR_INVALIDDATA;
  226. rps->nb_refs = nb_sh + nb_sps;
  227. for (i = 0; i < rps->nb_refs; i++) {
  228. uint8_t delta_poc_msb_present;
  229. if (i < nb_sps) {
  230. uint8_t lt_idx_sps = 0;
  231. if (sps->num_long_term_ref_pics_sps > 1)
  232. lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
  233. rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
  234. rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
  235. } else {
  236. rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
  237. rps->used[i] = get_bits1(gb);
  238. }
  239. delta_poc_msb_present = get_bits1(gb);
  240. if (delta_poc_msb_present) {
  241. int64_t delta = get_ue_golomb_long(gb);
  242. int64_t poc;
  243. if (i && i != nb_sps)
  244. delta += prev_delta_msb;
  245. poc = rps->poc[i] + s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
  246. if (poc != (int32_t)poc)
  247. return AVERROR_INVALIDDATA;
  248. rps->poc[i] = poc;
  249. prev_delta_msb = delta;
  250. }
  251. }
  252. return 0;
  253. }
  254. static void export_stream_params(AVCodecContext *avctx, const HEVCParamSets *ps,
  255. const HEVCSPS *sps)
  256. {
  257. const HEVCVPS *vps = (const HEVCVPS*)ps->vps_list[sps->vps_id]->data;
  258. const HEVCWindow *ow = &sps->output_window;
  259. unsigned int num = 0, den = 0;
  260. avctx->pix_fmt = sps->pix_fmt;
  261. avctx->coded_width = sps->width;
  262. avctx->coded_height = sps->height;
  263. avctx->width = sps->width - ow->left_offset - ow->right_offset;
  264. avctx->height = sps->height - ow->top_offset - ow->bottom_offset;
  265. avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
  266. avctx->profile = sps->ptl.general_ptl.profile_idc;
  267. avctx->level = sps->ptl.general_ptl.level_idc;
  268. ff_set_sar(avctx, sps->vui.sar);
  269. if (sps->vui.video_signal_type_present_flag)
  270. avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
  271. : AVCOL_RANGE_MPEG;
  272. else
  273. avctx->color_range = AVCOL_RANGE_MPEG;
  274. if (sps->vui.colour_description_present_flag) {
  275. avctx->color_primaries = sps->vui.colour_primaries;
  276. avctx->color_trc = sps->vui.transfer_characteristic;
  277. avctx->colorspace = sps->vui.matrix_coeffs;
  278. } else {
  279. avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
  280. avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
  281. avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
  282. }
  283. if (vps->vps_timing_info_present_flag) {
  284. num = vps->vps_num_units_in_tick;
  285. den = vps->vps_time_scale;
  286. } else if (sps->vui.vui_timing_info_present_flag) {
  287. num = sps->vui.vui_num_units_in_tick;
  288. den = sps->vui.vui_time_scale;
  289. }
  290. if (num != 0 && den != 0)
  291. av_reduce(&avctx->framerate.den, &avctx->framerate.num,
  292. num, den, 1 << 30);
  293. }
  294. static enum AVPixelFormat get_format(HEVCContext *s, const HEVCSPS *sps)
  295. {
  296. #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + CONFIG_HEVC_D3D11VA_HWACCEL + CONFIG_HEVC_VAAPI_HWACCEL + CONFIG_HEVC_VDPAU_HWACCEL)
  297. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
  298. switch (sps->pix_fmt) {
  299. case AV_PIX_FMT_YUV420P:
  300. case AV_PIX_FMT_YUVJ420P:
  301. #if CONFIG_HEVC_DXVA2_HWACCEL
  302. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  303. #endif
  304. #if CONFIG_HEVC_D3D11VA_HWACCEL
  305. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  306. #endif
  307. #if CONFIG_HEVC_VAAPI_HWACCEL
  308. *fmt++ = AV_PIX_FMT_VAAPI;
  309. #endif
  310. #if CONFIG_HEVC_VDPAU_HWACCEL
  311. *fmt++ = AV_PIX_FMT_VDPAU;
  312. #endif
  313. break;
  314. case AV_PIX_FMT_YUV420P10:
  315. #if CONFIG_HEVC_DXVA2_HWACCEL
  316. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  317. #endif
  318. #if CONFIG_HEVC_D3D11VA_HWACCEL
  319. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  320. #endif
  321. #if CONFIG_HEVC_VAAPI_HWACCEL
  322. *fmt++ = AV_PIX_FMT_VAAPI;
  323. #endif
  324. break;
  325. }
  326. *fmt++ = sps->pix_fmt;
  327. *fmt = AV_PIX_FMT_NONE;
  328. return ff_thread_get_format(s->avctx, pix_fmts);
  329. }
  330. static int set_sps(HEVCContext *s, const HEVCSPS *sps,
  331. enum AVPixelFormat pix_fmt)
  332. {
  333. int ret, i;
  334. pic_arrays_free(s);
  335. s->ps.sps = NULL;
  336. s->ps.vps = NULL;
  337. if (!sps)
  338. return 0;
  339. ret = pic_arrays_init(s, sps);
  340. if (ret < 0)
  341. goto fail;
  342. export_stream_params(s->avctx, &s->ps, sps);
  343. s->avctx->pix_fmt = pix_fmt;
  344. ff_hevc_pred_init(&s->hpc, sps->bit_depth);
  345. ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
  346. ff_videodsp_init (&s->vdsp, sps->bit_depth);
  347. for (i = 0; i < 3; i++) {
  348. av_freep(&s->sao_pixel_buffer_h[i]);
  349. av_freep(&s->sao_pixel_buffer_v[i]);
  350. }
  351. if (sps->sao_enabled && !s->avctx->hwaccel) {
  352. int c_count = (sps->chroma_format_idc != 0) ? 3 : 1;
  353. int c_idx;
  354. for(c_idx = 0; c_idx < c_count; c_idx++) {
  355. int w = sps->width >> sps->hshift[c_idx];
  356. int h = sps->height >> sps->vshift[c_idx];
  357. s->sao_pixel_buffer_h[c_idx] =
  358. av_malloc((w * 2 * sps->ctb_height) <<
  359. sps->pixel_shift);
  360. s->sao_pixel_buffer_v[c_idx] =
  361. av_malloc((h * 2 * sps->ctb_width) <<
  362. sps->pixel_shift);
  363. }
  364. }
  365. s->ps.sps = sps;
  366. s->ps.vps = (HEVCVPS*) s->ps.vps_list[s->ps.sps->vps_id]->data;
  367. return 0;
  368. fail:
  369. pic_arrays_free(s);
  370. s->ps.sps = NULL;
  371. return ret;
  372. }
  373. static int hls_slice_header(HEVCContext *s)
  374. {
  375. GetBitContext *gb = &s->HEVClc->gb;
  376. SliceHeader *sh = &s->sh;
  377. int i, ret;
  378. // Coded parameters
  379. sh->first_slice_in_pic_flag = get_bits1(gb);
  380. if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
  381. s->seq_decode = (s->seq_decode + 1) & 0xff;
  382. s->max_ra = INT_MAX;
  383. if (IS_IDR(s))
  384. ff_hevc_clear_refs(s);
  385. }
  386. sh->no_output_of_prior_pics_flag = 0;
  387. if (IS_IRAP(s))
  388. sh->no_output_of_prior_pics_flag = get_bits1(gb);
  389. sh->pps_id = get_ue_golomb_long(gb);
  390. if (sh->pps_id >= HEVC_MAX_PPS_COUNT || !s->ps.pps_list[sh->pps_id]) {
  391. av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
  392. return AVERROR_INVALIDDATA;
  393. }
  394. if (!sh->first_slice_in_pic_flag &&
  395. s->ps.pps != (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data) {
  396. av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
  397. return AVERROR_INVALIDDATA;
  398. }
  399. s->ps.pps = (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data;
  400. if (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos == 1)
  401. sh->no_output_of_prior_pics_flag = 1;
  402. if (s->ps.sps != (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data) {
  403. const HEVCSPS *sps = (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data;
  404. const HEVCSPS *last_sps = s->ps.sps;
  405. enum AVPixelFormat pix_fmt;
  406. if (last_sps && IS_IRAP(s) && s->nal_unit_type != HEVC_NAL_CRA_NUT) {
  407. if (sps->width != last_sps->width || sps->height != last_sps->height ||
  408. sps->temporal_layer[sps->max_sub_layers - 1].max_dec_pic_buffering !=
  409. last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering)
  410. sh->no_output_of_prior_pics_flag = 0;
  411. }
  412. ff_hevc_clear_refs(s);
  413. pix_fmt = get_format(s, sps);
  414. if (pix_fmt < 0)
  415. return pix_fmt;
  416. ret = set_sps(s, sps, pix_fmt);
  417. if (ret < 0)
  418. return ret;
  419. s->seq_decode = (s->seq_decode + 1) & 0xff;
  420. s->max_ra = INT_MAX;
  421. }
  422. sh->dependent_slice_segment_flag = 0;
  423. if (!sh->first_slice_in_pic_flag) {
  424. int slice_address_length;
  425. if (s->ps.pps->dependent_slice_segments_enabled_flag)
  426. sh->dependent_slice_segment_flag = get_bits1(gb);
  427. slice_address_length = av_ceil_log2(s->ps.sps->ctb_width *
  428. s->ps.sps->ctb_height);
  429. sh->slice_segment_addr = get_bitsz(gb, slice_address_length);
  430. if (sh->slice_segment_addr >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  431. av_log(s->avctx, AV_LOG_ERROR,
  432. "Invalid slice segment address: %u.\n",
  433. sh->slice_segment_addr);
  434. return AVERROR_INVALIDDATA;
  435. }
  436. if (!sh->dependent_slice_segment_flag) {
  437. sh->slice_addr = sh->slice_segment_addr;
  438. s->slice_idx++;
  439. }
  440. } else {
  441. sh->slice_segment_addr = sh->slice_addr = 0;
  442. s->slice_idx = 0;
  443. s->slice_initialized = 0;
  444. }
  445. if (!sh->dependent_slice_segment_flag) {
  446. s->slice_initialized = 0;
  447. for (i = 0; i < s->ps.pps->num_extra_slice_header_bits; i++)
  448. skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
  449. sh->slice_type = get_ue_golomb_long(gb);
  450. if (!(sh->slice_type == HEVC_SLICE_I ||
  451. sh->slice_type == HEVC_SLICE_P ||
  452. sh->slice_type == HEVC_SLICE_B)) {
  453. av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
  454. sh->slice_type);
  455. return AVERROR_INVALIDDATA;
  456. }
  457. if (IS_IRAP(s) && sh->slice_type != HEVC_SLICE_I) {
  458. av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
  459. return AVERROR_INVALIDDATA;
  460. }
  461. // when flag is not present, picture is inferred to be output
  462. sh->pic_output_flag = 1;
  463. if (s->ps.pps->output_flag_present_flag)
  464. sh->pic_output_flag = get_bits1(gb);
  465. if (s->ps.sps->separate_colour_plane_flag)
  466. sh->colour_plane_id = get_bits(gb, 2);
  467. if (!IS_IDR(s)) {
  468. int poc, pos;
  469. sh->pic_order_cnt_lsb = get_bits(gb, s->ps.sps->log2_max_poc_lsb);
  470. poc = ff_hevc_compute_poc(s->ps.sps, s->pocTid0, sh->pic_order_cnt_lsb, s->nal_unit_type);
  471. if (!sh->first_slice_in_pic_flag && poc != s->poc) {
  472. av_log(s->avctx, AV_LOG_WARNING,
  473. "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
  474. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  475. return AVERROR_INVALIDDATA;
  476. poc = s->poc;
  477. }
  478. s->poc = poc;
  479. sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
  480. pos = get_bits_left(gb);
  481. if (!sh->short_term_ref_pic_set_sps_flag) {
  482. ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, s->ps.sps, 1);
  483. if (ret < 0)
  484. return ret;
  485. sh->short_term_rps = &sh->slice_rps;
  486. } else {
  487. int numbits, rps_idx;
  488. if (!s->ps.sps->nb_st_rps) {
  489. av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
  490. return AVERROR_INVALIDDATA;
  491. }
  492. numbits = av_ceil_log2(s->ps.sps->nb_st_rps);
  493. rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
  494. sh->short_term_rps = &s->ps.sps->st_rps[rps_idx];
  495. }
  496. sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
  497. pos = get_bits_left(gb);
  498. ret = decode_lt_rps(s, &sh->long_term_rps, gb);
  499. if (ret < 0) {
  500. av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
  501. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  502. return AVERROR_INVALIDDATA;
  503. }
  504. sh->long_term_ref_pic_set_size = pos - get_bits_left(gb);
  505. if (s->ps.sps->sps_temporal_mvp_enabled_flag)
  506. sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
  507. else
  508. sh->slice_temporal_mvp_enabled_flag = 0;
  509. } else {
  510. s->sh.short_term_rps = NULL;
  511. s->poc = 0;
  512. }
  513. /* 8.3.1 */
  514. if (sh->first_slice_in_pic_flag && s->temporal_id == 0 &&
  515. s->nal_unit_type != HEVC_NAL_TRAIL_N &&
  516. s->nal_unit_type != HEVC_NAL_TSA_N &&
  517. s->nal_unit_type != HEVC_NAL_STSA_N &&
  518. s->nal_unit_type != HEVC_NAL_RADL_N &&
  519. s->nal_unit_type != HEVC_NAL_RADL_R &&
  520. s->nal_unit_type != HEVC_NAL_RASL_N &&
  521. s->nal_unit_type != HEVC_NAL_RASL_R)
  522. s->pocTid0 = s->poc;
  523. if (s->ps.sps->sao_enabled) {
  524. sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
  525. if (s->ps.sps->chroma_format_idc) {
  526. sh->slice_sample_adaptive_offset_flag[1] =
  527. sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
  528. }
  529. } else {
  530. sh->slice_sample_adaptive_offset_flag[0] = 0;
  531. sh->slice_sample_adaptive_offset_flag[1] = 0;
  532. sh->slice_sample_adaptive_offset_flag[2] = 0;
  533. }
  534. sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
  535. if (sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B) {
  536. int nb_refs;
  537. sh->nb_refs[L0] = s->ps.pps->num_ref_idx_l0_default_active;
  538. if (sh->slice_type == HEVC_SLICE_B)
  539. sh->nb_refs[L1] = s->ps.pps->num_ref_idx_l1_default_active;
  540. if (get_bits1(gb)) { // num_ref_idx_active_override_flag
  541. sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
  542. if (sh->slice_type == HEVC_SLICE_B)
  543. sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
  544. }
  545. if (sh->nb_refs[L0] > HEVC_MAX_REFS || sh->nb_refs[L1] > HEVC_MAX_REFS) {
  546. av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
  547. sh->nb_refs[L0], sh->nb_refs[L1]);
  548. return AVERROR_INVALIDDATA;
  549. }
  550. sh->rpl_modification_flag[0] = 0;
  551. sh->rpl_modification_flag[1] = 0;
  552. nb_refs = ff_hevc_frame_nb_refs(s);
  553. if (!nb_refs) {
  554. av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
  555. return AVERROR_INVALIDDATA;
  556. }
  557. if (s->ps.pps->lists_modification_present_flag && nb_refs > 1) {
  558. sh->rpl_modification_flag[0] = get_bits1(gb);
  559. if (sh->rpl_modification_flag[0]) {
  560. for (i = 0; i < sh->nb_refs[L0]; i++)
  561. sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
  562. }
  563. if (sh->slice_type == HEVC_SLICE_B) {
  564. sh->rpl_modification_flag[1] = get_bits1(gb);
  565. if (sh->rpl_modification_flag[1] == 1)
  566. for (i = 0; i < sh->nb_refs[L1]; i++)
  567. sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
  568. }
  569. }
  570. if (sh->slice_type == HEVC_SLICE_B)
  571. sh->mvd_l1_zero_flag = get_bits1(gb);
  572. if (s->ps.pps->cabac_init_present_flag)
  573. sh->cabac_init_flag = get_bits1(gb);
  574. else
  575. sh->cabac_init_flag = 0;
  576. sh->collocated_ref_idx = 0;
  577. if (sh->slice_temporal_mvp_enabled_flag) {
  578. sh->collocated_list = L0;
  579. if (sh->slice_type == HEVC_SLICE_B)
  580. sh->collocated_list = !get_bits1(gb);
  581. if (sh->nb_refs[sh->collocated_list] > 1) {
  582. sh->collocated_ref_idx = get_ue_golomb_long(gb);
  583. if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
  584. av_log(s->avctx, AV_LOG_ERROR,
  585. "Invalid collocated_ref_idx: %d.\n",
  586. sh->collocated_ref_idx);
  587. return AVERROR_INVALIDDATA;
  588. }
  589. }
  590. }
  591. if ((s->ps.pps->weighted_pred_flag && sh->slice_type == HEVC_SLICE_P) ||
  592. (s->ps.pps->weighted_bipred_flag && sh->slice_type == HEVC_SLICE_B)) {
  593. pred_weight_table(s, gb);
  594. }
  595. sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
  596. if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
  597. av_log(s->avctx, AV_LOG_ERROR,
  598. "Invalid number of merging MVP candidates: %d.\n",
  599. sh->max_num_merge_cand);
  600. return AVERROR_INVALIDDATA;
  601. }
  602. }
  603. sh->slice_qp_delta = get_se_golomb(gb);
  604. if (s->ps.pps->pic_slice_level_chroma_qp_offsets_present_flag) {
  605. sh->slice_cb_qp_offset = get_se_golomb(gb);
  606. sh->slice_cr_qp_offset = get_se_golomb(gb);
  607. } else {
  608. sh->slice_cb_qp_offset = 0;
  609. sh->slice_cr_qp_offset = 0;
  610. }
  611. if (s->ps.pps->chroma_qp_offset_list_enabled_flag)
  612. sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb);
  613. else
  614. sh->cu_chroma_qp_offset_enabled_flag = 0;
  615. if (s->ps.pps->deblocking_filter_control_present_flag) {
  616. int deblocking_filter_override_flag = 0;
  617. if (s->ps.pps->deblocking_filter_override_enabled_flag)
  618. deblocking_filter_override_flag = get_bits1(gb);
  619. if (deblocking_filter_override_flag) {
  620. sh->disable_deblocking_filter_flag = get_bits1(gb);
  621. if (!sh->disable_deblocking_filter_flag) {
  622. sh->beta_offset = get_se_golomb(gb) * 2;
  623. sh->tc_offset = get_se_golomb(gb) * 2;
  624. }
  625. } else {
  626. sh->disable_deblocking_filter_flag = s->ps.pps->disable_dbf;
  627. sh->beta_offset = s->ps.pps->beta_offset;
  628. sh->tc_offset = s->ps.pps->tc_offset;
  629. }
  630. } else {
  631. sh->disable_deblocking_filter_flag = 0;
  632. sh->beta_offset = 0;
  633. sh->tc_offset = 0;
  634. }
  635. if (s->ps.pps->seq_loop_filter_across_slices_enabled_flag &&
  636. (sh->slice_sample_adaptive_offset_flag[0] ||
  637. sh->slice_sample_adaptive_offset_flag[1] ||
  638. !sh->disable_deblocking_filter_flag)) {
  639. sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
  640. } else {
  641. sh->slice_loop_filter_across_slices_enabled_flag = s->ps.pps->seq_loop_filter_across_slices_enabled_flag;
  642. }
  643. } else if (!s->slice_initialized) {
  644. av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
  645. return AVERROR_INVALIDDATA;
  646. }
  647. sh->num_entry_point_offsets = 0;
  648. if (s->ps.pps->tiles_enabled_flag || s->ps.pps->entropy_coding_sync_enabled_flag) {
  649. unsigned num_entry_point_offsets = get_ue_golomb_long(gb);
  650. // It would be possible to bound this tighter but this here is simpler
  651. if (num_entry_point_offsets > get_bits_left(gb)) {
  652. av_log(s->avctx, AV_LOG_ERROR, "num_entry_point_offsets %d is invalid\n", num_entry_point_offsets);
  653. return AVERROR_INVALIDDATA;
  654. }
  655. sh->num_entry_point_offsets = num_entry_point_offsets;
  656. if (sh->num_entry_point_offsets > 0) {
  657. int offset_len = get_ue_golomb_long(gb) + 1;
  658. if (offset_len < 1 || offset_len > 32) {
  659. sh->num_entry_point_offsets = 0;
  660. av_log(s->avctx, AV_LOG_ERROR, "offset_len %d is invalid\n", offset_len);
  661. return AVERROR_INVALIDDATA;
  662. }
  663. av_freep(&sh->entry_point_offset);
  664. av_freep(&sh->offset);
  665. av_freep(&sh->size);
  666. sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(unsigned));
  667. sh->offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  668. sh->size = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  669. if (!sh->entry_point_offset || !sh->offset || !sh->size) {
  670. sh->num_entry_point_offsets = 0;
  671. av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
  672. return AVERROR(ENOMEM);
  673. }
  674. for (i = 0; i < sh->num_entry_point_offsets; i++) {
  675. unsigned val = get_bits_long(gb, offset_len);
  676. sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
  677. }
  678. if (s->threads_number > 1 && (s->ps.pps->num_tile_rows > 1 || s->ps.pps->num_tile_columns > 1)) {
  679. s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
  680. s->threads_number = 1;
  681. } else
  682. s->enable_parallel_tiles = 0;
  683. } else
  684. s->enable_parallel_tiles = 0;
  685. }
  686. if (s->ps.pps->slice_header_extension_present_flag) {
  687. unsigned int length = get_ue_golomb_long(gb);
  688. if (length*8LL > get_bits_left(gb)) {
  689. av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n");
  690. return AVERROR_INVALIDDATA;
  691. }
  692. for (i = 0; i < length; i++)
  693. skip_bits(gb, 8); // slice_header_extension_data_byte
  694. }
  695. // Inferred parameters
  696. sh->slice_qp = 26U + s->ps.pps->pic_init_qp_minus26 + sh->slice_qp_delta;
  697. if (sh->slice_qp > 51 ||
  698. sh->slice_qp < -s->ps.sps->qp_bd_offset) {
  699. av_log(s->avctx, AV_LOG_ERROR,
  700. "The slice_qp %d is outside the valid range "
  701. "[%d, 51].\n",
  702. sh->slice_qp,
  703. -s->ps.sps->qp_bd_offset);
  704. return AVERROR_INVALIDDATA;
  705. }
  706. sh->slice_ctb_addr_rs = sh->slice_segment_addr;
  707. if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
  708. av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
  709. return AVERROR_INVALIDDATA;
  710. }
  711. if (get_bits_left(gb) < 0) {
  712. av_log(s->avctx, AV_LOG_ERROR,
  713. "Overread slice header by %d bits\n", -get_bits_left(gb));
  714. return AVERROR_INVALIDDATA;
  715. }
  716. s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
  717. if (!s->ps.pps->cu_qp_delta_enabled_flag)
  718. s->HEVClc->qp_y = s->sh.slice_qp;
  719. s->slice_initialized = 1;
  720. s->HEVClc->tu.cu_qp_offset_cb = 0;
  721. s->HEVClc->tu.cu_qp_offset_cr = 0;
  722. return 0;
  723. }
  724. #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
  725. #define SET_SAO(elem, value) \
  726. do { \
  727. if (!sao_merge_up_flag && !sao_merge_left_flag) \
  728. sao->elem = value; \
  729. else if (sao_merge_left_flag) \
  730. sao->elem = CTB(s->sao, rx-1, ry).elem; \
  731. else if (sao_merge_up_flag) \
  732. sao->elem = CTB(s->sao, rx, ry-1).elem; \
  733. else \
  734. sao->elem = 0; \
  735. } while (0)
  736. static void hls_sao_param(HEVCContext *s, int rx, int ry)
  737. {
  738. HEVCLocalContext *lc = s->HEVClc;
  739. int sao_merge_left_flag = 0;
  740. int sao_merge_up_flag = 0;
  741. SAOParams *sao = &CTB(s->sao, rx, ry);
  742. int c_idx, i;
  743. if (s->sh.slice_sample_adaptive_offset_flag[0] ||
  744. s->sh.slice_sample_adaptive_offset_flag[1]) {
  745. if (rx > 0) {
  746. if (lc->ctb_left_flag)
  747. sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
  748. }
  749. if (ry > 0 && !sao_merge_left_flag) {
  750. if (lc->ctb_up_flag)
  751. sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
  752. }
  753. }
  754. for (c_idx = 0; c_idx < (s->ps.sps->chroma_format_idc ? 3 : 1); c_idx++) {
  755. int log2_sao_offset_scale = c_idx == 0 ? s->ps.pps->log2_sao_offset_scale_luma :
  756. s->ps.pps->log2_sao_offset_scale_chroma;
  757. if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
  758. sao->type_idx[c_idx] = SAO_NOT_APPLIED;
  759. continue;
  760. }
  761. if (c_idx == 2) {
  762. sao->type_idx[2] = sao->type_idx[1];
  763. sao->eo_class[2] = sao->eo_class[1];
  764. } else {
  765. SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
  766. }
  767. if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
  768. continue;
  769. for (i = 0; i < 4; i++)
  770. SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
  771. if (sao->type_idx[c_idx] == SAO_BAND) {
  772. for (i = 0; i < 4; i++) {
  773. if (sao->offset_abs[c_idx][i]) {
  774. SET_SAO(offset_sign[c_idx][i],
  775. ff_hevc_sao_offset_sign_decode(s));
  776. } else {
  777. sao->offset_sign[c_idx][i] = 0;
  778. }
  779. }
  780. SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
  781. } else if (c_idx != 2) {
  782. SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
  783. }
  784. // Inferred parameters
  785. sao->offset_val[c_idx][0] = 0;
  786. for (i = 0; i < 4; i++) {
  787. sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i];
  788. if (sao->type_idx[c_idx] == SAO_EDGE) {
  789. if (i > 1)
  790. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  791. } else if (sao->offset_sign[c_idx][i]) {
  792. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  793. }
  794. sao->offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale;
  795. }
  796. }
  797. }
  798. #undef SET_SAO
  799. #undef CTB
  800. static int hls_cross_component_pred(HEVCContext *s, int idx) {
  801. HEVCLocalContext *lc = s->HEVClc;
  802. int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(s, idx);
  803. if (log2_res_scale_abs_plus1 != 0) {
  804. int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(s, idx);
  805. lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) *
  806. (1 - 2 * res_scale_sign_flag);
  807. } else {
  808. lc->tu.res_scale_val = 0;
  809. }
  810. return 0;
  811. }
  812. static int hls_transform_unit(HEVCContext *s, int x0, int y0,
  813. int xBase, int yBase, int cb_xBase, int cb_yBase,
  814. int log2_cb_size, int log2_trafo_size,
  815. int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
  816. {
  817. HEVCLocalContext *lc = s->HEVClc;
  818. const int log2_trafo_size_c = log2_trafo_size - s->ps.sps->hshift[1];
  819. int i;
  820. if (lc->cu.pred_mode == MODE_INTRA) {
  821. int trafo_size = 1 << log2_trafo_size;
  822. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  823. s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
  824. }
  825. if (cbf_luma || cbf_cb[0] || cbf_cr[0] ||
  826. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  827. int scan_idx = SCAN_DIAG;
  828. int scan_idx_c = SCAN_DIAG;
  829. int cbf_chroma = cbf_cb[0] || cbf_cr[0] ||
  830. (s->ps.sps->chroma_format_idc == 2 &&
  831. (cbf_cb[1] || cbf_cr[1]));
  832. if (s->ps.pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
  833. lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
  834. if (lc->tu.cu_qp_delta != 0)
  835. if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
  836. lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
  837. lc->tu.is_cu_qp_delta_coded = 1;
  838. if (lc->tu.cu_qp_delta < -(26 + s->ps.sps->qp_bd_offset / 2) ||
  839. lc->tu.cu_qp_delta > (25 + s->ps.sps->qp_bd_offset / 2)) {
  840. av_log(s->avctx, AV_LOG_ERROR,
  841. "The cu_qp_delta %d is outside the valid range "
  842. "[%d, %d].\n",
  843. lc->tu.cu_qp_delta,
  844. -(26 + s->ps.sps->qp_bd_offset / 2),
  845. (25 + s->ps.sps->qp_bd_offset / 2));
  846. return AVERROR_INVALIDDATA;
  847. }
  848. ff_hevc_set_qPy(s, cb_xBase, cb_yBase, log2_cb_size);
  849. }
  850. if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma &&
  851. !lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) {
  852. int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(s);
  853. if (cu_chroma_qp_offset_flag) {
  854. int cu_chroma_qp_offset_idx = 0;
  855. if (s->ps.pps->chroma_qp_offset_list_len_minus1 > 0) {
  856. cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(s);
  857. av_log(s->avctx, AV_LOG_ERROR,
  858. "cu_chroma_qp_offset_idx not yet tested.\n");
  859. }
  860. lc->tu.cu_qp_offset_cb = s->ps.pps->cb_qp_offset_list[cu_chroma_qp_offset_idx];
  861. lc->tu.cu_qp_offset_cr = s->ps.pps->cr_qp_offset_list[cu_chroma_qp_offset_idx];
  862. } else {
  863. lc->tu.cu_qp_offset_cb = 0;
  864. lc->tu.cu_qp_offset_cr = 0;
  865. }
  866. lc->tu.is_cu_chroma_qp_offset_coded = 1;
  867. }
  868. if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
  869. if (lc->tu.intra_pred_mode >= 6 &&
  870. lc->tu.intra_pred_mode <= 14) {
  871. scan_idx = SCAN_VERT;
  872. } else if (lc->tu.intra_pred_mode >= 22 &&
  873. lc->tu.intra_pred_mode <= 30) {
  874. scan_idx = SCAN_HORIZ;
  875. }
  876. if (lc->tu.intra_pred_mode_c >= 6 &&
  877. lc->tu.intra_pred_mode_c <= 14) {
  878. scan_idx_c = SCAN_VERT;
  879. } else if (lc->tu.intra_pred_mode_c >= 22 &&
  880. lc->tu.intra_pred_mode_c <= 30) {
  881. scan_idx_c = SCAN_HORIZ;
  882. }
  883. }
  884. lc->tu.cross_pf = 0;
  885. if (cbf_luma)
  886. ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
  887. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  888. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  889. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  890. lc->tu.cross_pf = (s->ps.pps->cross_component_prediction_enabled_flag && cbf_luma &&
  891. (lc->cu.pred_mode == MODE_INTER ||
  892. (lc->tu.chroma_mode_c == 4)));
  893. if (lc->tu.cross_pf) {
  894. hls_cross_component_pred(s, 0);
  895. }
  896. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  897. if (lc->cu.pred_mode == MODE_INTRA) {
  898. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  899. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 1);
  900. }
  901. if (cbf_cb[i])
  902. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  903. log2_trafo_size_c, scan_idx_c, 1);
  904. else
  905. if (lc->tu.cross_pf) {
  906. ptrdiff_t stride = s->frame->linesize[1];
  907. int hshift = s->ps.sps->hshift[1];
  908. int vshift = s->ps.sps->vshift[1];
  909. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  910. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  911. int size = 1 << log2_trafo_size_c;
  912. uint8_t *dst = &s->frame->data[1][(y0 >> vshift) * stride +
  913. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  914. for (i = 0; i < (size * size); i++) {
  915. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  916. }
  917. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  918. }
  919. }
  920. if (lc->tu.cross_pf) {
  921. hls_cross_component_pred(s, 1);
  922. }
  923. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  924. if (lc->cu.pred_mode == MODE_INTRA) {
  925. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  926. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 2);
  927. }
  928. if (cbf_cr[i])
  929. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  930. log2_trafo_size_c, scan_idx_c, 2);
  931. else
  932. if (lc->tu.cross_pf) {
  933. ptrdiff_t stride = s->frame->linesize[2];
  934. int hshift = s->ps.sps->hshift[2];
  935. int vshift = s->ps.sps->vshift[2];
  936. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  937. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  938. int size = 1 << log2_trafo_size_c;
  939. uint8_t *dst = &s->frame->data[2][(y0 >> vshift) * stride +
  940. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  941. for (i = 0; i < (size * size); i++) {
  942. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  943. }
  944. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  945. }
  946. }
  947. } else if (s->ps.sps->chroma_format_idc && blk_idx == 3) {
  948. int trafo_size_h = 1 << (log2_trafo_size + 1);
  949. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  950. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  951. if (lc->cu.pred_mode == MODE_INTRA) {
  952. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  953. trafo_size_h, trafo_size_v);
  954. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 1);
  955. }
  956. if (cbf_cb[i])
  957. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  958. log2_trafo_size, scan_idx_c, 1);
  959. }
  960. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  961. if (lc->cu.pred_mode == MODE_INTRA) {
  962. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  963. trafo_size_h, trafo_size_v);
  964. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 2);
  965. }
  966. if (cbf_cr[i])
  967. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  968. log2_trafo_size, scan_idx_c, 2);
  969. }
  970. }
  971. } else if (s->ps.sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) {
  972. if (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3) {
  973. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  974. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  975. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size_h, trafo_size_v);
  976. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 1);
  977. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 2);
  978. if (s->ps.sps->chroma_format_idc == 2) {
  979. ff_hevc_set_neighbour_available(s, x0, y0 + (1 << log2_trafo_size_c),
  980. trafo_size_h, trafo_size_v);
  981. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 1);
  982. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 2);
  983. }
  984. } else if (blk_idx == 3) {
  985. int trafo_size_h = 1 << (log2_trafo_size + 1);
  986. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  987. ff_hevc_set_neighbour_available(s, xBase, yBase,
  988. trafo_size_h, trafo_size_v);
  989. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
  990. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
  991. if (s->ps.sps->chroma_format_idc == 2) {
  992. ff_hevc_set_neighbour_available(s, xBase, yBase + (1 << (log2_trafo_size)),
  993. trafo_size_h, trafo_size_v);
  994. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 1);
  995. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 2);
  996. }
  997. }
  998. }
  999. return 0;
  1000. }
  1001. static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1002. {
  1003. int cb_size = 1 << log2_cb_size;
  1004. int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
  1005. int min_pu_width = s->ps.sps->min_pu_width;
  1006. int x_end = FFMIN(x0 + cb_size, s->ps.sps->width);
  1007. int y_end = FFMIN(y0 + cb_size, s->ps.sps->height);
  1008. int i, j;
  1009. for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
  1010. for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
  1011. s->is_pcm[i + j * min_pu_width] = 2;
  1012. }
  1013. static int hls_transform_tree(HEVCContext *s, int x0, int y0,
  1014. int xBase, int yBase, int cb_xBase, int cb_yBase,
  1015. int log2_cb_size, int log2_trafo_size,
  1016. int trafo_depth, int blk_idx,
  1017. const int *base_cbf_cb, const int *base_cbf_cr)
  1018. {
  1019. HEVCLocalContext *lc = s->HEVClc;
  1020. uint8_t split_transform_flag;
  1021. int cbf_cb[2];
  1022. int cbf_cr[2];
  1023. int ret;
  1024. cbf_cb[0] = base_cbf_cb[0];
  1025. cbf_cb[1] = base_cbf_cb[1];
  1026. cbf_cr[0] = base_cbf_cr[0];
  1027. cbf_cr[1] = base_cbf_cr[1];
  1028. if (lc->cu.intra_split_flag) {
  1029. if (trafo_depth == 1) {
  1030. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
  1031. if (s->ps.sps->chroma_format_idc == 3) {
  1032. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx];
  1033. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx];
  1034. } else {
  1035. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1036. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1037. }
  1038. }
  1039. } else {
  1040. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0];
  1041. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1042. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1043. }
  1044. if (log2_trafo_size <= s->ps.sps->log2_max_trafo_size &&
  1045. log2_trafo_size > s->ps.sps->log2_min_tb_size &&
  1046. trafo_depth < lc->cu.max_trafo_depth &&
  1047. !(lc->cu.intra_split_flag && trafo_depth == 0)) {
  1048. split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
  1049. } else {
  1050. int inter_split = s->ps.sps->max_transform_hierarchy_depth_inter == 0 &&
  1051. lc->cu.pred_mode == MODE_INTER &&
  1052. lc->cu.part_mode != PART_2Nx2N &&
  1053. trafo_depth == 0;
  1054. split_transform_flag = log2_trafo_size > s->ps.sps->log2_max_trafo_size ||
  1055. (lc->cu.intra_split_flag && trafo_depth == 0) ||
  1056. inter_split;
  1057. }
  1058. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  1059. if (trafo_depth == 0 || cbf_cb[0]) {
  1060. cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1061. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1062. cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1063. }
  1064. }
  1065. if (trafo_depth == 0 || cbf_cr[0]) {
  1066. cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1067. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1068. cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1069. }
  1070. }
  1071. }
  1072. if (split_transform_flag) {
  1073. const int trafo_size_split = 1 << (log2_trafo_size - 1);
  1074. const int x1 = x0 + trafo_size_split;
  1075. const int y1 = y0 + trafo_size_split;
  1076. #define SUBDIVIDE(x, y, idx) \
  1077. do { \
  1078. ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
  1079. log2_trafo_size - 1, trafo_depth + 1, idx, \
  1080. cbf_cb, cbf_cr); \
  1081. if (ret < 0) \
  1082. return ret; \
  1083. } while (0)
  1084. SUBDIVIDE(x0, y0, 0);
  1085. SUBDIVIDE(x1, y0, 1);
  1086. SUBDIVIDE(x0, y1, 2);
  1087. SUBDIVIDE(x1, y1, 3);
  1088. #undef SUBDIVIDE
  1089. } else {
  1090. int min_tu_size = 1 << s->ps.sps->log2_min_tb_size;
  1091. int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
  1092. int min_tu_width = s->ps.sps->min_tb_width;
  1093. int cbf_luma = 1;
  1094. if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
  1095. cbf_cb[0] || cbf_cr[0] ||
  1096. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  1097. cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
  1098. }
  1099. ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
  1100. log2_cb_size, log2_trafo_size,
  1101. blk_idx, cbf_luma, cbf_cb, cbf_cr);
  1102. if (ret < 0)
  1103. return ret;
  1104. // TODO: store cbf_luma somewhere else
  1105. if (cbf_luma) {
  1106. int i, j;
  1107. for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
  1108. for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
  1109. int x_tu = (x0 + j) >> log2_min_tu_size;
  1110. int y_tu = (y0 + i) >> log2_min_tu_size;
  1111. s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
  1112. }
  1113. }
  1114. if (!s->sh.disable_deblocking_filter_flag) {
  1115. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
  1116. if (s->ps.pps->transquant_bypass_enable_flag &&
  1117. lc->cu.cu_transquant_bypass_flag)
  1118. set_deblocking_bypass(s, x0, y0, log2_trafo_size);
  1119. }
  1120. }
  1121. return 0;
  1122. }
  1123. static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1124. {
  1125. HEVCLocalContext *lc = s->HEVClc;
  1126. GetBitContext gb;
  1127. int cb_size = 1 << log2_cb_size;
  1128. ptrdiff_t stride0 = s->frame->linesize[0];
  1129. ptrdiff_t stride1 = s->frame->linesize[1];
  1130. ptrdiff_t stride2 = s->frame->linesize[2];
  1131. uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->ps.sps->pixel_shift)];
  1132. uint8_t *dst1 = &s->frame->data[1][(y0 >> s->ps.sps->vshift[1]) * stride1 + ((x0 >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)];
  1133. uint8_t *dst2 = &s->frame->data[2][(y0 >> s->ps.sps->vshift[2]) * stride2 + ((x0 >> s->ps.sps->hshift[2]) << s->ps.sps->pixel_shift)];
  1134. int length = cb_size * cb_size * s->ps.sps->pcm.bit_depth +
  1135. (((cb_size >> s->ps.sps->hshift[1]) * (cb_size >> s->ps.sps->vshift[1])) +
  1136. ((cb_size >> s->ps.sps->hshift[2]) * (cb_size >> s->ps.sps->vshift[2]))) *
  1137. s->ps.sps->pcm.bit_depth_chroma;
  1138. const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
  1139. int ret;
  1140. if (!s->sh.disable_deblocking_filter_flag)
  1141. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1142. ret = init_get_bits(&gb, pcm, length);
  1143. if (ret < 0)
  1144. return ret;
  1145. s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, s->ps.sps->pcm.bit_depth);
  1146. if (s->ps.sps->chroma_format_idc) {
  1147. s->hevcdsp.put_pcm(dst1, stride1,
  1148. cb_size >> s->ps.sps->hshift[1],
  1149. cb_size >> s->ps.sps->vshift[1],
  1150. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1151. s->hevcdsp.put_pcm(dst2, stride2,
  1152. cb_size >> s->ps.sps->hshift[2],
  1153. cb_size >> s->ps.sps->vshift[2],
  1154. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1155. }
  1156. return 0;
  1157. }
  1158. /**
  1159. * 8.5.3.2.2.1 Luma sample unidirectional interpolation process
  1160. *
  1161. * @param s HEVC decoding context
  1162. * @param dst target buffer for block data at block position
  1163. * @param dststride stride of the dst buffer
  1164. * @param ref reference picture buffer at origin (0, 0)
  1165. * @param mv motion vector (relative to block position) to get pixel data from
  1166. * @param x_off horizontal position of block from origin (0, 0)
  1167. * @param y_off vertical position of block from origin (0, 0)
  1168. * @param block_w width of block
  1169. * @param block_h height of block
  1170. * @param luma_weight weighting factor applied to the luma prediction
  1171. * @param luma_offset additive offset applied to the luma prediction value
  1172. */
  1173. static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1174. AVFrame *ref, const Mv *mv, int x_off, int y_off,
  1175. int block_w, int block_h, int luma_weight, int luma_offset)
  1176. {
  1177. HEVCLocalContext *lc = s->HEVClc;
  1178. uint8_t *src = ref->data[0];
  1179. ptrdiff_t srcstride = ref->linesize[0];
  1180. int pic_width = s->ps.sps->width;
  1181. int pic_height = s->ps.sps->height;
  1182. int mx = mv->x & 3;
  1183. int my = mv->y & 3;
  1184. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1185. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1186. int idx = ff_hevc_pel_weight[block_w];
  1187. x_off += mv->x >> 2;
  1188. y_off += mv->y >> 2;
  1189. src += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1190. if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
  1191. x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1192. y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1193. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1194. int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1195. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1196. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
  1197. edge_emu_stride, srcstride,
  1198. block_w + QPEL_EXTRA,
  1199. block_h + QPEL_EXTRA,
  1200. x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
  1201. pic_width, pic_height);
  1202. src = lc->edge_emu_buffer + buf_offset;
  1203. srcstride = edge_emu_stride;
  1204. }
  1205. if (!weight_flag)
  1206. s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1207. block_h, mx, my, block_w);
  1208. else
  1209. s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1210. block_h, s->sh.luma_log2_weight_denom,
  1211. luma_weight, luma_offset, mx, my, block_w);
  1212. }
  1213. /**
  1214. * 8.5.3.2.2.1 Luma sample bidirectional interpolation process
  1215. *
  1216. * @param s HEVC decoding context
  1217. * @param dst target buffer for block data at block position
  1218. * @param dststride stride of the dst buffer
  1219. * @param ref0 reference picture0 buffer at origin (0, 0)
  1220. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1221. * @param x_off horizontal position of block from origin (0, 0)
  1222. * @param y_off vertical position of block from origin (0, 0)
  1223. * @param block_w width of block
  1224. * @param block_h height of block
  1225. * @param ref1 reference picture1 buffer at origin (0, 0)
  1226. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1227. * @param current_mv current motion vector structure
  1228. */
  1229. static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1230. AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
  1231. int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
  1232. {
  1233. HEVCLocalContext *lc = s->HEVClc;
  1234. ptrdiff_t src0stride = ref0->linesize[0];
  1235. ptrdiff_t src1stride = ref1->linesize[0];
  1236. int pic_width = s->ps.sps->width;
  1237. int pic_height = s->ps.sps->height;
  1238. int mx0 = mv0->x & 3;
  1239. int my0 = mv0->y & 3;
  1240. int mx1 = mv1->x & 3;
  1241. int my1 = mv1->y & 3;
  1242. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1243. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1244. int x_off0 = x_off + (mv0->x >> 2);
  1245. int y_off0 = y_off + (mv0->y >> 2);
  1246. int x_off1 = x_off + (mv1->x >> 2);
  1247. int y_off1 = y_off + (mv1->y >> 2);
  1248. int idx = ff_hevc_pel_weight[block_w];
  1249. uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1250. uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1251. if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
  1252. x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1253. y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1254. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1255. int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1256. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1257. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
  1258. edge_emu_stride, src0stride,
  1259. block_w + QPEL_EXTRA,
  1260. block_h + QPEL_EXTRA,
  1261. x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
  1262. pic_width, pic_height);
  1263. src0 = lc->edge_emu_buffer + buf_offset;
  1264. src0stride = edge_emu_stride;
  1265. }
  1266. if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
  1267. x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1268. y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1269. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1270. int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1271. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1272. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
  1273. edge_emu_stride, src1stride,
  1274. block_w + QPEL_EXTRA,
  1275. block_h + QPEL_EXTRA,
  1276. x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
  1277. pic_width, pic_height);
  1278. src1 = lc->edge_emu_buffer2 + buf_offset;
  1279. src1stride = edge_emu_stride;
  1280. }
  1281. s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride,
  1282. block_h, mx0, my0, block_w);
  1283. if (!weight_flag)
  1284. s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1285. block_h, mx1, my1, block_w);
  1286. else
  1287. s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1288. block_h, s->sh.luma_log2_weight_denom,
  1289. s->sh.luma_weight_l0[current_mv->ref_idx[0]],
  1290. s->sh.luma_weight_l1[current_mv->ref_idx[1]],
  1291. s->sh.luma_offset_l0[current_mv->ref_idx[0]],
  1292. s->sh.luma_offset_l1[current_mv->ref_idx[1]],
  1293. mx1, my1, block_w);
  1294. }
  1295. /**
  1296. * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
  1297. *
  1298. * @param s HEVC decoding context
  1299. * @param dst1 target buffer for block data at block position (U plane)
  1300. * @param dst2 target buffer for block data at block position (V plane)
  1301. * @param dststride stride of the dst1 and dst2 buffers
  1302. * @param ref reference picture buffer at origin (0, 0)
  1303. * @param mv motion vector (relative to block position) to get pixel data from
  1304. * @param x_off horizontal position of block from origin (0, 0)
  1305. * @param y_off vertical position of block from origin (0, 0)
  1306. * @param block_w width of block
  1307. * @param block_h height of block
  1308. * @param chroma_weight weighting factor applied to the chroma prediction
  1309. * @param chroma_offset additive offset applied to the chroma prediction value
  1310. */
  1311. static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0,
  1312. ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist,
  1313. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset)
  1314. {
  1315. HEVCLocalContext *lc = s->HEVClc;
  1316. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1317. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1318. const Mv *mv = &current_mv->mv[reflist];
  1319. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1320. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1321. int idx = ff_hevc_pel_weight[block_w];
  1322. int hshift = s->ps.sps->hshift[1];
  1323. int vshift = s->ps.sps->vshift[1];
  1324. intptr_t mx = av_mod_uintp2(mv->x, 2 + hshift);
  1325. intptr_t my = av_mod_uintp2(mv->y, 2 + vshift);
  1326. intptr_t _mx = mx << (1 - hshift);
  1327. intptr_t _my = my << (1 - vshift);
  1328. x_off += mv->x >> (2 + hshift);
  1329. y_off += mv->y >> (2 + vshift);
  1330. src0 += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1331. if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
  1332. x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1333. y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1334. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1335. int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->ps.sps->pixel_shift));
  1336. int buf_offset0 = EPEL_EXTRA_BEFORE *
  1337. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1338. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
  1339. edge_emu_stride, srcstride,
  1340. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1341. x_off - EPEL_EXTRA_BEFORE,
  1342. y_off - EPEL_EXTRA_BEFORE,
  1343. pic_width, pic_height);
  1344. src0 = lc->edge_emu_buffer + buf_offset0;
  1345. srcstride = edge_emu_stride;
  1346. }
  1347. if (!weight_flag)
  1348. s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1349. block_h, _mx, _my, block_w);
  1350. else
  1351. s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1352. block_h, s->sh.chroma_log2_weight_denom,
  1353. chroma_weight, chroma_offset, _mx, _my, block_w);
  1354. }
  1355. /**
  1356. * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
  1357. *
  1358. * @param s HEVC decoding context
  1359. * @param dst target buffer for block data at block position
  1360. * @param dststride stride of the dst buffer
  1361. * @param ref0 reference picture0 buffer at origin (0, 0)
  1362. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1363. * @param x_off horizontal position of block from origin (0, 0)
  1364. * @param y_off vertical position of block from origin (0, 0)
  1365. * @param block_w width of block
  1366. * @param block_h height of block
  1367. * @param ref1 reference picture1 buffer at origin (0, 0)
  1368. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1369. * @param current_mv current motion vector structure
  1370. * @param cidx chroma component(cb, cr)
  1371. */
  1372. static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1,
  1373. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx)
  1374. {
  1375. HEVCLocalContext *lc = s->HEVClc;
  1376. uint8_t *src1 = ref0->data[cidx+1];
  1377. uint8_t *src2 = ref1->data[cidx+1];
  1378. ptrdiff_t src1stride = ref0->linesize[cidx+1];
  1379. ptrdiff_t src2stride = ref1->linesize[cidx+1];
  1380. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1381. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1382. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1383. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1384. Mv *mv0 = &current_mv->mv[0];
  1385. Mv *mv1 = &current_mv->mv[1];
  1386. int hshift = s->ps.sps->hshift[1];
  1387. int vshift = s->ps.sps->vshift[1];
  1388. intptr_t mx0 = av_mod_uintp2(mv0->x, 2 + hshift);
  1389. intptr_t my0 = av_mod_uintp2(mv0->y, 2 + vshift);
  1390. intptr_t mx1 = av_mod_uintp2(mv1->x, 2 + hshift);
  1391. intptr_t my1 = av_mod_uintp2(mv1->y, 2 + vshift);
  1392. intptr_t _mx0 = mx0 << (1 - hshift);
  1393. intptr_t _my0 = my0 << (1 - vshift);
  1394. intptr_t _mx1 = mx1 << (1 - hshift);
  1395. intptr_t _my1 = my1 << (1 - vshift);
  1396. int x_off0 = x_off + (mv0->x >> (2 + hshift));
  1397. int y_off0 = y_off + (mv0->y >> (2 + vshift));
  1398. int x_off1 = x_off + (mv1->x >> (2 + hshift));
  1399. int y_off1 = y_off + (mv1->y >> (2 + vshift));
  1400. int idx = ff_hevc_pel_weight[block_w];
  1401. src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1402. src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1403. if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
  1404. x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1405. y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1406. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1407. int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->ps.sps->pixel_shift));
  1408. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1409. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1410. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
  1411. edge_emu_stride, src1stride,
  1412. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1413. x_off0 - EPEL_EXTRA_BEFORE,
  1414. y_off0 - EPEL_EXTRA_BEFORE,
  1415. pic_width, pic_height);
  1416. src1 = lc->edge_emu_buffer + buf_offset1;
  1417. src1stride = edge_emu_stride;
  1418. }
  1419. if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
  1420. x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1421. y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1422. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1423. int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->ps.sps->pixel_shift));
  1424. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1425. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1426. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
  1427. edge_emu_stride, src2stride,
  1428. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1429. x_off1 - EPEL_EXTRA_BEFORE,
  1430. y_off1 - EPEL_EXTRA_BEFORE,
  1431. pic_width, pic_height);
  1432. src2 = lc->edge_emu_buffer2 + buf_offset1;
  1433. src2stride = edge_emu_stride;
  1434. }
  1435. s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride,
  1436. block_h, _mx0, _my0, block_w);
  1437. if (!weight_flag)
  1438. s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1439. src2, src2stride, lc->tmp,
  1440. block_h, _mx1, _my1, block_w);
  1441. else
  1442. s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1443. src2, src2stride, lc->tmp,
  1444. block_h,
  1445. s->sh.chroma_log2_weight_denom,
  1446. s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
  1447. s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
  1448. s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
  1449. s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
  1450. _mx1, _my1, block_w);
  1451. }
  1452. static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
  1453. const Mv *mv, int y0, int height)
  1454. {
  1455. int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9);
  1456. if (s->threads_type == FF_THREAD_FRAME )
  1457. ff_thread_await_progress(&ref->tf, y, 0);
  1458. }
  1459. static void hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
  1460. int nPbH, int log2_cb_size, int part_idx,
  1461. int merge_idx, MvField *mv)
  1462. {
  1463. HEVCLocalContext *lc = s->HEVClc;
  1464. enum InterPredIdc inter_pred_idc = PRED_L0;
  1465. int mvp_flag;
  1466. ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
  1467. mv->pred_flag = 0;
  1468. if (s->sh.slice_type == HEVC_SLICE_B)
  1469. inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
  1470. if (inter_pred_idc != PRED_L1) {
  1471. if (s->sh.nb_refs[L0])
  1472. mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
  1473. mv->pred_flag = PF_L0;
  1474. ff_hevc_hls_mvd_coding(s, x0, y0, 0);
  1475. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1476. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1477. part_idx, merge_idx, mv, mvp_flag, 0);
  1478. mv->mv[0].x += lc->pu.mvd.x;
  1479. mv->mv[0].y += lc->pu.mvd.y;
  1480. }
  1481. if (inter_pred_idc != PRED_L0) {
  1482. if (s->sh.nb_refs[L1])
  1483. mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
  1484. if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
  1485. AV_ZERO32(&lc->pu.mvd);
  1486. } else {
  1487. ff_hevc_hls_mvd_coding(s, x0, y0, 1);
  1488. }
  1489. mv->pred_flag += PF_L1;
  1490. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1491. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1492. part_idx, merge_idx, mv, mvp_flag, 1);
  1493. mv->mv[1].x += lc->pu.mvd.x;
  1494. mv->mv[1].y += lc->pu.mvd.y;
  1495. }
  1496. }
  1497. static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
  1498. int nPbW, int nPbH,
  1499. int log2_cb_size, int partIdx, int idx)
  1500. {
  1501. #define POS(c_idx, x, y) \
  1502. &s->frame->data[c_idx][((y) >> s->ps.sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
  1503. (((x) >> s->ps.sps->hshift[c_idx]) << s->ps.sps->pixel_shift)]
  1504. HEVCLocalContext *lc = s->HEVClc;
  1505. int merge_idx = 0;
  1506. struct MvField current_mv = {{{ 0 }}};
  1507. int min_pu_width = s->ps.sps->min_pu_width;
  1508. MvField *tab_mvf = s->ref->tab_mvf;
  1509. RefPicList *refPicList = s->ref->refPicList;
  1510. HEVCFrame *ref0 = NULL, *ref1 = NULL;
  1511. uint8_t *dst0 = POS(0, x0, y0);
  1512. uint8_t *dst1 = POS(1, x0, y0);
  1513. uint8_t *dst2 = POS(2, x0, y0);
  1514. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1515. int min_cb_width = s->ps.sps->min_cb_width;
  1516. int x_cb = x0 >> log2_min_cb_size;
  1517. int y_cb = y0 >> log2_min_cb_size;
  1518. int x_pu, y_pu;
  1519. int i, j;
  1520. int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
  1521. if (!skip_flag)
  1522. lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
  1523. if (skip_flag || lc->pu.merge_flag) {
  1524. if (s->sh.max_num_merge_cand > 1)
  1525. merge_idx = ff_hevc_merge_idx_decode(s);
  1526. else
  1527. merge_idx = 0;
  1528. ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1529. partIdx, merge_idx, &current_mv);
  1530. } else {
  1531. hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1532. partIdx, merge_idx, &current_mv);
  1533. }
  1534. x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1535. y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1536. for (j = 0; j < nPbH >> s->ps.sps->log2_min_pu_size; j++)
  1537. for (i = 0; i < nPbW >> s->ps.sps->log2_min_pu_size; i++)
  1538. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
  1539. if (current_mv.pred_flag & PF_L0) {
  1540. ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
  1541. if (!ref0)
  1542. return;
  1543. hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
  1544. }
  1545. if (current_mv.pred_flag & PF_L1) {
  1546. ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
  1547. if (!ref1)
  1548. return;
  1549. hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
  1550. }
  1551. if (current_mv.pred_flag == PF_L0) {
  1552. int x0_c = x0 >> s->ps.sps->hshift[1];
  1553. int y0_c = y0 >> s->ps.sps->vshift[1];
  1554. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1555. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1556. luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame,
  1557. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1558. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1559. s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
  1560. if (s->ps.sps->chroma_format_idc) {
  1561. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1],
  1562. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1563. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
  1564. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2],
  1565. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1566. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
  1567. }
  1568. } else if (current_mv.pred_flag == PF_L1) {
  1569. int x0_c = x0 >> s->ps.sps->hshift[1];
  1570. int y0_c = y0 >> s->ps.sps->vshift[1];
  1571. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1572. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1573. luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame,
  1574. &current_mv.mv[1], x0, y0, nPbW, nPbH,
  1575. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1576. s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
  1577. if (s->ps.sps->chroma_format_idc) {
  1578. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1],
  1579. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1580. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
  1581. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2],
  1582. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1583. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
  1584. }
  1585. } else if (current_mv.pred_flag == PF_BI) {
  1586. int x0_c = x0 >> s->ps.sps->hshift[1];
  1587. int y0_c = y0 >> s->ps.sps->vshift[1];
  1588. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1589. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1590. luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame,
  1591. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1592. ref1->frame, &current_mv.mv[1], &current_mv);
  1593. if (s->ps.sps->chroma_format_idc) {
  1594. chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame,
  1595. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 0);
  1596. chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame,
  1597. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 1);
  1598. }
  1599. }
  1600. }
  1601. /**
  1602. * 8.4.1
  1603. */
  1604. static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
  1605. int prev_intra_luma_pred_flag)
  1606. {
  1607. HEVCLocalContext *lc = s->HEVClc;
  1608. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1609. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1610. int min_pu_width = s->ps.sps->min_pu_width;
  1611. int size_in_pus = pu_size >> s->ps.sps->log2_min_pu_size;
  1612. int x0b = av_mod_uintp2(x0, s->ps.sps->log2_ctb_size);
  1613. int y0b = av_mod_uintp2(y0, s->ps.sps->log2_ctb_size);
  1614. int cand_up = (lc->ctb_up_flag || y0b) ?
  1615. s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
  1616. int cand_left = (lc->ctb_left_flag || x0b) ?
  1617. s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
  1618. int y_ctb = (y0 >> (s->ps.sps->log2_ctb_size)) << (s->ps.sps->log2_ctb_size);
  1619. MvField *tab_mvf = s->ref->tab_mvf;
  1620. int intra_pred_mode;
  1621. int candidate[3];
  1622. int i, j;
  1623. // intra_pred_mode prediction does not cross vertical CTB boundaries
  1624. if ((y0 - 1) < y_ctb)
  1625. cand_up = INTRA_DC;
  1626. if (cand_left == cand_up) {
  1627. if (cand_left < 2) {
  1628. candidate[0] = INTRA_PLANAR;
  1629. candidate[1] = INTRA_DC;
  1630. candidate[2] = INTRA_ANGULAR_26;
  1631. } else {
  1632. candidate[0] = cand_left;
  1633. candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
  1634. candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
  1635. }
  1636. } else {
  1637. candidate[0] = cand_left;
  1638. candidate[1] = cand_up;
  1639. if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
  1640. candidate[2] = INTRA_PLANAR;
  1641. } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
  1642. candidate[2] = INTRA_DC;
  1643. } else {
  1644. candidate[2] = INTRA_ANGULAR_26;
  1645. }
  1646. }
  1647. if (prev_intra_luma_pred_flag) {
  1648. intra_pred_mode = candidate[lc->pu.mpm_idx];
  1649. } else {
  1650. if (candidate[0] > candidate[1])
  1651. FFSWAP(uint8_t, candidate[0], candidate[1]);
  1652. if (candidate[0] > candidate[2])
  1653. FFSWAP(uint8_t, candidate[0], candidate[2]);
  1654. if (candidate[1] > candidate[2])
  1655. FFSWAP(uint8_t, candidate[1], candidate[2]);
  1656. intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
  1657. for (i = 0; i < 3; i++)
  1658. if (intra_pred_mode >= candidate[i])
  1659. intra_pred_mode++;
  1660. }
  1661. /* write the intra prediction units into the mv array */
  1662. if (!size_in_pus)
  1663. size_in_pus = 1;
  1664. for (i = 0; i < size_in_pus; i++) {
  1665. memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
  1666. intra_pred_mode, size_in_pus);
  1667. for (j = 0; j < size_in_pus; j++) {
  1668. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
  1669. }
  1670. }
  1671. return intra_pred_mode;
  1672. }
  1673. static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
  1674. int log2_cb_size, int ct_depth)
  1675. {
  1676. int length = (1 << log2_cb_size) >> s->ps.sps->log2_min_cb_size;
  1677. int x_cb = x0 >> s->ps.sps->log2_min_cb_size;
  1678. int y_cb = y0 >> s->ps.sps->log2_min_cb_size;
  1679. int y;
  1680. for (y = 0; y < length; y++)
  1681. memset(&s->tab_ct_depth[(y_cb + y) * s->ps.sps->min_cb_width + x_cb],
  1682. ct_depth, length);
  1683. }
  1684. static const uint8_t tab_mode_idx[] = {
  1685. 0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20,
  1686. 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31};
  1687. static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
  1688. int log2_cb_size)
  1689. {
  1690. HEVCLocalContext *lc = s->HEVClc;
  1691. static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
  1692. uint8_t prev_intra_luma_pred_flag[4];
  1693. int split = lc->cu.part_mode == PART_NxN;
  1694. int pb_size = (1 << log2_cb_size) >> split;
  1695. int side = split + 1;
  1696. int chroma_mode;
  1697. int i, j;
  1698. for (i = 0; i < side; i++)
  1699. for (j = 0; j < side; j++)
  1700. prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
  1701. for (i = 0; i < side; i++) {
  1702. for (j = 0; j < side; j++) {
  1703. if (prev_intra_luma_pred_flag[2 * i + j])
  1704. lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
  1705. else
  1706. lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
  1707. lc->pu.intra_pred_mode[2 * i + j] =
  1708. luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
  1709. prev_intra_luma_pred_flag[2 * i + j]);
  1710. }
  1711. }
  1712. if (s->ps.sps->chroma_format_idc == 3) {
  1713. for (i = 0; i < side; i++) {
  1714. for (j = 0; j < side; j++) {
  1715. lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1716. if (chroma_mode != 4) {
  1717. if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode])
  1718. lc->pu.intra_pred_mode_c[2 * i + j] = 34;
  1719. else
  1720. lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode];
  1721. } else {
  1722. lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j];
  1723. }
  1724. }
  1725. }
  1726. } else if (s->ps.sps->chroma_format_idc == 2) {
  1727. int mode_idx;
  1728. lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1729. if (chroma_mode != 4) {
  1730. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1731. mode_idx = 34;
  1732. else
  1733. mode_idx = intra_chroma_table[chroma_mode];
  1734. } else {
  1735. mode_idx = lc->pu.intra_pred_mode[0];
  1736. }
  1737. lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx];
  1738. } else if (s->ps.sps->chroma_format_idc != 0) {
  1739. chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1740. if (chroma_mode != 4) {
  1741. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1742. lc->pu.intra_pred_mode_c[0] = 34;
  1743. else
  1744. lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode];
  1745. } else {
  1746. lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0];
  1747. }
  1748. }
  1749. }
  1750. static void intra_prediction_unit_default_value(HEVCContext *s,
  1751. int x0, int y0,
  1752. int log2_cb_size)
  1753. {
  1754. HEVCLocalContext *lc = s->HEVClc;
  1755. int pb_size = 1 << log2_cb_size;
  1756. int size_in_pus = pb_size >> s->ps.sps->log2_min_pu_size;
  1757. int min_pu_width = s->ps.sps->min_pu_width;
  1758. MvField *tab_mvf = s->ref->tab_mvf;
  1759. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1760. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1761. int j, k;
  1762. if (size_in_pus == 0)
  1763. size_in_pus = 1;
  1764. for (j = 0; j < size_in_pus; j++)
  1765. memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
  1766. if (lc->cu.pred_mode == MODE_INTRA)
  1767. for (j = 0; j < size_in_pus; j++)
  1768. for (k = 0; k < size_in_pus; k++)
  1769. tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
  1770. }
  1771. static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1772. {
  1773. int cb_size = 1 << log2_cb_size;
  1774. HEVCLocalContext *lc = s->HEVClc;
  1775. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1776. int length = cb_size >> log2_min_cb_size;
  1777. int min_cb_width = s->ps.sps->min_cb_width;
  1778. int x_cb = x0 >> log2_min_cb_size;
  1779. int y_cb = y0 >> log2_min_cb_size;
  1780. int idx = log2_cb_size - 2;
  1781. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1782. int x, y, ret;
  1783. lc->cu.x = x0;
  1784. lc->cu.y = y0;
  1785. lc->cu.pred_mode = MODE_INTRA;
  1786. lc->cu.part_mode = PART_2Nx2N;
  1787. lc->cu.intra_split_flag = 0;
  1788. SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
  1789. for (x = 0; x < 4; x++)
  1790. lc->pu.intra_pred_mode[x] = 1;
  1791. if (s->ps.pps->transquant_bypass_enable_flag) {
  1792. lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
  1793. if (lc->cu.cu_transquant_bypass_flag)
  1794. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1795. } else
  1796. lc->cu.cu_transquant_bypass_flag = 0;
  1797. if (s->sh.slice_type != HEVC_SLICE_I) {
  1798. uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
  1799. x = y_cb * min_cb_width + x_cb;
  1800. for (y = 0; y < length; y++) {
  1801. memset(&s->skip_flag[x], skip_flag, length);
  1802. x += min_cb_width;
  1803. }
  1804. lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
  1805. } else {
  1806. x = y_cb * min_cb_width + x_cb;
  1807. for (y = 0; y < length; y++) {
  1808. memset(&s->skip_flag[x], 0, length);
  1809. x += min_cb_width;
  1810. }
  1811. }
  1812. if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
  1813. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1814. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1815. if (!s->sh.disable_deblocking_filter_flag)
  1816. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1817. } else {
  1818. int pcm_flag = 0;
  1819. if (s->sh.slice_type != HEVC_SLICE_I)
  1820. lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
  1821. if (lc->cu.pred_mode != MODE_INTRA ||
  1822. log2_cb_size == s->ps.sps->log2_min_cb_size) {
  1823. lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
  1824. lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
  1825. lc->cu.pred_mode == MODE_INTRA;
  1826. }
  1827. if (lc->cu.pred_mode == MODE_INTRA) {
  1828. if (lc->cu.part_mode == PART_2Nx2N && s->ps.sps->pcm_enabled_flag &&
  1829. log2_cb_size >= s->ps.sps->pcm.log2_min_pcm_cb_size &&
  1830. log2_cb_size <= s->ps.sps->pcm.log2_max_pcm_cb_size) {
  1831. pcm_flag = ff_hevc_pcm_flag_decode(s);
  1832. }
  1833. if (pcm_flag) {
  1834. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1835. ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
  1836. if (s->ps.sps->pcm.loop_filter_disable_flag)
  1837. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1838. if (ret < 0)
  1839. return ret;
  1840. } else {
  1841. intra_prediction_unit(s, x0, y0, log2_cb_size);
  1842. }
  1843. } else {
  1844. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1845. switch (lc->cu.part_mode) {
  1846. case PART_2Nx2N:
  1847. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1848. break;
  1849. case PART_2NxN:
  1850. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx);
  1851. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx);
  1852. break;
  1853. case PART_Nx2N:
  1854. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1);
  1855. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1);
  1856. break;
  1857. case PART_2NxnU:
  1858. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx);
  1859. hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx);
  1860. break;
  1861. case PART_2NxnD:
  1862. hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx);
  1863. hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx);
  1864. break;
  1865. case PART_nLx2N:
  1866. hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2);
  1867. hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2);
  1868. break;
  1869. case PART_nRx2N:
  1870. hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2);
  1871. hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2);
  1872. break;
  1873. case PART_NxN:
  1874. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1);
  1875. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1);
  1876. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1);
  1877. hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1);
  1878. break;
  1879. }
  1880. }
  1881. if (!pcm_flag) {
  1882. int rqt_root_cbf = 1;
  1883. if (lc->cu.pred_mode != MODE_INTRA &&
  1884. !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
  1885. rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
  1886. }
  1887. if (rqt_root_cbf) {
  1888. const static int cbf[2] = { 0 };
  1889. lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
  1890. s->ps.sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
  1891. s->ps.sps->max_transform_hierarchy_depth_inter;
  1892. ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
  1893. log2_cb_size,
  1894. log2_cb_size, 0, 0, cbf, cbf);
  1895. if (ret < 0)
  1896. return ret;
  1897. } else {
  1898. if (!s->sh.disable_deblocking_filter_flag)
  1899. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1900. }
  1901. }
  1902. }
  1903. if (s->ps.pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
  1904. ff_hevc_set_qPy(s, x0, y0, log2_cb_size);
  1905. x = y_cb * min_cb_width + x_cb;
  1906. for (y = 0; y < length; y++) {
  1907. memset(&s->qp_y_tab[x], lc->qp_y, length);
  1908. x += min_cb_width;
  1909. }
  1910. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1911. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
  1912. lc->qPy_pred = lc->qp_y;
  1913. }
  1914. set_ct_depth(s, x0, y0, log2_cb_size, lc->ct_depth);
  1915. return 0;
  1916. }
  1917. static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
  1918. int log2_cb_size, int cb_depth)
  1919. {
  1920. HEVCLocalContext *lc = s->HEVClc;
  1921. const int cb_size = 1 << log2_cb_size;
  1922. int ret;
  1923. int split_cu;
  1924. lc->ct_depth = cb_depth;
  1925. if (x0 + cb_size <= s->ps.sps->width &&
  1926. y0 + cb_size <= s->ps.sps->height &&
  1927. log2_cb_size > s->ps.sps->log2_min_cb_size) {
  1928. split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
  1929. } else {
  1930. split_cu = (log2_cb_size > s->ps.sps->log2_min_cb_size);
  1931. }
  1932. if (s->ps.pps->cu_qp_delta_enabled_flag &&
  1933. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth) {
  1934. lc->tu.is_cu_qp_delta_coded = 0;
  1935. lc->tu.cu_qp_delta = 0;
  1936. }
  1937. if (s->sh.cu_chroma_qp_offset_enabled_flag &&
  1938. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_chroma_qp_offset_depth) {
  1939. lc->tu.is_cu_chroma_qp_offset_coded = 0;
  1940. }
  1941. if (split_cu) {
  1942. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1943. const int cb_size_split = cb_size >> 1;
  1944. const int x1 = x0 + cb_size_split;
  1945. const int y1 = y0 + cb_size_split;
  1946. int more_data = 0;
  1947. more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
  1948. if (more_data < 0)
  1949. return more_data;
  1950. if (more_data && x1 < s->ps.sps->width) {
  1951. more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
  1952. if (more_data < 0)
  1953. return more_data;
  1954. }
  1955. if (more_data && y1 < s->ps.sps->height) {
  1956. more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
  1957. if (more_data < 0)
  1958. return more_data;
  1959. }
  1960. if (more_data && x1 < s->ps.sps->width &&
  1961. y1 < s->ps.sps->height) {
  1962. more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
  1963. if (more_data < 0)
  1964. return more_data;
  1965. }
  1966. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1967. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
  1968. lc->qPy_pred = lc->qp_y;
  1969. if (more_data)
  1970. return ((x1 + cb_size_split) < s->ps.sps->width ||
  1971. (y1 + cb_size_split) < s->ps.sps->height);
  1972. else
  1973. return 0;
  1974. } else {
  1975. ret = hls_coding_unit(s, x0, y0, log2_cb_size);
  1976. if (ret < 0)
  1977. return ret;
  1978. if ((!((x0 + cb_size) %
  1979. (1 << (s->ps.sps->log2_ctb_size))) ||
  1980. (x0 + cb_size >= s->ps.sps->width)) &&
  1981. (!((y0 + cb_size) %
  1982. (1 << (s->ps.sps->log2_ctb_size))) ||
  1983. (y0 + cb_size >= s->ps.sps->height))) {
  1984. int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
  1985. return !end_of_slice_flag;
  1986. } else {
  1987. return 1;
  1988. }
  1989. }
  1990. return 0;
  1991. }
  1992. static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
  1993. int ctb_addr_ts)
  1994. {
  1995. HEVCLocalContext *lc = s->HEVClc;
  1996. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  1997. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  1998. int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
  1999. s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
  2000. if (s->ps.pps->entropy_coding_sync_enabled_flag) {
  2001. if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
  2002. lc->first_qp_group = 1;
  2003. lc->end_of_tiles_x = s->ps.sps->width;
  2004. } else if (s->ps.pps->tiles_enabled_flag) {
  2005. if (ctb_addr_ts && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[ctb_addr_ts - 1]) {
  2006. int idxX = s->ps.pps->col_idxX[x_ctb >> s->ps.sps->log2_ctb_size];
  2007. lc->end_of_tiles_x = x_ctb + (s->ps.pps->column_width[idxX] << s->ps.sps->log2_ctb_size);
  2008. lc->first_qp_group = 1;
  2009. }
  2010. } else {
  2011. lc->end_of_tiles_x = s->ps.sps->width;
  2012. }
  2013. lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->ps.sps->height);
  2014. lc->boundary_flags = 0;
  2015. if (s->ps.pps->tiles_enabled_flag) {
  2016. if (x_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
  2017. lc->boundary_flags |= BOUNDARY_LEFT_TILE;
  2018. if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
  2019. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2020. if (y_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]])
  2021. lc->boundary_flags |= BOUNDARY_UPPER_TILE;
  2022. if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->ps.sps->ctb_width])
  2023. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2024. } else {
  2025. if (ctb_addr_in_slice <= 0)
  2026. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2027. if (ctb_addr_in_slice < s->ps.sps->ctb_width)
  2028. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2029. }
  2030. lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
  2031. lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->ps.sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
  2032. lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->ps.sps->ctb_width]]));
  2033. lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->ps.sps->ctb_width]]));
  2034. }
  2035. static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
  2036. {
  2037. HEVCContext *s = avctxt->priv_data;
  2038. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2039. int more_data = 1;
  2040. int x_ctb = 0;
  2041. int y_ctb = 0;
  2042. int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
  2043. if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {
  2044. av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");
  2045. return AVERROR_INVALIDDATA;
  2046. }
  2047. if (s->sh.dependent_slice_segment_flag) {
  2048. int prev_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
  2049. if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) {
  2050. av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
  2051. return AVERROR_INVALIDDATA;
  2052. }
  2053. }
  2054. while (more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2055. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2056. x_ctb = (ctb_addr_rs % ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2057. y_ctb = (ctb_addr_rs / ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2058. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2059. ff_hevc_cabac_init(s, ctb_addr_ts);
  2060. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2061. s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
  2062. s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
  2063. s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
  2064. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2065. if (more_data < 0) {
  2066. s->tab_slice_address[ctb_addr_rs] = -1;
  2067. return more_data;
  2068. }
  2069. ctb_addr_ts++;
  2070. ff_hevc_save_states(s, ctb_addr_ts);
  2071. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2072. }
  2073. if (x_ctb + ctb_size >= s->ps.sps->width &&
  2074. y_ctb + ctb_size >= s->ps.sps->height)
  2075. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2076. return ctb_addr_ts;
  2077. }
  2078. static int hls_slice_data(HEVCContext *s)
  2079. {
  2080. int arg[2];
  2081. int ret[2];
  2082. arg[0] = 0;
  2083. arg[1] = 1;
  2084. s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
  2085. return ret[0];
  2086. }
  2087. static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
  2088. {
  2089. HEVCContext *s1 = avctxt->priv_data, *s;
  2090. HEVCLocalContext *lc;
  2091. int ctb_size = 1<< s1->ps.sps->log2_ctb_size;
  2092. int more_data = 1;
  2093. int *ctb_row_p = input_ctb_row;
  2094. int ctb_row = ctb_row_p[job];
  2095. int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->ps.sps->width + ctb_size - 1) >> s1->ps.sps->log2_ctb_size);
  2096. int ctb_addr_ts = s1->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs];
  2097. int thread = ctb_row % s1->threads_number;
  2098. int ret;
  2099. s = s1->sList[self_id];
  2100. lc = s->HEVClc;
  2101. if(ctb_row) {
  2102. ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
  2103. if (ret < 0)
  2104. return ret;
  2105. ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
  2106. }
  2107. while(more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2108. int x_ctb = (ctb_addr_rs % s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2109. int y_ctb = (ctb_addr_rs / s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2110. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2111. ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
  2112. if (atomic_load(&s1->wpp_err)) {
  2113. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2114. return 0;
  2115. }
  2116. ff_hevc_cabac_init(s, ctb_addr_ts);
  2117. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2118. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2119. if (more_data < 0) {
  2120. s->tab_slice_address[ctb_addr_rs] = -1;
  2121. atomic_store(&s1->wpp_err, 1);
  2122. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2123. return more_data;
  2124. }
  2125. ctb_addr_ts++;
  2126. ff_hevc_save_states(s, ctb_addr_ts);
  2127. ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
  2128. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2129. if (!more_data && (x_ctb+ctb_size) < s->ps.sps->width && ctb_row != s->sh.num_entry_point_offsets) {
  2130. atomic_store(&s1->wpp_err, 1);
  2131. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2132. return 0;
  2133. }
  2134. if ((x_ctb+ctb_size) >= s->ps.sps->width && (y_ctb+ctb_size) >= s->ps.sps->height ) {
  2135. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2136. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2137. return ctb_addr_ts;
  2138. }
  2139. ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2140. x_ctb+=ctb_size;
  2141. if(x_ctb >= s->ps.sps->width) {
  2142. break;
  2143. }
  2144. }
  2145. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2146. return 0;
  2147. }
  2148. static int hls_slice_data_wpp(HEVCContext *s, const H2645NAL *nal)
  2149. {
  2150. const uint8_t *data = nal->data;
  2151. int length = nal->size;
  2152. HEVCLocalContext *lc = s->HEVClc;
  2153. int *ret = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2154. int *arg = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2155. int64_t offset;
  2156. int64_t startheader, cmpt = 0;
  2157. int i, j, res = 0;
  2158. if (!ret || !arg) {
  2159. av_free(ret);
  2160. av_free(arg);
  2161. return AVERROR(ENOMEM);
  2162. }
  2163. if (s->sh.slice_ctb_addr_rs + s->sh.num_entry_point_offsets * s->ps.sps->ctb_width >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  2164. av_log(s->avctx, AV_LOG_ERROR, "WPP ctb addresses are wrong (%d %d %d %d)\n",
  2165. s->sh.slice_ctb_addr_rs, s->sh.num_entry_point_offsets,
  2166. s->ps.sps->ctb_width, s->ps.sps->ctb_height
  2167. );
  2168. res = AVERROR_INVALIDDATA;
  2169. goto error;
  2170. }
  2171. ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
  2172. if (!s->sList[1]) {
  2173. for (i = 1; i < s->threads_number; i++) {
  2174. s->sList[i] = av_malloc(sizeof(HEVCContext));
  2175. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2176. s->HEVClcList[i] = av_mallocz(sizeof(HEVCLocalContext));
  2177. s->sList[i]->HEVClc = s->HEVClcList[i];
  2178. }
  2179. }
  2180. offset = (lc->gb.index >> 3);
  2181. for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < nal->skipped_bytes; j++) {
  2182. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2183. startheader--;
  2184. cmpt++;
  2185. }
  2186. }
  2187. for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
  2188. offset += (s->sh.entry_point_offset[i - 1] - cmpt);
  2189. for (j = 0, cmpt = 0, startheader = offset
  2190. + s->sh.entry_point_offset[i]; j < nal->skipped_bytes; j++) {
  2191. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2192. startheader--;
  2193. cmpt++;
  2194. }
  2195. }
  2196. s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
  2197. s->sh.offset[i - 1] = offset;
  2198. }
  2199. if (s->sh.num_entry_point_offsets != 0) {
  2200. offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
  2201. if (length < offset) {
  2202. av_log(s->avctx, AV_LOG_ERROR, "entry_point_offset table is corrupted\n");
  2203. res = AVERROR_INVALIDDATA;
  2204. goto error;
  2205. }
  2206. s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
  2207. s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
  2208. }
  2209. s->data = data;
  2210. for (i = 1; i < s->threads_number; i++) {
  2211. s->sList[i]->HEVClc->first_qp_group = 1;
  2212. s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
  2213. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2214. s->sList[i]->HEVClc = s->HEVClcList[i];
  2215. }
  2216. atomic_store(&s->wpp_err, 0);
  2217. ff_reset_entries(s->avctx);
  2218. for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
  2219. arg[i] = i;
  2220. ret[i] = 0;
  2221. }
  2222. if (s->ps.pps->entropy_coding_sync_enabled_flag)
  2223. s->avctx->execute2(s->avctx, hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
  2224. for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
  2225. res += ret[i];
  2226. error:
  2227. av_free(ret);
  2228. av_free(arg);
  2229. return res;
  2230. }
  2231. static int set_side_data(HEVCContext *s)
  2232. {
  2233. AVFrame *out = s->ref->frame;
  2234. if (s->sei.frame_packing.present &&
  2235. s->sei.frame_packing.arrangement_type >= 3 &&
  2236. s->sei.frame_packing.arrangement_type <= 5 &&
  2237. s->sei.frame_packing.content_interpretation_type > 0 &&
  2238. s->sei.frame_packing.content_interpretation_type < 3) {
  2239. AVStereo3D *stereo = av_stereo3d_create_side_data(out);
  2240. if (!stereo)
  2241. return AVERROR(ENOMEM);
  2242. switch (s->sei.frame_packing.arrangement_type) {
  2243. case 3:
  2244. if (s->sei.frame_packing.quincunx_subsampling)
  2245. stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
  2246. else
  2247. stereo->type = AV_STEREO3D_SIDEBYSIDE;
  2248. break;
  2249. case 4:
  2250. stereo->type = AV_STEREO3D_TOPBOTTOM;
  2251. break;
  2252. case 5:
  2253. stereo->type = AV_STEREO3D_FRAMESEQUENCE;
  2254. break;
  2255. }
  2256. if (s->sei.frame_packing.content_interpretation_type == 2)
  2257. stereo->flags = AV_STEREO3D_FLAG_INVERT;
  2258. }
  2259. if (s->sei.display_orientation.present &&
  2260. (s->sei.display_orientation.anticlockwise_rotation ||
  2261. s->sei.display_orientation.hflip || s->sei.display_orientation.vflip)) {
  2262. double angle = s->sei.display_orientation.anticlockwise_rotation * 360 / (double) (1 << 16);
  2263. AVFrameSideData *rotation = av_frame_new_side_data(out,
  2264. AV_FRAME_DATA_DISPLAYMATRIX,
  2265. sizeof(int32_t) * 9);
  2266. if (!rotation)
  2267. return AVERROR(ENOMEM);
  2268. av_display_rotation_set((int32_t *)rotation->data, angle);
  2269. av_display_matrix_flip((int32_t *)rotation->data,
  2270. s->sei.display_orientation.hflip,
  2271. s->sei.display_orientation.vflip);
  2272. }
  2273. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2274. // so the side data persists for the entire coded video sequence.
  2275. if (s->sei.mastering_display.present > 0 &&
  2276. IS_IRAP(s) && s->no_rasl_output_flag) {
  2277. s->sei.mastering_display.present--;
  2278. }
  2279. if (s->sei.mastering_display.present) {
  2280. // HEVC uses a g,b,r ordering, which we convert to a more natural r,g,b
  2281. const int mapping[3] = {2, 0, 1};
  2282. const int chroma_den = 50000;
  2283. const int luma_den = 10000;
  2284. int i;
  2285. AVMasteringDisplayMetadata *metadata =
  2286. av_mastering_display_metadata_create_side_data(out);
  2287. if (!metadata)
  2288. return AVERROR(ENOMEM);
  2289. for (i = 0; i < 3; i++) {
  2290. const int j = mapping[i];
  2291. metadata->display_primaries[i][0].num = s->sei.mastering_display.display_primaries[j][0];
  2292. metadata->display_primaries[i][0].den = chroma_den;
  2293. metadata->display_primaries[i][1].num = s->sei.mastering_display.display_primaries[j][1];
  2294. metadata->display_primaries[i][1].den = chroma_den;
  2295. }
  2296. metadata->white_point[0].num = s->sei.mastering_display.white_point[0];
  2297. metadata->white_point[0].den = chroma_den;
  2298. metadata->white_point[1].num = s->sei.mastering_display.white_point[1];
  2299. metadata->white_point[1].den = chroma_den;
  2300. metadata->max_luminance.num = s->sei.mastering_display.max_luminance;
  2301. metadata->max_luminance.den = luma_den;
  2302. metadata->min_luminance.num = s->sei.mastering_display.min_luminance;
  2303. metadata->min_luminance.den = luma_den;
  2304. metadata->has_luminance = 1;
  2305. metadata->has_primaries = 1;
  2306. av_log(s->avctx, AV_LOG_DEBUG, "Mastering Display Metadata:\n");
  2307. av_log(s->avctx, AV_LOG_DEBUG,
  2308. "r(%5.4f,%5.4f) g(%5.4f,%5.4f) b(%5.4f %5.4f) wp(%5.4f, %5.4f)\n",
  2309. av_q2d(metadata->display_primaries[0][0]),
  2310. av_q2d(metadata->display_primaries[0][1]),
  2311. av_q2d(metadata->display_primaries[1][0]),
  2312. av_q2d(metadata->display_primaries[1][1]),
  2313. av_q2d(metadata->display_primaries[2][0]),
  2314. av_q2d(metadata->display_primaries[2][1]),
  2315. av_q2d(metadata->white_point[0]), av_q2d(metadata->white_point[1]));
  2316. av_log(s->avctx, AV_LOG_DEBUG,
  2317. "min_luminance=%f, max_luminance=%f\n",
  2318. av_q2d(metadata->min_luminance), av_q2d(metadata->max_luminance));
  2319. }
  2320. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2321. // so the side data persists for the entire coded video sequence.
  2322. if (s->sei.content_light.present > 0 &&
  2323. IS_IRAP(s) && s->no_rasl_output_flag) {
  2324. s->sei.content_light.present--;
  2325. }
  2326. if (s->sei.content_light.present) {
  2327. AVContentLightMetadata *metadata =
  2328. av_content_light_metadata_create_side_data(out);
  2329. if (!metadata)
  2330. return AVERROR(ENOMEM);
  2331. metadata->MaxCLL = s->sei.content_light.max_content_light_level;
  2332. metadata->MaxFALL = s->sei.content_light.max_pic_average_light_level;
  2333. av_log(s->avctx, AV_LOG_DEBUG, "Content Light Level Metadata:\n");
  2334. av_log(s->avctx, AV_LOG_DEBUG, "MaxCLL=%d, MaxFALL=%d\n",
  2335. metadata->MaxCLL, metadata->MaxFALL);
  2336. }
  2337. if (s->sei.a53_caption.a53_caption) {
  2338. AVFrameSideData* sd = av_frame_new_side_data(out,
  2339. AV_FRAME_DATA_A53_CC,
  2340. s->sei.a53_caption.a53_caption_size);
  2341. if (sd)
  2342. memcpy(sd->data, s->sei.a53_caption.a53_caption, s->sei.a53_caption.a53_caption_size);
  2343. av_freep(&s->sei.a53_caption.a53_caption);
  2344. s->sei.a53_caption.a53_caption_size = 0;
  2345. s->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
  2346. }
  2347. return 0;
  2348. }
  2349. static int hevc_frame_start(HEVCContext *s)
  2350. {
  2351. HEVCLocalContext *lc = s->HEVClc;
  2352. int pic_size_in_ctb = ((s->ps.sps->width >> s->ps.sps->log2_min_cb_size) + 1) *
  2353. ((s->ps.sps->height >> s->ps.sps->log2_min_cb_size) + 1);
  2354. int ret;
  2355. memset(s->horizontal_bs, 0, s->bs_width * s->bs_height);
  2356. memset(s->vertical_bs, 0, s->bs_width * s->bs_height);
  2357. memset(s->cbf_luma, 0, s->ps.sps->min_tb_width * s->ps.sps->min_tb_height);
  2358. memset(s->is_pcm, 0, (s->ps.sps->min_pu_width + 1) * (s->ps.sps->min_pu_height + 1));
  2359. memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address));
  2360. s->is_decoded = 0;
  2361. s->first_nal_type = s->nal_unit_type;
  2362. s->no_rasl_output_flag = IS_IDR(s) || IS_BLA(s) || (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos);
  2363. if (s->ps.pps->tiles_enabled_flag)
  2364. lc->end_of_tiles_x = s->ps.pps->column_width[0] << s->ps.sps->log2_ctb_size;
  2365. ret = ff_hevc_set_new_ref(s, &s->frame, s->poc);
  2366. if (ret < 0)
  2367. goto fail;
  2368. ret = ff_hevc_frame_rps(s);
  2369. if (ret < 0) {
  2370. av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
  2371. goto fail;
  2372. }
  2373. s->ref->frame->key_frame = IS_IRAP(s);
  2374. ret = set_side_data(s);
  2375. if (ret < 0)
  2376. goto fail;
  2377. s->frame->pict_type = 3 - s->sh.slice_type;
  2378. if (!IS_IRAP(s))
  2379. ff_hevc_bump_frame(s);
  2380. av_frame_unref(s->output_frame);
  2381. ret = ff_hevc_output_frame(s, s->output_frame, 0);
  2382. if (ret < 0)
  2383. goto fail;
  2384. if (!s->avctx->hwaccel)
  2385. ff_thread_finish_setup(s->avctx);
  2386. return 0;
  2387. fail:
  2388. if (s->ref)
  2389. ff_hevc_unref_frame(s, s->ref, ~0);
  2390. s->ref = NULL;
  2391. return ret;
  2392. }
  2393. static int decode_nal_unit(HEVCContext *s, const H2645NAL *nal)
  2394. {
  2395. HEVCLocalContext *lc = s->HEVClc;
  2396. GetBitContext *gb = &lc->gb;
  2397. int ctb_addr_ts, ret;
  2398. *gb = nal->gb;
  2399. s->nal_unit_type = nal->type;
  2400. s->temporal_id = nal->temporal_id;
  2401. switch (s->nal_unit_type) {
  2402. case HEVC_NAL_VPS:
  2403. ret = ff_hevc_decode_nal_vps(gb, s->avctx, &s->ps);
  2404. if (ret < 0)
  2405. goto fail;
  2406. break;
  2407. case HEVC_NAL_SPS:
  2408. ret = ff_hevc_decode_nal_sps(gb, s->avctx, &s->ps,
  2409. s->apply_defdispwin);
  2410. if (ret < 0)
  2411. goto fail;
  2412. break;
  2413. case HEVC_NAL_PPS:
  2414. ret = ff_hevc_decode_nal_pps(gb, s->avctx, &s->ps);
  2415. if (ret < 0)
  2416. goto fail;
  2417. break;
  2418. case HEVC_NAL_SEI_PREFIX:
  2419. case HEVC_NAL_SEI_SUFFIX:
  2420. ret = ff_hevc_decode_nal_sei(gb, s->avctx, &s->sei, &s->ps, s->nal_unit_type);
  2421. if (ret < 0)
  2422. goto fail;
  2423. break;
  2424. case HEVC_NAL_TRAIL_R:
  2425. case HEVC_NAL_TRAIL_N:
  2426. case HEVC_NAL_TSA_N:
  2427. case HEVC_NAL_TSA_R:
  2428. case HEVC_NAL_STSA_N:
  2429. case HEVC_NAL_STSA_R:
  2430. case HEVC_NAL_BLA_W_LP:
  2431. case HEVC_NAL_BLA_W_RADL:
  2432. case HEVC_NAL_BLA_N_LP:
  2433. case HEVC_NAL_IDR_W_RADL:
  2434. case HEVC_NAL_IDR_N_LP:
  2435. case HEVC_NAL_CRA_NUT:
  2436. case HEVC_NAL_RADL_N:
  2437. case HEVC_NAL_RADL_R:
  2438. case HEVC_NAL_RASL_N:
  2439. case HEVC_NAL_RASL_R:
  2440. ret = hls_slice_header(s);
  2441. if (ret < 0)
  2442. return ret;
  2443. if (s->sh.first_slice_in_pic_flag) {
  2444. if (s->max_ra == INT_MAX) {
  2445. if (s->nal_unit_type == HEVC_NAL_CRA_NUT || IS_BLA(s)) {
  2446. s->max_ra = s->poc;
  2447. } else {
  2448. if (IS_IDR(s))
  2449. s->max_ra = INT_MIN;
  2450. }
  2451. }
  2452. if ((s->nal_unit_type == HEVC_NAL_RASL_R || s->nal_unit_type == HEVC_NAL_RASL_N) &&
  2453. s->poc <= s->max_ra) {
  2454. s->is_decoded = 0;
  2455. break;
  2456. } else {
  2457. if (s->nal_unit_type == HEVC_NAL_RASL_R && s->poc > s->max_ra)
  2458. s->max_ra = INT_MIN;
  2459. }
  2460. ret = hevc_frame_start(s);
  2461. if (ret < 0)
  2462. return ret;
  2463. } else if (!s->ref) {
  2464. av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
  2465. goto fail;
  2466. }
  2467. if (s->nal_unit_type != s->first_nal_type) {
  2468. av_log(s->avctx, AV_LOG_ERROR,
  2469. "Non-matching NAL types of the VCL NALUs: %d %d\n",
  2470. s->first_nal_type, s->nal_unit_type);
  2471. return AVERROR_INVALIDDATA;
  2472. }
  2473. if (!s->sh.dependent_slice_segment_flag &&
  2474. s->sh.slice_type != HEVC_SLICE_I) {
  2475. ret = ff_hevc_slice_rpl(s);
  2476. if (ret < 0) {
  2477. av_log(s->avctx, AV_LOG_WARNING,
  2478. "Error constructing the reference lists for the current slice.\n");
  2479. goto fail;
  2480. }
  2481. }
  2482. if (s->sh.first_slice_in_pic_flag && s->avctx->hwaccel) {
  2483. ret = s->avctx->hwaccel->start_frame(s->avctx, NULL, 0);
  2484. if (ret < 0)
  2485. goto fail;
  2486. }
  2487. if (s->avctx->hwaccel) {
  2488. ret = s->avctx->hwaccel->decode_slice(s->avctx, nal->raw_data, nal->raw_size);
  2489. if (ret < 0)
  2490. goto fail;
  2491. } else {
  2492. if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
  2493. ctb_addr_ts = hls_slice_data_wpp(s, nal);
  2494. else
  2495. ctb_addr_ts = hls_slice_data(s);
  2496. if (ctb_addr_ts >= (s->ps.sps->ctb_width * s->ps.sps->ctb_height)) {
  2497. s->is_decoded = 1;
  2498. }
  2499. if (ctb_addr_ts < 0) {
  2500. ret = ctb_addr_ts;
  2501. goto fail;
  2502. }
  2503. }
  2504. break;
  2505. case HEVC_NAL_EOS_NUT:
  2506. case HEVC_NAL_EOB_NUT:
  2507. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2508. s->max_ra = INT_MAX;
  2509. break;
  2510. case HEVC_NAL_AUD:
  2511. case HEVC_NAL_FD_NUT:
  2512. break;
  2513. default:
  2514. av_log(s->avctx, AV_LOG_INFO,
  2515. "Skipping NAL unit %d\n", s->nal_unit_type);
  2516. }
  2517. return 0;
  2518. fail:
  2519. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  2520. return ret;
  2521. return 0;
  2522. }
  2523. static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
  2524. {
  2525. int i, ret = 0;
  2526. int eos_at_start = 1;
  2527. s->ref = NULL;
  2528. s->last_eos = s->eos;
  2529. s->eos = 0;
  2530. /* split the input packet into NAL units, so we know the upper bound on the
  2531. * number of slices in the frame */
  2532. ret = ff_h2645_packet_split(&s->pkt, buf, length, s->avctx, s->is_nalff,
  2533. s->nal_length_size, s->avctx->codec_id, 1);
  2534. if (ret < 0) {
  2535. av_log(s->avctx, AV_LOG_ERROR,
  2536. "Error splitting the input into NAL units.\n");
  2537. return ret;
  2538. }
  2539. for (i = 0; i < s->pkt.nb_nals; i++) {
  2540. if (s->pkt.nals[i].type == HEVC_NAL_EOB_NUT ||
  2541. s->pkt.nals[i].type == HEVC_NAL_EOS_NUT) {
  2542. if (eos_at_start) {
  2543. s->last_eos = 1;
  2544. } else {
  2545. s->eos = 1;
  2546. }
  2547. } else {
  2548. eos_at_start = 0;
  2549. }
  2550. }
  2551. /* decode the NAL units */
  2552. for (i = 0; i < s->pkt.nb_nals; i++) {
  2553. ret = decode_nal_unit(s, &s->pkt.nals[i]);
  2554. if (ret < 0) {
  2555. av_log(s->avctx, AV_LOG_WARNING,
  2556. "Error parsing NAL unit #%d.\n", i);
  2557. goto fail;
  2558. }
  2559. }
  2560. fail:
  2561. if (s->ref && s->threads_type == FF_THREAD_FRAME)
  2562. ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
  2563. return ret;
  2564. }
  2565. static void print_md5(void *log_ctx, int level, uint8_t md5[16])
  2566. {
  2567. int i;
  2568. for (i = 0; i < 16; i++)
  2569. av_log(log_ctx, level, "%02"PRIx8, md5[i]);
  2570. }
  2571. static int verify_md5(HEVCContext *s, AVFrame *frame)
  2572. {
  2573. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
  2574. int pixel_shift;
  2575. int i, j;
  2576. if (!desc)
  2577. return AVERROR(EINVAL);
  2578. pixel_shift = desc->comp[0].depth > 8;
  2579. av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
  2580. s->poc);
  2581. /* the checksums are LE, so we have to byteswap for >8bpp formats
  2582. * on BE arches */
  2583. #if HAVE_BIGENDIAN
  2584. if (pixel_shift && !s->checksum_buf) {
  2585. av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
  2586. FFMAX3(frame->linesize[0], frame->linesize[1],
  2587. frame->linesize[2]));
  2588. if (!s->checksum_buf)
  2589. return AVERROR(ENOMEM);
  2590. }
  2591. #endif
  2592. for (i = 0; frame->data[i]; i++) {
  2593. int width = s->avctx->coded_width;
  2594. int height = s->avctx->coded_height;
  2595. int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
  2596. int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
  2597. uint8_t md5[16];
  2598. av_md5_init(s->sei.picture_hash.md5_ctx);
  2599. for (j = 0; j < h; j++) {
  2600. const uint8_t *src = frame->data[i] + j * frame->linesize[i];
  2601. #if HAVE_BIGENDIAN
  2602. if (pixel_shift) {
  2603. s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
  2604. (const uint16_t *) src, w);
  2605. src = s->checksum_buf;
  2606. }
  2607. #endif
  2608. av_md5_update(s->sei.picture_hash.md5_ctx, src, w << pixel_shift);
  2609. }
  2610. av_md5_final(s->sei.picture_hash.md5_ctx, md5);
  2611. if (!memcmp(md5, s->sei.picture_hash.md5[i], 16)) {
  2612. av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
  2613. print_md5(s->avctx, AV_LOG_DEBUG, md5);
  2614. av_log (s->avctx, AV_LOG_DEBUG, "; ");
  2615. } else {
  2616. av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
  2617. print_md5(s->avctx, AV_LOG_ERROR, md5);
  2618. av_log (s->avctx, AV_LOG_ERROR, " != ");
  2619. print_md5(s->avctx, AV_LOG_ERROR, s->sei.picture_hash.md5[i]);
  2620. av_log (s->avctx, AV_LOG_ERROR, "\n");
  2621. return AVERROR_INVALIDDATA;
  2622. }
  2623. }
  2624. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  2625. return 0;
  2626. }
  2627. static int hevc_decode_extradata(HEVCContext *s, uint8_t *buf, int length)
  2628. {
  2629. int ret, i;
  2630. ret = ff_hevc_decode_extradata(buf, length, &s->ps, &s->sei, &s->is_nalff,
  2631. &s->nal_length_size, s->avctx->err_recognition,
  2632. s->apply_defdispwin, s->avctx);
  2633. if (ret < 0)
  2634. return ret;
  2635. /* export stream parameters from the first SPS */
  2636. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2637. if (s->ps.sps_list[i]) {
  2638. const HEVCSPS *sps = (const HEVCSPS*)s->ps.sps_list[i]->data;
  2639. export_stream_params(s->avctx, &s->ps, sps);
  2640. break;
  2641. }
  2642. }
  2643. return 0;
  2644. }
  2645. static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
  2646. AVPacket *avpkt)
  2647. {
  2648. int ret;
  2649. int new_extradata_size;
  2650. uint8_t *new_extradata;
  2651. HEVCContext *s = avctx->priv_data;
  2652. if (!avpkt->size) {
  2653. ret = ff_hevc_output_frame(s, data, 1);
  2654. if (ret < 0)
  2655. return ret;
  2656. *got_output = ret;
  2657. return 0;
  2658. }
  2659. new_extradata = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,
  2660. &new_extradata_size);
  2661. if (new_extradata && new_extradata_size > 0) {
  2662. ret = hevc_decode_extradata(s, new_extradata, new_extradata_size);
  2663. if (ret < 0)
  2664. return ret;
  2665. }
  2666. s->ref = NULL;
  2667. ret = decode_nal_units(s, avpkt->data, avpkt->size);
  2668. if (ret < 0)
  2669. return ret;
  2670. if (avctx->hwaccel) {
  2671. if (s->ref && (ret = avctx->hwaccel->end_frame(avctx)) < 0) {
  2672. av_log(avctx, AV_LOG_ERROR,
  2673. "hardware accelerator failed to decode picture\n");
  2674. ff_hevc_unref_frame(s, s->ref, ~0);
  2675. return ret;
  2676. }
  2677. } else {
  2678. /* verify the SEI checksum */
  2679. if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
  2680. s->sei.picture_hash.is_md5) {
  2681. ret = verify_md5(s, s->ref->frame);
  2682. if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
  2683. ff_hevc_unref_frame(s, s->ref, ~0);
  2684. return ret;
  2685. }
  2686. }
  2687. }
  2688. s->sei.picture_hash.is_md5 = 0;
  2689. if (s->is_decoded) {
  2690. av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
  2691. s->is_decoded = 0;
  2692. }
  2693. if (s->output_frame->buf[0]) {
  2694. av_frame_move_ref(data, s->output_frame);
  2695. *got_output = 1;
  2696. }
  2697. return avpkt->size;
  2698. }
  2699. static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
  2700. {
  2701. int ret;
  2702. ret = ff_thread_ref_frame(&dst->tf, &src->tf);
  2703. if (ret < 0)
  2704. return ret;
  2705. dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
  2706. if (!dst->tab_mvf_buf)
  2707. goto fail;
  2708. dst->tab_mvf = src->tab_mvf;
  2709. dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
  2710. if (!dst->rpl_tab_buf)
  2711. goto fail;
  2712. dst->rpl_tab = src->rpl_tab;
  2713. dst->rpl_buf = av_buffer_ref(src->rpl_buf);
  2714. if (!dst->rpl_buf)
  2715. goto fail;
  2716. dst->poc = src->poc;
  2717. dst->ctb_count = src->ctb_count;
  2718. dst->flags = src->flags;
  2719. dst->sequence = src->sequence;
  2720. if (src->hwaccel_picture_private) {
  2721. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  2722. if (!dst->hwaccel_priv_buf)
  2723. goto fail;
  2724. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  2725. }
  2726. return 0;
  2727. fail:
  2728. ff_hevc_unref_frame(s, dst, ~0);
  2729. return AVERROR(ENOMEM);
  2730. }
  2731. static av_cold int hevc_decode_free(AVCodecContext *avctx)
  2732. {
  2733. HEVCContext *s = avctx->priv_data;
  2734. int i;
  2735. pic_arrays_free(s);
  2736. av_freep(&s->sei.picture_hash.md5_ctx);
  2737. av_freep(&s->cabac_state);
  2738. for (i = 0; i < 3; i++) {
  2739. av_freep(&s->sao_pixel_buffer_h[i]);
  2740. av_freep(&s->sao_pixel_buffer_v[i]);
  2741. }
  2742. av_frame_free(&s->output_frame);
  2743. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2744. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2745. av_frame_free(&s->DPB[i].frame);
  2746. }
  2747. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++)
  2748. av_buffer_unref(&s->ps.vps_list[i]);
  2749. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++)
  2750. av_buffer_unref(&s->ps.sps_list[i]);
  2751. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++)
  2752. av_buffer_unref(&s->ps.pps_list[i]);
  2753. s->ps.sps = NULL;
  2754. s->ps.pps = NULL;
  2755. s->ps.vps = NULL;
  2756. av_freep(&s->sh.entry_point_offset);
  2757. av_freep(&s->sh.offset);
  2758. av_freep(&s->sh.size);
  2759. for (i = 1; i < s->threads_number; i++) {
  2760. HEVCLocalContext *lc = s->HEVClcList[i];
  2761. if (lc) {
  2762. av_freep(&s->HEVClcList[i]);
  2763. av_freep(&s->sList[i]);
  2764. }
  2765. }
  2766. if (s->HEVClc == s->HEVClcList[0])
  2767. s->HEVClc = NULL;
  2768. av_freep(&s->HEVClcList[0]);
  2769. ff_h2645_packet_uninit(&s->pkt);
  2770. return 0;
  2771. }
  2772. static av_cold int hevc_init_context(AVCodecContext *avctx)
  2773. {
  2774. HEVCContext *s = avctx->priv_data;
  2775. int i;
  2776. s->avctx = avctx;
  2777. s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
  2778. if (!s->HEVClc)
  2779. goto fail;
  2780. s->HEVClcList[0] = s->HEVClc;
  2781. s->sList[0] = s;
  2782. s->cabac_state = av_malloc(HEVC_CONTEXTS);
  2783. if (!s->cabac_state)
  2784. goto fail;
  2785. s->output_frame = av_frame_alloc();
  2786. if (!s->output_frame)
  2787. goto fail;
  2788. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2789. s->DPB[i].frame = av_frame_alloc();
  2790. if (!s->DPB[i].frame)
  2791. goto fail;
  2792. s->DPB[i].tf.f = s->DPB[i].frame;
  2793. }
  2794. s->max_ra = INT_MAX;
  2795. s->sei.picture_hash.md5_ctx = av_md5_alloc();
  2796. if (!s->sei.picture_hash.md5_ctx)
  2797. goto fail;
  2798. ff_bswapdsp_init(&s->bdsp);
  2799. s->context_initialized = 1;
  2800. s->eos = 0;
  2801. ff_hevc_reset_sei(&s->sei);
  2802. return 0;
  2803. fail:
  2804. hevc_decode_free(avctx);
  2805. return AVERROR(ENOMEM);
  2806. }
  2807. static int hevc_update_thread_context(AVCodecContext *dst,
  2808. const AVCodecContext *src)
  2809. {
  2810. HEVCContext *s = dst->priv_data;
  2811. HEVCContext *s0 = src->priv_data;
  2812. int i, ret;
  2813. if (!s->context_initialized) {
  2814. ret = hevc_init_context(dst);
  2815. if (ret < 0)
  2816. return ret;
  2817. }
  2818. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2819. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2820. if (s0->DPB[i].frame->buf[0]) {
  2821. ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
  2822. if (ret < 0)
  2823. return ret;
  2824. }
  2825. }
  2826. if (s->ps.sps != s0->ps.sps)
  2827. s->ps.sps = NULL;
  2828. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++) {
  2829. av_buffer_unref(&s->ps.vps_list[i]);
  2830. if (s0->ps.vps_list[i]) {
  2831. s->ps.vps_list[i] = av_buffer_ref(s0->ps.vps_list[i]);
  2832. if (!s->ps.vps_list[i])
  2833. return AVERROR(ENOMEM);
  2834. }
  2835. }
  2836. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2837. av_buffer_unref(&s->ps.sps_list[i]);
  2838. if (s0->ps.sps_list[i]) {
  2839. s->ps.sps_list[i] = av_buffer_ref(s0->ps.sps_list[i]);
  2840. if (!s->ps.sps_list[i])
  2841. return AVERROR(ENOMEM);
  2842. }
  2843. }
  2844. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++) {
  2845. av_buffer_unref(&s->ps.pps_list[i]);
  2846. if (s0->ps.pps_list[i]) {
  2847. s->ps.pps_list[i] = av_buffer_ref(s0->ps.pps_list[i]);
  2848. if (!s->ps.pps_list[i])
  2849. return AVERROR(ENOMEM);
  2850. }
  2851. }
  2852. if (s->ps.sps != s0->ps.sps)
  2853. if ((ret = set_sps(s, s0->ps.sps, src->pix_fmt)) < 0)
  2854. return ret;
  2855. s->seq_decode = s0->seq_decode;
  2856. s->seq_output = s0->seq_output;
  2857. s->pocTid0 = s0->pocTid0;
  2858. s->max_ra = s0->max_ra;
  2859. s->eos = s0->eos;
  2860. s->no_rasl_output_flag = s0->no_rasl_output_flag;
  2861. s->is_nalff = s0->is_nalff;
  2862. s->nal_length_size = s0->nal_length_size;
  2863. s->threads_number = s0->threads_number;
  2864. s->threads_type = s0->threads_type;
  2865. if (s0->eos) {
  2866. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2867. s->max_ra = INT_MAX;
  2868. }
  2869. return 0;
  2870. }
  2871. static av_cold int hevc_decode_init(AVCodecContext *avctx)
  2872. {
  2873. HEVCContext *s = avctx->priv_data;
  2874. int ret;
  2875. avctx->internal->allocate_progress = 1;
  2876. ret = hevc_init_context(avctx);
  2877. if (ret < 0)
  2878. return ret;
  2879. s->enable_parallel_tiles = 0;
  2880. s->sei.picture_timing.picture_struct = 0;
  2881. s->eos = 1;
  2882. atomic_init(&s->wpp_err, 0);
  2883. if(avctx->active_thread_type & FF_THREAD_SLICE)
  2884. s->threads_number = avctx->thread_count;
  2885. else
  2886. s->threads_number = 1;
  2887. if (avctx->extradata_size > 0 && avctx->extradata) {
  2888. ret = hevc_decode_extradata(s, avctx->extradata, avctx->extradata_size);
  2889. if (ret < 0) {
  2890. hevc_decode_free(avctx);
  2891. return ret;
  2892. }
  2893. }
  2894. if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
  2895. s->threads_type = FF_THREAD_FRAME;
  2896. else
  2897. s->threads_type = FF_THREAD_SLICE;
  2898. return 0;
  2899. }
  2900. static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
  2901. {
  2902. HEVCContext *s = avctx->priv_data;
  2903. int ret;
  2904. memset(s, 0, sizeof(*s));
  2905. ret = hevc_init_context(avctx);
  2906. if (ret < 0)
  2907. return ret;
  2908. return 0;
  2909. }
  2910. static void hevc_decode_flush(AVCodecContext *avctx)
  2911. {
  2912. HEVCContext *s = avctx->priv_data;
  2913. ff_hevc_flush_dpb(s);
  2914. s->max_ra = INT_MAX;
  2915. s->eos = 1;
  2916. }
  2917. #define OFFSET(x) offsetof(HEVCContext, x)
  2918. #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
  2919. static const AVOption options[] = {
  2920. { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
  2921. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  2922. { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
  2923. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  2924. { NULL },
  2925. };
  2926. static const AVClass hevc_decoder_class = {
  2927. .class_name = "HEVC decoder",
  2928. .item_name = av_default_item_name,
  2929. .option = options,
  2930. .version = LIBAVUTIL_VERSION_INT,
  2931. };
  2932. AVCodec ff_hevc_decoder = {
  2933. .name = "hevc",
  2934. .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
  2935. .type = AVMEDIA_TYPE_VIDEO,
  2936. .id = AV_CODEC_ID_HEVC,
  2937. .priv_data_size = sizeof(HEVCContext),
  2938. .priv_class = &hevc_decoder_class,
  2939. .init = hevc_decode_init,
  2940. .close = hevc_decode_free,
  2941. .decode = hevc_decode_frame,
  2942. .flush = hevc_decode_flush,
  2943. .update_thread_context = hevc_update_thread_context,
  2944. .init_thread_copy = hevc_init_thread_copy,
  2945. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
  2946. AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS,
  2947. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_EXPORTS_CROPPING,
  2948. .profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles),
  2949. };