You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4359 lines
175KB

  1. /*
  2. * VP9 compatible video decoder
  3. *
  4. * Copyright (C) 2013 Ronald S. Bultje <rsbultje gmail com>
  5. * Copyright (C) 2013 Clément Bœsch <u pkh me>
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include "avcodec.h"
  24. #include "get_bits.h"
  25. #include "internal.h"
  26. #include "thread.h"
  27. #include "videodsp.h"
  28. #include "vp56.h"
  29. #include "vp9.h"
  30. #include "vp9data.h"
  31. #include "vp9dsp.h"
  32. #include "libavutil/avassert.h"
  33. #include "libavutil/pixdesc.h"
  34. #define VP9_SYNCCODE 0x498342
  35. struct VP9Filter {
  36. uint8_t level[8 * 8];
  37. uint8_t /* bit=col */ mask[2 /* 0=y, 1=uv */][2 /* 0=col, 1=row */]
  38. [8 /* rows */][4 /* 0=16, 1=8, 2=4, 3=inner4 */];
  39. };
  40. typedef struct VP9Block {
  41. uint8_t seg_id, intra, comp, ref[2], mode[4], uvmode, skip;
  42. enum FilterMode filter;
  43. VP56mv mv[4 /* b_idx */][2 /* ref */];
  44. enum BlockSize bs;
  45. enum TxfmMode tx, uvtx;
  46. enum BlockLevel bl;
  47. enum BlockPartition bp;
  48. } VP9Block;
  49. typedef struct VP9Context {
  50. VP9SharedContext s;
  51. VP9DSPContext dsp;
  52. VideoDSPContext vdsp;
  53. GetBitContext gb;
  54. VP56RangeCoder c;
  55. VP56RangeCoder *c_b;
  56. unsigned c_b_size;
  57. VP9Block *b_base, *b;
  58. int pass;
  59. int row, row7, col, col7;
  60. uint8_t *dst[3];
  61. ptrdiff_t y_stride, uv_stride;
  62. uint8_t ss_h, ss_v;
  63. uint8_t last_bpp, bpp, bpp_index, bytesperpixel;
  64. uint8_t last_keyframe;
  65. enum AVPixelFormat pix_fmt, last_fmt;
  66. ThreadFrame next_refs[8];
  67. struct {
  68. uint8_t lim_lut[64];
  69. uint8_t mblim_lut[64];
  70. } filter_lut;
  71. unsigned tile_row_start, tile_row_end, tile_col_start, tile_col_end;
  72. unsigned sb_cols, sb_rows, rows, cols;
  73. struct {
  74. prob_context p;
  75. uint8_t coef[4][2][2][6][6][3];
  76. } prob_ctx[4];
  77. struct {
  78. prob_context p;
  79. uint8_t coef[4][2][2][6][6][11];
  80. } prob;
  81. struct {
  82. unsigned y_mode[4][10];
  83. unsigned uv_mode[10][10];
  84. unsigned filter[4][3];
  85. unsigned mv_mode[7][4];
  86. unsigned intra[4][2];
  87. unsigned comp[5][2];
  88. unsigned single_ref[5][2][2];
  89. unsigned comp_ref[5][2];
  90. unsigned tx32p[2][4];
  91. unsigned tx16p[2][3];
  92. unsigned tx8p[2][2];
  93. unsigned skip[3][2];
  94. unsigned mv_joint[4];
  95. struct {
  96. unsigned sign[2];
  97. unsigned classes[11];
  98. unsigned class0[2];
  99. unsigned bits[10][2];
  100. unsigned class0_fp[2][4];
  101. unsigned fp[4];
  102. unsigned class0_hp[2];
  103. unsigned hp[2];
  104. } mv_comp[2];
  105. unsigned partition[4][4][4];
  106. unsigned coef[4][2][2][6][6][3];
  107. unsigned eob[4][2][2][6][6][2];
  108. } counts;
  109. // contextual (left/above) cache
  110. DECLARE_ALIGNED(16, uint8_t, left_y_nnz_ctx)[16];
  111. DECLARE_ALIGNED(16, uint8_t, left_mode_ctx)[16];
  112. DECLARE_ALIGNED(16, VP56mv, left_mv_ctx)[16][2];
  113. DECLARE_ALIGNED(16, uint8_t, left_uv_nnz_ctx)[2][16];
  114. DECLARE_ALIGNED(8, uint8_t, left_partition_ctx)[8];
  115. DECLARE_ALIGNED(8, uint8_t, left_skip_ctx)[8];
  116. DECLARE_ALIGNED(8, uint8_t, left_txfm_ctx)[8];
  117. DECLARE_ALIGNED(8, uint8_t, left_segpred_ctx)[8];
  118. DECLARE_ALIGNED(8, uint8_t, left_intra_ctx)[8];
  119. DECLARE_ALIGNED(8, uint8_t, left_comp_ctx)[8];
  120. DECLARE_ALIGNED(8, uint8_t, left_ref_ctx)[8];
  121. DECLARE_ALIGNED(8, uint8_t, left_filter_ctx)[8];
  122. uint8_t *above_partition_ctx;
  123. uint8_t *above_mode_ctx;
  124. // FIXME maybe merge some of the below in a flags field?
  125. uint8_t *above_y_nnz_ctx;
  126. uint8_t *above_uv_nnz_ctx[2];
  127. uint8_t *above_skip_ctx; // 1bit
  128. uint8_t *above_txfm_ctx; // 2bit
  129. uint8_t *above_segpred_ctx; // 1bit
  130. uint8_t *above_intra_ctx; // 1bit
  131. uint8_t *above_comp_ctx; // 1bit
  132. uint8_t *above_ref_ctx; // 2bit
  133. uint8_t *above_filter_ctx;
  134. VP56mv (*above_mv_ctx)[2];
  135. // whole-frame cache
  136. uint8_t *intra_pred_data[3];
  137. struct VP9Filter *lflvl;
  138. DECLARE_ALIGNED(32, uint8_t, edge_emu_buffer)[135 * 144 * 2];
  139. // block reconstruction intermediates
  140. int block_alloc_using_2pass;
  141. int16_t *block_base, *block, *uvblock_base[2], *uvblock[2];
  142. uint8_t *eob_base, *uveob_base[2], *eob, *uveob[2];
  143. struct { int x, y; } min_mv, max_mv;
  144. DECLARE_ALIGNED(32, uint8_t, tmp_y)[64 * 64 * 2];
  145. DECLARE_ALIGNED(32, uint8_t, tmp_uv)[2][64 * 64 * 2];
  146. uint16_t mvscale[3][2];
  147. uint8_t mvstep[3][2];
  148. } VP9Context;
  149. static const uint8_t bwh_tab[2][N_BS_SIZES][2] = {
  150. {
  151. { 16, 16 }, { 16, 8 }, { 8, 16 }, { 8, 8 }, { 8, 4 }, { 4, 8 },
  152. { 4, 4 }, { 4, 2 }, { 2, 4 }, { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 },
  153. }, {
  154. { 8, 8 }, { 8, 4 }, { 4, 8 }, { 4, 4 }, { 4, 2 }, { 2, 4 },
  155. { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 }, { 1, 1 }, { 1, 1 }, { 1, 1 },
  156. }
  157. };
  158. static void vp9_unref_frame(AVCodecContext *ctx, VP9Frame *f)
  159. {
  160. ff_thread_release_buffer(ctx, &f->tf);
  161. av_buffer_unref(&f->extradata);
  162. av_buffer_unref(&f->hwaccel_priv_buf);
  163. f->segmentation_map = NULL;
  164. f->hwaccel_picture_private = NULL;
  165. }
  166. static int vp9_alloc_frame(AVCodecContext *ctx, VP9Frame *f)
  167. {
  168. VP9Context *s = ctx->priv_data;
  169. int ret, sz;
  170. if ((ret = ff_thread_get_buffer(ctx, &f->tf, AV_GET_BUFFER_FLAG_REF)) < 0)
  171. return ret;
  172. sz = 64 * s->sb_cols * s->sb_rows;
  173. if (!(f->extradata = av_buffer_allocz(sz * (1 + sizeof(struct VP9mvrefPair))))) {
  174. goto fail;
  175. }
  176. f->segmentation_map = f->extradata->data;
  177. f->mv = (struct VP9mvrefPair *) (f->extradata->data + sz);
  178. if (ctx->hwaccel) {
  179. const AVHWAccel *hwaccel = ctx->hwaccel;
  180. av_assert0(!f->hwaccel_picture_private);
  181. if (hwaccel->frame_priv_data_size) {
  182. f->hwaccel_priv_buf = av_buffer_allocz(hwaccel->frame_priv_data_size);
  183. if (!f->hwaccel_priv_buf)
  184. goto fail;
  185. f->hwaccel_picture_private = f->hwaccel_priv_buf->data;
  186. }
  187. }
  188. return 0;
  189. fail:
  190. vp9_unref_frame(ctx, f);
  191. return AVERROR(ENOMEM);
  192. }
  193. static int vp9_ref_frame(AVCodecContext *ctx, VP9Frame *dst, VP9Frame *src)
  194. {
  195. int res;
  196. if ((res = ff_thread_ref_frame(&dst->tf, &src->tf)) < 0) {
  197. return res;
  198. } else if (!(dst->extradata = av_buffer_ref(src->extradata))) {
  199. goto fail;
  200. }
  201. dst->segmentation_map = src->segmentation_map;
  202. dst->mv = src->mv;
  203. dst->uses_2pass = src->uses_2pass;
  204. if (src->hwaccel_picture_private) {
  205. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  206. if (!dst->hwaccel_priv_buf)
  207. goto fail;
  208. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  209. }
  210. return 0;
  211. fail:
  212. vp9_unref_frame(ctx, dst);
  213. return AVERROR(ENOMEM);
  214. }
  215. static int update_size(AVCodecContext *ctx, int w, int h)
  216. {
  217. #define HWACCEL_MAX (CONFIG_VP9_DXVA2_HWACCEL + CONFIG_VP9_D3D11VA_HWACCEL)
  218. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmtp = pix_fmts;
  219. VP9Context *s = ctx->priv_data;
  220. uint8_t *p;
  221. int bytesperpixel = s->bytesperpixel, res;
  222. av_assert0(w > 0 && h > 0);
  223. if (s->intra_pred_data[0] && w == ctx->width && h == ctx->height && s->pix_fmt == s->last_fmt)
  224. return 0;
  225. if ((res = ff_set_dimensions(ctx, w, h)) < 0)
  226. return res;
  227. if (s->pix_fmt == AV_PIX_FMT_YUV420P) {
  228. #if CONFIG_VP9_DXVA2_HWACCEL
  229. *fmtp++ = AV_PIX_FMT_DXVA2_VLD;
  230. #endif
  231. #if CONFIG_VP9_D3D11VA_HWACCEL
  232. *fmtp++ = AV_PIX_FMT_D3D11VA_VLD;
  233. #endif
  234. }
  235. *fmtp++ = s->pix_fmt;
  236. *fmtp = AV_PIX_FMT_NONE;
  237. res = ff_thread_get_format(ctx, pix_fmts);
  238. if (res < 0)
  239. return res;
  240. ctx->pix_fmt = res;
  241. s->last_fmt = s->pix_fmt;
  242. s->sb_cols = (w + 63) >> 6;
  243. s->sb_rows = (h + 63) >> 6;
  244. s->cols = (w + 7) >> 3;
  245. s->rows = (h + 7) >> 3;
  246. #define assign(var, type, n) var = (type) p; p += s->sb_cols * (n) * sizeof(*var)
  247. av_freep(&s->intra_pred_data[0]);
  248. // FIXME we slightly over-allocate here for subsampled chroma, but a little
  249. // bit of padding shouldn't affect performance...
  250. p = av_malloc(s->sb_cols * (128 + 192 * bytesperpixel +
  251. sizeof(*s->lflvl) + 16 * sizeof(*s->above_mv_ctx)));
  252. if (!p)
  253. return AVERROR(ENOMEM);
  254. assign(s->intra_pred_data[0], uint8_t *, 64 * bytesperpixel);
  255. assign(s->intra_pred_data[1], uint8_t *, 64 * bytesperpixel);
  256. assign(s->intra_pred_data[2], uint8_t *, 64 * bytesperpixel);
  257. assign(s->above_y_nnz_ctx, uint8_t *, 16);
  258. assign(s->above_mode_ctx, uint8_t *, 16);
  259. assign(s->above_mv_ctx, VP56mv(*)[2], 16);
  260. assign(s->above_uv_nnz_ctx[0], uint8_t *, 16);
  261. assign(s->above_uv_nnz_ctx[1], uint8_t *, 16);
  262. assign(s->above_partition_ctx, uint8_t *, 8);
  263. assign(s->above_skip_ctx, uint8_t *, 8);
  264. assign(s->above_txfm_ctx, uint8_t *, 8);
  265. assign(s->above_segpred_ctx, uint8_t *, 8);
  266. assign(s->above_intra_ctx, uint8_t *, 8);
  267. assign(s->above_comp_ctx, uint8_t *, 8);
  268. assign(s->above_ref_ctx, uint8_t *, 8);
  269. assign(s->above_filter_ctx, uint8_t *, 8);
  270. assign(s->lflvl, struct VP9Filter *, 1);
  271. #undef assign
  272. // these will be re-allocated a little later
  273. av_freep(&s->b_base);
  274. av_freep(&s->block_base);
  275. if (s->bpp != s->last_bpp) {
  276. ff_vp9dsp_init(&s->dsp, s->bpp, ctx->flags & AV_CODEC_FLAG_BITEXACT);
  277. ff_videodsp_init(&s->vdsp, s->bpp);
  278. s->last_bpp = s->bpp;
  279. }
  280. return 0;
  281. }
  282. static int update_block_buffers(AVCodecContext *ctx)
  283. {
  284. VP9Context *s = ctx->priv_data;
  285. int chroma_blocks, chroma_eobs, bytesperpixel = s->bytesperpixel;
  286. if (s->b_base && s->block_base && s->block_alloc_using_2pass == s->s.frames[CUR_FRAME].uses_2pass)
  287. return 0;
  288. av_free(s->b_base);
  289. av_free(s->block_base);
  290. chroma_blocks = 64 * 64 >> (s->ss_h + s->ss_v);
  291. chroma_eobs = 16 * 16 >> (s->ss_h + s->ss_v);
  292. if (s->s.frames[CUR_FRAME].uses_2pass) {
  293. int sbs = s->sb_cols * s->sb_rows;
  294. s->b_base = av_malloc_array(s->cols * s->rows, sizeof(VP9Block));
  295. s->block_base = av_mallocz(((64 * 64 + 2 * chroma_blocks) * bytesperpixel * sizeof(int16_t) +
  296. 16 * 16 + 2 * chroma_eobs) * sbs);
  297. if (!s->b_base || !s->block_base)
  298. return AVERROR(ENOMEM);
  299. s->uvblock_base[0] = s->block_base + sbs * 64 * 64 * bytesperpixel;
  300. s->uvblock_base[1] = s->uvblock_base[0] + sbs * chroma_blocks * bytesperpixel;
  301. s->eob_base = (uint8_t *) (s->uvblock_base[1] + sbs * chroma_blocks * bytesperpixel);
  302. s->uveob_base[0] = s->eob_base + 16 * 16 * sbs;
  303. s->uveob_base[1] = s->uveob_base[0] + chroma_eobs * sbs;
  304. } else {
  305. s->b_base = av_malloc(sizeof(VP9Block));
  306. s->block_base = av_mallocz((64 * 64 + 2 * chroma_blocks) * bytesperpixel * sizeof(int16_t) +
  307. 16 * 16 + 2 * chroma_eobs);
  308. if (!s->b_base || !s->block_base)
  309. return AVERROR(ENOMEM);
  310. s->uvblock_base[0] = s->block_base + 64 * 64 * bytesperpixel;
  311. s->uvblock_base[1] = s->uvblock_base[0] + chroma_blocks * bytesperpixel;
  312. s->eob_base = (uint8_t *) (s->uvblock_base[1] + chroma_blocks * bytesperpixel);
  313. s->uveob_base[0] = s->eob_base + 16 * 16;
  314. s->uveob_base[1] = s->uveob_base[0] + chroma_eobs;
  315. }
  316. s->block_alloc_using_2pass = s->s.frames[CUR_FRAME].uses_2pass;
  317. return 0;
  318. }
  319. // for some reason the sign bit is at the end, not the start, of a bit sequence
  320. static av_always_inline int get_sbits_inv(GetBitContext *gb, int n)
  321. {
  322. int v = get_bits(gb, n);
  323. return get_bits1(gb) ? -v : v;
  324. }
  325. static av_always_inline int inv_recenter_nonneg(int v, int m)
  326. {
  327. return v > 2 * m ? v : v & 1 ? m - ((v + 1) >> 1) : m + (v >> 1);
  328. }
  329. // differential forward probability updates
  330. static int update_prob(VP56RangeCoder *c, int p)
  331. {
  332. static const int inv_map_table[255] = {
  333. 7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176,
  334. 189, 202, 215, 228, 241, 254, 1, 2, 3, 4, 5, 6, 8, 9,
  335. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24,
  336. 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39,
  337. 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54,
  338. 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
  339. 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
  340. 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100,
  341. 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115,
  342. 116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 129, 130,
  343. 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145,
  344. 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
  345. 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175,
  346. 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 190, 191,
  347. 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206,
  348. 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221,
  349. 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236,
  350. 237, 238, 239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251,
  351. 252, 253, 253,
  352. };
  353. int d;
  354. /* This code is trying to do a differential probability update. For a
  355. * current probability A in the range [1, 255], the difference to a new
  356. * probability of any value can be expressed differentially as 1-A,255-A
  357. * where some part of this (absolute range) exists both in positive as
  358. * well as the negative part, whereas another part only exists in one
  359. * half. We're trying to code this shared part differentially, i.e.
  360. * times two where the value of the lowest bit specifies the sign, and
  361. * the single part is then coded on top of this. This absolute difference
  362. * then again has a value of [0,254], but a bigger value in this range
  363. * indicates that we're further away from the original value A, so we
  364. * can code this as a VLC code, since higher values are increasingly
  365. * unlikely. The first 20 values in inv_map_table[] allow 'cheap, rough'
  366. * updates vs. the 'fine, exact' updates further down the range, which
  367. * adds one extra dimension to this differential update model. */
  368. if (!vp8_rac_get(c)) {
  369. d = vp8_rac_get_uint(c, 4) + 0;
  370. } else if (!vp8_rac_get(c)) {
  371. d = vp8_rac_get_uint(c, 4) + 16;
  372. } else if (!vp8_rac_get(c)) {
  373. d = vp8_rac_get_uint(c, 5) + 32;
  374. } else {
  375. d = vp8_rac_get_uint(c, 7);
  376. if (d >= 65)
  377. d = (d << 1) - 65 + vp8_rac_get(c);
  378. d += 64;
  379. av_assert2(d < FF_ARRAY_ELEMS(inv_map_table));
  380. }
  381. return p <= 128 ? 1 + inv_recenter_nonneg(inv_map_table[d], p - 1) :
  382. 255 - inv_recenter_nonneg(inv_map_table[d], 255 - p);
  383. }
  384. static int read_colorspace_details(AVCodecContext *ctx)
  385. {
  386. static const enum AVColorSpace colorspaces[8] = {
  387. AVCOL_SPC_UNSPECIFIED, AVCOL_SPC_BT470BG, AVCOL_SPC_BT709, AVCOL_SPC_SMPTE170M,
  388. AVCOL_SPC_SMPTE240M, AVCOL_SPC_BT2020_NCL, AVCOL_SPC_RESERVED, AVCOL_SPC_RGB,
  389. };
  390. VP9Context *s = ctx->priv_data;
  391. int bits = ctx->profile <= 1 ? 0 : 1 + get_bits1(&s->gb); // 0:8, 1:10, 2:12
  392. s->bpp_index = bits;
  393. s->bpp = 8 + bits * 2;
  394. s->bytesperpixel = (7 + s->bpp) >> 3;
  395. ctx->colorspace = colorspaces[get_bits(&s->gb, 3)];
  396. if (ctx->colorspace == AVCOL_SPC_RGB) { // RGB = profile 1
  397. static const enum AVPixelFormat pix_fmt_rgb[3] = {
  398. AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12
  399. };
  400. s->ss_h = s->ss_v = 0;
  401. ctx->color_range = AVCOL_RANGE_JPEG;
  402. s->pix_fmt = pix_fmt_rgb[bits];
  403. if (ctx->profile & 1) {
  404. if (get_bits1(&s->gb)) {
  405. av_log(ctx, AV_LOG_ERROR, "Reserved bit set in RGB\n");
  406. return AVERROR_INVALIDDATA;
  407. }
  408. } else {
  409. av_log(ctx, AV_LOG_ERROR, "RGB not supported in profile %d\n",
  410. ctx->profile);
  411. return AVERROR_INVALIDDATA;
  412. }
  413. } else {
  414. static const enum AVPixelFormat pix_fmt_for_ss[3][2 /* v */][2 /* h */] = {
  415. { { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P },
  416. { AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV420P } },
  417. { { AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10 },
  418. { AV_PIX_FMT_YUV440P10, AV_PIX_FMT_YUV420P10 } },
  419. { { AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12 },
  420. { AV_PIX_FMT_YUV440P12, AV_PIX_FMT_YUV420P12 } }
  421. };
  422. ctx->color_range = get_bits1(&s->gb) ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
  423. if (ctx->profile & 1) {
  424. s->ss_h = get_bits1(&s->gb);
  425. s->ss_v = get_bits1(&s->gb);
  426. s->pix_fmt = pix_fmt_for_ss[bits][s->ss_v][s->ss_h];
  427. if (s->pix_fmt == AV_PIX_FMT_YUV420P) {
  428. av_log(ctx, AV_LOG_ERROR, "YUV 4:2:0 not supported in profile %d\n",
  429. ctx->profile);
  430. return AVERROR_INVALIDDATA;
  431. } else if (get_bits1(&s->gb)) {
  432. av_log(ctx, AV_LOG_ERROR, "Profile %d color details reserved bit set\n",
  433. ctx->profile);
  434. return AVERROR_INVALIDDATA;
  435. }
  436. } else {
  437. s->ss_h = s->ss_v = 1;
  438. s->pix_fmt = pix_fmt_for_ss[bits][1][1];
  439. }
  440. }
  441. return 0;
  442. }
  443. static int decode_frame_header(AVCodecContext *ctx,
  444. const uint8_t *data, int size, int *ref)
  445. {
  446. VP9Context *s = ctx->priv_data;
  447. int c, i, j, k, l, m, n, w, h, max, size2, res, sharp;
  448. int last_invisible;
  449. const uint8_t *data2;
  450. /* general header */
  451. if ((res = init_get_bits8(&s->gb, data, size)) < 0) {
  452. av_log(ctx, AV_LOG_ERROR, "Failed to initialize bitstream reader\n");
  453. return res;
  454. }
  455. if (get_bits(&s->gb, 2) != 0x2) { // frame marker
  456. av_log(ctx, AV_LOG_ERROR, "Invalid frame marker\n");
  457. return AVERROR_INVALIDDATA;
  458. }
  459. ctx->profile = get_bits1(&s->gb);
  460. ctx->profile |= get_bits1(&s->gb) << 1;
  461. if (ctx->profile == 3) ctx->profile += get_bits1(&s->gb);
  462. if (ctx->profile > 3) {
  463. av_log(ctx, AV_LOG_ERROR, "Profile %d is not yet supported\n", ctx->profile);
  464. return AVERROR_INVALIDDATA;
  465. }
  466. s->s.h.profile = ctx->profile;
  467. if (get_bits1(&s->gb)) {
  468. *ref = get_bits(&s->gb, 3);
  469. return 0;
  470. }
  471. s->last_keyframe = s->s.h.keyframe;
  472. s->s.h.keyframe = !get_bits1(&s->gb);
  473. last_invisible = s->s.h.invisible;
  474. s->s.h.invisible = !get_bits1(&s->gb);
  475. s->s.h.errorres = get_bits1(&s->gb);
  476. s->s.h.use_last_frame_mvs = !s->s.h.errorres && !last_invisible;
  477. if (s->s.h.keyframe) {
  478. if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
  479. av_log(ctx, AV_LOG_ERROR, "Invalid sync code\n");
  480. return AVERROR_INVALIDDATA;
  481. }
  482. if ((res = read_colorspace_details(ctx)) < 0)
  483. return res;
  484. // for profile 1, here follows the subsampling bits
  485. s->s.h.refreshrefmask = 0xff;
  486. w = get_bits(&s->gb, 16) + 1;
  487. h = get_bits(&s->gb, 16) + 1;
  488. if (get_bits1(&s->gb)) // display size
  489. skip_bits(&s->gb, 32);
  490. } else {
  491. s->s.h.intraonly = s->s.h.invisible ? get_bits1(&s->gb) : 0;
  492. s->s.h.resetctx = s->s.h.errorres ? 0 : get_bits(&s->gb, 2);
  493. if (s->s.h.intraonly) {
  494. if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
  495. av_log(ctx, AV_LOG_ERROR, "Invalid sync code\n");
  496. return AVERROR_INVALIDDATA;
  497. }
  498. if (ctx->profile >= 1) {
  499. if ((res = read_colorspace_details(ctx)) < 0)
  500. return res;
  501. } else {
  502. s->ss_h = s->ss_v = 1;
  503. s->bpp = 8;
  504. s->bpp_index = 0;
  505. s->bytesperpixel = 1;
  506. s->pix_fmt = AV_PIX_FMT_YUV420P;
  507. ctx->colorspace = AVCOL_SPC_BT470BG;
  508. ctx->color_range = AVCOL_RANGE_JPEG;
  509. }
  510. s->s.h.refreshrefmask = get_bits(&s->gb, 8);
  511. w = get_bits(&s->gb, 16) + 1;
  512. h = get_bits(&s->gb, 16) + 1;
  513. if (get_bits1(&s->gb)) // display size
  514. skip_bits(&s->gb, 32);
  515. } else {
  516. s->s.h.refreshrefmask = get_bits(&s->gb, 8);
  517. s->s.h.refidx[0] = get_bits(&s->gb, 3);
  518. s->s.h.signbias[0] = get_bits1(&s->gb) && !s->s.h.errorres;
  519. s->s.h.refidx[1] = get_bits(&s->gb, 3);
  520. s->s.h.signbias[1] = get_bits1(&s->gb) && !s->s.h.errorres;
  521. s->s.h.refidx[2] = get_bits(&s->gb, 3);
  522. s->s.h.signbias[2] = get_bits1(&s->gb) && !s->s.h.errorres;
  523. if (!s->s.refs[s->s.h.refidx[0]].f->buf[0] ||
  524. !s->s.refs[s->s.h.refidx[1]].f->buf[0] ||
  525. !s->s.refs[s->s.h.refidx[2]].f->buf[0]) {
  526. av_log(ctx, AV_LOG_ERROR, "Not all references are available\n");
  527. return AVERROR_INVALIDDATA;
  528. }
  529. if (get_bits1(&s->gb)) {
  530. w = s->s.refs[s->s.h.refidx[0]].f->width;
  531. h = s->s.refs[s->s.h.refidx[0]].f->height;
  532. } else if (get_bits1(&s->gb)) {
  533. w = s->s.refs[s->s.h.refidx[1]].f->width;
  534. h = s->s.refs[s->s.h.refidx[1]].f->height;
  535. } else if (get_bits1(&s->gb)) {
  536. w = s->s.refs[s->s.h.refidx[2]].f->width;
  537. h = s->s.refs[s->s.h.refidx[2]].f->height;
  538. } else {
  539. w = get_bits(&s->gb, 16) + 1;
  540. h = get_bits(&s->gb, 16) + 1;
  541. }
  542. // Note that in this code, "CUR_FRAME" is actually before we
  543. // have formally allocated a frame, and thus actually represents
  544. // the _last_ frame
  545. s->s.h.use_last_frame_mvs &= s->s.frames[CUR_FRAME].tf.f->width == w &&
  546. s->s.frames[CUR_FRAME].tf.f->height == h;
  547. if (get_bits1(&s->gb)) // display size
  548. skip_bits(&s->gb, 32);
  549. s->s.h.highprecisionmvs = get_bits1(&s->gb);
  550. s->s.h.filtermode = get_bits1(&s->gb) ? FILTER_SWITCHABLE :
  551. get_bits(&s->gb, 2);
  552. s->s.h.allowcompinter = s->s.h.signbias[0] != s->s.h.signbias[1] ||
  553. s->s.h.signbias[0] != s->s.h.signbias[2];
  554. if (s->s.h.allowcompinter) {
  555. if (s->s.h.signbias[0] == s->s.h.signbias[1]) {
  556. s->s.h.fixcompref = 2;
  557. s->s.h.varcompref[0] = 0;
  558. s->s.h.varcompref[1] = 1;
  559. } else if (s->s.h.signbias[0] == s->s.h.signbias[2]) {
  560. s->s.h.fixcompref = 1;
  561. s->s.h.varcompref[0] = 0;
  562. s->s.h.varcompref[1] = 2;
  563. } else {
  564. s->s.h.fixcompref = 0;
  565. s->s.h.varcompref[0] = 1;
  566. s->s.h.varcompref[1] = 2;
  567. }
  568. }
  569. }
  570. }
  571. s->s.h.refreshctx = s->s.h.errorres ? 0 : get_bits1(&s->gb);
  572. s->s.h.parallelmode = s->s.h.errorres ? 1 : get_bits1(&s->gb);
  573. s->s.h.framectxid = c = get_bits(&s->gb, 2);
  574. /* loopfilter header data */
  575. if (s->s.h.keyframe || s->s.h.errorres || s->s.h.intraonly) {
  576. // reset loopfilter defaults
  577. s->s.h.lf_delta.ref[0] = 1;
  578. s->s.h.lf_delta.ref[1] = 0;
  579. s->s.h.lf_delta.ref[2] = -1;
  580. s->s.h.lf_delta.ref[3] = -1;
  581. s->s.h.lf_delta.mode[0] = 0;
  582. s->s.h.lf_delta.mode[1] = 0;
  583. memset(s->s.h.segmentation.feat, 0, sizeof(s->s.h.segmentation.feat));
  584. }
  585. s->s.h.filter.level = get_bits(&s->gb, 6);
  586. sharp = get_bits(&s->gb, 3);
  587. // if sharpness changed, reinit lim/mblim LUTs. if it didn't change, keep
  588. // the old cache values since they are still valid
  589. if (s->s.h.filter.sharpness != sharp)
  590. memset(s->filter_lut.lim_lut, 0, sizeof(s->filter_lut.lim_lut));
  591. s->s.h.filter.sharpness = sharp;
  592. if ((s->s.h.lf_delta.enabled = get_bits1(&s->gb))) {
  593. if ((s->s.h.lf_delta.updated = get_bits1(&s->gb))) {
  594. for (i = 0; i < 4; i++)
  595. if (get_bits1(&s->gb))
  596. s->s.h.lf_delta.ref[i] = get_sbits_inv(&s->gb, 6);
  597. for (i = 0; i < 2; i++)
  598. if (get_bits1(&s->gb))
  599. s->s.h.lf_delta.mode[i] = get_sbits_inv(&s->gb, 6);
  600. }
  601. }
  602. /* quantization header data */
  603. s->s.h.yac_qi = get_bits(&s->gb, 8);
  604. s->s.h.ydc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
  605. s->s.h.uvdc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
  606. s->s.h.uvac_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
  607. s->s.h.lossless = s->s.h.yac_qi == 0 && s->s.h.ydc_qdelta == 0 &&
  608. s->s.h.uvdc_qdelta == 0 && s->s.h.uvac_qdelta == 0;
  609. if (s->s.h.lossless)
  610. ctx->properties |= FF_CODEC_PROPERTY_LOSSLESS;
  611. /* segmentation header info */
  612. if ((s->s.h.segmentation.enabled = get_bits1(&s->gb))) {
  613. if ((s->s.h.segmentation.update_map = get_bits1(&s->gb))) {
  614. for (i = 0; i < 7; i++)
  615. s->s.h.segmentation.prob[i] = get_bits1(&s->gb) ?
  616. get_bits(&s->gb, 8) : 255;
  617. if ((s->s.h.segmentation.temporal = get_bits1(&s->gb))) {
  618. for (i = 0; i < 3; i++)
  619. s->s.h.segmentation.pred_prob[i] = get_bits1(&s->gb) ?
  620. get_bits(&s->gb, 8) : 255;
  621. }
  622. }
  623. if (get_bits1(&s->gb)) {
  624. s->s.h.segmentation.absolute_vals = get_bits1(&s->gb);
  625. for (i = 0; i < 8; i++) {
  626. if ((s->s.h.segmentation.feat[i].q_enabled = get_bits1(&s->gb)))
  627. s->s.h.segmentation.feat[i].q_val = get_sbits_inv(&s->gb, 8);
  628. if ((s->s.h.segmentation.feat[i].lf_enabled = get_bits1(&s->gb)))
  629. s->s.h.segmentation.feat[i].lf_val = get_sbits_inv(&s->gb, 6);
  630. if ((s->s.h.segmentation.feat[i].ref_enabled = get_bits1(&s->gb)))
  631. s->s.h.segmentation.feat[i].ref_val = get_bits(&s->gb, 2);
  632. s->s.h.segmentation.feat[i].skip_enabled = get_bits1(&s->gb);
  633. }
  634. }
  635. }
  636. // set qmul[] based on Y/UV, AC/DC and segmentation Q idx deltas
  637. for (i = 0; i < (s->s.h.segmentation.enabled ? 8 : 1); i++) {
  638. int qyac, qydc, quvac, quvdc, lflvl, sh;
  639. if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[i].q_enabled) {
  640. if (s->s.h.segmentation.absolute_vals)
  641. qyac = av_clip_uintp2(s->s.h.segmentation.feat[i].q_val, 8);
  642. else
  643. qyac = av_clip_uintp2(s->s.h.yac_qi + s->s.h.segmentation.feat[i].q_val, 8);
  644. } else {
  645. qyac = s->s.h.yac_qi;
  646. }
  647. qydc = av_clip_uintp2(qyac + s->s.h.ydc_qdelta, 8);
  648. quvdc = av_clip_uintp2(qyac + s->s.h.uvdc_qdelta, 8);
  649. quvac = av_clip_uintp2(qyac + s->s.h.uvac_qdelta, 8);
  650. qyac = av_clip_uintp2(qyac, 8);
  651. s->s.h.segmentation.feat[i].qmul[0][0] = vp9_dc_qlookup[s->bpp_index][qydc];
  652. s->s.h.segmentation.feat[i].qmul[0][1] = vp9_ac_qlookup[s->bpp_index][qyac];
  653. s->s.h.segmentation.feat[i].qmul[1][0] = vp9_dc_qlookup[s->bpp_index][quvdc];
  654. s->s.h.segmentation.feat[i].qmul[1][1] = vp9_ac_qlookup[s->bpp_index][quvac];
  655. sh = s->s.h.filter.level >= 32;
  656. if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[i].lf_enabled) {
  657. if (s->s.h.segmentation.absolute_vals)
  658. lflvl = av_clip_uintp2(s->s.h.segmentation.feat[i].lf_val, 6);
  659. else
  660. lflvl = av_clip_uintp2(s->s.h.filter.level + s->s.h.segmentation.feat[i].lf_val, 6);
  661. } else {
  662. lflvl = s->s.h.filter.level;
  663. }
  664. if (s->s.h.lf_delta.enabled) {
  665. s->s.h.segmentation.feat[i].lflvl[0][0] =
  666. s->s.h.segmentation.feat[i].lflvl[0][1] =
  667. av_clip_uintp2(lflvl + (s->s.h.lf_delta.ref[0] << sh), 6);
  668. for (j = 1; j < 4; j++) {
  669. s->s.h.segmentation.feat[i].lflvl[j][0] =
  670. av_clip_uintp2(lflvl + ((s->s.h.lf_delta.ref[j] +
  671. s->s.h.lf_delta.mode[0]) * (1 << sh)), 6);
  672. s->s.h.segmentation.feat[i].lflvl[j][1] =
  673. av_clip_uintp2(lflvl + ((s->s.h.lf_delta.ref[j] +
  674. s->s.h.lf_delta.mode[1]) * (1 << sh)), 6);
  675. }
  676. } else {
  677. memset(s->s.h.segmentation.feat[i].lflvl, lflvl,
  678. sizeof(s->s.h.segmentation.feat[i].lflvl));
  679. }
  680. }
  681. /* tiling info */
  682. if ((res = update_size(ctx, w, h)) < 0) {
  683. av_log(ctx, AV_LOG_ERROR, "Failed to initialize decoder for %dx%d @ %d\n",
  684. w, h, s->pix_fmt);
  685. return res;
  686. }
  687. for (s->s.h.tiling.log2_tile_cols = 0;
  688. s->sb_cols > (64 << s->s.h.tiling.log2_tile_cols);
  689. s->s.h.tiling.log2_tile_cols++) ;
  690. for (max = 0; (s->sb_cols >> max) >= 4; max++) ;
  691. max = FFMAX(0, max - 1);
  692. while (max > s->s.h.tiling.log2_tile_cols) {
  693. if (get_bits1(&s->gb))
  694. s->s.h.tiling.log2_tile_cols++;
  695. else
  696. break;
  697. }
  698. s->s.h.tiling.log2_tile_rows = decode012(&s->gb);
  699. s->s.h.tiling.tile_rows = 1 << s->s.h.tiling.log2_tile_rows;
  700. if (s->s.h.tiling.tile_cols != (1 << s->s.h.tiling.log2_tile_cols)) {
  701. s->s.h.tiling.tile_cols = 1 << s->s.h.tiling.log2_tile_cols;
  702. s->c_b = av_fast_realloc(s->c_b, &s->c_b_size,
  703. sizeof(VP56RangeCoder) * s->s.h.tiling.tile_cols);
  704. if (!s->c_b) {
  705. av_log(ctx, AV_LOG_ERROR, "Ran out of memory during range coder init\n");
  706. return AVERROR(ENOMEM);
  707. }
  708. }
  709. /* check reference frames */
  710. if (!s->s.h.keyframe && !s->s.h.intraonly) {
  711. for (i = 0; i < 3; i++) {
  712. AVFrame *ref = s->s.refs[s->s.h.refidx[i]].f;
  713. int refw = ref->width, refh = ref->height;
  714. if (ref->format != ctx->pix_fmt) {
  715. av_log(ctx, AV_LOG_ERROR,
  716. "Ref pixfmt (%s) did not match current frame (%s)",
  717. av_get_pix_fmt_name(ref->format),
  718. av_get_pix_fmt_name(ctx->pix_fmt));
  719. return AVERROR_INVALIDDATA;
  720. } else if (refw == w && refh == h) {
  721. s->mvscale[i][0] = s->mvscale[i][1] = 0;
  722. } else {
  723. if (w * 2 < refw || h * 2 < refh || w > 16 * refw || h > 16 * refh) {
  724. av_log(ctx, AV_LOG_ERROR,
  725. "Invalid ref frame dimensions %dx%d for frame size %dx%d\n",
  726. refw, refh, w, h);
  727. return AVERROR_INVALIDDATA;
  728. }
  729. s->mvscale[i][0] = (refw << 14) / w;
  730. s->mvscale[i][1] = (refh << 14) / h;
  731. s->mvstep[i][0] = 16 * s->mvscale[i][0] >> 14;
  732. s->mvstep[i][1] = 16 * s->mvscale[i][1] >> 14;
  733. }
  734. }
  735. }
  736. if (s->s.h.keyframe || s->s.h.errorres || (s->s.h.intraonly && s->s.h.resetctx == 3)) {
  737. s->prob_ctx[0].p = s->prob_ctx[1].p = s->prob_ctx[2].p =
  738. s->prob_ctx[3].p = vp9_default_probs;
  739. memcpy(s->prob_ctx[0].coef, vp9_default_coef_probs,
  740. sizeof(vp9_default_coef_probs));
  741. memcpy(s->prob_ctx[1].coef, vp9_default_coef_probs,
  742. sizeof(vp9_default_coef_probs));
  743. memcpy(s->prob_ctx[2].coef, vp9_default_coef_probs,
  744. sizeof(vp9_default_coef_probs));
  745. memcpy(s->prob_ctx[3].coef, vp9_default_coef_probs,
  746. sizeof(vp9_default_coef_probs));
  747. } else if (s->s.h.intraonly && s->s.h.resetctx == 2) {
  748. s->prob_ctx[c].p = vp9_default_probs;
  749. memcpy(s->prob_ctx[c].coef, vp9_default_coef_probs,
  750. sizeof(vp9_default_coef_probs));
  751. }
  752. // next 16 bits is size of the rest of the header (arith-coded)
  753. s->s.h.compressed_header_size = size2 = get_bits(&s->gb, 16);
  754. s->s.h.uncompressed_header_size = (get_bits_count(&s->gb) + 7) / 8;
  755. data2 = align_get_bits(&s->gb);
  756. if (size2 > size - (data2 - data)) {
  757. av_log(ctx, AV_LOG_ERROR, "Invalid compressed header size\n");
  758. return AVERROR_INVALIDDATA;
  759. }
  760. ff_vp56_init_range_decoder(&s->c, data2, size2);
  761. if (vp56_rac_get_prob_branchy(&s->c, 128)) { // marker bit
  762. av_log(ctx, AV_LOG_ERROR, "Marker bit was set\n");
  763. return AVERROR_INVALIDDATA;
  764. }
  765. if (s->s.h.keyframe || s->s.h.intraonly) {
  766. memset(s->counts.coef, 0, sizeof(s->counts.coef));
  767. memset(s->counts.eob, 0, sizeof(s->counts.eob));
  768. } else {
  769. memset(&s->counts, 0, sizeof(s->counts));
  770. }
  771. // FIXME is it faster to not copy here, but do it down in the fw updates
  772. // as explicit copies if the fw update is missing (and skip the copy upon
  773. // fw update)?
  774. s->prob.p = s->prob_ctx[c].p;
  775. // txfm updates
  776. if (s->s.h.lossless) {
  777. s->s.h.txfmmode = TX_4X4;
  778. } else {
  779. s->s.h.txfmmode = vp8_rac_get_uint(&s->c, 2);
  780. if (s->s.h.txfmmode == 3)
  781. s->s.h.txfmmode += vp8_rac_get(&s->c);
  782. if (s->s.h.txfmmode == TX_SWITCHABLE) {
  783. for (i = 0; i < 2; i++)
  784. if (vp56_rac_get_prob_branchy(&s->c, 252))
  785. s->prob.p.tx8p[i] = update_prob(&s->c, s->prob.p.tx8p[i]);
  786. for (i = 0; i < 2; i++)
  787. for (j = 0; j < 2; j++)
  788. if (vp56_rac_get_prob_branchy(&s->c, 252))
  789. s->prob.p.tx16p[i][j] =
  790. update_prob(&s->c, s->prob.p.tx16p[i][j]);
  791. for (i = 0; i < 2; i++)
  792. for (j = 0; j < 3; j++)
  793. if (vp56_rac_get_prob_branchy(&s->c, 252))
  794. s->prob.p.tx32p[i][j] =
  795. update_prob(&s->c, s->prob.p.tx32p[i][j]);
  796. }
  797. }
  798. // coef updates
  799. for (i = 0; i < 4; i++) {
  800. uint8_t (*ref)[2][6][6][3] = s->prob_ctx[c].coef[i];
  801. if (vp8_rac_get(&s->c)) {
  802. for (j = 0; j < 2; j++)
  803. for (k = 0; k < 2; k++)
  804. for (l = 0; l < 6; l++)
  805. for (m = 0; m < 6; m++) {
  806. uint8_t *p = s->prob.coef[i][j][k][l][m];
  807. uint8_t *r = ref[j][k][l][m];
  808. if (m >= 3 && l == 0) // dc only has 3 pt
  809. break;
  810. for (n = 0; n < 3; n++) {
  811. if (vp56_rac_get_prob_branchy(&s->c, 252)) {
  812. p[n] = update_prob(&s->c, r[n]);
  813. } else {
  814. p[n] = r[n];
  815. }
  816. }
  817. p[3] = 0;
  818. }
  819. } else {
  820. for (j = 0; j < 2; j++)
  821. for (k = 0; k < 2; k++)
  822. for (l = 0; l < 6; l++)
  823. for (m = 0; m < 6; m++) {
  824. uint8_t *p = s->prob.coef[i][j][k][l][m];
  825. uint8_t *r = ref[j][k][l][m];
  826. if (m > 3 && l == 0) // dc only has 3 pt
  827. break;
  828. memcpy(p, r, 3);
  829. p[3] = 0;
  830. }
  831. }
  832. if (s->s.h.txfmmode == i)
  833. break;
  834. }
  835. // mode updates
  836. for (i = 0; i < 3; i++)
  837. if (vp56_rac_get_prob_branchy(&s->c, 252))
  838. s->prob.p.skip[i] = update_prob(&s->c, s->prob.p.skip[i]);
  839. if (!s->s.h.keyframe && !s->s.h.intraonly) {
  840. for (i = 0; i < 7; i++)
  841. for (j = 0; j < 3; j++)
  842. if (vp56_rac_get_prob_branchy(&s->c, 252))
  843. s->prob.p.mv_mode[i][j] =
  844. update_prob(&s->c, s->prob.p.mv_mode[i][j]);
  845. if (s->s.h.filtermode == FILTER_SWITCHABLE)
  846. for (i = 0; i < 4; i++)
  847. for (j = 0; j < 2; j++)
  848. if (vp56_rac_get_prob_branchy(&s->c, 252))
  849. s->prob.p.filter[i][j] =
  850. update_prob(&s->c, s->prob.p.filter[i][j]);
  851. for (i = 0; i < 4; i++)
  852. if (vp56_rac_get_prob_branchy(&s->c, 252))
  853. s->prob.p.intra[i] = update_prob(&s->c, s->prob.p.intra[i]);
  854. if (s->s.h.allowcompinter) {
  855. s->s.h.comppredmode = vp8_rac_get(&s->c);
  856. if (s->s.h.comppredmode)
  857. s->s.h.comppredmode += vp8_rac_get(&s->c);
  858. if (s->s.h.comppredmode == PRED_SWITCHABLE)
  859. for (i = 0; i < 5; i++)
  860. if (vp56_rac_get_prob_branchy(&s->c, 252))
  861. s->prob.p.comp[i] =
  862. update_prob(&s->c, s->prob.p.comp[i]);
  863. } else {
  864. s->s.h.comppredmode = PRED_SINGLEREF;
  865. }
  866. if (s->s.h.comppredmode != PRED_COMPREF) {
  867. for (i = 0; i < 5; i++) {
  868. if (vp56_rac_get_prob_branchy(&s->c, 252))
  869. s->prob.p.single_ref[i][0] =
  870. update_prob(&s->c, s->prob.p.single_ref[i][0]);
  871. if (vp56_rac_get_prob_branchy(&s->c, 252))
  872. s->prob.p.single_ref[i][1] =
  873. update_prob(&s->c, s->prob.p.single_ref[i][1]);
  874. }
  875. }
  876. if (s->s.h.comppredmode != PRED_SINGLEREF) {
  877. for (i = 0; i < 5; i++)
  878. if (vp56_rac_get_prob_branchy(&s->c, 252))
  879. s->prob.p.comp_ref[i] =
  880. update_prob(&s->c, s->prob.p.comp_ref[i]);
  881. }
  882. for (i = 0; i < 4; i++)
  883. for (j = 0; j < 9; j++)
  884. if (vp56_rac_get_prob_branchy(&s->c, 252))
  885. s->prob.p.y_mode[i][j] =
  886. update_prob(&s->c, s->prob.p.y_mode[i][j]);
  887. for (i = 0; i < 4; i++)
  888. for (j = 0; j < 4; j++)
  889. for (k = 0; k < 3; k++)
  890. if (vp56_rac_get_prob_branchy(&s->c, 252))
  891. s->prob.p.partition[3 - i][j][k] =
  892. update_prob(&s->c, s->prob.p.partition[3 - i][j][k]);
  893. // mv fields don't use the update_prob subexp model for some reason
  894. for (i = 0; i < 3; i++)
  895. if (vp56_rac_get_prob_branchy(&s->c, 252))
  896. s->prob.p.mv_joint[i] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  897. for (i = 0; i < 2; i++) {
  898. if (vp56_rac_get_prob_branchy(&s->c, 252))
  899. s->prob.p.mv_comp[i].sign = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  900. for (j = 0; j < 10; j++)
  901. if (vp56_rac_get_prob_branchy(&s->c, 252))
  902. s->prob.p.mv_comp[i].classes[j] =
  903. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  904. if (vp56_rac_get_prob_branchy(&s->c, 252))
  905. s->prob.p.mv_comp[i].class0 = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  906. for (j = 0; j < 10; j++)
  907. if (vp56_rac_get_prob_branchy(&s->c, 252))
  908. s->prob.p.mv_comp[i].bits[j] =
  909. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  910. }
  911. for (i = 0; i < 2; i++) {
  912. for (j = 0; j < 2; j++)
  913. for (k = 0; k < 3; k++)
  914. if (vp56_rac_get_prob_branchy(&s->c, 252))
  915. s->prob.p.mv_comp[i].class0_fp[j][k] =
  916. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  917. for (j = 0; j < 3; j++)
  918. if (vp56_rac_get_prob_branchy(&s->c, 252))
  919. s->prob.p.mv_comp[i].fp[j] =
  920. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  921. }
  922. if (s->s.h.highprecisionmvs) {
  923. for (i = 0; i < 2; i++) {
  924. if (vp56_rac_get_prob_branchy(&s->c, 252))
  925. s->prob.p.mv_comp[i].class0_hp =
  926. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  927. if (vp56_rac_get_prob_branchy(&s->c, 252))
  928. s->prob.p.mv_comp[i].hp =
  929. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  930. }
  931. }
  932. }
  933. return (data2 - data) + size2;
  934. }
  935. static av_always_inline void clamp_mv(VP56mv *dst, const VP56mv *src,
  936. VP9Context *s)
  937. {
  938. dst->x = av_clip(src->x, s->min_mv.x, s->max_mv.x);
  939. dst->y = av_clip(src->y, s->min_mv.y, s->max_mv.y);
  940. }
  941. static void find_ref_mvs(VP9Context *s,
  942. VP56mv *pmv, int ref, int z, int idx, int sb)
  943. {
  944. static const int8_t mv_ref_blk_off[N_BS_SIZES][8][2] = {
  945. [BS_64x64] = {{ 3, -1 }, { -1, 3 }, { 4, -1 }, { -1, 4 },
  946. { -1, -1 }, { 0, -1 }, { -1, 0 }, { 6, -1 }},
  947. [BS_64x32] = {{ 0, -1 }, { -1, 0 }, { 4, -1 }, { -1, 2 },
  948. { -1, -1 }, { 0, -3 }, { -3, 0 }, { 2, -1 }},
  949. [BS_32x64] = {{ -1, 0 }, { 0, -1 }, { -1, 4 }, { 2, -1 },
  950. { -1, -1 }, { -3, 0 }, { 0, -3 }, { -1, 2 }},
  951. [BS_32x32] = {{ 1, -1 }, { -1, 1 }, { 2, -1 }, { -1, 2 },
  952. { -1, -1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
  953. [BS_32x16] = {{ 0, -1 }, { -1, 0 }, { 2, -1 }, { -1, -1 },
  954. { -1, 1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
  955. [BS_16x32] = {{ -1, 0 }, { 0, -1 }, { -1, 2 }, { -1, -1 },
  956. { 1, -1 }, { -3, 0 }, { 0, -3 }, { -3, -3 }},
  957. [BS_16x16] = {{ 0, -1 }, { -1, 0 }, { 1, -1 }, { -1, 1 },
  958. { -1, -1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
  959. [BS_16x8] = {{ 0, -1 }, { -1, 0 }, { 1, -1 }, { -1, -1 },
  960. { 0, -2 }, { -2, 0 }, { -2, -1 }, { -1, -2 }},
  961. [BS_8x16] = {{ -1, 0 }, { 0, -1 }, { -1, 1 }, { -1, -1 },
  962. { -2, 0 }, { 0, -2 }, { -1, -2 }, { -2, -1 }},
  963. [BS_8x8] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  964. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  965. [BS_8x4] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  966. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  967. [BS_4x8] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  968. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  969. [BS_4x4] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  970. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  971. };
  972. VP9Block *b = s->b;
  973. int row = s->row, col = s->col, row7 = s->row7;
  974. const int8_t (*p)[2] = mv_ref_blk_off[b->bs];
  975. #define INVALID_MV 0x80008000U
  976. uint32_t mem = INVALID_MV, mem_sub8x8 = INVALID_MV;
  977. int i;
  978. #define RETURN_DIRECT_MV(mv) \
  979. do { \
  980. uint32_t m = AV_RN32A(&mv); \
  981. if (!idx) { \
  982. AV_WN32A(pmv, m); \
  983. return; \
  984. } else if (mem == INVALID_MV) { \
  985. mem = m; \
  986. } else if (m != mem) { \
  987. AV_WN32A(pmv, m); \
  988. return; \
  989. } \
  990. } while (0)
  991. if (sb >= 0) {
  992. if (sb == 2 || sb == 1) {
  993. RETURN_DIRECT_MV(b->mv[0][z]);
  994. } else if (sb == 3) {
  995. RETURN_DIRECT_MV(b->mv[2][z]);
  996. RETURN_DIRECT_MV(b->mv[1][z]);
  997. RETURN_DIRECT_MV(b->mv[0][z]);
  998. }
  999. #define RETURN_MV(mv) \
  1000. do { \
  1001. if (sb > 0) { \
  1002. VP56mv tmp; \
  1003. uint32_t m; \
  1004. av_assert2(idx == 1); \
  1005. av_assert2(mem != INVALID_MV); \
  1006. if (mem_sub8x8 == INVALID_MV) { \
  1007. clamp_mv(&tmp, &mv, s); \
  1008. m = AV_RN32A(&tmp); \
  1009. if (m != mem) { \
  1010. AV_WN32A(pmv, m); \
  1011. return; \
  1012. } \
  1013. mem_sub8x8 = AV_RN32A(&mv); \
  1014. } else if (mem_sub8x8 != AV_RN32A(&mv)) { \
  1015. clamp_mv(&tmp, &mv, s); \
  1016. m = AV_RN32A(&tmp); \
  1017. if (m != mem) { \
  1018. AV_WN32A(pmv, m); \
  1019. } else { \
  1020. /* BUG I'm pretty sure this isn't the intention */ \
  1021. AV_WN32A(pmv, 0); \
  1022. } \
  1023. return; \
  1024. } \
  1025. } else { \
  1026. uint32_t m = AV_RN32A(&mv); \
  1027. if (!idx) { \
  1028. clamp_mv(pmv, &mv, s); \
  1029. return; \
  1030. } else if (mem == INVALID_MV) { \
  1031. mem = m; \
  1032. } else if (m != mem) { \
  1033. clamp_mv(pmv, &mv, s); \
  1034. return; \
  1035. } \
  1036. } \
  1037. } while (0)
  1038. if (row > 0) {
  1039. struct VP9mvrefPair *mv = &s->s.frames[CUR_FRAME].mv[(row - 1) * s->sb_cols * 8 + col];
  1040. if (mv->ref[0] == ref) {
  1041. RETURN_MV(s->above_mv_ctx[2 * col + (sb & 1)][0]);
  1042. } else if (mv->ref[1] == ref) {
  1043. RETURN_MV(s->above_mv_ctx[2 * col + (sb & 1)][1]);
  1044. }
  1045. }
  1046. if (col > s->tile_col_start) {
  1047. struct VP9mvrefPair *mv = &s->s.frames[CUR_FRAME].mv[row * s->sb_cols * 8 + col - 1];
  1048. if (mv->ref[0] == ref) {
  1049. RETURN_MV(s->left_mv_ctx[2 * row7 + (sb >> 1)][0]);
  1050. } else if (mv->ref[1] == ref) {
  1051. RETURN_MV(s->left_mv_ctx[2 * row7 + (sb >> 1)][1]);
  1052. }
  1053. }
  1054. i = 2;
  1055. } else {
  1056. i = 0;
  1057. }
  1058. // previously coded MVs in this neighbourhood, using same reference frame
  1059. for (; i < 8; i++) {
  1060. int c = p[i][0] + col, r = p[i][1] + row;
  1061. if (c >= s->tile_col_start && c < s->cols && r >= 0 && r < s->rows) {
  1062. struct VP9mvrefPair *mv = &s->s.frames[CUR_FRAME].mv[r * s->sb_cols * 8 + c];
  1063. if (mv->ref[0] == ref) {
  1064. RETURN_MV(mv->mv[0]);
  1065. } else if (mv->ref[1] == ref) {
  1066. RETURN_MV(mv->mv[1]);
  1067. }
  1068. }
  1069. }
  1070. // MV at this position in previous frame, using same reference frame
  1071. if (s->s.h.use_last_frame_mvs) {
  1072. struct VP9mvrefPair *mv = &s->s.frames[REF_FRAME_MVPAIR].mv[row * s->sb_cols * 8 + col];
  1073. if (!s->s.frames[REF_FRAME_MVPAIR].uses_2pass)
  1074. ff_thread_await_progress(&s->s.frames[REF_FRAME_MVPAIR].tf, row >> 3, 0);
  1075. if (mv->ref[0] == ref) {
  1076. RETURN_MV(mv->mv[0]);
  1077. } else if (mv->ref[1] == ref) {
  1078. RETURN_MV(mv->mv[1]);
  1079. }
  1080. }
  1081. #define RETURN_SCALE_MV(mv, scale) \
  1082. do { \
  1083. if (scale) { \
  1084. VP56mv mv_temp = { -mv.x, -mv.y }; \
  1085. RETURN_MV(mv_temp); \
  1086. } else { \
  1087. RETURN_MV(mv); \
  1088. } \
  1089. } while (0)
  1090. // previously coded MVs in this neighbourhood, using different reference frame
  1091. for (i = 0; i < 8; i++) {
  1092. int c = p[i][0] + col, r = p[i][1] + row;
  1093. if (c >= s->tile_col_start && c < s->cols && r >= 0 && r < s->rows) {
  1094. struct VP9mvrefPair *mv = &s->s.frames[CUR_FRAME].mv[r * s->sb_cols * 8 + c];
  1095. if (mv->ref[0] != ref && mv->ref[0] >= 0) {
  1096. RETURN_SCALE_MV(mv->mv[0], s->s.h.signbias[mv->ref[0]] != s->s.h.signbias[ref]);
  1097. }
  1098. if (mv->ref[1] != ref && mv->ref[1] >= 0 &&
  1099. // BUG - libvpx has this condition regardless of whether
  1100. // we used the first ref MV and pre-scaling
  1101. AV_RN32A(&mv->mv[0]) != AV_RN32A(&mv->mv[1])) {
  1102. RETURN_SCALE_MV(mv->mv[1], s->s.h.signbias[mv->ref[1]] != s->s.h.signbias[ref]);
  1103. }
  1104. }
  1105. }
  1106. // MV at this position in previous frame, using different reference frame
  1107. if (s->s.h.use_last_frame_mvs) {
  1108. struct VP9mvrefPair *mv = &s->s.frames[REF_FRAME_MVPAIR].mv[row * s->sb_cols * 8 + col];
  1109. // no need to await_progress, because we already did that above
  1110. if (mv->ref[0] != ref && mv->ref[0] >= 0) {
  1111. RETURN_SCALE_MV(mv->mv[0], s->s.h.signbias[mv->ref[0]] != s->s.h.signbias[ref]);
  1112. }
  1113. if (mv->ref[1] != ref && mv->ref[1] >= 0 &&
  1114. // BUG - libvpx has this condition regardless of whether
  1115. // we used the first ref MV and pre-scaling
  1116. AV_RN32A(&mv->mv[0]) != AV_RN32A(&mv->mv[1])) {
  1117. RETURN_SCALE_MV(mv->mv[1], s->s.h.signbias[mv->ref[1]] != s->s.h.signbias[ref]);
  1118. }
  1119. }
  1120. AV_ZERO32(pmv);
  1121. clamp_mv(pmv, pmv, s);
  1122. #undef INVALID_MV
  1123. #undef RETURN_MV
  1124. #undef RETURN_SCALE_MV
  1125. }
  1126. static av_always_inline int read_mv_component(VP9Context *s, int idx, int hp)
  1127. {
  1128. int bit, sign = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].sign);
  1129. int n, c = vp8_rac_get_tree(&s->c, vp9_mv_class_tree,
  1130. s->prob.p.mv_comp[idx].classes);
  1131. s->counts.mv_comp[idx].sign[sign]++;
  1132. s->counts.mv_comp[idx].classes[c]++;
  1133. if (c) {
  1134. int m;
  1135. for (n = 0, m = 0; m < c; m++) {
  1136. bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].bits[m]);
  1137. n |= bit << m;
  1138. s->counts.mv_comp[idx].bits[m][bit]++;
  1139. }
  1140. n <<= 3;
  1141. bit = vp8_rac_get_tree(&s->c, vp9_mv_fp_tree, s->prob.p.mv_comp[idx].fp);
  1142. n |= bit << 1;
  1143. s->counts.mv_comp[idx].fp[bit]++;
  1144. if (hp) {
  1145. bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].hp);
  1146. s->counts.mv_comp[idx].hp[bit]++;
  1147. n |= bit;
  1148. } else {
  1149. n |= 1;
  1150. // bug in libvpx - we count for bw entropy purposes even if the
  1151. // bit wasn't coded
  1152. s->counts.mv_comp[idx].hp[1]++;
  1153. }
  1154. n += 8 << c;
  1155. } else {
  1156. n = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].class0);
  1157. s->counts.mv_comp[idx].class0[n]++;
  1158. bit = vp8_rac_get_tree(&s->c, vp9_mv_fp_tree,
  1159. s->prob.p.mv_comp[idx].class0_fp[n]);
  1160. s->counts.mv_comp[idx].class0_fp[n][bit]++;
  1161. n = (n << 3) | (bit << 1);
  1162. if (hp) {
  1163. bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].class0_hp);
  1164. s->counts.mv_comp[idx].class0_hp[bit]++;
  1165. n |= bit;
  1166. } else {
  1167. n |= 1;
  1168. // bug in libvpx - we count for bw entropy purposes even if the
  1169. // bit wasn't coded
  1170. s->counts.mv_comp[idx].class0_hp[1]++;
  1171. }
  1172. }
  1173. return sign ? -(n + 1) : (n + 1);
  1174. }
  1175. static void fill_mv(VP9Context *s,
  1176. VP56mv *mv, int mode, int sb)
  1177. {
  1178. VP9Block *b = s->b;
  1179. if (mode == ZEROMV) {
  1180. AV_ZERO64(mv);
  1181. } else {
  1182. int hp;
  1183. // FIXME cache this value and reuse for other subblocks
  1184. find_ref_mvs(s, &mv[0], b->ref[0], 0, mode == NEARMV,
  1185. mode == NEWMV ? -1 : sb);
  1186. // FIXME maybe move this code into find_ref_mvs()
  1187. if ((mode == NEWMV || sb == -1) &&
  1188. !(hp = s->s.h.highprecisionmvs && abs(mv[0].x) < 64 && abs(mv[0].y) < 64)) {
  1189. if (mv[0].y & 1) {
  1190. if (mv[0].y < 0)
  1191. mv[0].y++;
  1192. else
  1193. mv[0].y--;
  1194. }
  1195. if (mv[0].x & 1) {
  1196. if (mv[0].x < 0)
  1197. mv[0].x++;
  1198. else
  1199. mv[0].x--;
  1200. }
  1201. }
  1202. if (mode == NEWMV) {
  1203. enum MVJoint j = vp8_rac_get_tree(&s->c, vp9_mv_joint_tree,
  1204. s->prob.p.mv_joint);
  1205. s->counts.mv_joint[j]++;
  1206. if (j >= MV_JOINT_V)
  1207. mv[0].y += read_mv_component(s, 0, hp);
  1208. if (j & 1)
  1209. mv[0].x += read_mv_component(s, 1, hp);
  1210. }
  1211. if (b->comp) {
  1212. // FIXME cache this value and reuse for other subblocks
  1213. find_ref_mvs(s, &mv[1], b->ref[1], 1, mode == NEARMV,
  1214. mode == NEWMV ? -1 : sb);
  1215. if ((mode == NEWMV || sb == -1) &&
  1216. !(hp = s->s.h.highprecisionmvs && abs(mv[1].x) < 64 && abs(mv[1].y) < 64)) {
  1217. if (mv[1].y & 1) {
  1218. if (mv[1].y < 0)
  1219. mv[1].y++;
  1220. else
  1221. mv[1].y--;
  1222. }
  1223. if (mv[1].x & 1) {
  1224. if (mv[1].x < 0)
  1225. mv[1].x++;
  1226. else
  1227. mv[1].x--;
  1228. }
  1229. }
  1230. if (mode == NEWMV) {
  1231. enum MVJoint j = vp8_rac_get_tree(&s->c, vp9_mv_joint_tree,
  1232. s->prob.p.mv_joint);
  1233. s->counts.mv_joint[j]++;
  1234. if (j >= MV_JOINT_V)
  1235. mv[1].y += read_mv_component(s, 0, hp);
  1236. if (j & 1)
  1237. mv[1].x += read_mv_component(s, 1, hp);
  1238. }
  1239. }
  1240. }
  1241. }
  1242. static av_always_inline void setctx_2d(uint8_t *ptr, int w, int h,
  1243. ptrdiff_t stride, int v)
  1244. {
  1245. switch (w) {
  1246. case 1:
  1247. do {
  1248. *ptr = v;
  1249. ptr += stride;
  1250. } while (--h);
  1251. break;
  1252. case 2: {
  1253. int v16 = v * 0x0101;
  1254. do {
  1255. AV_WN16A(ptr, v16);
  1256. ptr += stride;
  1257. } while (--h);
  1258. break;
  1259. }
  1260. case 4: {
  1261. uint32_t v32 = v * 0x01010101;
  1262. do {
  1263. AV_WN32A(ptr, v32);
  1264. ptr += stride;
  1265. } while (--h);
  1266. break;
  1267. }
  1268. case 8: {
  1269. #if HAVE_FAST_64BIT
  1270. uint64_t v64 = v * 0x0101010101010101ULL;
  1271. do {
  1272. AV_WN64A(ptr, v64);
  1273. ptr += stride;
  1274. } while (--h);
  1275. #else
  1276. uint32_t v32 = v * 0x01010101;
  1277. do {
  1278. AV_WN32A(ptr, v32);
  1279. AV_WN32A(ptr + 4, v32);
  1280. ptr += stride;
  1281. } while (--h);
  1282. #endif
  1283. break;
  1284. }
  1285. }
  1286. }
  1287. static void decode_mode(AVCodecContext *ctx)
  1288. {
  1289. static const uint8_t left_ctx[N_BS_SIZES] = {
  1290. 0x0, 0x8, 0x0, 0x8, 0xc, 0x8, 0xc, 0xe, 0xc, 0xe, 0xf, 0xe, 0xf
  1291. };
  1292. static const uint8_t above_ctx[N_BS_SIZES] = {
  1293. 0x0, 0x0, 0x8, 0x8, 0x8, 0xc, 0xc, 0xc, 0xe, 0xe, 0xe, 0xf, 0xf
  1294. };
  1295. static const uint8_t max_tx_for_bl_bp[N_BS_SIZES] = {
  1296. TX_32X32, TX_32X32, TX_32X32, TX_32X32, TX_16X16, TX_16X16,
  1297. TX_16X16, TX_8X8, TX_8X8, TX_8X8, TX_4X4, TX_4X4, TX_4X4
  1298. };
  1299. VP9Context *s = ctx->priv_data;
  1300. VP9Block *b = s->b;
  1301. int row = s->row, col = s->col, row7 = s->row7;
  1302. enum TxfmMode max_tx = max_tx_for_bl_bp[b->bs];
  1303. int bw4 = bwh_tab[1][b->bs][0], w4 = FFMIN(s->cols - col, bw4);
  1304. int bh4 = bwh_tab[1][b->bs][1], h4 = FFMIN(s->rows - row, bh4), y;
  1305. int have_a = row > 0, have_l = col > s->tile_col_start;
  1306. int vref, filter_id;
  1307. if (!s->s.h.segmentation.enabled) {
  1308. b->seg_id = 0;
  1309. } else if (s->s.h.keyframe || s->s.h.intraonly) {
  1310. b->seg_id = !s->s.h.segmentation.update_map ? 0 :
  1311. vp8_rac_get_tree(&s->c, vp9_segmentation_tree, s->s.h.segmentation.prob);
  1312. } else if (!s->s.h.segmentation.update_map ||
  1313. (s->s.h.segmentation.temporal &&
  1314. vp56_rac_get_prob_branchy(&s->c,
  1315. s->s.h.segmentation.pred_prob[s->above_segpred_ctx[col] +
  1316. s->left_segpred_ctx[row7]]))) {
  1317. if (!s->s.h.errorres && s->s.frames[REF_FRAME_SEGMAP].segmentation_map) {
  1318. int pred = 8, x;
  1319. uint8_t *refsegmap = s->s.frames[REF_FRAME_SEGMAP].segmentation_map;
  1320. if (!s->s.frames[REF_FRAME_SEGMAP].uses_2pass)
  1321. ff_thread_await_progress(&s->s.frames[REF_FRAME_SEGMAP].tf, row >> 3, 0);
  1322. for (y = 0; y < h4; y++) {
  1323. int idx_base = (y + row) * 8 * s->sb_cols + col;
  1324. for (x = 0; x < w4; x++)
  1325. pred = FFMIN(pred, refsegmap[idx_base + x]);
  1326. }
  1327. av_assert1(pred < 8);
  1328. b->seg_id = pred;
  1329. } else {
  1330. b->seg_id = 0;
  1331. }
  1332. memset(&s->above_segpred_ctx[col], 1, w4);
  1333. memset(&s->left_segpred_ctx[row7], 1, h4);
  1334. } else {
  1335. b->seg_id = vp8_rac_get_tree(&s->c, vp9_segmentation_tree,
  1336. s->s.h.segmentation.prob);
  1337. memset(&s->above_segpred_ctx[col], 0, w4);
  1338. memset(&s->left_segpred_ctx[row7], 0, h4);
  1339. }
  1340. if (s->s.h.segmentation.enabled &&
  1341. (s->s.h.segmentation.update_map || s->s.h.keyframe || s->s.h.intraonly)) {
  1342. setctx_2d(&s->s.frames[CUR_FRAME].segmentation_map[row * 8 * s->sb_cols + col],
  1343. bw4, bh4, 8 * s->sb_cols, b->seg_id);
  1344. }
  1345. b->skip = s->s.h.segmentation.enabled &&
  1346. s->s.h.segmentation.feat[b->seg_id].skip_enabled;
  1347. if (!b->skip) {
  1348. int c = s->left_skip_ctx[row7] + s->above_skip_ctx[col];
  1349. b->skip = vp56_rac_get_prob(&s->c, s->prob.p.skip[c]);
  1350. s->counts.skip[c][b->skip]++;
  1351. }
  1352. if (s->s.h.keyframe || s->s.h.intraonly) {
  1353. b->intra = 1;
  1354. } else if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[b->seg_id].ref_enabled) {
  1355. b->intra = !s->s.h.segmentation.feat[b->seg_id].ref_val;
  1356. } else {
  1357. int c, bit;
  1358. if (have_a && have_l) {
  1359. c = s->above_intra_ctx[col] + s->left_intra_ctx[row7];
  1360. c += (c == 2);
  1361. } else {
  1362. c = have_a ? 2 * s->above_intra_ctx[col] :
  1363. have_l ? 2 * s->left_intra_ctx[row7] : 0;
  1364. }
  1365. bit = vp56_rac_get_prob(&s->c, s->prob.p.intra[c]);
  1366. s->counts.intra[c][bit]++;
  1367. b->intra = !bit;
  1368. }
  1369. if ((b->intra || !b->skip) && s->s.h.txfmmode == TX_SWITCHABLE) {
  1370. int c;
  1371. if (have_a) {
  1372. if (have_l) {
  1373. c = (s->above_skip_ctx[col] ? max_tx :
  1374. s->above_txfm_ctx[col]) +
  1375. (s->left_skip_ctx[row7] ? max_tx :
  1376. s->left_txfm_ctx[row7]) > max_tx;
  1377. } else {
  1378. c = s->above_skip_ctx[col] ? 1 :
  1379. (s->above_txfm_ctx[col] * 2 > max_tx);
  1380. }
  1381. } else if (have_l) {
  1382. c = s->left_skip_ctx[row7] ? 1 :
  1383. (s->left_txfm_ctx[row7] * 2 > max_tx);
  1384. } else {
  1385. c = 1;
  1386. }
  1387. switch (max_tx) {
  1388. case TX_32X32:
  1389. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][0]);
  1390. if (b->tx) {
  1391. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][1]);
  1392. if (b->tx == 2)
  1393. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][2]);
  1394. }
  1395. s->counts.tx32p[c][b->tx]++;
  1396. break;
  1397. case TX_16X16:
  1398. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][0]);
  1399. if (b->tx)
  1400. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][1]);
  1401. s->counts.tx16p[c][b->tx]++;
  1402. break;
  1403. case TX_8X8:
  1404. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx8p[c]);
  1405. s->counts.tx8p[c][b->tx]++;
  1406. break;
  1407. case TX_4X4:
  1408. b->tx = TX_4X4;
  1409. break;
  1410. }
  1411. } else {
  1412. b->tx = FFMIN(max_tx, s->s.h.txfmmode);
  1413. }
  1414. if (s->s.h.keyframe || s->s.h.intraonly) {
  1415. uint8_t *a = &s->above_mode_ctx[col * 2];
  1416. uint8_t *l = &s->left_mode_ctx[(row7) << 1];
  1417. b->comp = 0;
  1418. if (b->bs > BS_8x8) {
  1419. // FIXME the memory storage intermediates here aren't really
  1420. // necessary, they're just there to make the code slightly
  1421. // simpler for now
  1422. b->mode[0] = a[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1423. vp9_default_kf_ymode_probs[a[0]][l[0]]);
  1424. if (b->bs != BS_8x4) {
  1425. b->mode[1] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1426. vp9_default_kf_ymode_probs[a[1]][b->mode[0]]);
  1427. l[0] = a[1] = b->mode[1];
  1428. } else {
  1429. l[0] = a[1] = b->mode[1] = b->mode[0];
  1430. }
  1431. if (b->bs != BS_4x8) {
  1432. b->mode[2] = a[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1433. vp9_default_kf_ymode_probs[a[0]][l[1]]);
  1434. if (b->bs != BS_8x4) {
  1435. b->mode[3] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1436. vp9_default_kf_ymode_probs[a[1]][b->mode[2]]);
  1437. l[1] = a[1] = b->mode[3];
  1438. } else {
  1439. l[1] = a[1] = b->mode[3] = b->mode[2];
  1440. }
  1441. } else {
  1442. b->mode[2] = b->mode[0];
  1443. l[1] = a[1] = b->mode[3] = b->mode[1];
  1444. }
  1445. } else {
  1446. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1447. vp9_default_kf_ymode_probs[*a][*l]);
  1448. b->mode[3] = b->mode[2] = b->mode[1] = b->mode[0];
  1449. // FIXME this can probably be optimized
  1450. memset(a, b->mode[0], bwh_tab[0][b->bs][0]);
  1451. memset(l, b->mode[0], bwh_tab[0][b->bs][1]);
  1452. }
  1453. b->uvmode = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1454. vp9_default_kf_uvmode_probs[b->mode[3]]);
  1455. } else if (b->intra) {
  1456. b->comp = 0;
  1457. if (b->bs > BS_8x8) {
  1458. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1459. s->prob.p.y_mode[0]);
  1460. s->counts.y_mode[0][b->mode[0]]++;
  1461. if (b->bs != BS_8x4) {
  1462. b->mode[1] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1463. s->prob.p.y_mode[0]);
  1464. s->counts.y_mode[0][b->mode[1]]++;
  1465. } else {
  1466. b->mode[1] = b->mode[0];
  1467. }
  1468. if (b->bs != BS_4x8) {
  1469. b->mode[2] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1470. s->prob.p.y_mode[0]);
  1471. s->counts.y_mode[0][b->mode[2]]++;
  1472. if (b->bs != BS_8x4) {
  1473. b->mode[3] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1474. s->prob.p.y_mode[0]);
  1475. s->counts.y_mode[0][b->mode[3]]++;
  1476. } else {
  1477. b->mode[3] = b->mode[2];
  1478. }
  1479. } else {
  1480. b->mode[2] = b->mode[0];
  1481. b->mode[3] = b->mode[1];
  1482. }
  1483. } else {
  1484. static const uint8_t size_group[10] = {
  1485. 3, 3, 3, 3, 2, 2, 2, 1, 1, 1
  1486. };
  1487. int sz = size_group[b->bs];
  1488. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1489. s->prob.p.y_mode[sz]);
  1490. b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0];
  1491. s->counts.y_mode[sz][b->mode[3]]++;
  1492. }
  1493. b->uvmode = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1494. s->prob.p.uv_mode[b->mode[3]]);
  1495. s->counts.uv_mode[b->mode[3]][b->uvmode]++;
  1496. } else {
  1497. static const uint8_t inter_mode_ctx_lut[14][14] = {
  1498. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1499. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1500. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1501. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1502. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1503. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1504. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1505. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1506. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1507. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1508. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
  1509. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
  1510. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 0, 3 },
  1511. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 4 },
  1512. };
  1513. if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[b->seg_id].ref_enabled) {
  1514. av_assert2(s->s.h.segmentation.feat[b->seg_id].ref_val != 0);
  1515. b->comp = 0;
  1516. b->ref[0] = s->s.h.segmentation.feat[b->seg_id].ref_val - 1;
  1517. } else {
  1518. // read comp_pred flag
  1519. if (s->s.h.comppredmode != PRED_SWITCHABLE) {
  1520. b->comp = s->s.h.comppredmode == PRED_COMPREF;
  1521. } else {
  1522. int c;
  1523. // FIXME add intra as ref=0xff (or -1) to make these easier?
  1524. if (have_a) {
  1525. if (have_l) {
  1526. if (s->above_comp_ctx[col] && s->left_comp_ctx[row7]) {
  1527. c = 4;
  1528. } else if (s->above_comp_ctx[col]) {
  1529. c = 2 + (s->left_intra_ctx[row7] ||
  1530. s->left_ref_ctx[row7] == s->s.h.fixcompref);
  1531. } else if (s->left_comp_ctx[row7]) {
  1532. c = 2 + (s->above_intra_ctx[col] ||
  1533. s->above_ref_ctx[col] == s->s.h.fixcompref);
  1534. } else {
  1535. c = (!s->above_intra_ctx[col] &&
  1536. s->above_ref_ctx[col] == s->s.h.fixcompref) ^
  1537. (!s->left_intra_ctx[row7] &&
  1538. s->left_ref_ctx[row & 7] == s->s.h.fixcompref);
  1539. }
  1540. } else {
  1541. c = s->above_comp_ctx[col] ? 3 :
  1542. (!s->above_intra_ctx[col] && s->above_ref_ctx[col] == s->s.h.fixcompref);
  1543. }
  1544. } else if (have_l) {
  1545. c = s->left_comp_ctx[row7] ? 3 :
  1546. (!s->left_intra_ctx[row7] && s->left_ref_ctx[row7] == s->s.h.fixcompref);
  1547. } else {
  1548. c = 1;
  1549. }
  1550. b->comp = vp56_rac_get_prob(&s->c, s->prob.p.comp[c]);
  1551. s->counts.comp[c][b->comp]++;
  1552. }
  1553. // read actual references
  1554. // FIXME probably cache a few variables here to prevent repetitive
  1555. // memory accesses below
  1556. if (b->comp) /* two references */ {
  1557. int fix_idx = s->s.h.signbias[s->s.h.fixcompref], var_idx = !fix_idx, c, bit;
  1558. b->ref[fix_idx] = s->s.h.fixcompref;
  1559. // FIXME can this codeblob be replaced by some sort of LUT?
  1560. if (have_a) {
  1561. if (have_l) {
  1562. if (s->above_intra_ctx[col]) {
  1563. if (s->left_intra_ctx[row7]) {
  1564. c = 2;
  1565. } else {
  1566. c = 1 + 2 * (s->left_ref_ctx[row7] != s->s.h.varcompref[1]);
  1567. }
  1568. } else if (s->left_intra_ctx[row7]) {
  1569. c = 1 + 2 * (s->above_ref_ctx[col] != s->s.h.varcompref[1]);
  1570. } else {
  1571. int refl = s->left_ref_ctx[row7], refa = s->above_ref_ctx[col];
  1572. if (refl == refa && refa == s->s.h.varcompref[1]) {
  1573. c = 0;
  1574. } else if (!s->left_comp_ctx[row7] && !s->above_comp_ctx[col]) {
  1575. if ((refa == s->s.h.fixcompref && refl == s->s.h.varcompref[0]) ||
  1576. (refl == s->s.h.fixcompref && refa == s->s.h.varcompref[0])) {
  1577. c = 4;
  1578. } else {
  1579. c = (refa == refl) ? 3 : 1;
  1580. }
  1581. } else if (!s->left_comp_ctx[row7]) {
  1582. if (refa == s->s.h.varcompref[1] && refl != s->s.h.varcompref[1]) {
  1583. c = 1;
  1584. } else {
  1585. c = (refl == s->s.h.varcompref[1] &&
  1586. refa != s->s.h.varcompref[1]) ? 2 : 4;
  1587. }
  1588. } else if (!s->above_comp_ctx[col]) {
  1589. if (refl == s->s.h.varcompref[1] && refa != s->s.h.varcompref[1]) {
  1590. c = 1;
  1591. } else {
  1592. c = (refa == s->s.h.varcompref[1] &&
  1593. refl != s->s.h.varcompref[1]) ? 2 : 4;
  1594. }
  1595. } else {
  1596. c = (refl == refa) ? 4 : 2;
  1597. }
  1598. }
  1599. } else {
  1600. if (s->above_intra_ctx[col]) {
  1601. c = 2;
  1602. } else if (s->above_comp_ctx[col]) {
  1603. c = 4 * (s->above_ref_ctx[col] != s->s.h.varcompref[1]);
  1604. } else {
  1605. c = 3 * (s->above_ref_ctx[col] != s->s.h.varcompref[1]);
  1606. }
  1607. }
  1608. } else if (have_l) {
  1609. if (s->left_intra_ctx[row7]) {
  1610. c = 2;
  1611. } else if (s->left_comp_ctx[row7]) {
  1612. c = 4 * (s->left_ref_ctx[row7] != s->s.h.varcompref[1]);
  1613. } else {
  1614. c = 3 * (s->left_ref_ctx[row7] != s->s.h.varcompref[1]);
  1615. }
  1616. } else {
  1617. c = 2;
  1618. }
  1619. bit = vp56_rac_get_prob(&s->c, s->prob.p.comp_ref[c]);
  1620. b->ref[var_idx] = s->s.h.varcompref[bit];
  1621. s->counts.comp_ref[c][bit]++;
  1622. } else /* single reference */ {
  1623. int bit, c;
  1624. if (have_a && !s->above_intra_ctx[col]) {
  1625. if (have_l && !s->left_intra_ctx[row7]) {
  1626. if (s->left_comp_ctx[row7]) {
  1627. if (s->above_comp_ctx[col]) {
  1628. c = 1 + (!s->s.h.fixcompref || !s->left_ref_ctx[row7] ||
  1629. !s->above_ref_ctx[col]);
  1630. } else {
  1631. c = (3 * !s->above_ref_ctx[col]) +
  1632. (!s->s.h.fixcompref || !s->left_ref_ctx[row7]);
  1633. }
  1634. } else if (s->above_comp_ctx[col]) {
  1635. c = (3 * !s->left_ref_ctx[row7]) +
  1636. (!s->s.h.fixcompref || !s->above_ref_ctx[col]);
  1637. } else {
  1638. c = 2 * !s->left_ref_ctx[row7] + 2 * !s->above_ref_ctx[col];
  1639. }
  1640. } else if (s->above_intra_ctx[col]) {
  1641. c = 2;
  1642. } else if (s->above_comp_ctx[col]) {
  1643. c = 1 + (!s->s.h.fixcompref || !s->above_ref_ctx[col]);
  1644. } else {
  1645. c = 4 * (!s->above_ref_ctx[col]);
  1646. }
  1647. } else if (have_l && !s->left_intra_ctx[row7]) {
  1648. if (s->left_intra_ctx[row7]) {
  1649. c = 2;
  1650. } else if (s->left_comp_ctx[row7]) {
  1651. c = 1 + (!s->s.h.fixcompref || !s->left_ref_ctx[row7]);
  1652. } else {
  1653. c = 4 * (!s->left_ref_ctx[row7]);
  1654. }
  1655. } else {
  1656. c = 2;
  1657. }
  1658. bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][0]);
  1659. s->counts.single_ref[c][0][bit]++;
  1660. if (!bit) {
  1661. b->ref[0] = 0;
  1662. } else {
  1663. // FIXME can this codeblob be replaced by some sort of LUT?
  1664. if (have_a) {
  1665. if (have_l) {
  1666. if (s->left_intra_ctx[row7]) {
  1667. if (s->above_intra_ctx[col]) {
  1668. c = 2;
  1669. } else if (s->above_comp_ctx[col]) {
  1670. c = 1 + 2 * (s->s.h.fixcompref == 1 ||
  1671. s->above_ref_ctx[col] == 1);
  1672. } else if (!s->above_ref_ctx[col]) {
  1673. c = 3;
  1674. } else {
  1675. c = 4 * (s->above_ref_ctx[col] == 1);
  1676. }
  1677. } else if (s->above_intra_ctx[col]) {
  1678. if (s->left_intra_ctx[row7]) {
  1679. c = 2;
  1680. } else if (s->left_comp_ctx[row7]) {
  1681. c = 1 + 2 * (s->s.h.fixcompref == 1 ||
  1682. s->left_ref_ctx[row7] == 1);
  1683. } else if (!s->left_ref_ctx[row7]) {
  1684. c = 3;
  1685. } else {
  1686. c = 4 * (s->left_ref_ctx[row7] == 1);
  1687. }
  1688. } else if (s->above_comp_ctx[col]) {
  1689. if (s->left_comp_ctx[row7]) {
  1690. if (s->left_ref_ctx[row7] == s->above_ref_ctx[col]) {
  1691. c = 3 * (s->s.h.fixcompref == 1 ||
  1692. s->left_ref_ctx[row7] == 1);
  1693. } else {
  1694. c = 2;
  1695. }
  1696. } else if (!s->left_ref_ctx[row7]) {
  1697. c = 1 + 2 * (s->s.h.fixcompref == 1 ||
  1698. s->above_ref_ctx[col] == 1);
  1699. } else {
  1700. c = 3 * (s->left_ref_ctx[row7] == 1) +
  1701. (s->s.h.fixcompref == 1 || s->above_ref_ctx[col] == 1);
  1702. }
  1703. } else if (s->left_comp_ctx[row7]) {
  1704. if (!s->above_ref_ctx[col]) {
  1705. c = 1 + 2 * (s->s.h.fixcompref == 1 ||
  1706. s->left_ref_ctx[row7] == 1);
  1707. } else {
  1708. c = 3 * (s->above_ref_ctx[col] == 1) +
  1709. (s->s.h.fixcompref == 1 || s->left_ref_ctx[row7] == 1);
  1710. }
  1711. } else if (!s->above_ref_ctx[col]) {
  1712. if (!s->left_ref_ctx[row7]) {
  1713. c = 3;
  1714. } else {
  1715. c = 4 * (s->left_ref_ctx[row7] == 1);
  1716. }
  1717. } else if (!s->left_ref_ctx[row7]) {
  1718. c = 4 * (s->above_ref_ctx[col] == 1);
  1719. } else {
  1720. c = 2 * (s->left_ref_ctx[row7] == 1) +
  1721. 2 * (s->above_ref_ctx[col] == 1);
  1722. }
  1723. } else {
  1724. if (s->above_intra_ctx[col] ||
  1725. (!s->above_comp_ctx[col] && !s->above_ref_ctx[col])) {
  1726. c = 2;
  1727. } else if (s->above_comp_ctx[col]) {
  1728. c = 3 * (s->s.h.fixcompref == 1 || s->above_ref_ctx[col] == 1);
  1729. } else {
  1730. c = 4 * (s->above_ref_ctx[col] == 1);
  1731. }
  1732. }
  1733. } else if (have_l) {
  1734. if (s->left_intra_ctx[row7] ||
  1735. (!s->left_comp_ctx[row7] && !s->left_ref_ctx[row7])) {
  1736. c = 2;
  1737. } else if (s->left_comp_ctx[row7]) {
  1738. c = 3 * (s->s.h.fixcompref == 1 || s->left_ref_ctx[row7] == 1);
  1739. } else {
  1740. c = 4 * (s->left_ref_ctx[row7] == 1);
  1741. }
  1742. } else {
  1743. c = 2;
  1744. }
  1745. bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][1]);
  1746. s->counts.single_ref[c][1][bit]++;
  1747. b->ref[0] = 1 + bit;
  1748. }
  1749. }
  1750. }
  1751. if (b->bs <= BS_8x8) {
  1752. if (s->s.h.segmentation.enabled && s->s.h.segmentation.feat[b->seg_id].skip_enabled) {
  1753. b->mode[0] = b->mode[1] = b->mode[2] = b->mode[3] = ZEROMV;
  1754. } else {
  1755. static const uint8_t off[10] = {
  1756. 3, 0, 0, 1, 0, 0, 0, 0, 0, 0
  1757. };
  1758. // FIXME this needs to use the LUT tables from find_ref_mvs
  1759. // because not all are -1,0/0,-1
  1760. int c = inter_mode_ctx_lut[s->above_mode_ctx[col + off[b->bs]]]
  1761. [s->left_mode_ctx[row7 + off[b->bs]]];
  1762. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1763. s->prob.p.mv_mode[c]);
  1764. b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0];
  1765. s->counts.mv_mode[c][b->mode[0] - 10]++;
  1766. }
  1767. }
  1768. if (s->s.h.filtermode == FILTER_SWITCHABLE) {
  1769. int c;
  1770. if (have_a && s->above_mode_ctx[col] >= NEARESTMV) {
  1771. if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
  1772. c = s->above_filter_ctx[col] == s->left_filter_ctx[row7] ?
  1773. s->left_filter_ctx[row7] : 3;
  1774. } else {
  1775. c = s->above_filter_ctx[col];
  1776. }
  1777. } else if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
  1778. c = s->left_filter_ctx[row7];
  1779. } else {
  1780. c = 3;
  1781. }
  1782. filter_id = vp8_rac_get_tree(&s->c, vp9_filter_tree,
  1783. s->prob.p.filter[c]);
  1784. s->counts.filter[c][filter_id]++;
  1785. b->filter = vp9_filter_lut[filter_id];
  1786. } else {
  1787. b->filter = s->s.h.filtermode;
  1788. }
  1789. if (b->bs > BS_8x8) {
  1790. int c = inter_mode_ctx_lut[s->above_mode_ctx[col]][s->left_mode_ctx[row7]];
  1791. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1792. s->prob.p.mv_mode[c]);
  1793. s->counts.mv_mode[c][b->mode[0] - 10]++;
  1794. fill_mv(s, b->mv[0], b->mode[0], 0);
  1795. if (b->bs != BS_8x4) {
  1796. b->mode[1] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1797. s->prob.p.mv_mode[c]);
  1798. s->counts.mv_mode[c][b->mode[1] - 10]++;
  1799. fill_mv(s, b->mv[1], b->mode[1], 1);
  1800. } else {
  1801. b->mode[1] = b->mode[0];
  1802. AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
  1803. AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
  1804. }
  1805. if (b->bs != BS_4x8) {
  1806. b->mode[2] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1807. s->prob.p.mv_mode[c]);
  1808. s->counts.mv_mode[c][b->mode[2] - 10]++;
  1809. fill_mv(s, b->mv[2], b->mode[2], 2);
  1810. if (b->bs != BS_8x4) {
  1811. b->mode[3] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1812. s->prob.p.mv_mode[c]);
  1813. s->counts.mv_mode[c][b->mode[3] - 10]++;
  1814. fill_mv(s, b->mv[3], b->mode[3], 3);
  1815. } else {
  1816. b->mode[3] = b->mode[2];
  1817. AV_COPY32(&b->mv[3][0], &b->mv[2][0]);
  1818. AV_COPY32(&b->mv[3][1], &b->mv[2][1]);
  1819. }
  1820. } else {
  1821. b->mode[2] = b->mode[0];
  1822. AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
  1823. AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
  1824. b->mode[3] = b->mode[1];
  1825. AV_COPY32(&b->mv[3][0], &b->mv[1][0]);
  1826. AV_COPY32(&b->mv[3][1], &b->mv[1][1]);
  1827. }
  1828. } else {
  1829. fill_mv(s, b->mv[0], b->mode[0], -1);
  1830. AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
  1831. AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
  1832. AV_COPY32(&b->mv[3][0], &b->mv[0][0]);
  1833. AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
  1834. AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
  1835. AV_COPY32(&b->mv[3][1], &b->mv[0][1]);
  1836. }
  1837. vref = b->ref[b->comp ? s->s.h.signbias[s->s.h.varcompref[0]] : 0];
  1838. }
  1839. #if HAVE_FAST_64BIT
  1840. #define SPLAT_CTX(var, val, n) \
  1841. switch (n) { \
  1842. case 1: var = val; break; \
  1843. case 2: AV_WN16A(&var, val * 0x0101); break; \
  1844. case 4: AV_WN32A(&var, val * 0x01010101); break; \
  1845. case 8: AV_WN64A(&var, val * 0x0101010101010101ULL); break; \
  1846. case 16: { \
  1847. uint64_t v64 = val * 0x0101010101010101ULL; \
  1848. AV_WN64A( &var, v64); \
  1849. AV_WN64A(&((uint8_t *) &var)[8], v64); \
  1850. break; \
  1851. } \
  1852. }
  1853. #else
  1854. #define SPLAT_CTX(var, val, n) \
  1855. switch (n) { \
  1856. case 1: var = val; break; \
  1857. case 2: AV_WN16A(&var, val * 0x0101); break; \
  1858. case 4: AV_WN32A(&var, val * 0x01010101); break; \
  1859. case 8: { \
  1860. uint32_t v32 = val * 0x01010101; \
  1861. AV_WN32A( &var, v32); \
  1862. AV_WN32A(&((uint8_t *) &var)[4], v32); \
  1863. break; \
  1864. } \
  1865. case 16: { \
  1866. uint32_t v32 = val * 0x01010101; \
  1867. AV_WN32A( &var, v32); \
  1868. AV_WN32A(&((uint8_t *) &var)[4], v32); \
  1869. AV_WN32A(&((uint8_t *) &var)[8], v32); \
  1870. AV_WN32A(&((uint8_t *) &var)[12], v32); \
  1871. break; \
  1872. } \
  1873. }
  1874. #endif
  1875. switch (bwh_tab[1][b->bs][0]) {
  1876. #define SET_CTXS(dir, off, n) \
  1877. do { \
  1878. SPLAT_CTX(s->dir##_skip_ctx[off], b->skip, n); \
  1879. SPLAT_CTX(s->dir##_txfm_ctx[off], b->tx, n); \
  1880. SPLAT_CTX(s->dir##_partition_ctx[off], dir##_ctx[b->bs], n); \
  1881. if (!s->s.h.keyframe && !s->s.h.intraonly) { \
  1882. SPLAT_CTX(s->dir##_intra_ctx[off], b->intra, n); \
  1883. SPLAT_CTX(s->dir##_comp_ctx[off], b->comp, n); \
  1884. SPLAT_CTX(s->dir##_mode_ctx[off], b->mode[3], n); \
  1885. if (!b->intra) { \
  1886. SPLAT_CTX(s->dir##_ref_ctx[off], vref, n); \
  1887. if (s->s.h.filtermode == FILTER_SWITCHABLE) { \
  1888. SPLAT_CTX(s->dir##_filter_ctx[off], filter_id, n); \
  1889. } \
  1890. } \
  1891. } \
  1892. } while (0)
  1893. case 1: SET_CTXS(above, col, 1); break;
  1894. case 2: SET_CTXS(above, col, 2); break;
  1895. case 4: SET_CTXS(above, col, 4); break;
  1896. case 8: SET_CTXS(above, col, 8); break;
  1897. }
  1898. switch (bwh_tab[1][b->bs][1]) {
  1899. case 1: SET_CTXS(left, row7, 1); break;
  1900. case 2: SET_CTXS(left, row7, 2); break;
  1901. case 4: SET_CTXS(left, row7, 4); break;
  1902. case 8: SET_CTXS(left, row7, 8); break;
  1903. }
  1904. #undef SPLAT_CTX
  1905. #undef SET_CTXS
  1906. if (!s->s.h.keyframe && !s->s.h.intraonly) {
  1907. if (b->bs > BS_8x8) {
  1908. int mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
  1909. AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][0], &b->mv[1][0]);
  1910. AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][1], &b->mv[1][1]);
  1911. AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][0], mv0);
  1912. AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][1], mv1);
  1913. AV_COPY32(&s->above_mv_ctx[col * 2 + 0][0], &b->mv[2][0]);
  1914. AV_COPY32(&s->above_mv_ctx[col * 2 + 0][1], &b->mv[2][1]);
  1915. AV_WN32A(&s->above_mv_ctx[col * 2 + 1][0], mv0);
  1916. AV_WN32A(&s->above_mv_ctx[col * 2 + 1][1], mv1);
  1917. } else {
  1918. int n, mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
  1919. for (n = 0; n < w4 * 2; n++) {
  1920. AV_WN32A(&s->above_mv_ctx[col * 2 + n][0], mv0);
  1921. AV_WN32A(&s->above_mv_ctx[col * 2 + n][1], mv1);
  1922. }
  1923. for (n = 0; n < h4 * 2; n++) {
  1924. AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][0], mv0);
  1925. AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][1], mv1);
  1926. }
  1927. }
  1928. }
  1929. // FIXME kinda ugly
  1930. for (y = 0; y < h4; y++) {
  1931. int x, o = (row + y) * s->sb_cols * 8 + col;
  1932. struct VP9mvrefPair *mv = &s->s.frames[CUR_FRAME].mv[o];
  1933. if (b->intra) {
  1934. for (x = 0; x < w4; x++) {
  1935. mv[x].ref[0] =
  1936. mv[x].ref[1] = -1;
  1937. }
  1938. } else if (b->comp) {
  1939. for (x = 0; x < w4; x++) {
  1940. mv[x].ref[0] = b->ref[0];
  1941. mv[x].ref[1] = b->ref[1];
  1942. AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
  1943. AV_COPY32(&mv[x].mv[1], &b->mv[3][1]);
  1944. }
  1945. } else {
  1946. for (x = 0; x < w4; x++) {
  1947. mv[x].ref[0] = b->ref[0];
  1948. mv[x].ref[1] = -1;
  1949. AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
  1950. }
  1951. }
  1952. }
  1953. }
  1954. // FIXME merge cnt/eob arguments?
  1955. static av_always_inline int
  1956. decode_coeffs_b_generic(VP56RangeCoder *c, int16_t *coef, int n_coeffs,
  1957. int is_tx32x32, int is8bitsperpixel, int bpp, unsigned (*cnt)[6][3],
  1958. unsigned (*eob)[6][2], uint8_t (*p)[6][11],
  1959. int nnz, const int16_t *scan, const int16_t (*nb)[2],
  1960. const int16_t *band_counts, const int16_t *qmul)
  1961. {
  1962. int i = 0, band = 0, band_left = band_counts[band];
  1963. uint8_t *tp = p[0][nnz];
  1964. uint8_t cache[1024];
  1965. do {
  1966. int val, rc;
  1967. val = vp56_rac_get_prob_branchy(c, tp[0]); // eob
  1968. eob[band][nnz][val]++;
  1969. if (!val)
  1970. break;
  1971. skip_eob:
  1972. if (!vp56_rac_get_prob_branchy(c, tp[1])) { // zero
  1973. cnt[band][nnz][0]++;
  1974. if (!--band_left)
  1975. band_left = band_counts[++band];
  1976. cache[scan[i]] = 0;
  1977. nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
  1978. tp = p[band][nnz];
  1979. if (++i == n_coeffs)
  1980. break; //invalid input; blocks should end with EOB
  1981. goto skip_eob;
  1982. }
  1983. rc = scan[i];
  1984. if (!vp56_rac_get_prob_branchy(c, tp[2])) { // one
  1985. cnt[band][nnz][1]++;
  1986. val = 1;
  1987. cache[rc] = 1;
  1988. } else {
  1989. // fill in p[3-10] (model fill) - only once per frame for each pos
  1990. if (!tp[3])
  1991. memcpy(&tp[3], vp9_model_pareto8[tp[2]], 8);
  1992. cnt[band][nnz][2]++;
  1993. if (!vp56_rac_get_prob_branchy(c, tp[3])) { // 2, 3, 4
  1994. if (!vp56_rac_get_prob_branchy(c, tp[4])) {
  1995. cache[rc] = val = 2;
  1996. } else {
  1997. val = 3 + vp56_rac_get_prob(c, tp[5]);
  1998. cache[rc] = 3;
  1999. }
  2000. } else if (!vp56_rac_get_prob_branchy(c, tp[6])) { // cat1/2
  2001. cache[rc] = 4;
  2002. if (!vp56_rac_get_prob_branchy(c, tp[7])) {
  2003. val = 5 + vp56_rac_get_prob(c, 159);
  2004. } else {
  2005. val = 7 + (vp56_rac_get_prob(c, 165) << 1);
  2006. val += vp56_rac_get_prob(c, 145);
  2007. }
  2008. } else { // cat 3-6
  2009. cache[rc] = 5;
  2010. if (!vp56_rac_get_prob_branchy(c, tp[8])) {
  2011. if (!vp56_rac_get_prob_branchy(c, tp[9])) {
  2012. val = 11 + (vp56_rac_get_prob(c, 173) << 2);
  2013. val += (vp56_rac_get_prob(c, 148) << 1);
  2014. val += vp56_rac_get_prob(c, 140);
  2015. } else {
  2016. val = 19 + (vp56_rac_get_prob(c, 176) << 3);
  2017. val += (vp56_rac_get_prob(c, 155) << 2);
  2018. val += (vp56_rac_get_prob(c, 140) << 1);
  2019. val += vp56_rac_get_prob(c, 135);
  2020. }
  2021. } else if (!vp56_rac_get_prob_branchy(c, tp[10])) {
  2022. val = 35 + (vp56_rac_get_prob(c, 180) << 4);
  2023. val += (vp56_rac_get_prob(c, 157) << 3);
  2024. val += (vp56_rac_get_prob(c, 141) << 2);
  2025. val += (vp56_rac_get_prob(c, 134) << 1);
  2026. val += vp56_rac_get_prob(c, 130);
  2027. } else {
  2028. val = 67;
  2029. if (!is8bitsperpixel) {
  2030. if (bpp == 12) {
  2031. val += vp56_rac_get_prob(c, 255) << 17;
  2032. val += vp56_rac_get_prob(c, 255) << 16;
  2033. }
  2034. val += (vp56_rac_get_prob(c, 255) << 15);
  2035. val += (vp56_rac_get_prob(c, 255) << 14);
  2036. }
  2037. val += (vp56_rac_get_prob(c, 254) << 13);
  2038. val += (vp56_rac_get_prob(c, 254) << 12);
  2039. val += (vp56_rac_get_prob(c, 254) << 11);
  2040. val += (vp56_rac_get_prob(c, 252) << 10);
  2041. val += (vp56_rac_get_prob(c, 249) << 9);
  2042. val += (vp56_rac_get_prob(c, 243) << 8);
  2043. val += (vp56_rac_get_prob(c, 230) << 7);
  2044. val += (vp56_rac_get_prob(c, 196) << 6);
  2045. val += (vp56_rac_get_prob(c, 177) << 5);
  2046. val += (vp56_rac_get_prob(c, 153) << 4);
  2047. val += (vp56_rac_get_prob(c, 140) << 3);
  2048. val += (vp56_rac_get_prob(c, 133) << 2);
  2049. val += (vp56_rac_get_prob(c, 130) << 1);
  2050. val += vp56_rac_get_prob(c, 129);
  2051. }
  2052. }
  2053. }
  2054. #define STORE_COEF(c, i, v) do { \
  2055. if (is8bitsperpixel) { \
  2056. c[i] = v; \
  2057. } else { \
  2058. AV_WN32A(&c[i * 2], v); \
  2059. } \
  2060. } while (0)
  2061. if (!--band_left)
  2062. band_left = band_counts[++band];
  2063. if (is_tx32x32)
  2064. STORE_COEF(coef, rc, ((vp8_rac_get(c) ? -val : val) * qmul[!!i]) / 2);
  2065. else
  2066. STORE_COEF(coef, rc, (vp8_rac_get(c) ? -val : val) * qmul[!!i]);
  2067. nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
  2068. tp = p[band][nnz];
  2069. } while (++i < n_coeffs);
  2070. return i;
  2071. }
  2072. static int decode_coeffs_b_8bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2073. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2074. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2075. const int16_t (*nb)[2], const int16_t *band_counts,
  2076. const int16_t *qmul)
  2077. {
  2078. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 0, 1, 8, cnt, eob, p,
  2079. nnz, scan, nb, band_counts, qmul);
  2080. }
  2081. static int decode_coeffs_b32_8bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2082. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2083. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2084. const int16_t (*nb)[2], const int16_t *band_counts,
  2085. const int16_t *qmul)
  2086. {
  2087. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 1, 1, 8, cnt, eob, p,
  2088. nnz, scan, nb, band_counts, qmul);
  2089. }
  2090. static int decode_coeffs_b_16bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2091. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2092. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2093. const int16_t (*nb)[2], const int16_t *band_counts,
  2094. const int16_t *qmul)
  2095. {
  2096. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 0, 0, s->bpp, cnt, eob, p,
  2097. nnz, scan, nb, band_counts, qmul);
  2098. }
  2099. static int decode_coeffs_b32_16bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2100. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2101. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2102. const int16_t (*nb)[2], const int16_t *band_counts,
  2103. const int16_t *qmul)
  2104. {
  2105. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 1, 0, s->bpp, cnt, eob, p,
  2106. nnz, scan, nb, band_counts, qmul);
  2107. }
  2108. static av_always_inline int decode_coeffs(AVCodecContext *ctx, int is8bitsperpixel)
  2109. {
  2110. VP9Context *s = ctx->priv_data;
  2111. VP9Block *b = s->b;
  2112. int row = s->row, col = s->col;
  2113. uint8_t (*p)[6][11] = s->prob.coef[b->tx][0 /* y */][!b->intra];
  2114. unsigned (*c)[6][3] = s->counts.coef[b->tx][0 /* y */][!b->intra];
  2115. unsigned (*e)[6][2] = s->counts.eob[b->tx][0 /* y */][!b->intra];
  2116. int w4 = bwh_tab[1][b->bs][0] << 1, h4 = bwh_tab[1][b->bs][1] << 1;
  2117. int end_x = FFMIN(2 * (s->cols - col), w4);
  2118. int end_y = FFMIN(2 * (s->rows - row), h4);
  2119. int n, pl, x, y, res;
  2120. int16_t (*qmul)[2] = s->s.h.segmentation.feat[b->seg_id].qmul;
  2121. int tx = 4 * s->s.h.lossless + b->tx;
  2122. const int16_t * const *yscans = vp9_scans[tx];
  2123. const int16_t (* const *ynbs)[2] = vp9_scans_nb[tx];
  2124. const int16_t *uvscan = vp9_scans[b->uvtx][DCT_DCT];
  2125. const int16_t (*uvnb)[2] = vp9_scans_nb[b->uvtx][DCT_DCT];
  2126. uint8_t *a = &s->above_y_nnz_ctx[col * 2];
  2127. uint8_t *l = &s->left_y_nnz_ctx[(row & 7) << 1];
  2128. static const int16_t band_counts[4][8] = {
  2129. { 1, 2, 3, 4, 3, 16 - 13 },
  2130. { 1, 2, 3, 4, 11, 64 - 21 },
  2131. { 1, 2, 3, 4, 11, 256 - 21 },
  2132. { 1, 2, 3, 4, 11, 1024 - 21 },
  2133. };
  2134. const int16_t *y_band_counts = band_counts[b->tx];
  2135. const int16_t *uv_band_counts = band_counts[b->uvtx];
  2136. int bytesperpixel = is8bitsperpixel ? 1 : 2;
  2137. int total_coeff = 0;
  2138. #define MERGE(la, end, step, rd) \
  2139. for (n = 0; n < end; n += step) \
  2140. la[n] = !!rd(&la[n])
  2141. #define MERGE_CTX(step, rd) \
  2142. do { \
  2143. MERGE(l, end_y, step, rd); \
  2144. MERGE(a, end_x, step, rd); \
  2145. } while (0)
  2146. #define DECODE_Y_COEF_LOOP(step, mode_index, v) \
  2147. for (n = 0, y = 0; y < end_y; y += step) { \
  2148. for (x = 0; x < end_x; x += step, n += step * step) { \
  2149. enum TxfmType txtp = vp9_intra_txfm_type[b->mode[mode_index]]; \
  2150. res = (is8bitsperpixel ? decode_coeffs_b##v##_8bpp : decode_coeffs_b##v##_16bpp) \
  2151. (s, s->block + 16 * n * bytesperpixel, 16 * step * step, \
  2152. c, e, p, a[x] + l[y], yscans[txtp], \
  2153. ynbs[txtp], y_band_counts, qmul[0]); \
  2154. a[x] = l[y] = !!res; \
  2155. total_coeff |= !!res; \
  2156. if (step >= 4) { \
  2157. AV_WN16A(&s->eob[n], res); \
  2158. } else { \
  2159. s->eob[n] = res; \
  2160. } \
  2161. } \
  2162. }
  2163. #define SPLAT(la, end, step, cond) \
  2164. if (step == 2) { \
  2165. for (n = 1; n < end; n += step) \
  2166. la[n] = la[n - 1]; \
  2167. } else if (step == 4) { \
  2168. if (cond) { \
  2169. for (n = 0; n < end; n += step) \
  2170. AV_WN32A(&la[n], la[n] * 0x01010101); \
  2171. } else { \
  2172. for (n = 0; n < end; n += step) \
  2173. memset(&la[n + 1], la[n], FFMIN(end - n - 1, 3)); \
  2174. } \
  2175. } else /* step == 8 */ { \
  2176. if (cond) { \
  2177. if (HAVE_FAST_64BIT) { \
  2178. for (n = 0; n < end; n += step) \
  2179. AV_WN64A(&la[n], la[n] * 0x0101010101010101ULL); \
  2180. } else { \
  2181. for (n = 0; n < end; n += step) { \
  2182. uint32_t v32 = la[n] * 0x01010101; \
  2183. AV_WN32A(&la[n], v32); \
  2184. AV_WN32A(&la[n + 4], v32); \
  2185. } \
  2186. } \
  2187. } else { \
  2188. for (n = 0; n < end; n += step) \
  2189. memset(&la[n + 1], la[n], FFMIN(end - n - 1, 7)); \
  2190. } \
  2191. }
  2192. #define SPLAT_CTX(step) \
  2193. do { \
  2194. SPLAT(a, end_x, step, end_x == w4); \
  2195. SPLAT(l, end_y, step, end_y == h4); \
  2196. } while (0)
  2197. /* y tokens */
  2198. switch (b->tx) {
  2199. case TX_4X4:
  2200. DECODE_Y_COEF_LOOP(1, b->bs > BS_8x8 ? n : 0,);
  2201. break;
  2202. case TX_8X8:
  2203. MERGE_CTX(2, AV_RN16A);
  2204. DECODE_Y_COEF_LOOP(2, 0,);
  2205. SPLAT_CTX(2);
  2206. break;
  2207. case TX_16X16:
  2208. MERGE_CTX(4, AV_RN32A);
  2209. DECODE_Y_COEF_LOOP(4, 0,);
  2210. SPLAT_CTX(4);
  2211. break;
  2212. case TX_32X32:
  2213. MERGE_CTX(8, AV_RN64A);
  2214. DECODE_Y_COEF_LOOP(8, 0, 32);
  2215. SPLAT_CTX(8);
  2216. break;
  2217. }
  2218. #define DECODE_UV_COEF_LOOP(step, v) \
  2219. for (n = 0, y = 0; y < end_y; y += step) { \
  2220. for (x = 0; x < end_x; x += step, n += step * step) { \
  2221. res = (is8bitsperpixel ? decode_coeffs_b##v##_8bpp : decode_coeffs_b##v##_16bpp) \
  2222. (s, s->uvblock[pl] + 16 * n * bytesperpixel, \
  2223. 16 * step * step, c, e, p, a[x] + l[y], \
  2224. uvscan, uvnb, uv_band_counts, qmul[1]); \
  2225. a[x] = l[y] = !!res; \
  2226. total_coeff |= !!res; \
  2227. if (step >= 4) { \
  2228. AV_WN16A(&s->uveob[pl][n], res); \
  2229. } else { \
  2230. s->uveob[pl][n] = res; \
  2231. } \
  2232. } \
  2233. }
  2234. p = s->prob.coef[b->uvtx][1 /* uv */][!b->intra];
  2235. c = s->counts.coef[b->uvtx][1 /* uv */][!b->intra];
  2236. e = s->counts.eob[b->uvtx][1 /* uv */][!b->intra];
  2237. w4 >>= s->ss_h;
  2238. end_x >>= s->ss_h;
  2239. h4 >>= s->ss_v;
  2240. end_y >>= s->ss_v;
  2241. for (pl = 0; pl < 2; pl++) {
  2242. a = &s->above_uv_nnz_ctx[pl][col << !s->ss_h];
  2243. l = &s->left_uv_nnz_ctx[pl][(row & 7) << !s->ss_v];
  2244. switch (b->uvtx) {
  2245. case TX_4X4:
  2246. DECODE_UV_COEF_LOOP(1,);
  2247. break;
  2248. case TX_8X8:
  2249. MERGE_CTX(2, AV_RN16A);
  2250. DECODE_UV_COEF_LOOP(2,);
  2251. SPLAT_CTX(2);
  2252. break;
  2253. case TX_16X16:
  2254. MERGE_CTX(4, AV_RN32A);
  2255. DECODE_UV_COEF_LOOP(4,);
  2256. SPLAT_CTX(4);
  2257. break;
  2258. case TX_32X32:
  2259. MERGE_CTX(8, AV_RN64A);
  2260. DECODE_UV_COEF_LOOP(8, 32);
  2261. SPLAT_CTX(8);
  2262. break;
  2263. }
  2264. }
  2265. return total_coeff;
  2266. }
  2267. static int decode_coeffs_8bpp(AVCodecContext *ctx)
  2268. {
  2269. return decode_coeffs(ctx, 1);
  2270. }
  2271. static int decode_coeffs_16bpp(AVCodecContext *ctx)
  2272. {
  2273. return decode_coeffs(ctx, 0);
  2274. }
  2275. static av_always_inline int check_intra_mode(VP9Context *s, int mode, uint8_t **a,
  2276. uint8_t *dst_edge, ptrdiff_t stride_edge,
  2277. uint8_t *dst_inner, ptrdiff_t stride_inner,
  2278. uint8_t *l, int col, int x, int w,
  2279. int row, int y, enum TxfmMode tx,
  2280. int p, int ss_h, int ss_v, int bytesperpixel)
  2281. {
  2282. int have_top = row > 0 || y > 0;
  2283. int have_left = col > s->tile_col_start || x > 0;
  2284. int have_right = x < w - 1;
  2285. int bpp = s->bpp;
  2286. static const uint8_t mode_conv[10][2 /* have_left */][2 /* have_top */] = {
  2287. [VERT_PRED] = { { DC_127_PRED, VERT_PRED },
  2288. { DC_127_PRED, VERT_PRED } },
  2289. [HOR_PRED] = { { DC_129_PRED, DC_129_PRED },
  2290. { HOR_PRED, HOR_PRED } },
  2291. [DC_PRED] = { { DC_128_PRED, TOP_DC_PRED },
  2292. { LEFT_DC_PRED, DC_PRED } },
  2293. [DIAG_DOWN_LEFT_PRED] = { { DC_127_PRED, DIAG_DOWN_LEFT_PRED },
  2294. { DC_127_PRED, DIAG_DOWN_LEFT_PRED } },
  2295. [DIAG_DOWN_RIGHT_PRED] = { { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED },
  2296. { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED } },
  2297. [VERT_RIGHT_PRED] = { { VERT_RIGHT_PRED, VERT_RIGHT_PRED },
  2298. { VERT_RIGHT_PRED, VERT_RIGHT_PRED } },
  2299. [HOR_DOWN_PRED] = { { HOR_DOWN_PRED, HOR_DOWN_PRED },
  2300. { HOR_DOWN_PRED, HOR_DOWN_PRED } },
  2301. [VERT_LEFT_PRED] = { { DC_127_PRED, VERT_LEFT_PRED },
  2302. { DC_127_PRED, VERT_LEFT_PRED } },
  2303. [HOR_UP_PRED] = { { DC_129_PRED, DC_129_PRED },
  2304. { HOR_UP_PRED, HOR_UP_PRED } },
  2305. [TM_VP8_PRED] = { { DC_129_PRED, VERT_PRED },
  2306. { HOR_PRED, TM_VP8_PRED } },
  2307. };
  2308. static const struct {
  2309. uint8_t needs_left:1;
  2310. uint8_t needs_top:1;
  2311. uint8_t needs_topleft:1;
  2312. uint8_t needs_topright:1;
  2313. uint8_t invert_left:1;
  2314. } edges[N_INTRA_PRED_MODES] = {
  2315. [VERT_PRED] = { .needs_top = 1 },
  2316. [HOR_PRED] = { .needs_left = 1 },
  2317. [DC_PRED] = { .needs_top = 1, .needs_left = 1 },
  2318. [DIAG_DOWN_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
  2319. [DIAG_DOWN_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2320. [VERT_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2321. [HOR_DOWN_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2322. [VERT_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
  2323. [HOR_UP_PRED] = { .needs_left = 1, .invert_left = 1 },
  2324. [TM_VP8_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2325. [LEFT_DC_PRED] = { .needs_left = 1 },
  2326. [TOP_DC_PRED] = { .needs_top = 1 },
  2327. [DC_128_PRED] = { 0 },
  2328. [DC_127_PRED] = { 0 },
  2329. [DC_129_PRED] = { 0 }
  2330. };
  2331. av_assert2(mode >= 0 && mode < 10);
  2332. mode = mode_conv[mode][have_left][have_top];
  2333. if (edges[mode].needs_top) {
  2334. uint8_t *top, *topleft;
  2335. int n_px_need = 4 << tx, n_px_have = (((s->cols - col) << !ss_h) - x) * 4;
  2336. int n_px_need_tr = 0;
  2337. if (tx == TX_4X4 && edges[mode].needs_topright && have_right)
  2338. n_px_need_tr = 4;
  2339. // if top of sb64-row, use s->intra_pred_data[] instead of
  2340. // dst[-stride] for intra prediction (it contains pre- instead of
  2341. // post-loopfilter data)
  2342. if (have_top) {
  2343. top = !(row & 7) && !y ?
  2344. s->intra_pred_data[p] + (col * (8 >> ss_h) + x * 4) * bytesperpixel :
  2345. y == 0 ? &dst_edge[-stride_edge] : &dst_inner[-stride_inner];
  2346. if (have_left)
  2347. topleft = !(row & 7) && !y ?
  2348. s->intra_pred_data[p] + (col * (8 >> ss_h) + x * 4) * bytesperpixel :
  2349. y == 0 || x == 0 ? &dst_edge[-stride_edge] :
  2350. &dst_inner[-stride_inner];
  2351. }
  2352. if (have_top &&
  2353. (!edges[mode].needs_topleft || (have_left && top == topleft)) &&
  2354. (tx != TX_4X4 || !edges[mode].needs_topright || have_right) &&
  2355. n_px_need + n_px_need_tr <= n_px_have) {
  2356. *a = top;
  2357. } else {
  2358. if (have_top) {
  2359. if (n_px_need <= n_px_have) {
  2360. memcpy(*a, top, n_px_need * bytesperpixel);
  2361. } else {
  2362. #define memset_bpp(c, i1, v, i2, num) do { \
  2363. if (bytesperpixel == 1) { \
  2364. memset(&(c)[(i1)], (v)[(i2)], (num)); \
  2365. } else { \
  2366. int n, val = AV_RN16A(&(v)[(i2) * 2]); \
  2367. for (n = 0; n < (num); n++) { \
  2368. AV_WN16A(&(c)[((i1) + n) * 2], val); \
  2369. } \
  2370. } \
  2371. } while (0)
  2372. memcpy(*a, top, n_px_have * bytesperpixel);
  2373. memset_bpp(*a, n_px_have, (*a), n_px_have - 1, n_px_need - n_px_have);
  2374. }
  2375. } else {
  2376. #define memset_val(c, val, num) do { \
  2377. if (bytesperpixel == 1) { \
  2378. memset((c), (val), (num)); \
  2379. } else { \
  2380. int n; \
  2381. for (n = 0; n < (num); n++) { \
  2382. AV_WN16A(&(c)[n * 2], (val)); \
  2383. } \
  2384. } \
  2385. } while (0)
  2386. memset_val(*a, (128 << (bpp - 8)) - 1, n_px_need);
  2387. }
  2388. if (edges[mode].needs_topleft) {
  2389. if (have_left && have_top) {
  2390. #define assign_bpp(c, i1, v, i2) do { \
  2391. if (bytesperpixel == 1) { \
  2392. (c)[(i1)] = (v)[(i2)]; \
  2393. } else { \
  2394. AV_COPY16(&(c)[(i1) * 2], &(v)[(i2) * 2]); \
  2395. } \
  2396. } while (0)
  2397. assign_bpp(*a, -1, topleft, -1);
  2398. } else {
  2399. #define assign_val(c, i, v) do { \
  2400. if (bytesperpixel == 1) { \
  2401. (c)[(i)] = (v); \
  2402. } else { \
  2403. AV_WN16A(&(c)[(i) * 2], (v)); \
  2404. } \
  2405. } while (0)
  2406. assign_val((*a), -1, (128 << (bpp - 8)) + (have_top ? +1 : -1));
  2407. }
  2408. }
  2409. if (tx == TX_4X4 && edges[mode].needs_topright) {
  2410. if (have_top && have_right &&
  2411. n_px_need + n_px_need_tr <= n_px_have) {
  2412. memcpy(&(*a)[4 * bytesperpixel], &top[4 * bytesperpixel], 4 * bytesperpixel);
  2413. } else {
  2414. memset_bpp(*a, 4, *a, 3, 4);
  2415. }
  2416. }
  2417. }
  2418. }
  2419. if (edges[mode].needs_left) {
  2420. if (have_left) {
  2421. int n_px_need = 4 << tx, i, n_px_have = (((s->rows - row) << !ss_v) - y) * 4;
  2422. uint8_t *dst = x == 0 ? dst_edge : dst_inner;
  2423. ptrdiff_t stride = x == 0 ? stride_edge : stride_inner;
  2424. if (edges[mode].invert_left) {
  2425. if (n_px_need <= n_px_have) {
  2426. for (i = 0; i < n_px_need; i++)
  2427. assign_bpp(l, i, &dst[i * stride], -1);
  2428. } else {
  2429. for (i = 0; i < n_px_have; i++)
  2430. assign_bpp(l, i, &dst[i * stride], -1);
  2431. memset_bpp(l, n_px_have, l, n_px_have - 1, n_px_need - n_px_have);
  2432. }
  2433. } else {
  2434. if (n_px_need <= n_px_have) {
  2435. for (i = 0; i < n_px_need; i++)
  2436. assign_bpp(l, n_px_need - 1 - i, &dst[i * stride], -1);
  2437. } else {
  2438. for (i = 0; i < n_px_have; i++)
  2439. assign_bpp(l, n_px_need - 1 - i, &dst[i * stride], -1);
  2440. memset_bpp(l, 0, l, n_px_need - n_px_have, n_px_need - n_px_have);
  2441. }
  2442. }
  2443. } else {
  2444. memset_val(l, (128 << (bpp - 8)) + 1, 4 << tx);
  2445. }
  2446. }
  2447. return mode;
  2448. }
  2449. static av_always_inline void intra_recon(AVCodecContext *ctx, ptrdiff_t y_off,
  2450. ptrdiff_t uv_off, int bytesperpixel)
  2451. {
  2452. VP9Context *s = ctx->priv_data;
  2453. VP9Block *b = s->b;
  2454. int row = s->row, col = s->col;
  2455. int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
  2456. int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
  2457. int end_x = FFMIN(2 * (s->cols - col), w4);
  2458. int end_y = FFMIN(2 * (s->rows - row), h4);
  2459. int tx = 4 * s->s.h.lossless + b->tx, uvtx = b->uvtx + 4 * s->s.h.lossless;
  2460. int uvstep1d = 1 << b->uvtx, p;
  2461. uint8_t *dst = s->dst[0], *dst_r = s->s.frames[CUR_FRAME].tf.f->data[0] + y_off;
  2462. LOCAL_ALIGNED_32(uint8_t, a_buf, [96]);
  2463. LOCAL_ALIGNED_32(uint8_t, l, [64]);
  2464. for (n = 0, y = 0; y < end_y; y += step1d) {
  2465. uint8_t *ptr = dst, *ptr_r = dst_r;
  2466. for (x = 0; x < end_x; x += step1d, ptr += 4 * step1d * bytesperpixel,
  2467. ptr_r += 4 * step1d * bytesperpixel, n += step) {
  2468. int mode = b->mode[b->bs > BS_8x8 && b->tx == TX_4X4 ?
  2469. y * 2 + x : 0];
  2470. uint8_t *a = &a_buf[32];
  2471. enum TxfmType txtp = vp9_intra_txfm_type[mode];
  2472. int eob = b->skip ? 0 : b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n];
  2473. mode = check_intra_mode(s, mode, &a, ptr_r,
  2474. s->s.frames[CUR_FRAME].tf.f->linesize[0],
  2475. ptr, s->y_stride, l,
  2476. col, x, w4, row, y, b->tx, 0, 0, 0, bytesperpixel);
  2477. s->dsp.intra_pred[b->tx][mode](ptr, s->y_stride, l, a);
  2478. if (eob)
  2479. s->dsp.itxfm_add[tx][txtp](ptr, s->y_stride,
  2480. s->block + 16 * n * bytesperpixel, eob);
  2481. }
  2482. dst_r += 4 * step1d * s->s.frames[CUR_FRAME].tf.f->linesize[0];
  2483. dst += 4 * step1d * s->y_stride;
  2484. }
  2485. // U/V
  2486. w4 >>= s->ss_h;
  2487. end_x >>= s->ss_h;
  2488. end_y >>= s->ss_v;
  2489. step = 1 << (b->uvtx * 2);
  2490. for (p = 0; p < 2; p++) {
  2491. dst = s->dst[1 + p];
  2492. dst_r = s->s.frames[CUR_FRAME].tf.f->data[1 + p] + uv_off;
  2493. for (n = 0, y = 0; y < end_y; y += uvstep1d) {
  2494. uint8_t *ptr = dst, *ptr_r = dst_r;
  2495. for (x = 0; x < end_x; x += uvstep1d, ptr += 4 * uvstep1d * bytesperpixel,
  2496. ptr_r += 4 * uvstep1d * bytesperpixel, n += step) {
  2497. int mode = b->uvmode;
  2498. uint8_t *a = &a_buf[32];
  2499. int eob = b->skip ? 0 : b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n];
  2500. mode = check_intra_mode(s, mode, &a, ptr_r,
  2501. s->s.frames[CUR_FRAME].tf.f->linesize[1],
  2502. ptr, s->uv_stride, l, col, x, w4, row, y,
  2503. b->uvtx, p + 1, s->ss_h, s->ss_v, bytesperpixel);
  2504. s->dsp.intra_pred[b->uvtx][mode](ptr, s->uv_stride, l, a);
  2505. if (eob)
  2506. s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride,
  2507. s->uvblock[p] + 16 * n * bytesperpixel, eob);
  2508. }
  2509. dst_r += 4 * uvstep1d * s->s.frames[CUR_FRAME].tf.f->linesize[1];
  2510. dst += 4 * uvstep1d * s->uv_stride;
  2511. }
  2512. }
  2513. }
  2514. static void intra_recon_8bpp(AVCodecContext *ctx, ptrdiff_t y_off, ptrdiff_t uv_off)
  2515. {
  2516. intra_recon(ctx, y_off, uv_off, 1);
  2517. }
  2518. static void intra_recon_16bpp(AVCodecContext *ctx, ptrdiff_t y_off, ptrdiff_t uv_off)
  2519. {
  2520. intra_recon(ctx, y_off, uv_off, 2);
  2521. }
  2522. static av_always_inline void mc_luma_unscaled(VP9Context *s, vp9_mc_func (*mc)[2],
  2523. uint8_t *dst, ptrdiff_t dst_stride,
  2524. const uint8_t *ref, ptrdiff_t ref_stride,
  2525. ThreadFrame *ref_frame,
  2526. ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
  2527. int bw, int bh, int w, int h, int bytesperpixel)
  2528. {
  2529. int mx = mv->x, my = mv->y, th;
  2530. y += my >> 3;
  2531. x += mx >> 3;
  2532. ref += y * ref_stride + x * bytesperpixel;
  2533. mx &= 7;
  2534. my &= 7;
  2535. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2536. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2537. // the longest loopfilter of the next sbrow
  2538. th = (y + bh + 4 * !!my + 7) >> 6;
  2539. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2540. if (x < !!mx * 3 || y < !!my * 3 ||
  2541. x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) {
  2542. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2543. ref - !!my * 3 * ref_stride - !!mx * 3 * bytesperpixel,
  2544. 160, ref_stride,
  2545. bw + !!mx * 7, bh + !!my * 7,
  2546. x - !!mx * 3, y - !!my * 3, w, h);
  2547. ref = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
  2548. ref_stride = 160;
  2549. }
  2550. mc[!!mx][!!my](dst, dst_stride, ref, ref_stride, bh, mx << 1, my << 1);
  2551. }
  2552. static av_always_inline void mc_chroma_unscaled(VP9Context *s, vp9_mc_func (*mc)[2],
  2553. uint8_t *dst_u, uint8_t *dst_v,
  2554. ptrdiff_t dst_stride,
  2555. const uint8_t *ref_u, ptrdiff_t src_stride_u,
  2556. const uint8_t *ref_v, ptrdiff_t src_stride_v,
  2557. ThreadFrame *ref_frame,
  2558. ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
  2559. int bw, int bh, int w, int h, int bytesperpixel)
  2560. {
  2561. int mx = mv->x << !s->ss_h, my = mv->y << !s->ss_v, th;
  2562. y += my >> 4;
  2563. x += mx >> 4;
  2564. ref_u += y * src_stride_u + x * bytesperpixel;
  2565. ref_v += y * src_stride_v + x * bytesperpixel;
  2566. mx &= 15;
  2567. my &= 15;
  2568. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2569. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2570. // the longest loopfilter of the next sbrow
  2571. th = (y + bh + 4 * !!my + 7) >> (6 - s->ss_v);
  2572. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2573. if (x < !!mx * 3 || y < !!my * 3 ||
  2574. x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) {
  2575. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2576. ref_u - !!my * 3 * src_stride_u - !!mx * 3 * bytesperpixel,
  2577. 160, src_stride_u,
  2578. bw + !!mx * 7, bh + !!my * 7,
  2579. x - !!mx * 3, y - !!my * 3, w, h);
  2580. ref_u = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
  2581. mc[!!mx][!!my](dst_u, dst_stride, ref_u, 160, bh, mx, my);
  2582. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2583. ref_v - !!my * 3 * src_stride_v - !!mx * 3 * bytesperpixel,
  2584. 160, src_stride_v,
  2585. bw + !!mx * 7, bh + !!my * 7,
  2586. x - !!mx * 3, y - !!my * 3, w, h);
  2587. ref_v = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
  2588. mc[!!mx][!!my](dst_v, dst_stride, ref_v, 160, bh, mx, my);
  2589. } else {
  2590. mc[!!mx][!!my](dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my);
  2591. mc[!!mx][!!my](dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my);
  2592. }
  2593. }
  2594. #define mc_luma_dir(s, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, \
  2595. px, py, pw, ph, bw, bh, w, h, i) \
  2596. mc_luma_unscaled(s, s->dsp.mc, dst, dst_ls, src, src_ls, tref, row, col, \
  2597. mv, bw, bh, w, h, bytesperpixel)
  2598. #define mc_chroma_dir(s, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2599. row, col, mv, px, py, pw, ph, bw, bh, w, h, i) \
  2600. mc_chroma_unscaled(s, s->dsp.mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2601. row, col, mv, bw, bh, w, h, bytesperpixel)
  2602. #define SCALED 0
  2603. #define FN(x) x##_8bpp
  2604. #define BYTES_PER_PIXEL 1
  2605. #include "vp9_mc_template.c"
  2606. #undef FN
  2607. #undef BYTES_PER_PIXEL
  2608. #define FN(x) x##_16bpp
  2609. #define BYTES_PER_PIXEL 2
  2610. #include "vp9_mc_template.c"
  2611. #undef mc_luma_dir
  2612. #undef mc_chroma_dir
  2613. #undef FN
  2614. #undef BYTES_PER_PIXEL
  2615. #undef SCALED
  2616. static av_always_inline void mc_luma_scaled(VP9Context *s, vp9_scaled_mc_func smc,
  2617. vp9_mc_func (*mc)[2],
  2618. uint8_t *dst, ptrdiff_t dst_stride,
  2619. const uint8_t *ref, ptrdiff_t ref_stride,
  2620. ThreadFrame *ref_frame,
  2621. ptrdiff_t y, ptrdiff_t x, const VP56mv *in_mv,
  2622. int px, int py, int pw, int ph,
  2623. int bw, int bh, int w, int h, int bytesperpixel,
  2624. const uint16_t *scale, const uint8_t *step)
  2625. {
  2626. if (s->s.frames[CUR_FRAME].tf.f->width == ref_frame->f->width &&
  2627. s->s.frames[CUR_FRAME].tf.f->height == ref_frame->f->height) {
  2628. mc_luma_unscaled(s, mc, dst, dst_stride, ref, ref_stride, ref_frame,
  2629. y, x, in_mv, bw, bh, w, h, bytesperpixel);
  2630. } else {
  2631. #define scale_mv(n, dim) (((int64_t)(n) * scale[dim]) >> 14)
  2632. int mx, my;
  2633. int refbw_m1, refbh_m1;
  2634. int th;
  2635. VP56mv mv;
  2636. mv.x = av_clip(in_mv->x, -(x + pw - px + 4) << 3, (s->cols * 8 - x + px + 3) << 3);
  2637. mv.y = av_clip(in_mv->y, -(y + ph - py + 4) << 3, (s->rows * 8 - y + py + 3) << 3);
  2638. // BUG libvpx seems to scale the two components separately. This introduces
  2639. // rounding errors but we have to reproduce them to be exactly compatible
  2640. // with the output from libvpx...
  2641. mx = scale_mv(mv.x * 2, 0) + scale_mv(x * 16, 0);
  2642. my = scale_mv(mv.y * 2, 1) + scale_mv(y * 16, 1);
  2643. y = my >> 4;
  2644. x = mx >> 4;
  2645. ref += y * ref_stride + x * bytesperpixel;
  2646. mx &= 15;
  2647. my &= 15;
  2648. refbw_m1 = ((bw - 1) * step[0] + mx) >> 4;
  2649. refbh_m1 = ((bh - 1) * step[1] + my) >> 4;
  2650. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2651. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2652. // the longest loopfilter of the next sbrow
  2653. th = (y + refbh_m1 + 4 + 7) >> 6;
  2654. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2655. if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 4 >= h - refbh_m1) {
  2656. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2657. ref - 3 * ref_stride - 3 * bytesperpixel,
  2658. 288, ref_stride,
  2659. refbw_m1 + 8, refbh_m1 + 8,
  2660. x - 3, y - 3, w, h);
  2661. ref = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
  2662. ref_stride = 288;
  2663. }
  2664. smc(dst, dst_stride, ref, ref_stride, bh, mx, my, step[0], step[1]);
  2665. }
  2666. }
  2667. static av_always_inline void mc_chroma_scaled(VP9Context *s, vp9_scaled_mc_func smc,
  2668. vp9_mc_func (*mc)[2],
  2669. uint8_t *dst_u, uint8_t *dst_v,
  2670. ptrdiff_t dst_stride,
  2671. const uint8_t *ref_u, ptrdiff_t src_stride_u,
  2672. const uint8_t *ref_v, ptrdiff_t src_stride_v,
  2673. ThreadFrame *ref_frame,
  2674. ptrdiff_t y, ptrdiff_t x, const VP56mv *in_mv,
  2675. int px, int py, int pw, int ph,
  2676. int bw, int bh, int w, int h, int bytesperpixel,
  2677. const uint16_t *scale, const uint8_t *step)
  2678. {
  2679. if (s->s.frames[CUR_FRAME].tf.f->width == ref_frame->f->width &&
  2680. s->s.frames[CUR_FRAME].tf.f->height == ref_frame->f->height) {
  2681. mc_chroma_unscaled(s, mc, dst_u, dst_v, dst_stride, ref_u, src_stride_u,
  2682. ref_v, src_stride_v, ref_frame,
  2683. y, x, in_mv, bw, bh, w, h, bytesperpixel);
  2684. } else {
  2685. int mx, my;
  2686. int refbw_m1, refbh_m1;
  2687. int th;
  2688. VP56mv mv;
  2689. if (s->ss_h) {
  2690. // BUG https://code.google.com/p/webm/issues/detail?id=820
  2691. mv.x = av_clip(in_mv->x, -(x + pw - px + 4) << 4, (s->cols * 4 - x + px + 3) << 4);
  2692. mx = scale_mv(mv.x, 0) + (scale_mv(x * 16, 0) & ~15) + (scale_mv(x * 32, 0) & 15);
  2693. } else {
  2694. mv.x = av_clip(in_mv->x, -(x + pw - px + 4) << 3, (s->cols * 8 - x + px + 3) << 3);
  2695. mx = scale_mv(mv.x << 1, 0) + scale_mv(x * 16, 0);
  2696. }
  2697. if (s->ss_v) {
  2698. // BUG https://code.google.com/p/webm/issues/detail?id=820
  2699. mv.y = av_clip(in_mv->y, -(y + ph - py + 4) << 4, (s->rows * 4 - y + py + 3) << 4);
  2700. my = scale_mv(mv.y, 1) + (scale_mv(y * 16, 1) & ~15) + (scale_mv(y * 32, 1) & 15);
  2701. } else {
  2702. mv.y = av_clip(in_mv->y, -(y + ph - py + 4) << 3, (s->rows * 8 - y + py + 3) << 3);
  2703. my = scale_mv(mv.y << 1, 1) + scale_mv(y * 16, 1);
  2704. }
  2705. #undef scale_mv
  2706. y = my >> 4;
  2707. x = mx >> 4;
  2708. ref_u += y * src_stride_u + x * bytesperpixel;
  2709. ref_v += y * src_stride_v + x * bytesperpixel;
  2710. mx &= 15;
  2711. my &= 15;
  2712. refbw_m1 = ((bw - 1) * step[0] + mx) >> 4;
  2713. refbh_m1 = ((bh - 1) * step[1] + my) >> 4;
  2714. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2715. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2716. // the longest loopfilter of the next sbrow
  2717. th = (y + refbh_m1 + 4 + 7) >> (6 - s->ss_v);
  2718. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2719. if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 4 >= h - refbh_m1) {
  2720. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2721. ref_u - 3 * src_stride_u - 3 * bytesperpixel,
  2722. 288, src_stride_u,
  2723. refbw_m1 + 8, refbh_m1 + 8,
  2724. x - 3, y - 3, w, h);
  2725. ref_u = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
  2726. smc(dst_u, dst_stride, ref_u, 288, bh, mx, my, step[0], step[1]);
  2727. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2728. ref_v - 3 * src_stride_v - 3 * bytesperpixel,
  2729. 288, src_stride_v,
  2730. refbw_m1 + 8, refbh_m1 + 8,
  2731. x - 3, y - 3, w, h);
  2732. ref_v = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
  2733. smc(dst_v, dst_stride, ref_v, 288, bh, mx, my, step[0], step[1]);
  2734. } else {
  2735. smc(dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my, step[0], step[1]);
  2736. smc(dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my, step[0], step[1]);
  2737. }
  2738. }
  2739. }
  2740. #define mc_luma_dir(s, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, \
  2741. px, py, pw, ph, bw, bh, w, h, i) \
  2742. mc_luma_scaled(s, s->dsp.s##mc, s->dsp.mc, dst, dst_ls, src, src_ls, tref, row, col, \
  2743. mv, px, py, pw, ph, bw, bh, w, h, bytesperpixel, \
  2744. s->mvscale[b->ref[i]], s->mvstep[b->ref[i]])
  2745. #define mc_chroma_dir(s, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2746. row, col, mv, px, py, pw, ph, bw, bh, w, h, i) \
  2747. mc_chroma_scaled(s, s->dsp.s##mc, s->dsp.mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2748. row, col, mv, px, py, pw, ph, bw, bh, w, h, bytesperpixel, \
  2749. s->mvscale[b->ref[i]], s->mvstep[b->ref[i]])
  2750. #define SCALED 1
  2751. #define FN(x) x##_scaled_8bpp
  2752. #define BYTES_PER_PIXEL 1
  2753. #include "vp9_mc_template.c"
  2754. #undef FN
  2755. #undef BYTES_PER_PIXEL
  2756. #define FN(x) x##_scaled_16bpp
  2757. #define BYTES_PER_PIXEL 2
  2758. #include "vp9_mc_template.c"
  2759. #undef mc_luma_dir
  2760. #undef mc_chroma_dir
  2761. #undef FN
  2762. #undef BYTES_PER_PIXEL
  2763. #undef SCALED
  2764. static av_always_inline void inter_recon(AVCodecContext *ctx, int bytesperpixel)
  2765. {
  2766. VP9Context *s = ctx->priv_data;
  2767. VP9Block *b = s->b;
  2768. int row = s->row, col = s->col;
  2769. if (s->mvscale[b->ref[0]][0] || (b->comp && s->mvscale[b->ref[1]][0])) {
  2770. if (bytesperpixel == 1) {
  2771. inter_pred_scaled_8bpp(ctx);
  2772. } else {
  2773. inter_pred_scaled_16bpp(ctx);
  2774. }
  2775. } else {
  2776. if (bytesperpixel == 1) {
  2777. inter_pred_8bpp(ctx);
  2778. } else {
  2779. inter_pred_16bpp(ctx);
  2780. }
  2781. }
  2782. if (!b->skip) {
  2783. /* mostly copied intra_recon() */
  2784. int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
  2785. int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
  2786. int end_x = FFMIN(2 * (s->cols - col), w4);
  2787. int end_y = FFMIN(2 * (s->rows - row), h4);
  2788. int tx = 4 * s->s.h.lossless + b->tx, uvtx = b->uvtx + 4 * s->s.h.lossless;
  2789. int uvstep1d = 1 << b->uvtx, p;
  2790. uint8_t *dst = s->dst[0];
  2791. // y itxfm add
  2792. for (n = 0, y = 0; y < end_y; y += step1d) {
  2793. uint8_t *ptr = dst;
  2794. for (x = 0; x < end_x; x += step1d,
  2795. ptr += 4 * step1d * bytesperpixel, n += step) {
  2796. int eob = b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n];
  2797. if (eob)
  2798. s->dsp.itxfm_add[tx][DCT_DCT](ptr, s->y_stride,
  2799. s->block + 16 * n * bytesperpixel, eob);
  2800. }
  2801. dst += 4 * s->y_stride * step1d;
  2802. }
  2803. // uv itxfm add
  2804. end_x >>= s->ss_h;
  2805. end_y >>= s->ss_v;
  2806. step = 1 << (b->uvtx * 2);
  2807. for (p = 0; p < 2; p++) {
  2808. dst = s->dst[p + 1];
  2809. for (n = 0, y = 0; y < end_y; y += uvstep1d) {
  2810. uint8_t *ptr = dst;
  2811. for (x = 0; x < end_x; x += uvstep1d,
  2812. ptr += 4 * uvstep1d * bytesperpixel, n += step) {
  2813. int eob = b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n];
  2814. if (eob)
  2815. s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride,
  2816. s->uvblock[p] + 16 * n * bytesperpixel, eob);
  2817. }
  2818. dst += 4 * uvstep1d * s->uv_stride;
  2819. }
  2820. }
  2821. }
  2822. }
  2823. static void inter_recon_8bpp(AVCodecContext *ctx)
  2824. {
  2825. inter_recon(ctx, 1);
  2826. }
  2827. static void inter_recon_16bpp(AVCodecContext *ctx)
  2828. {
  2829. inter_recon(ctx, 2);
  2830. }
  2831. static av_always_inline void mask_edges(uint8_t (*mask)[8][4], int ss_h, int ss_v,
  2832. int row_and_7, int col_and_7,
  2833. int w, int h, int col_end, int row_end,
  2834. enum TxfmMode tx, int skip_inter)
  2835. {
  2836. static const unsigned wide_filter_col_mask[2] = { 0x11, 0x01 };
  2837. static const unsigned wide_filter_row_mask[2] = { 0x03, 0x07 };
  2838. // FIXME I'm pretty sure all loops can be replaced by a single LUT if
  2839. // we make VP9Filter.mask uint64_t (i.e. row/col all single variable)
  2840. // and make the LUT 5-indexed (bl, bp, is_uv, tx and row/col), and then
  2841. // use row_and_7/col_and_7 as shifts (1*col_and_7+8*row_and_7)
  2842. // the intended behaviour of the vp9 loopfilter is to work on 8-pixel
  2843. // edges. This means that for UV, we work on two subsampled blocks at
  2844. // a time, and we only use the topleft block's mode information to set
  2845. // things like block strength. Thus, for any block size smaller than
  2846. // 16x16, ignore the odd portion of the block.
  2847. if (tx == TX_4X4 && (ss_v | ss_h)) {
  2848. if (h == ss_v) {
  2849. if (row_and_7 & 1)
  2850. return;
  2851. if (!row_end)
  2852. h += 1;
  2853. }
  2854. if (w == ss_h) {
  2855. if (col_and_7 & 1)
  2856. return;
  2857. if (!col_end)
  2858. w += 1;
  2859. }
  2860. }
  2861. if (tx == TX_4X4 && !skip_inter) {
  2862. int t = 1 << col_and_7, m_col = (t << w) - t, y;
  2863. // on 32-px edges, use the 8-px wide loopfilter; else, use 4-px wide
  2864. int m_row_8 = m_col & wide_filter_col_mask[ss_h], m_row_4 = m_col - m_row_8;
  2865. for (y = row_and_7; y < h + row_and_7; y++) {
  2866. int col_mask_id = 2 - !(y & wide_filter_row_mask[ss_v]);
  2867. mask[0][y][1] |= m_row_8;
  2868. mask[0][y][2] |= m_row_4;
  2869. // for odd lines, if the odd col is not being filtered,
  2870. // skip odd row also:
  2871. // .---. <-- a
  2872. // | |
  2873. // |___| <-- b
  2874. // ^ ^
  2875. // c d
  2876. //
  2877. // if a/c are even row/col and b/d are odd, and d is skipped,
  2878. // e.g. right edge of size-66x66.webm, then skip b also (bug)
  2879. if ((ss_h & ss_v) && (col_end & 1) && (y & 1)) {
  2880. mask[1][y][col_mask_id] |= (t << (w - 1)) - t;
  2881. } else {
  2882. mask[1][y][col_mask_id] |= m_col;
  2883. }
  2884. if (!ss_h)
  2885. mask[0][y][3] |= m_col;
  2886. if (!ss_v) {
  2887. if (ss_h && (col_end & 1))
  2888. mask[1][y][3] |= (t << (w - 1)) - t;
  2889. else
  2890. mask[1][y][3] |= m_col;
  2891. }
  2892. }
  2893. } else {
  2894. int y, t = 1 << col_and_7, m_col = (t << w) - t;
  2895. if (!skip_inter) {
  2896. int mask_id = (tx == TX_8X8);
  2897. static const unsigned masks[4] = { 0xff, 0x55, 0x11, 0x01 };
  2898. int l2 = tx + ss_h - 1, step1d;
  2899. int m_row = m_col & masks[l2];
  2900. // at odd UV col/row edges tx16/tx32 loopfilter edges, force
  2901. // 8wd loopfilter to prevent going off the visible edge.
  2902. if (ss_h && tx > TX_8X8 && (w ^ (w - 1)) == 1) {
  2903. int m_row_16 = ((t << (w - 1)) - t) & masks[l2];
  2904. int m_row_8 = m_row - m_row_16;
  2905. for (y = row_and_7; y < h + row_and_7; y++) {
  2906. mask[0][y][0] |= m_row_16;
  2907. mask[0][y][1] |= m_row_8;
  2908. }
  2909. } else {
  2910. for (y = row_and_7; y < h + row_and_7; y++)
  2911. mask[0][y][mask_id] |= m_row;
  2912. }
  2913. l2 = tx + ss_v - 1;
  2914. step1d = 1 << l2;
  2915. if (ss_v && tx > TX_8X8 && (h ^ (h - 1)) == 1) {
  2916. for (y = row_and_7; y < h + row_and_7 - 1; y += step1d)
  2917. mask[1][y][0] |= m_col;
  2918. if (y - row_and_7 == h - 1)
  2919. mask[1][y][1] |= m_col;
  2920. } else {
  2921. for (y = row_and_7; y < h + row_and_7; y += step1d)
  2922. mask[1][y][mask_id] |= m_col;
  2923. }
  2924. } else if (tx != TX_4X4) {
  2925. int mask_id;
  2926. mask_id = (tx == TX_8X8) || (h == ss_v);
  2927. mask[1][row_and_7][mask_id] |= m_col;
  2928. mask_id = (tx == TX_8X8) || (w == ss_h);
  2929. for (y = row_and_7; y < h + row_and_7; y++)
  2930. mask[0][y][mask_id] |= t;
  2931. } else {
  2932. int t8 = t & wide_filter_col_mask[ss_h], t4 = t - t8;
  2933. for (y = row_and_7; y < h + row_and_7; y++) {
  2934. mask[0][y][2] |= t4;
  2935. mask[0][y][1] |= t8;
  2936. }
  2937. mask[1][row_and_7][2 - !(row_and_7 & wide_filter_row_mask[ss_v])] |= m_col;
  2938. }
  2939. }
  2940. }
  2941. static void decode_b(AVCodecContext *ctx, int row, int col,
  2942. struct VP9Filter *lflvl, ptrdiff_t yoff, ptrdiff_t uvoff,
  2943. enum BlockLevel bl, enum BlockPartition bp)
  2944. {
  2945. VP9Context *s = ctx->priv_data;
  2946. VP9Block *b = s->b;
  2947. enum BlockSize bs = bl * 3 + bp;
  2948. int bytesperpixel = s->bytesperpixel;
  2949. int w4 = bwh_tab[1][bs][0], h4 = bwh_tab[1][bs][1], lvl;
  2950. int emu[2];
  2951. AVFrame *f = s->s.frames[CUR_FRAME].tf.f;
  2952. s->row = row;
  2953. s->row7 = row & 7;
  2954. s->col = col;
  2955. s->col7 = col & 7;
  2956. s->min_mv.x = -(128 + col * 64);
  2957. s->min_mv.y = -(128 + row * 64);
  2958. s->max_mv.x = 128 + (s->cols - col - w4) * 64;
  2959. s->max_mv.y = 128 + (s->rows - row - h4) * 64;
  2960. if (s->pass < 2) {
  2961. b->bs = bs;
  2962. b->bl = bl;
  2963. b->bp = bp;
  2964. decode_mode(ctx);
  2965. b->uvtx = b->tx - ((s->ss_h && w4 * 2 == (1 << b->tx)) ||
  2966. (s->ss_v && h4 * 2 == (1 << b->tx)));
  2967. if (!b->skip) {
  2968. int has_coeffs;
  2969. if (bytesperpixel == 1) {
  2970. has_coeffs = decode_coeffs_8bpp(ctx);
  2971. } else {
  2972. has_coeffs = decode_coeffs_16bpp(ctx);
  2973. }
  2974. if (!has_coeffs && b->bs <= BS_8x8 && !b->intra) {
  2975. b->skip = 1;
  2976. memset(&s->above_skip_ctx[col], 1, w4);
  2977. memset(&s->left_skip_ctx[s->row7], 1, h4);
  2978. }
  2979. } else {
  2980. int row7 = s->row7;
  2981. #define SPLAT_ZERO_CTX(v, n) \
  2982. switch (n) { \
  2983. case 1: v = 0; break; \
  2984. case 2: AV_ZERO16(&v); break; \
  2985. case 4: AV_ZERO32(&v); break; \
  2986. case 8: AV_ZERO64(&v); break; \
  2987. case 16: AV_ZERO128(&v); break; \
  2988. }
  2989. #define SPLAT_ZERO_YUV(dir, var, off, n, dir2) \
  2990. do { \
  2991. SPLAT_ZERO_CTX(s->dir##_y_##var[off * 2], n * 2); \
  2992. if (s->ss_##dir2) { \
  2993. SPLAT_ZERO_CTX(s->dir##_uv_##var[0][off], n); \
  2994. SPLAT_ZERO_CTX(s->dir##_uv_##var[1][off], n); \
  2995. } else { \
  2996. SPLAT_ZERO_CTX(s->dir##_uv_##var[0][off * 2], n * 2); \
  2997. SPLAT_ZERO_CTX(s->dir##_uv_##var[1][off * 2], n * 2); \
  2998. } \
  2999. } while (0)
  3000. switch (w4) {
  3001. case 1: SPLAT_ZERO_YUV(above, nnz_ctx, col, 1, h); break;
  3002. case 2: SPLAT_ZERO_YUV(above, nnz_ctx, col, 2, h); break;
  3003. case 4: SPLAT_ZERO_YUV(above, nnz_ctx, col, 4, h); break;
  3004. case 8: SPLAT_ZERO_YUV(above, nnz_ctx, col, 8, h); break;
  3005. }
  3006. switch (h4) {
  3007. case 1: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 1, v); break;
  3008. case 2: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 2, v); break;
  3009. case 4: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 4, v); break;
  3010. case 8: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 8, v); break;
  3011. }
  3012. }
  3013. if (s->pass == 1) {
  3014. s->b++;
  3015. s->block += w4 * h4 * 64 * bytesperpixel;
  3016. s->uvblock[0] += w4 * h4 * 64 * bytesperpixel >> (s->ss_h + s->ss_v);
  3017. s->uvblock[1] += w4 * h4 * 64 * bytesperpixel >> (s->ss_h + s->ss_v);
  3018. s->eob += 4 * w4 * h4;
  3019. s->uveob[0] += 4 * w4 * h4 >> (s->ss_h + s->ss_v);
  3020. s->uveob[1] += 4 * w4 * h4 >> (s->ss_h + s->ss_v);
  3021. return;
  3022. }
  3023. }
  3024. // emulated overhangs if the stride of the target buffer can't hold. This
  3025. // makes it possible to support emu-edge and so on even if we have large block
  3026. // overhangs
  3027. emu[0] = (col + w4) * 8 * bytesperpixel > f->linesize[0] ||
  3028. (row + h4) > s->rows;
  3029. emu[1] = ((col + w4) * 8 >> s->ss_h) * bytesperpixel > f->linesize[1] ||
  3030. (row + h4) > s->rows;
  3031. if (emu[0]) {
  3032. s->dst[0] = s->tmp_y;
  3033. s->y_stride = 128;
  3034. } else {
  3035. s->dst[0] = f->data[0] + yoff;
  3036. s->y_stride = f->linesize[0];
  3037. }
  3038. if (emu[1]) {
  3039. s->dst[1] = s->tmp_uv[0];
  3040. s->dst[2] = s->tmp_uv[1];
  3041. s->uv_stride = 128;
  3042. } else {
  3043. s->dst[1] = f->data[1] + uvoff;
  3044. s->dst[2] = f->data[2] + uvoff;
  3045. s->uv_stride = f->linesize[1];
  3046. }
  3047. if (b->intra) {
  3048. if (s->bpp > 8) {
  3049. intra_recon_16bpp(ctx, yoff, uvoff);
  3050. } else {
  3051. intra_recon_8bpp(ctx, yoff, uvoff);
  3052. }
  3053. } else {
  3054. if (s->bpp > 8) {
  3055. inter_recon_16bpp(ctx);
  3056. } else {
  3057. inter_recon_8bpp(ctx);
  3058. }
  3059. }
  3060. if (emu[0]) {
  3061. int w = FFMIN(s->cols - col, w4) * 8, h = FFMIN(s->rows - row, h4) * 8, n, o = 0;
  3062. for (n = 0; o < w; n++) {
  3063. int bw = 64 >> n;
  3064. av_assert2(n <= 4);
  3065. if (w & bw) {
  3066. s->dsp.mc[n][0][0][0][0](f->data[0] + yoff + o * bytesperpixel, f->linesize[0],
  3067. s->tmp_y + o * bytesperpixel, 128, h, 0, 0);
  3068. o += bw;
  3069. }
  3070. }
  3071. }
  3072. if (emu[1]) {
  3073. int w = FFMIN(s->cols - col, w4) * 8 >> s->ss_h;
  3074. int h = FFMIN(s->rows - row, h4) * 8 >> s->ss_v, n, o = 0;
  3075. for (n = s->ss_h; o < w; n++) {
  3076. int bw = 64 >> n;
  3077. av_assert2(n <= 4);
  3078. if (w & bw) {
  3079. s->dsp.mc[n][0][0][0][0](f->data[1] + uvoff + o * bytesperpixel, f->linesize[1],
  3080. s->tmp_uv[0] + o * bytesperpixel, 128, h, 0, 0);
  3081. s->dsp.mc[n][0][0][0][0](f->data[2] + uvoff + o * bytesperpixel, f->linesize[2],
  3082. s->tmp_uv[1] + o * bytesperpixel, 128, h, 0, 0);
  3083. o += bw;
  3084. }
  3085. }
  3086. }
  3087. // pick filter level and find edges to apply filter to
  3088. if (s->s.h.filter.level &&
  3089. (lvl = s->s.h.segmentation.feat[b->seg_id].lflvl[b->intra ? 0 : b->ref[0] + 1]
  3090. [b->mode[3] != ZEROMV]) > 0) {
  3091. int x_end = FFMIN(s->cols - col, w4), y_end = FFMIN(s->rows - row, h4);
  3092. int skip_inter = !b->intra && b->skip, col7 = s->col7, row7 = s->row7;
  3093. setctx_2d(&lflvl->level[row7 * 8 + col7], w4, h4, 8, lvl);
  3094. mask_edges(lflvl->mask[0], 0, 0, row7, col7, x_end, y_end, 0, 0, b->tx, skip_inter);
  3095. if (s->ss_h || s->ss_v)
  3096. mask_edges(lflvl->mask[1], s->ss_h, s->ss_v, row7, col7, x_end, y_end,
  3097. s->cols & 1 && col + w4 >= s->cols ? s->cols & 7 : 0,
  3098. s->rows & 1 && row + h4 >= s->rows ? s->rows & 7 : 0,
  3099. b->uvtx, skip_inter);
  3100. if (!s->filter_lut.lim_lut[lvl]) {
  3101. int sharp = s->s.h.filter.sharpness;
  3102. int limit = lvl;
  3103. if (sharp > 0) {
  3104. limit >>= (sharp + 3) >> 2;
  3105. limit = FFMIN(limit, 9 - sharp);
  3106. }
  3107. limit = FFMAX(limit, 1);
  3108. s->filter_lut.lim_lut[lvl] = limit;
  3109. s->filter_lut.mblim_lut[lvl] = 2 * (lvl + 2) + limit;
  3110. }
  3111. }
  3112. if (s->pass == 2) {
  3113. s->b++;
  3114. s->block += w4 * h4 * 64 * bytesperpixel;
  3115. s->uvblock[0] += w4 * h4 * 64 * bytesperpixel >> (s->ss_v + s->ss_h);
  3116. s->uvblock[1] += w4 * h4 * 64 * bytesperpixel >> (s->ss_v + s->ss_h);
  3117. s->eob += 4 * w4 * h4;
  3118. s->uveob[0] += 4 * w4 * h4 >> (s->ss_v + s->ss_h);
  3119. s->uveob[1] += 4 * w4 * h4 >> (s->ss_v + s->ss_h);
  3120. }
  3121. }
  3122. static void decode_sb(AVCodecContext *ctx, int row, int col, struct VP9Filter *lflvl,
  3123. ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
  3124. {
  3125. VP9Context *s = ctx->priv_data;
  3126. int c = ((s->above_partition_ctx[col] >> (3 - bl)) & 1) |
  3127. (((s->left_partition_ctx[row & 0x7] >> (3 - bl)) & 1) << 1);
  3128. const uint8_t *p = s->s.h.keyframe || s->s.h.intraonly ? vp9_default_kf_partition_probs[bl][c] :
  3129. s->prob.p.partition[bl][c];
  3130. enum BlockPartition bp;
  3131. ptrdiff_t hbs = 4 >> bl;
  3132. AVFrame *f = s->s.frames[CUR_FRAME].tf.f;
  3133. ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
  3134. int bytesperpixel = s->bytesperpixel;
  3135. if (bl == BL_8X8) {
  3136. bp = vp8_rac_get_tree(&s->c, vp9_partition_tree, p);
  3137. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3138. } else if (col + hbs < s->cols) { // FIXME why not <=?
  3139. if (row + hbs < s->rows) { // FIXME why not <=?
  3140. bp = vp8_rac_get_tree(&s->c, vp9_partition_tree, p);
  3141. switch (bp) {
  3142. case PARTITION_NONE:
  3143. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3144. break;
  3145. case PARTITION_H:
  3146. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3147. yoff += hbs * 8 * y_stride;
  3148. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3149. decode_b(ctx, row + hbs, col, lflvl, yoff, uvoff, bl, bp);
  3150. break;
  3151. case PARTITION_V:
  3152. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3153. yoff += hbs * 8 * bytesperpixel;
  3154. uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
  3155. decode_b(ctx, row, col + hbs, lflvl, yoff, uvoff, bl, bp);
  3156. break;
  3157. case PARTITION_SPLIT:
  3158. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3159. decode_sb(ctx, row, col + hbs, lflvl,
  3160. yoff + 8 * hbs * bytesperpixel,
  3161. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3162. yoff += hbs * 8 * y_stride;
  3163. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3164. decode_sb(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3165. decode_sb(ctx, row + hbs, col + hbs, lflvl,
  3166. yoff + 8 * hbs * bytesperpixel,
  3167. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3168. break;
  3169. default:
  3170. av_assert0(0);
  3171. }
  3172. } else if (vp56_rac_get_prob_branchy(&s->c, p[1])) {
  3173. bp = PARTITION_SPLIT;
  3174. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3175. decode_sb(ctx, row, col + hbs, lflvl,
  3176. yoff + 8 * hbs * bytesperpixel,
  3177. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3178. } else {
  3179. bp = PARTITION_H;
  3180. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3181. }
  3182. } else if (row + hbs < s->rows) { // FIXME why not <=?
  3183. if (vp56_rac_get_prob_branchy(&s->c, p[2])) {
  3184. bp = PARTITION_SPLIT;
  3185. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3186. yoff += hbs * 8 * y_stride;
  3187. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3188. decode_sb(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3189. } else {
  3190. bp = PARTITION_V;
  3191. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3192. }
  3193. } else {
  3194. bp = PARTITION_SPLIT;
  3195. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3196. }
  3197. s->counts.partition[bl][c][bp]++;
  3198. }
  3199. static void decode_sb_mem(AVCodecContext *ctx, int row, int col, struct VP9Filter *lflvl,
  3200. ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
  3201. {
  3202. VP9Context *s = ctx->priv_data;
  3203. VP9Block *b = s->b;
  3204. ptrdiff_t hbs = 4 >> bl;
  3205. AVFrame *f = s->s.frames[CUR_FRAME].tf.f;
  3206. ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
  3207. int bytesperpixel = s->bytesperpixel;
  3208. if (bl == BL_8X8) {
  3209. av_assert2(b->bl == BL_8X8);
  3210. decode_b(ctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
  3211. } else if (s->b->bl == bl) {
  3212. decode_b(ctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
  3213. if (b->bp == PARTITION_H && row + hbs < s->rows) {
  3214. yoff += hbs * 8 * y_stride;
  3215. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3216. decode_b(ctx, row + hbs, col, lflvl, yoff, uvoff, b->bl, b->bp);
  3217. } else if (b->bp == PARTITION_V && col + hbs < s->cols) {
  3218. yoff += hbs * 8 * bytesperpixel;
  3219. uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
  3220. decode_b(ctx, row, col + hbs, lflvl, yoff, uvoff, b->bl, b->bp);
  3221. }
  3222. } else {
  3223. decode_sb_mem(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3224. if (col + hbs < s->cols) { // FIXME why not <=?
  3225. if (row + hbs < s->rows) {
  3226. decode_sb_mem(ctx, row, col + hbs, lflvl, yoff + 8 * hbs * bytesperpixel,
  3227. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3228. yoff += hbs * 8 * y_stride;
  3229. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3230. decode_sb_mem(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3231. decode_sb_mem(ctx, row + hbs, col + hbs, lflvl,
  3232. yoff + 8 * hbs * bytesperpixel,
  3233. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3234. } else {
  3235. yoff += hbs * 8 * bytesperpixel;
  3236. uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
  3237. decode_sb_mem(ctx, row, col + hbs, lflvl, yoff, uvoff, bl + 1);
  3238. }
  3239. } else if (row + hbs < s->rows) {
  3240. yoff += hbs * 8 * y_stride;
  3241. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3242. decode_sb_mem(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3243. }
  3244. }
  3245. }
  3246. static av_always_inline void filter_plane_cols(VP9Context *s, int col, int ss_h, int ss_v,
  3247. uint8_t *lvl, uint8_t (*mask)[4],
  3248. uint8_t *dst, ptrdiff_t ls)
  3249. {
  3250. int y, x, bytesperpixel = s->bytesperpixel;
  3251. // filter edges between columns (e.g. block1 | block2)
  3252. for (y = 0; y < 8; y += 2 << ss_v, dst += 16 * ls, lvl += 16 << ss_v) {
  3253. uint8_t *ptr = dst, *l = lvl, *hmask1 = mask[y], *hmask2 = mask[y + 1 + ss_v];
  3254. unsigned hm1 = hmask1[0] | hmask1[1] | hmask1[2], hm13 = hmask1[3];
  3255. unsigned hm2 = hmask2[1] | hmask2[2], hm23 = hmask2[3];
  3256. unsigned hm = hm1 | hm2 | hm13 | hm23;
  3257. for (x = 1; hm & ~(x - 1); x <<= 1, ptr += 8 * bytesperpixel >> ss_h) {
  3258. if (col || x > 1) {
  3259. if (hm1 & x) {
  3260. int L = *l, H = L >> 4;
  3261. int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L];
  3262. if (hmask1[0] & x) {
  3263. if (hmask2[0] & x) {
  3264. av_assert2(l[8 << ss_v] == L);
  3265. s->dsp.loop_filter_16[0](ptr, ls, E, I, H);
  3266. } else {
  3267. s->dsp.loop_filter_8[2][0](ptr, ls, E, I, H);
  3268. }
  3269. } else if (hm2 & x) {
  3270. L = l[8 << ss_v];
  3271. H |= (L >> 4) << 8;
  3272. E |= s->filter_lut.mblim_lut[L] << 8;
  3273. I |= s->filter_lut.lim_lut[L] << 8;
  3274. s->dsp.loop_filter_mix2[!!(hmask1[1] & x)]
  3275. [!!(hmask2[1] & x)]
  3276. [0](ptr, ls, E, I, H);
  3277. } else {
  3278. s->dsp.loop_filter_8[!!(hmask1[1] & x)]
  3279. [0](ptr, ls, E, I, H);
  3280. }
  3281. } else if (hm2 & x) {
  3282. int L = l[8 << ss_v], H = L >> 4;
  3283. int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L];
  3284. s->dsp.loop_filter_8[!!(hmask2[1] & x)]
  3285. [0](ptr + 8 * ls, ls, E, I, H);
  3286. }
  3287. }
  3288. if (ss_h) {
  3289. if (x & 0xAA)
  3290. l += 2;
  3291. } else {
  3292. if (hm13 & x) {
  3293. int L = *l, H = L >> 4;
  3294. int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L];
  3295. if (hm23 & x) {
  3296. L = l[8 << ss_v];
  3297. H |= (L >> 4) << 8;
  3298. E |= s->filter_lut.mblim_lut[L] << 8;
  3299. I |= s->filter_lut.lim_lut[L] << 8;
  3300. s->dsp.loop_filter_mix2[0][0][0](ptr + 4 * bytesperpixel, ls, E, I, H);
  3301. } else {
  3302. s->dsp.loop_filter_8[0][0](ptr + 4 * bytesperpixel, ls, E, I, H);
  3303. }
  3304. } else if (hm23 & x) {
  3305. int L = l[8 << ss_v], H = L >> 4;
  3306. int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L];
  3307. s->dsp.loop_filter_8[0][0](ptr + 8 * ls + 4 * bytesperpixel, ls, E, I, H);
  3308. }
  3309. l++;
  3310. }
  3311. }
  3312. }
  3313. }
  3314. static av_always_inline void filter_plane_rows(VP9Context *s, int row, int ss_h, int ss_v,
  3315. uint8_t *lvl, uint8_t (*mask)[4],
  3316. uint8_t *dst, ptrdiff_t ls)
  3317. {
  3318. int y, x, bytesperpixel = s->bytesperpixel;
  3319. // block1
  3320. // filter edges between rows (e.g. ------)
  3321. // block2
  3322. for (y = 0; y < 8; y++, dst += 8 * ls >> ss_v) {
  3323. uint8_t *ptr = dst, *l = lvl, *vmask = mask[y];
  3324. unsigned vm = vmask[0] | vmask[1] | vmask[2], vm3 = vmask[3];
  3325. for (x = 1; vm & ~(x - 1); x <<= (2 << ss_h), ptr += 16 * bytesperpixel, l += 2 << ss_h) {
  3326. if (row || y) {
  3327. if (vm & x) {
  3328. int L = *l, H = L >> 4;
  3329. int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L];
  3330. if (vmask[0] & x) {
  3331. if (vmask[0] & (x << (1 + ss_h))) {
  3332. av_assert2(l[1 + ss_h] == L);
  3333. s->dsp.loop_filter_16[1](ptr, ls, E, I, H);
  3334. } else {
  3335. s->dsp.loop_filter_8[2][1](ptr, ls, E, I, H);
  3336. }
  3337. } else if (vm & (x << (1 + ss_h))) {
  3338. L = l[1 + ss_h];
  3339. H |= (L >> 4) << 8;
  3340. E |= s->filter_lut.mblim_lut[L] << 8;
  3341. I |= s->filter_lut.lim_lut[L] << 8;
  3342. s->dsp.loop_filter_mix2[!!(vmask[1] & x)]
  3343. [!!(vmask[1] & (x << (1 + ss_h)))]
  3344. [1](ptr, ls, E, I, H);
  3345. } else {
  3346. s->dsp.loop_filter_8[!!(vmask[1] & x)]
  3347. [1](ptr, ls, E, I, H);
  3348. }
  3349. } else if (vm & (x << (1 + ss_h))) {
  3350. int L = l[1 + ss_h], H = L >> 4;
  3351. int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L];
  3352. s->dsp.loop_filter_8[!!(vmask[1] & (x << (1 + ss_h)))]
  3353. [1](ptr + 8 * bytesperpixel, ls, E, I, H);
  3354. }
  3355. }
  3356. if (!ss_v) {
  3357. if (vm3 & x) {
  3358. int L = *l, H = L >> 4;
  3359. int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L];
  3360. if (vm3 & (x << (1 + ss_h))) {
  3361. L = l[1 + ss_h];
  3362. H |= (L >> 4) << 8;
  3363. E |= s->filter_lut.mblim_lut[L] << 8;
  3364. I |= s->filter_lut.lim_lut[L] << 8;
  3365. s->dsp.loop_filter_mix2[0][0][1](ptr + ls * 4, ls, E, I, H);
  3366. } else {
  3367. s->dsp.loop_filter_8[0][1](ptr + ls * 4, ls, E, I, H);
  3368. }
  3369. } else if (vm3 & (x << (1 + ss_h))) {
  3370. int L = l[1 + ss_h], H = L >> 4;
  3371. int E = s->filter_lut.mblim_lut[L], I = s->filter_lut.lim_lut[L];
  3372. s->dsp.loop_filter_8[0][1](ptr + ls * 4 + 8 * bytesperpixel, ls, E, I, H);
  3373. }
  3374. }
  3375. }
  3376. if (ss_v) {
  3377. if (y & 1)
  3378. lvl += 16;
  3379. } else {
  3380. lvl += 8;
  3381. }
  3382. }
  3383. }
  3384. static void loopfilter_sb(AVCodecContext *ctx, struct VP9Filter *lflvl,
  3385. int row, int col, ptrdiff_t yoff, ptrdiff_t uvoff)
  3386. {
  3387. VP9Context *s = ctx->priv_data;
  3388. AVFrame *f = s->s.frames[CUR_FRAME].tf.f;
  3389. uint8_t *dst = f->data[0] + yoff;
  3390. ptrdiff_t ls_y = f->linesize[0], ls_uv = f->linesize[1];
  3391. uint8_t (*uv_masks)[8][4] = lflvl->mask[s->ss_h | s->ss_v];
  3392. int p;
  3393. // FIXME in how far can we interleave the v/h loopfilter calls? E.g.
  3394. // if you think of them as acting on a 8x8 block max, we can interleave
  3395. // each v/h within the single x loop, but that only works if we work on
  3396. // 8 pixel blocks, and we won't always do that (we want at least 16px
  3397. // to use SSE2 optimizations, perhaps 32 for AVX2)
  3398. filter_plane_cols(s, col, 0, 0, lflvl->level, lflvl->mask[0][0], dst, ls_y);
  3399. filter_plane_rows(s, row, 0, 0, lflvl->level, lflvl->mask[0][1], dst, ls_y);
  3400. for (p = 0; p < 2; p++) {
  3401. dst = f->data[1 + p] + uvoff;
  3402. filter_plane_cols(s, col, s->ss_h, s->ss_v, lflvl->level, uv_masks[0], dst, ls_uv);
  3403. filter_plane_rows(s, row, s->ss_h, s->ss_v, lflvl->level, uv_masks[1], dst, ls_uv);
  3404. }
  3405. }
  3406. static void set_tile_offset(int *start, int *end, int idx, int log2_n, int n)
  3407. {
  3408. int sb_start = ( idx * n) >> log2_n;
  3409. int sb_end = ((idx + 1) * n) >> log2_n;
  3410. *start = FFMIN(sb_start, n) << 3;
  3411. *end = FFMIN(sb_end, n) << 3;
  3412. }
  3413. static av_always_inline void adapt_prob(uint8_t *p, unsigned ct0, unsigned ct1,
  3414. int max_count, int update_factor)
  3415. {
  3416. unsigned ct = ct0 + ct1, p2, p1;
  3417. if (!ct)
  3418. return;
  3419. p1 = *p;
  3420. p2 = ((ct0 << 8) + (ct >> 1)) / ct;
  3421. p2 = av_clip(p2, 1, 255);
  3422. ct = FFMIN(ct, max_count);
  3423. update_factor = FASTDIV(update_factor * ct, max_count);
  3424. // (p1 * (256 - update_factor) + p2 * update_factor + 128) >> 8
  3425. *p = p1 + (((p2 - p1) * update_factor + 128) >> 8);
  3426. }
  3427. static void adapt_probs(VP9Context *s)
  3428. {
  3429. int i, j, k, l, m;
  3430. prob_context *p = &s->prob_ctx[s->s.h.framectxid].p;
  3431. int uf = (s->s.h.keyframe || s->s.h.intraonly || !s->last_keyframe) ? 112 : 128;
  3432. // coefficients
  3433. for (i = 0; i < 4; i++)
  3434. for (j = 0; j < 2; j++)
  3435. for (k = 0; k < 2; k++)
  3436. for (l = 0; l < 6; l++)
  3437. for (m = 0; m < 6; m++) {
  3438. uint8_t *pp = s->prob_ctx[s->s.h.framectxid].coef[i][j][k][l][m];
  3439. unsigned *e = s->counts.eob[i][j][k][l][m];
  3440. unsigned *c = s->counts.coef[i][j][k][l][m];
  3441. if (l == 0 && m >= 3) // dc only has 3 pt
  3442. break;
  3443. adapt_prob(&pp[0], e[0], e[1], 24, uf);
  3444. adapt_prob(&pp[1], c[0], c[1] + c[2], 24, uf);
  3445. adapt_prob(&pp[2], c[1], c[2], 24, uf);
  3446. }
  3447. if (s->s.h.keyframe || s->s.h.intraonly) {
  3448. memcpy(p->skip, s->prob.p.skip, sizeof(p->skip));
  3449. memcpy(p->tx32p, s->prob.p.tx32p, sizeof(p->tx32p));
  3450. memcpy(p->tx16p, s->prob.p.tx16p, sizeof(p->tx16p));
  3451. memcpy(p->tx8p, s->prob.p.tx8p, sizeof(p->tx8p));
  3452. return;
  3453. }
  3454. // skip flag
  3455. for (i = 0; i < 3; i++)
  3456. adapt_prob(&p->skip[i], s->counts.skip[i][0], s->counts.skip[i][1], 20, 128);
  3457. // intra/inter flag
  3458. for (i = 0; i < 4; i++)
  3459. adapt_prob(&p->intra[i], s->counts.intra[i][0], s->counts.intra[i][1], 20, 128);
  3460. // comppred flag
  3461. if (s->s.h.comppredmode == PRED_SWITCHABLE) {
  3462. for (i = 0; i < 5; i++)
  3463. adapt_prob(&p->comp[i], s->counts.comp[i][0], s->counts.comp[i][1], 20, 128);
  3464. }
  3465. // reference frames
  3466. if (s->s.h.comppredmode != PRED_SINGLEREF) {
  3467. for (i = 0; i < 5; i++)
  3468. adapt_prob(&p->comp_ref[i], s->counts.comp_ref[i][0],
  3469. s->counts.comp_ref[i][1], 20, 128);
  3470. }
  3471. if (s->s.h.comppredmode != PRED_COMPREF) {
  3472. for (i = 0; i < 5; i++) {
  3473. uint8_t *pp = p->single_ref[i];
  3474. unsigned (*c)[2] = s->counts.single_ref[i];
  3475. adapt_prob(&pp[0], c[0][0], c[0][1], 20, 128);
  3476. adapt_prob(&pp[1], c[1][0], c[1][1], 20, 128);
  3477. }
  3478. }
  3479. // block partitioning
  3480. for (i = 0; i < 4; i++)
  3481. for (j = 0; j < 4; j++) {
  3482. uint8_t *pp = p->partition[i][j];
  3483. unsigned *c = s->counts.partition[i][j];
  3484. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3485. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3486. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3487. }
  3488. // tx size
  3489. if (s->s.h.txfmmode == TX_SWITCHABLE) {
  3490. for (i = 0; i < 2; i++) {
  3491. unsigned *c16 = s->counts.tx16p[i], *c32 = s->counts.tx32p[i];
  3492. adapt_prob(&p->tx8p[i], s->counts.tx8p[i][0], s->counts.tx8p[i][1], 20, 128);
  3493. adapt_prob(&p->tx16p[i][0], c16[0], c16[1] + c16[2], 20, 128);
  3494. adapt_prob(&p->tx16p[i][1], c16[1], c16[2], 20, 128);
  3495. adapt_prob(&p->tx32p[i][0], c32[0], c32[1] + c32[2] + c32[3], 20, 128);
  3496. adapt_prob(&p->tx32p[i][1], c32[1], c32[2] + c32[3], 20, 128);
  3497. adapt_prob(&p->tx32p[i][2], c32[2], c32[3], 20, 128);
  3498. }
  3499. }
  3500. // interpolation filter
  3501. if (s->s.h.filtermode == FILTER_SWITCHABLE) {
  3502. for (i = 0; i < 4; i++) {
  3503. uint8_t *pp = p->filter[i];
  3504. unsigned *c = s->counts.filter[i];
  3505. adapt_prob(&pp[0], c[0], c[1] + c[2], 20, 128);
  3506. adapt_prob(&pp[1], c[1], c[2], 20, 128);
  3507. }
  3508. }
  3509. // inter modes
  3510. for (i = 0; i < 7; i++) {
  3511. uint8_t *pp = p->mv_mode[i];
  3512. unsigned *c = s->counts.mv_mode[i];
  3513. adapt_prob(&pp[0], c[2], c[1] + c[0] + c[3], 20, 128);
  3514. adapt_prob(&pp[1], c[0], c[1] + c[3], 20, 128);
  3515. adapt_prob(&pp[2], c[1], c[3], 20, 128);
  3516. }
  3517. // mv joints
  3518. {
  3519. uint8_t *pp = p->mv_joint;
  3520. unsigned *c = s->counts.mv_joint;
  3521. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3522. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3523. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3524. }
  3525. // mv components
  3526. for (i = 0; i < 2; i++) {
  3527. uint8_t *pp;
  3528. unsigned *c, (*c2)[2], sum;
  3529. adapt_prob(&p->mv_comp[i].sign, s->counts.mv_comp[i].sign[0],
  3530. s->counts.mv_comp[i].sign[1], 20, 128);
  3531. pp = p->mv_comp[i].classes;
  3532. c = s->counts.mv_comp[i].classes;
  3533. sum = c[1] + c[2] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9] + c[10];
  3534. adapt_prob(&pp[0], c[0], sum, 20, 128);
  3535. sum -= c[1];
  3536. adapt_prob(&pp[1], c[1], sum, 20, 128);
  3537. sum -= c[2] + c[3];
  3538. adapt_prob(&pp[2], c[2] + c[3], sum, 20, 128);
  3539. adapt_prob(&pp[3], c[2], c[3], 20, 128);
  3540. sum -= c[4] + c[5];
  3541. adapt_prob(&pp[4], c[4] + c[5], sum, 20, 128);
  3542. adapt_prob(&pp[5], c[4], c[5], 20, 128);
  3543. sum -= c[6];
  3544. adapt_prob(&pp[6], c[6], sum, 20, 128);
  3545. adapt_prob(&pp[7], c[7] + c[8], c[9] + c[10], 20, 128);
  3546. adapt_prob(&pp[8], c[7], c[8], 20, 128);
  3547. adapt_prob(&pp[9], c[9], c[10], 20, 128);
  3548. adapt_prob(&p->mv_comp[i].class0, s->counts.mv_comp[i].class0[0],
  3549. s->counts.mv_comp[i].class0[1], 20, 128);
  3550. pp = p->mv_comp[i].bits;
  3551. c2 = s->counts.mv_comp[i].bits;
  3552. for (j = 0; j < 10; j++)
  3553. adapt_prob(&pp[j], c2[j][0], c2[j][1], 20, 128);
  3554. for (j = 0; j < 2; j++) {
  3555. pp = p->mv_comp[i].class0_fp[j];
  3556. c = s->counts.mv_comp[i].class0_fp[j];
  3557. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3558. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3559. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3560. }
  3561. pp = p->mv_comp[i].fp;
  3562. c = s->counts.mv_comp[i].fp;
  3563. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3564. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3565. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3566. if (s->s.h.highprecisionmvs) {
  3567. adapt_prob(&p->mv_comp[i].class0_hp, s->counts.mv_comp[i].class0_hp[0],
  3568. s->counts.mv_comp[i].class0_hp[1], 20, 128);
  3569. adapt_prob(&p->mv_comp[i].hp, s->counts.mv_comp[i].hp[0],
  3570. s->counts.mv_comp[i].hp[1], 20, 128);
  3571. }
  3572. }
  3573. // y intra modes
  3574. for (i = 0; i < 4; i++) {
  3575. uint8_t *pp = p->y_mode[i];
  3576. unsigned *c = s->counts.y_mode[i], sum, s2;
  3577. sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9];
  3578. adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128);
  3579. sum -= c[TM_VP8_PRED];
  3580. adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128);
  3581. sum -= c[VERT_PRED];
  3582. adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128);
  3583. s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED];
  3584. sum -= s2;
  3585. adapt_prob(&pp[3], s2, sum, 20, 128);
  3586. s2 -= c[HOR_PRED];
  3587. adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128);
  3588. adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128);
  3589. sum -= c[DIAG_DOWN_LEFT_PRED];
  3590. adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128);
  3591. sum -= c[VERT_LEFT_PRED];
  3592. adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128);
  3593. adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128);
  3594. }
  3595. // uv intra modes
  3596. for (i = 0; i < 10; i++) {
  3597. uint8_t *pp = p->uv_mode[i];
  3598. unsigned *c = s->counts.uv_mode[i], sum, s2;
  3599. sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9];
  3600. adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128);
  3601. sum -= c[TM_VP8_PRED];
  3602. adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128);
  3603. sum -= c[VERT_PRED];
  3604. adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128);
  3605. s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED];
  3606. sum -= s2;
  3607. adapt_prob(&pp[3], s2, sum, 20, 128);
  3608. s2 -= c[HOR_PRED];
  3609. adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128);
  3610. adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128);
  3611. sum -= c[DIAG_DOWN_LEFT_PRED];
  3612. adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128);
  3613. sum -= c[VERT_LEFT_PRED];
  3614. adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128);
  3615. adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128);
  3616. }
  3617. }
  3618. static void free_buffers(VP9Context *s)
  3619. {
  3620. av_freep(&s->intra_pred_data[0]);
  3621. av_freep(&s->b_base);
  3622. av_freep(&s->block_base);
  3623. }
  3624. static av_cold int vp9_decode_free(AVCodecContext *ctx)
  3625. {
  3626. VP9Context *s = ctx->priv_data;
  3627. int i;
  3628. for (i = 0; i < 3; i++) {
  3629. if (s->s.frames[i].tf.f->buf[0])
  3630. vp9_unref_frame(ctx, &s->s.frames[i]);
  3631. av_frame_free(&s->s.frames[i].tf.f);
  3632. }
  3633. for (i = 0; i < 8; i++) {
  3634. if (s->s.refs[i].f->buf[0])
  3635. ff_thread_release_buffer(ctx, &s->s.refs[i]);
  3636. av_frame_free(&s->s.refs[i].f);
  3637. if (s->next_refs[i].f->buf[0])
  3638. ff_thread_release_buffer(ctx, &s->next_refs[i]);
  3639. av_frame_free(&s->next_refs[i].f);
  3640. }
  3641. free_buffers(s);
  3642. av_freep(&s->c_b);
  3643. s->c_b_size = 0;
  3644. return 0;
  3645. }
  3646. static int vp9_decode_frame(AVCodecContext *ctx, void *frame,
  3647. int *got_frame, AVPacket *pkt)
  3648. {
  3649. const uint8_t *data = pkt->data;
  3650. int size = pkt->size;
  3651. VP9Context *s = ctx->priv_data;
  3652. int res, tile_row, tile_col, i, ref, row, col;
  3653. int retain_segmap_ref = s->s.frames[REF_FRAME_SEGMAP].segmentation_map &&
  3654. (!s->s.h.segmentation.enabled || !s->s.h.segmentation.update_map);
  3655. ptrdiff_t yoff, uvoff, ls_y, ls_uv;
  3656. AVFrame *f;
  3657. int bytesperpixel;
  3658. if ((res = decode_frame_header(ctx, data, size, &ref)) < 0) {
  3659. return res;
  3660. } else if (res == 0) {
  3661. if (!s->s.refs[ref].f->buf[0]) {
  3662. av_log(ctx, AV_LOG_ERROR, "Requested reference %d not available\n", ref);
  3663. return AVERROR_INVALIDDATA;
  3664. }
  3665. if ((res = av_frame_ref(frame, s->s.refs[ref].f)) < 0)
  3666. return res;
  3667. ((AVFrame *)frame)->pkt_pts = pkt->pts;
  3668. ((AVFrame *)frame)->pkt_dts = pkt->dts;
  3669. for (i = 0; i < 8; i++) {
  3670. if (s->next_refs[i].f->buf[0])
  3671. ff_thread_release_buffer(ctx, &s->next_refs[i]);
  3672. if (s->s.refs[i].f->buf[0] &&
  3673. (res = ff_thread_ref_frame(&s->next_refs[i], &s->s.refs[i])) < 0)
  3674. return res;
  3675. }
  3676. *got_frame = 1;
  3677. return pkt->size;
  3678. }
  3679. data += res;
  3680. size -= res;
  3681. if (!retain_segmap_ref || s->s.h.keyframe || s->s.h.intraonly) {
  3682. if (s->s.frames[REF_FRAME_SEGMAP].tf.f->buf[0])
  3683. vp9_unref_frame(ctx, &s->s.frames[REF_FRAME_SEGMAP]);
  3684. if (!s->s.h.keyframe && !s->s.h.intraonly && !s->s.h.errorres && s->s.frames[CUR_FRAME].tf.f->buf[0] &&
  3685. (res = vp9_ref_frame(ctx, &s->s.frames[REF_FRAME_SEGMAP], &s->s.frames[CUR_FRAME])) < 0)
  3686. return res;
  3687. }
  3688. if (s->s.frames[REF_FRAME_MVPAIR].tf.f->buf[0])
  3689. vp9_unref_frame(ctx, &s->s.frames[REF_FRAME_MVPAIR]);
  3690. if (!s->s.h.intraonly && !s->s.h.keyframe && !s->s.h.errorres && s->s.frames[CUR_FRAME].tf.f->buf[0] &&
  3691. (res = vp9_ref_frame(ctx, &s->s.frames[REF_FRAME_MVPAIR], &s->s.frames[CUR_FRAME])) < 0)
  3692. return res;
  3693. if (s->s.frames[CUR_FRAME].tf.f->buf[0])
  3694. vp9_unref_frame(ctx, &s->s.frames[CUR_FRAME]);
  3695. if ((res = vp9_alloc_frame(ctx, &s->s.frames[CUR_FRAME])) < 0)
  3696. return res;
  3697. f = s->s.frames[CUR_FRAME].tf.f;
  3698. f->key_frame = s->s.h.keyframe;
  3699. f->pict_type = (s->s.h.keyframe || s->s.h.intraonly) ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
  3700. ls_y = f->linesize[0];
  3701. ls_uv =f->linesize[1];
  3702. if (s->s.frames[REF_FRAME_SEGMAP].tf.f->buf[0] &&
  3703. (s->s.frames[REF_FRAME_MVPAIR].tf.f->width != s->s.frames[CUR_FRAME].tf.f->width ||
  3704. s->s.frames[REF_FRAME_MVPAIR].tf.f->height != s->s.frames[CUR_FRAME].tf.f->height)) {
  3705. vp9_unref_frame(ctx, &s->s.frames[REF_FRAME_SEGMAP]);
  3706. }
  3707. // ref frame setup
  3708. for (i = 0; i < 8; i++) {
  3709. if (s->next_refs[i].f->buf[0])
  3710. ff_thread_release_buffer(ctx, &s->next_refs[i]);
  3711. if (s->s.h.refreshrefmask & (1 << i)) {
  3712. res = ff_thread_ref_frame(&s->next_refs[i], &s->s.frames[CUR_FRAME].tf);
  3713. } else if (s->s.refs[i].f->buf[0]) {
  3714. res = ff_thread_ref_frame(&s->next_refs[i], &s->s.refs[i]);
  3715. }
  3716. if (res < 0)
  3717. return res;
  3718. }
  3719. if (ctx->hwaccel) {
  3720. res = ctx->hwaccel->start_frame(ctx, NULL, 0);
  3721. if (res < 0)
  3722. return res;
  3723. res = ctx->hwaccel->decode_slice(ctx, pkt->data, pkt->size);
  3724. if (res < 0)
  3725. return res;
  3726. res = ctx->hwaccel->end_frame(ctx);
  3727. if (res < 0)
  3728. return res;
  3729. goto finish;
  3730. }
  3731. // main tile decode loop
  3732. bytesperpixel = s->bytesperpixel;
  3733. memset(s->above_partition_ctx, 0, s->cols);
  3734. memset(s->above_skip_ctx, 0, s->cols);
  3735. if (s->s.h.keyframe || s->s.h.intraonly) {
  3736. memset(s->above_mode_ctx, DC_PRED, s->cols * 2);
  3737. } else {
  3738. memset(s->above_mode_ctx, NEARESTMV, s->cols);
  3739. }
  3740. memset(s->above_y_nnz_ctx, 0, s->sb_cols * 16);
  3741. memset(s->above_uv_nnz_ctx[0], 0, s->sb_cols * 16 >> s->ss_h);
  3742. memset(s->above_uv_nnz_ctx[1], 0, s->sb_cols * 16 >> s->ss_h);
  3743. memset(s->above_segpred_ctx, 0, s->cols);
  3744. s->pass = s->s.frames[CUR_FRAME].uses_2pass =
  3745. ctx->active_thread_type == FF_THREAD_FRAME && s->s.h.refreshctx && !s->s.h.parallelmode;
  3746. if ((res = update_block_buffers(ctx)) < 0) {
  3747. av_log(ctx, AV_LOG_ERROR,
  3748. "Failed to allocate block buffers\n");
  3749. return res;
  3750. }
  3751. if (s->s.h.refreshctx && s->s.h.parallelmode) {
  3752. int j, k, l, m;
  3753. for (i = 0; i < 4; i++) {
  3754. for (j = 0; j < 2; j++)
  3755. for (k = 0; k < 2; k++)
  3756. for (l = 0; l < 6; l++)
  3757. for (m = 0; m < 6; m++)
  3758. memcpy(s->prob_ctx[s->s.h.framectxid].coef[i][j][k][l][m],
  3759. s->prob.coef[i][j][k][l][m], 3);
  3760. if (s->s.h.txfmmode == i)
  3761. break;
  3762. }
  3763. s->prob_ctx[s->s.h.framectxid].p = s->prob.p;
  3764. ff_thread_finish_setup(ctx);
  3765. } else if (!s->s.h.refreshctx) {
  3766. ff_thread_finish_setup(ctx);
  3767. }
  3768. do {
  3769. yoff = uvoff = 0;
  3770. s->b = s->b_base;
  3771. s->block = s->block_base;
  3772. s->uvblock[0] = s->uvblock_base[0];
  3773. s->uvblock[1] = s->uvblock_base[1];
  3774. s->eob = s->eob_base;
  3775. s->uveob[0] = s->uveob_base[0];
  3776. s->uveob[1] = s->uveob_base[1];
  3777. for (tile_row = 0; tile_row < s->s.h.tiling.tile_rows; tile_row++) {
  3778. set_tile_offset(&s->tile_row_start, &s->tile_row_end,
  3779. tile_row, s->s.h.tiling.log2_tile_rows, s->sb_rows);
  3780. if (s->pass != 2) {
  3781. for (tile_col = 0; tile_col < s->s.h.tiling.tile_cols; tile_col++) {
  3782. int64_t tile_size;
  3783. if (tile_col == s->s.h.tiling.tile_cols - 1 &&
  3784. tile_row == s->s.h.tiling.tile_rows - 1) {
  3785. tile_size = size;
  3786. } else {
  3787. tile_size = AV_RB32(data);
  3788. data += 4;
  3789. size -= 4;
  3790. }
  3791. if (tile_size > size) {
  3792. ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, INT_MAX, 0);
  3793. return AVERROR_INVALIDDATA;
  3794. }
  3795. ff_vp56_init_range_decoder(&s->c_b[tile_col], data, tile_size);
  3796. if (vp56_rac_get_prob_branchy(&s->c_b[tile_col], 128)) { // marker bit
  3797. ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, INT_MAX, 0);
  3798. return AVERROR_INVALIDDATA;
  3799. }
  3800. data += tile_size;
  3801. size -= tile_size;
  3802. }
  3803. }
  3804. for (row = s->tile_row_start; row < s->tile_row_end;
  3805. row += 8, yoff += ls_y * 64, uvoff += ls_uv * 64 >> s->ss_v) {
  3806. struct VP9Filter *lflvl_ptr = s->lflvl;
  3807. ptrdiff_t yoff2 = yoff, uvoff2 = uvoff;
  3808. for (tile_col = 0; tile_col < s->s.h.tiling.tile_cols; tile_col++) {
  3809. set_tile_offset(&s->tile_col_start, &s->tile_col_end,
  3810. tile_col, s->s.h.tiling.log2_tile_cols, s->sb_cols);
  3811. if (s->pass != 2) {
  3812. memset(s->left_partition_ctx, 0, 8);
  3813. memset(s->left_skip_ctx, 0, 8);
  3814. if (s->s.h.keyframe || s->s.h.intraonly) {
  3815. memset(s->left_mode_ctx, DC_PRED, 16);
  3816. } else {
  3817. memset(s->left_mode_ctx, NEARESTMV, 8);
  3818. }
  3819. memset(s->left_y_nnz_ctx, 0, 16);
  3820. memset(s->left_uv_nnz_ctx, 0, 32);
  3821. memset(s->left_segpred_ctx, 0, 8);
  3822. memcpy(&s->c, &s->c_b[tile_col], sizeof(s->c));
  3823. }
  3824. for (col = s->tile_col_start;
  3825. col < s->tile_col_end;
  3826. col += 8, yoff2 += 64 * bytesperpixel,
  3827. uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) {
  3828. // FIXME integrate with lf code (i.e. zero after each
  3829. // use, similar to invtxfm coefficients, or similar)
  3830. if (s->pass != 1) {
  3831. memset(lflvl_ptr->mask, 0, sizeof(lflvl_ptr->mask));
  3832. }
  3833. if (s->pass == 2) {
  3834. decode_sb_mem(ctx, row, col, lflvl_ptr,
  3835. yoff2, uvoff2, BL_64X64);
  3836. } else {
  3837. decode_sb(ctx, row, col, lflvl_ptr,
  3838. yoff2, uvoff2, BL_64X64);
  3839. }
  3840. }
  3841. if (s->pass != 2) {
  3842. memcpy(&s->c_b[tile_col], &s->c, sizeof(s->c));
  3843. }
  3844. }
  3845. if (s->pass == 1) {
  3846. continue;
  3847. }
  3848. // backup pre-loopfilter reconstruction data for intra
  3849. // prediction of next row of sb64s
  3850. if (row + 8 < s->rows) {
  3851. memcpy(s->intra_pred_data[0],
  3852. f->data[0] + yoff + 63 * ls_y,
  3853. 8 * s->cols * bytesperpixel);
  3854. memcpy(s->intra_pred_data[1],
  3855. f->data[1] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
  3856. 8 * s->cols * bytesperpixel >> s->ss_h);
  3857. memcpy(s->intra_pred_data[2],
  3858. f->data[2] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
  3859. 8 * s->cols * bytesperpixel >> s->ss_h);
  3860. }
  3861. // loopfilter one row
  3862. if (s->s.h.filter.level) {
  3863. yoff2 = yoff;
  3864. uvoff2 = uvoff;
  3865. lflvl_ptr = s->lflvl;
  3866. for (col = 0; col < s->cols;
  3867. col += 8, yoff2 += 64 * bytesperpixel,
  3868. uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) {
  3869. loopfilter_sb(ctx, lflvl_ptr, row, col, yoff2, uvoff2);
  3870. }
  3871. }
  3872. // FIXME maybe we can make this more finegrained by running the
  3873. // loopfilter per-block instead of after each sbrow
  3874. // In fact that would also make intra pred left preparation easier?
  3875. ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, row >> 3, 0);
  3876. }
  3877. }
  3878. if (s->pass < 2 && s->s.h.refreshctx && !s->s.h.parallelmode) {
  3879. adapt_probs(s);
  3880. ff_thread_finish_setup(ctx);
  3881. }
  3882. } while (s->pass++ == 1);
  3883. ff_thread_report_progress(&s->s.frames[CUR_FRAME].tf, INT_MAX, 0);
  3884. finish:
  3885. // ref frame setup
  3886. for (i = 0; i < 8; i++) {
  3887. if (s->s.refs[i].f->buf[0])
  3888. ff_thread_release_buffer(ctx, &s->s.refs[i]);
  3889. if (s->next_refs[i].f->buf[0] &&
  3890. (res = ff_thread_ref_frame(&s->s.refs[i], &s->next_refs[i])) < 0)
  3891. return res;
  3892. }
  3893. if (!s->s.h.invisible) {
  3894. if ((res = av_frame_ref(frame, s->s.frames[CUR_FRAME].tf.f)) < 0)
  3895. return res;
  3896. *got_frame = 1;
  3897. }
  3898. return pkt->size;
  3899. }
  3900. static void vp9_decode_flush(AVCodecContext *ctx)
  3901. {
  3902. VP9Context *s = ctx->priv_data;
  3903. int i;
  3904. for (i = 0; i < 3; i++)
  3905. vp9_unref_frame(ctx, &s->s.frames[i]);
  3906. for (i = 0; i < 8; i++)
  3907. ff_thread_release_buffer(ctx, &s->s.refs[i]);
  3908. }
  3909. static int init_frames(AVCodecContext *ctx)
  3910. {
  3911. VP9Context *s = ctx->priv_data;
  3912. int i;
  3913. for (i = 0; i < 3; i++) {
  3914. s->s.frames[i].tf.f = av_frame_alloc();
  3915. if (!s->s.frames[i].tf.f) {
  3916. vp9_decode_free(ctx);
  3917. av_log(ctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i);
  3918. return AVERROR(ENOMEM);
  3919. }
  3920. }
  3921. for (i = 0; i < 8; i++) {
  3922. s->s.refs[i].f = av_frame_alloc();
  3923. s->next_refs[i].f = av_frame_alloc();
  3924. if (!s->s.refs[i].f || !s->next_refs[i].f) {
  3925. vp9_decode_free(ctx);
  3926. av_log(ctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i);
  3927. return AVERROR(ENOMEM);
  3928. }
  3929. }
  3930. return 0;
  3931. }
  3932. static av_cold int vp9_decode_init(AVCodecContext *ctx)
  3933. {
  3934. VP9Context *s = ctx->priv_data;
  3935. ctx->internal->allocate_progress = 1;
  3936. s->last_bpp = 0;
  3937. s->s.h.filter.sharpness = -1;
  3938. return init_frames(ctx);
  3939. }
  3940. #if HAVE_THREADS
  3941. static av_cold int vp9_decode_init_thread_copy(AVCodecContext *avctx)
  3942. {
  3943. return init_frames(avctx);
  3944. }
  3945. static int vp9_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
  3946. {
  3947. int i, res;
  3948. VP9Context *s = dst->priv_data, *ssrc = src->priv_data;
  3949. // detect size changes in other threads
  3950. if (s->intra_pred_data[0] &&
  3951. (!ssrc->intra_pred_data[0] || s->cols != ssrc->cols ||
  3952. s->rows != ssrc->rows || s->bpp != ssrc->bpp || s->pix_fmt != ssrc->pix_fmt)) {
  3953. free_buffers(s);
  3954. }
  3955. for (i = 0; i < 3; i++) {
  3956. if (s->s.frames[i].tf.f->buf[0])
  3957. vp9_unref_frame(dst, &s->s.frames[i]);
  3958. if (ssrc->s.frames[i].tf.f->buf[0]) {
  3959. if ((res = vp9_ref_frame(dst, &s->s.frames[i], &ssrc->s.frames[i])) < 0)
  3960. return res;
  3961. }
  3962. }
  3963. for (i = 0; i < 8; i++) {
  3964. if (s->s.refs[i].f->buf[0])
  3965. ff_thread_release_buffer(dst, &s->s.refs[i]);
  3966. if (ssrc->next_refs[i].f->buf[0]) {
  3967. if ((res = ff_thread_ref_frame(&s->s.refs[i], &ssrc->next_refs[i])) < 0)
  3968. return res;
  3969. }
  3970. }
  3971. s->s.h.invisible = ssrc->s.h.invisible;
  3972. s->s.h.keyframe = ssrc->s.h.keyframe;
  3973. s->s.h.intraonly = ssrc->s.h.intraonly;
  3974. s->ss_v = ssrc->ss_v;
  3975. s->ss_h = ssrc->ss_h;
  3976. s->s.h.segmentation.enabled = ssrc->s.h.segmentation.enabled;
  3977. s->s.h.segmentation.update_map = ssrc->s.h.segmentation.update_map;
  3978. s->s.h.segmentation.absolute_vals = ssrc->s.h.segmentation.absolute_vals;
  3979. s->bytesperpixel = ssrc->bytesperpixel;
  3980. s->bpp = ssrc->bpp;
  3981. s->bpp_index = ssrc->bpp_index;
  3982. s->pix_fmt = ssrc->pix_fmt;
  3983. memcpy(&s->prob_ctx, &ssrc->prob_ctx, sizeof(s->prob_ctx));
  3984. memcpy(&s->s.h.lf_delta, &ssrc->s.h.lf_delta, sizeof(s->s.h.lf_delta));
  3985. memcpy(&s->s.h.segmentation.feat, &ssrc->s.h.segmentation.feat,
  3986. sizeof(s->s.h.segmentation.feat));
  3987. return 0;
  3988. }
  3989. #endif
  3990. static const AVProfile profiles[] = {
  3991. { FF_PROFILE_VP9_0, "Profile 0" },
  3992. { FF_PROFILE_VP9_1, "Profile 1" },
  3993. { FF_PROFILE_VP9_2, "Profile 2" },
  3994. { FF_PROFILE_VP9_3, "Profile 3" },
  3995. { FF_PROFILE_UNKNOWN },
  3996. };
  3997. AVCodec ff_vp9_decoder = {
  3998. .name = "vp9",
  3999. .long_name = NULL_IF_CONFIG_SMALL("Google VP9"),
  4000. .type = AVMEDIA_TYPE_VIDEO,
  4001. .id = AV_CODEC_ID_VP9,
  4002. .priv_data_size = sizeof(VP9Context),
  4003. .init = vp9_decode_init,
  4004. .close = vp9_decode_free,
  4005. .decode = vp9_decode_frame,
  4006. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
  4007. .flush = vp9_decode_flush,
  4008. .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp9_decode_init_thread_copy),
  4009. .update_thread_context = ONLY_IF_THREADS_ENABLED(vp9_decode_update_thread_context),
  4010. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  4011. };