You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2959 lines
97KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. */
  21. /**
  22. * @file vc1.c
  23. * VC-1 and WMV3 decoder
  24. *
  25. */
  26. #include "common.h"
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1data.h"
  31. #include "vc1acdata.h"
  32. #undef NDEBUG
  33. #include <assert.h>
  34. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  35. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  36. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  37. #define MB_INTRA_VLC_BITS 9
  38. extern VLC ff_msmp4_mb_i_vlc;
  39. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  40. #define DC_VLC_BITS 9
  41. #define AC_VLC_BITS 9
  42. static const uint16_t table_mb_intra[64][2];
  43. /** Available Profiles */
  44. //@{
  45. enum Profile {
  46. PROFILE_SIMPLE,
  47. PROFILE_MAIN,
  48. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  49. PROFILE_ADVANCED
  50. };
  51. //@}
  52. /** Sequence quantizer mode */
  53. //@{
  54. enum QuantMode {
  55. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  56. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  57. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  58. QUANT_UNIFORM ///< Uniform quant used for all frames
  59. };
  60. //@}
  61. /** Where quant can be changed */
  62. //@{
  63. enum DQProfile {
  64. DQPROFILE_FOUR_EDGES,
  65. DQPROFILE_DOUBLE_EDGES,
  66. DQPROFILE_SINGLE_EDGE,
  67. DQPROFILE_ALL_MBS
  68. };
  69. //@}
  70. /** @name Where quant can be changed
  71. */
  72. //@{
  73. enum DQSingleEdge {
  74. DQSINGLE_BEDGE_LEFT,
  75. DQSINGLE_BEDGE_TOP,
  76. DQSINGLE_BEDGE_RIGHT,
  77. DQSINGLE_BEDGE_BOTTOM
  78. };
  79. //@}
  80. /** Which pair of edges is quantized with ALTPQUANT */
  81. //@{
  82. enum DQDoubleEdge {
  83. DQDOUBLE_BEDGE_TOPLEFT,
  84. DQDOUBLE_BEDGE_TOPRIGHT,
  85. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  86. DQDOUBLE_BEDGE_BOTTOMLEFT
  87. };
  88. //@}
  89. /** MV modes for P frames */
  90. //@{
  91. enum MVModes {
  92. MV_PMODE_1MV_HPEL_BILIN,
  93. MV_PMODE_1MV,
  94. MV_PMODE_1MV_HPEL,
  95. MV_PMODE_MIXED_MV,
  96. MV_PMODE_INTENSITY_COMP
  97. };
  98. //@}
  99. /** @name MV types for B frames */
  100. //@{
  101. enum BMVTypes {
  102. BMV_TYPE_BACKWARD,
  103. BMV_TYPE_FORWARD,
  104. BMV_TYPE_INTERPOLATED = 3 //XXX: ??
  105. };
  106. //@}
  107. /** @name Block types for P/B frames */
  108. //@{
  109. enum TransformTypes {
  110. TT_8X8,
  111. TT_8X4_BOTTOM,
  112. TT_8X4_TOP,
  113. TT_8X4, //Both halves
  114. TT_4X8_RIGHT,
  115. TT_4X8_LEFT,
  116. TT_4X8, //Both halves
  117. TT_4X4
  118. };
  119. //@}
  120. /** Table for conversion between TTBLK and TTMB */
  121. static const int ttblk_to_tt[3][8] = {
  122. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  123. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  124. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  125. };
  126. /** MV P mode - the 5th element is only used for mode 1 */
  127. static const uint8_t mv_pmode_table[2][5] = {
  128. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  129. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  130. };
  131. /** One more frame type */
  132. #define BI_TYPE 7
  133. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  134. fps_dr[2] = { 1000, 1001 };
  135. static const uint8_t pquant_table[3][32] = {
  136. { /* Implicit quantizer */
  137. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  138. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  139. },
  140. { /* Explicit quantizer, pquantizer uniform */
  141. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  142. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  143. },
  144. { /* Explicit quantizer, pquantizer non-uniform */
  145. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  146. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  147. }
  148. };
  149. /** @name VC-1 VLC tables and defines
  150. * @todo TODO move this into the context
  151. */
  152. //@{
  153. #define VC1_BFRACTION_VLC_BITS 7
  154. static VLC vc1_bfraction_vlc;
  155. #define VC1_IMODE_VLC_BITS 4
  156. static VLC vc1_imode_vlc;
  157. #define VC1_NORM2_VLC_BITS 3
  158. static VLC vc1_norm2_vlc;
  159. #define VC1_NORM6_VLC_BITS 9
  160. static VLC vc1_norm6_vlc;
  161. /* Could be optimized, one table only needs 8 bits */
  162. #define VC1_TTMB_VLC_BITS 9 //12
  163. static VLC vc1_ttmb_vlc[3];
  164. #define VC1_MV_DIFF_VLC_BITS 9 //15
  165. static VLC vc1_mv_diff_vlc[4];
  166. #define VC1_CBPCY_P_VLC_BITS 9 //14
  167. static VLC vc1_cbpcy_p_vlc[4];
  168. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  169. static VLC vc1_4mv_block_pattern_vlc[4];
  170. #define VC1_TTBLK_VLC_BITS 5
  171. static VLC vc1_ttblk_vlc[3];
  172. #define VC1_SUBBLKPAT_VLC_BITS 6
  173. static VLC vc1_subblkpat_vlc[3];
  174. static VLC vc1_ac_coeff_table[8];
  175. //@}
  176. enum CodingSet {
  177. CS_HIGH_MOT_INTRA = 0,
  178. CS_HIGH_MOT_INTER,
  179. CS_LOW_MOT_INTRA,
  180. CS_LOW_MOT_INTER,
  181. CS_MID_RATE_INTRA,
  182. CS_MID_RATE_INTER,
  183. CS_HIGH_RATE_INTRA,
  184. CS_HIGH_RATE_INTER
  185. };
  186. /** The VC1 Context
  187. * @fixme Change size wherever another size is more efficient
  188. * Many members are only used for Advanced Profile
  189. */
  190. typedef struct VC1Context{
  191. MpegEncContext s;
  192. int bits;
  193. /** Simple/Main Profile sequence header */
  194. //@{
  195. int res_sm; ///< reserved, 2b
  196. int res_x8; ///< reserved
  197. int multires; ///< frame-level RESPIC syntax element present
  198. int res_fasttx; ///< reserved, always 1
  199. int res_transtab; ///< reserved, always 0
  200. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  201. ///< at frame level
  202. int res_rtm_flag; ///< reserved, set to 1
  203. int reserved; ///< reserved
  204. //@}
  205. /** Advanced Profile */
  206. //@{
  207. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  208. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  209. int postprocflag; ///< Per-frame processing suggestion flag present
  210. int broadcast; ///< TFF/RFF present
  211. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  212. int tfcntrflag; ///< TFCNTR present
  213. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  214. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  215. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  216. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  217. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  218. int hrd_param_flag; ///< Presence of Hypothetical Reference
  219. ///< Decoder parameters
  220. //@}
  221. /** Sequence header data for all Profiles
  222. * TODO: choose between ints, uint8_ts and monobit flags
  223. */
  224. //@{
  225. int profile; ///< 2bits, Profile
  226. int frmrtq_postproc; ///< 3bits,
  227. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  228. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  229. int extended_mv; ///< Ext MV in P/B (not in Simple)
  230. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  231. int vstransform; ///< variable-size [48]x[48] transform type + info
  232. int overlap; ///< overlapped transforms in use
  233. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  234. int finterpflag; ///< INTERPFRM present
  235. //@}
  236. /** Frame decoding info for all profiles */
  237. //@{
  238. uint8_t mv_mode; ///< MV coding monde
  239. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  240. int k_x; ///< Number of bits for MVs (depends on MV range)
  241. int k_y; ///< Number of bits for MVs (depends on MV range)
  242. int range_x, range_y; ///< MV range
  243. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  244. /** pquant parameters */
  245. //@{
  246. uint8_t dquantfrm;
  247. uint8_t dqprofile;
  248. uint8_t dqsbedge;
  249. uint8_t dqbilevel;
  250. //@}
  251. /** AC coding set indexes
  252. * @see 8.1.1.10, p(1)10
  253. */
  254. //@{
  255. int c_ac_table_index; ///< Chroma index from ACFRM element
  256. int y_ac_table_index; ///< Luma index from AC2FRM element
  257. //@}
  258. int ttfrm; ///< Transform type info present at frame level
  259. uint8_t ttmbf; ///< Transform type flag
  260. int ttmb; ///< Transform type
  261. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  262. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  263. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  264. int pqindex; ///< raw pqindex used in coding set selection
  265. int a_avail, c_avail;
  266. uint8_t *mb_type_base, *mb_type[3];
  267. /** Luma compensation parameters */
  268. //@{
  269. uint8_t lumscale;
  270. uint8_t lumshift;
  271. //@}
  272. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  273. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  274. uint8_t respic; ///< Frame-level flag for resized images
  275. int buffer_fullness; ///< HRD info
  276. /** Ranges:
  277. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  278. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  279. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  280. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  281. */
  282. uint8_t mvrange;
  283. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  284. VLC *cbpcy_vlc; ///< CBPCY VLC table
  285. int tt_index; ///< Index for Transform Type tables
  286. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  287. // BitPlane direct_mb_plane; ///< bitplane for "direct" MBs
  288. int mv_type_is_raw; ///< mv type mb plane is not coded
  289. int skip_is_raw; ///< skip mb plane is not coded
  290. /** Frame decoding info for S/M profiles only */
  291. //@{
  292. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  293. uint8_t interpfrm;
  294. //@}
  295. /** Frame decoding info for Advanced profile */
  296. //@{
  297. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  298. uint8_t numpanscanwin;
  299. uint8_t tfcntr;
  300. uint8_t rptfrm, tff, rff;
  301. uint16_t topleftx;
  302. uint16_t toplefty;
  303. uint16_t bottomrightx;
  304. uint16_t bottomrighty;
  305. uint8_t uvsamp;
  306. uint8_t postproc;
  307. int hrd_num_leaky_buckets;
  308. uint8_t bit_rate_exponent;
  309. uint8_t buffer_size_exponent;
  310. // BitPlane ac_pred_plane; ///< AC prediction flags bitplane
  311. // BitPlane over_flags_plane; ///< Overflags bitplane
  312. uint8_t condover;
  313. uint16_t *hrd_rate, *hrd_buffer;
  314. uint8_t *hrd_fullness;
  315. uint8_t range_mapy_flag;
  316. uint8_t range_mapuv_flag;
  317. uint8_t range_mapy;
  318. uint8_t range_mapuv;
  319. //@}
  320. } VC1Context;
  321. /**
  322. * Get unary code of limited length
  323. * @fixme FIXME Slow and ugly
  324. * @param gb GetBitContext
  325. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  326. * @param[in] len Maximum length
  327. * @return Unary length/index
  328. */
  329. static int get_prefix(GetBitContext *gb, int stop, int len)
  330. {
  331. #if 1
  332. int i;
  333. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  334. return i;
  335. /* int i = 0, tmp = !stop;
  336. while (i != len && tmp != stop)
  337. {
  338. tmp = get_bits(gb, 1);
  339. i++;
  340. }
  341. if (i == len && tmp != stop) return len+1;
  342. return i;*/
  343. #else
  344. unsigned int buf;
  345. int log;
  346. OPEN_READER(re, gb);
  347. UPDATE_CACHE(re, gb);
  348. buf=GET_CACHE(re, gb); //Still not sure
  349. if (stop) buf = ~buf;
  350. log= av_log2(-buf); //FIXME: -?
  351. if (log < limit){
  352. LAST_SKIP_BITS(re, gb, log+1);
  353. CLOSE_READER(re, gb);
  354. return log;
  355. }
  356. LAST_SKIP_BITS(re, gb, limit);
  357. CLOSE_READER(re, gb);
  358. return limit;
  359. #endif
  360. }
  361. static inline int decode210(GetBitContext *gb){
  362. int n;
  363. n = get_bits1(gb);
  364. if (n == 1)
  365. return 0;
  366. else
  367. return 2 - get_bits1(gb);
  368. }
  369. /**
  370. * Init VC-1 specific tables and VC1Context members
  371. * @param v The VC1Context to initialize
  372. * @return Status
  373. */
  374. static int vc1_init_common(VC1Context *v)
  375. {
  376. static int done = 0;
  377. int i = 0;
  378. v->hrd_rate = v->hrd_buffer = NULL;
  379. /* VLC tables */
  380. if(!done)
  381. {
  382. done = 1;
  383. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  384. vc1_bfraction_bits, 1, 1,
  385. vc1_bfraction_codes, 1, 1, 1);
  386. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  387. vc1_norm2_bits, 1, 1,
  388. vc1_norm2_codes, 1, 1, 1);
  389. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  390. vc1_norm6_bits, 1, 1,
  391. vc1_norm6_codes, 2, 2, 1);
  392. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  393. vc1_imode_bits, 1, 1,
  394. vc1_imode_codes, 1, 1, 1);
  395. for (i=0; i<3; i++)
  396. {
  397. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  398. vc1_ttmb_bits[i], 1, 1,
  399. vc1_ttmb_codes[i], 2, 2, 1);
  400. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  401. vc1_ttblk_bits[i], 1, 1,
  402. vc1_ttblk_codes[i], 1, 1, 1);
  403. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  404. vc1_subblkpat_bits[i], 1, 1,
  405. vc1_subblkpat_codes[i], 1, 1, 1);
  406. }
  407. for(i=0; i<4; i++)
  408. {
  409. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  410. vc1_4mv_block_pattern_bits[i], 1, 1,
  411. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  412. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  413. vc1_cbpcy_p_bits[i], 1, 1,
  414. vc1_cbpcy_p_codes[i], 2, 2, 1);
  415. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  416. vc1_mv_diff_bits[i], 1, 1,
  417. vc1_mv_diff_codes[i], 2, 2, 1);
  418. }
  419. for(i=0; i<8; i++)
  420. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  421. &vc1_ac_tables[i][0][1], 8, 4,
  422. &vc1_ac_tables[i][0][0], 8, 4, 1);
  423. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  424. &ff_msmp4_mb_i_table[0][1], 4, 2,
  425. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  426. }
  427. /* Other defaults */
  428. v->pq = -1;
  429. v->mvrange = 0; /* 7.1.1.18, p80 */
  430. return 0;
  431. }
  432. /***********************************************************************/
  433. /**
  434. * @defgroup bitplane VC9 Bitplane decoding
  435. * @see 8.7, p56
  436. * @{
  437. */
  438. /** @addtogroup bitplane
  439. * Imode types
  440. * @{
  441. */
  442. enum Imode {
  443. IMODE_RAW,
  444. IMODE_NORM2,
  445. IMODE_DIFF2,
  446. IMODE_NORM6,
  447. IMODE_DIFF6,
  448. IMODE_ROWSKIP,
  449. IMODE_COLSKIP
  450. };
  451. /** @} */ //imode defines
  452. /** Decode rows by checking if they are skipped
  453. * @param plane Buffer to store decoded bits
  454. * @param[in] width Width of this buffer
  455. * @param[in] height Height of this buffer
  456. * @param[in] stride of this buffer
  457. */
  458. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  459. int x, y;
  460. for (y=0; y<height; y++){
  461. if (!get_bits(gb, 1)) //rowskip
  462. memset(plane, 0, width);
  463. else
  464. for (x=0; x<width; x++)
  465. plane[x] = get_bits(gb, 1);
  466. plane += stride;
  467. }
  468. }
  469. /** Decode columns by checking if they are skipped
  470. * @param plane Buffer to store decoded bits
  471. * @param[in] width Width of this buffer
  472. * @param[in] height Height of this buffer
  473. * @param[in] stride of this buffer
  474. * @fixme FIXME: Optimize
  475. */
  476. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  477. int x, y;
  478. for (x=0; x<width; x++){
  479. if (!get_bits(gb, 1)) //colskip
  480. for (y=0; y<height; y++)
  481. plane[y*stride] = 0;
  482. else
  483. for (y=0; y<height; y++)
  484. plane[y*stride] = get_bits(gb, 1);
  485. plane ++;
  486. }
  487. }
  488. /** Decode a bitplane's bits
  489. * @param bp Bitplane where to store the decode bits
  490. * @param v VC-1 context for bit reading and logging
  491. * @return Status
  492. * @fixme FIXME: Optimize
  493. * @todo TODO: Decide if a struct is needed
  494. */
  495. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  496. {
  497. GetBitContext *gb = &v->s.gb;
  498. int imode, x, y, code, offset;
  499. uint8_t invert, *planep = data;
  500. int width, height, stride;
  501. width = v->s.mb_width;
  502. height = v->s.mb_height;
  503. stride = v->s.mb_stride;
  504. invert = get_bits(gb, 1);
  505. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  506. *raw_flag = 0;
  507. switch (imode)
  508. {
  509. case IMODE_RAW:
  510. //Data is actually read in the MB layer (same for all tests == "raw")
  511. *raw_flag = 1; //invert ignored
  512. return invert;
  513. case IMODE_DIFF2:
  514. case IMODE_NORM2:
  515. if ((height * width) & 1)
  516. {
  517. *planep++ = get_bits(gb, 1);
  518. offset = 1;
  519. }
  520. else offset = 0;
  521. // decode bitplane as one long line
  522. for (y = offset; y < height * width; y += 2) {
  523. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  524. *planep++ = code & 1;
  525. offset++;
  526. if(offset == width) {
  527. offset = 0;
  528. planep += stride - width;
  529. }
  530. *planep++ = code >> 1;
  531. offset++;
  532. if(offset == width) {
  533. offset = 0;
  534. planep += stride - width;
  535. }
  536. }
  537. break;
  538. case IMODE_DIFF6:
  539. case IMODE_NORM6:
  540. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  541. for(y = 0; y < height; y+= 3) {
  542. for(x = width & 1; x < width; x += 2) {
  543. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  544. if(code < 0){
  545. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  546. return -1;
  547. }
  548. planep[x + 0] = (code >> 0) & 1;
  549. planep[x + 1] = (code >> 1) & 1;
  550. planep[x + 0 + stride] = (code >> 2) & 1;
  551. planep[x + 1 + stride] = (code >> 3) & 1;
  552. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  553. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  554. }
  555. planep += stride * 3;
  556. }
  557. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  558. } else { // 3x2
  559. for(y = height & 1; y < height; y += 2) {
  560. for(x = width % 3; x < width; x += 3) {
  561. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  562. if(code < 0){
  563. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  564. return -1;
  565. }
  566. planep[x + 0] = (code >> 0) & 1;
  567. planep[x + 1] = (code >> 1) & 1;
  568. planep[x + 2] = (code >> 2) & 1;
  569. planep[x + 0 + stride] = (code >> 3) & 1;
  570. planep[x + 1 + stride] = (code >> 4) & 1;
  571. planep[x + 2 + stride] = (code >> 5) & 1;
  572. }
  573. planep += stride * 2;
  574. }
  575. x = width % 3;
  576. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  577. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  578. }
  579. break;
  580. case IMODE_ROWSKIP:
  581. decode_rowskip(data, width, height, stride, &v->s.gb);
  582. break;
  583. case IMODE_COLSKIP:
  584. decode_colskip(data, width, height, stride, &v->s.gb);
  585. break;
  586. default: break;
  587. }
  588. /* Applying diff operator */
  589. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  590. {
  591. planep = data;
  592. planep[0] ^= invert;
  593. for (x=1; x<width; x++)
  594. planep[x] ^= planep[x-1];
  595. for (y=1; y<height; y++)
  596. {
  597. planep += stride;
  598. planep[0] ^= planep[-stride];
  599. for (x=1; x<width; x++)
  600. {
  601. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  602. else planep[x] ^= planep[x-1];
  603. }
  604. }
  605. }
  606. else if (invert)
  607. {
  608. planep = data;
  609. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  610. }
  611. return (imode<<1) + invert;
  612. }
  613. /** @} */ //Bitplane group
  614. /***********************************************************************/
  615. /** VOP Dquant decoding
  616. * @param v VC-1 Context
  617. */
  618. static int vop_dquant_decoding(VC1Context *v)
  619. {
  620. GetBitContext *gb = &v->s.gb;
  621. int pqdiff;
  622. //variable size
  623. if (v->dquant == 2)
  624. {
  625. pqdiff = get_bits(gb, 3);
  626. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  627. else v->altpq = v->pq + pqdiff + 1;
  628. }
  629. else
  630. {
  631. v->dquantfrm = get_bits(gb, 1);
  632. if ( v->dquantfrm )
  633. {
  634. v->dqprofile = get_bits(gb, 2);
  635. switch (v->dqprofile)
  636. {
  637. case DQPROFILE_SINGLE_EDGE:
  638. case DQPROFILE_DOUBLE_EDGES:
  639. v->dqsbedge = get_bits(gb, 2);
  640. break;
  641. case DQPROFILE_ALL_MBS:
  642. v->dqbilevel = get_bits(gb, 1);
  643. default: break; //Forbidden ?
  644. }
  645. if (!v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  646. {
  647. pqdiff = get_bits(gb, 3);
  648. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  649. else v->altpq = v->pq + pqdiff + 1;
  650. }
  651. }
  652. }
  653. return 0;
  654. }
  655. /** Do inverse transform
  656. */
  657. static void vc1_inv_trans(DCTELEM block[64], int M, int N)
  658. {
  659. int i;
  660. register int t1,t2,t3,t4,t5,t6,t7,t8;
  661. DCTELEM *src, *dst;
  662. src = block;
  663. dst = block;
  664. if(M==4){
  665. for(i = 0; i < N; i++){
  666. t1 = 17 * (src[0] + src[2]);
  667. t2 = 17 * (src[0] - src[2]);
  668. t3 = 22 * src[1];
  669. t4 = 22 * src[3];
  670. t5 = 10 * src[1];
  671. t6 = 10 * src[3];
  672. dst[0] = (t1 + t3 + t6 + 4) >> 3;
  673. dst[1] = (t2 - t4 + t5 + 4) >> 3;
  674. dst[2] = (t2 + t4 - t5 + 4) >> 3;
  675. dst[3] = (t1 - t3 - t6 + 4) >> 3;
  676. src += 8;
  677. dst += 8;
  678. }
  679. }else{
  680. for(i = 0; i < N; i++){
  681. t1 = 12 * (src[0] + src[4]);
  682. t2 = 12 * (src[0] - src[4]);
  683. t3 = 16 * src[2] + 6 * src[6];
  684. t4 = 6 * src[2] - 16 * src[6];
  685. t5 = t1 + t3;
  686. t6 = t2 + t4;
  687. t7 = t2 - t4;
  688. t8 = t1 - t3;
  689. t1 = 16 * src[1] + 15 * src[3] + 9 * src[5] + 4 * src[7];
  690. t2 = 15 * src[1] - 4 * src[3] - 16 * src[5] - 9 * src[7];
  691. t3 = 9 * src[1] - 16 * src[3] + 4 * src[5] + 15 * src[7];
  692. t4 = 4 * src[1] - 9 * src[3] + 15 * src[5] - 16 * src[7];
  693. dst[0] = (t5 + t1 + 4) >> 3;
  694. dst[1] = (t6 + t2 + 4) >> 3;
  695. dst[2] = (t7 + t3 + 4) >> 3;
  696. dst[3] = (t8 + t4 + 4) >> 3;
  697. dst[4] = (t8 - t4 + 4) >> 3;
  698. dst[5] = (t7 - t3 + 4) >> 3;
  699. dst[6] = (t6 - t2 + 4) >> 3;
  700. dst[7] = (t5 - t1 + 4) >> 3;
  701. src += 8;
  702. dst += 8;
  703. }
  704. }
  705. src = block;
  706. dst = block;
  707. if(N==4){
  708. for(i = 0; i < M; i++){
  709. t1 = 17 * (src[ 0] + src[16]);
  710. t2 = 17 * (src[ 0] - src[16]);
  711. t3 = 22 * src[ 8];
  712. t4 = 22 * src[24];
  713. t5 = 10 * src[ 8];
  714. t6 = 10 * src[24];
  715. dst[ 0] = (t1 + t3 + t6 + 64) >> 7;
  716. dst[ 8] = (t2 - t4 + t5 + 64) >> 7;
  717. dst[16] = (t2 + t4 - t5 + 64) >> 7;
  718. dst[24] = (t1 - t3 - t6 + 64) >> 7;
  719. src ++;
  720. dst ++;
  721. }
  722. }else{
  723. for(i = 0; i < M; i++){
  724. t1 = 12 * (src[ 0] + src[32]);
  725. t2 = 12 * (src[ 0] - src[32]);
  726. t3 = 16 * src[16] + 6 * src[48];
  727. t4 = 6 * src[16] - 16 * src[48];
  728. t5 = t1 + t3;
  729. t6 = t2 + t4;
  730. t7 = t2 - t4;
  731. t8 = t1 - t3;
  732. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  733. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  734. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  735. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  736. dst[ 0] = (t5 + t1 + 64) >> 7;
  737. dst[ 8] = (t6 + t2 + 64) >> 7;
  738. dst[16] = (t7 + t3 + 64) >> 7;
  739. dst[24] = (t8 + t4 + 64) >> 7;
  740. dst[32] = (t8 - t4 + 64 + 1) >> 7;
  741. dst[40] = (t7 - t3 + 64 + 1) >> 7;
  742. dst[48] = (t6 - t2 + 64 + 1) >> 7;
  743. dst[56] = (t5 - t1 + 64 + 1) >> 7;
  744. src++;
  745. dst++;
  746. }
  747. }
  748. }
  749. /** Apply overlap transform
  750. * @todo optimize
  751. * @todo move to DSPContext
  752. */
  753. static void vc1_overlap_block(MpegEncContext *s, DCTELEM block[64], int n, int do_hor, int do_vert)
  754. {
  755. int i;
  756. if(do_hor) { //TODO
  757. }
  758. if(do_vert) { //TODO
  759. }
  760. for(i = 0; i < 64; i++)
  761. block[i] += 128;
  762. }
  763. static void vc1_v_overlap(uint8_t* src, int stride)
  764. {
  765. int i;
  766. int a, b, c, d;
  767. for(i = 0; i < 8; i++) {
  768. a = src[-2*stride];
  769. b = src[-stride];
  770. c = src[0];
  771. d = src[stride];
  772. src[-2*stride] = clip_uint8((7*a + d + 3) >> 3);
  773. src[-stride] = clip_uint8((-a + 7*b + c + d + 3) >> 3);
  774. src[0] = clip_uint8((a + b + 7*c - d + 3) >> 3);
  775. src[stride] = clip_uint8((a + 7*d + 3) >> 3);
  776. src++;
  777. }
  778. }
  779. static void vc1_h_overlap(uint8_t* src, int stride)
  780. {
  781. int i;
  782. int a, b, c, d;
  783. for(i = 0; i < 8; i++) {
  784. a = src[-2];
  785. b = src[-1];
  786. c = src[0];
  787. d = src[1];
  788. src[-2] = clip_uint8((7*a + d + 3) >> 3);
  789. src[-1] = clip_uint8((-a + 7*b + c + d + 3) >> 3);
  790. src[0] = clip_uint8((a + b + 7*c - d + 3) >> 3);
  791. src[1] = clip_uint8((a + 7*d + 3) >> 3);
  792. src += stride;
  793. }
  794. }
  795. /** Put block onto picture
  796. * @todo move to DSPContext
  797. */
  798. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  799. {
  800. uint8_t *Y;
  801. int ys, us, vs;
  802. DSPContext *dsp = &v->s.dsp;
  803. ys = v->s.current_picture.linesize[0];
  804. us = v->s.current_picture.linesize[1];
  805. vs = v->s.current_picture.linesize[2];
  806. Y = v->s.dest[0];
  807. dsp->put_pixels_clamped(block[0], Y, ys);
  808. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  809. Y += ys * 8;
  810. dsp->put_pixels_clamped(block[2], Y, ys);
  811. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  812. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  813. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  814. }
  815. /* clip motion vector as specified in 8.3.6.5 */
  816. #define CLIP_RANGE(mv, src, lim, bs) \
  817. if(mv < -bs) mv = -bs - src * bs; \
  818. if(mv > lim) mv = lim - src * bs;
  819. /** Do motion compensation over 1 macroblock
  820. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  821. */
  822. static void vc1_mc_1mv(VC1Context *v)
  823. {
  824. MpegEncContext *s = &v->s;
  825. DSPContext *dsp = &v->s.dsp;
  826. uint8_t *srcY, *srcU, *srcV;
  827. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  828. if(!v->s.last_picture.data[0])return;
  829. mx = s->mv[0][0][0];
  830. my = s->mv[0][0][1];
  831. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  832. uvmy = (my + ((my & 3) == 3)) >> 1;
  833. srcY = s->last_picture.data[0];
  834. srcU = s->last_picture.data[1];
  835. srcV = s->last_picture.data[2];
  836. if(v->fastuvmc) { // XXX: 8.3.5.4.5 specifies something different
  837. uvmx = (uvmx + 1) & ~1;
  838. uvmy = (uvmy + 1) & ~1;
  839. }
  840. src_x = s->mb_x * 16 + (mx >> 2);
  841. src_y = s->mb_y * 16 + (my >> 2);
  842. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  843. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  844. CLIP_RANGE( src_x, s->mb_x, s->mb_width * 16, 16);
  845. CLIP_RANGE( src_y, s->mb_y, s->mb_height * 16, 16);
  846. CLIP_RANGE(uvsrc_x, s->mb_x, s->mb_width * 8, 8);
  847. CLIP_RANGE(uvsrc_y, s->mb_y, s->mb_height * 8, 8);
  848. srcY += src_y * s->linesize + src_x;
  849. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  850. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  851. if((unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  852. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  853. uint8_t *uvbuf= s->edge_emu_buffer + 18 * s->linesize;
  854. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 16+1, 16+1,
  855. src_x, src_y, s->h_edge_pos, s->v_edge_pos);
  856. srcY = s->edge_emu_buffer;
  857. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  858. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  859. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  860. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  861. srcU = uvbuf;
  862. srcV = uvbuf + 16;
  863. }
  864. if(!s->quarter_sample) { // hpel mc
  865. mx >>= 1;
  866. my >>= 1;
  867. dxy = ((my & 1) << 1) | (mx & 1);
  868. uvdxy = 0;
  869. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  870. } else {
  871. dxy = ((my & 3) << 2) | (mx & 3);
  872. uvdxy = ((uvmy & 1) << 1) | (uvmx & 1);
  873. dsp->put_no_rnd_qpel_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize);
  874. }
  875. dsp->put_no_rnd_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize, 8);
  876. dsp->put_no_rnd_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize, 8);
  877. // dsp->put_mspel_pixels_tab[uvdxy](s->dest[1], srcU, s->uvlinesize);
  878. // dsp->put_mspel_pixels_tab[uvdxy](s->dest[2], srcV, s->uvlinesize);
  879. }
  880. /** Do motion compensation for 4-MV macroblock - luminance block
  881. */
  882. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  883. {
  884. MpegEncContext *s = &v->s;
  885. DSPContext *dsp = &v->s.dsp;
  886. uint8_t *srcY;
  887. int dxy, mx, my, src_x, src_y;
  888. int off;
  889. if(!v->s.last_picture.data[0])return;
  890. mx = s->mv[0][n][0];
  891. my = s->mv[0][n][1];
  892. srcY = s->last_picture.data[0];
  893. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  894. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  895. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  896. CLIP_RANGE(src_x, s->mb_x, s->mb_width * 16, 16);
  897. CLIP_RANGE(src_y, s->mb_y, s->mb_height * 16, 16);
  898. srcY += src_y * s->linesize + src_x;
  899. if((unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  900. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  901. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 16+1, 16+1,
  902. src_x, src_y, s->h_edge_pos, s->v_edge_pos);
  903. srcY = s->edge_emu_buffer;
  904. }
  905. if(!s->quarter_sample) { // hpel mc
  906. mx >>= 1;
  907. my >>= 1;
  908. dxy = ((my & 1) << 1) | (mx & 1);
  909. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  910. } else {
  911. dxy = ((my & 3) << 2) | (mx & 3);
  912. dsp->put_no_rnd_qpel_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize);
  913. }
  914. }
  915. #define SETMAXMIN(var) \
  916. if(var > ma) ma = var; \
  917. if(var < mi) mi = var;
  918. static inline int median4(int a, int b, int c, int d)
  919. {
  920. int ma, mi;
  921. ma = mi = a;
  922. SETMAXMIN(b);
  923. SETMAXMIN(c);
  924. SETMAXMIN(d);
  925. return (a + b + c + d - ma - mi) >> 1;
  926. }
  927. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  928. */
  929. static void vc1_mc_4mv_chroma(VC1Context *v)
  930. {
  931. MpegEncContext *s = &v->s;
  932. DSPContext *dsp = &v->s.dsp;
  933. uint8_t *srcU, *srcV;
  934. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  935. int i, idx, tx = 0, ty = 0;
  936. int mvx[4], mvy[4], intra[4];
  937. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  938. if(!v->s.last_picture.data[0])return;
  939. for(i = 0; i < 4; i++) {
  940. mvx[i] = s->mv[0][i][0];
  941. mvy[i] = s->mv[0][i][1];
  942. intra[i] = v->mb_type[0][s->block_index[i]];
  943. }
  944. /* calculate chroma MV vector from four luma MVs */
  945. idx = (intra[0] << 3) | (intra[1] << 2) | (intra[2] << 1) | intra[3];
  946. if(!idx) { // all blocks are inter
  947. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  948. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  949. } else if(count[idx] == 1) { // 3 inter blocks
  950. switch(idx) {
  951. case 0x1:
  952. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  953. tx = mid_pred(mvy[1], mvy[2], mvy[3]);
  954. break;
  955. case 0x2:
  956. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  957. tx = mid_pred(mvy[0], mvy[2], mvy[3]);
  958. break;
  959. case 0x4:
  960. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  961. tx = mid_pred(mvy[0], mvy[1], mvy[3]);
  962. break;
  963. case 0x8:
  964. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  965. tx = mid_pred(mvy[0], mvy[1], mvy[2]);
  966. break;
  967. }
  968. } else if(count[idx] == 2) {
  969. int t1 = 0, t2 = 0;
  970. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  971. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  972. tx = (mvx[t1] + mvx[t2]) >> 1;
  973. ty = (mvy[t1] + mvy[t2]) >> 1;
  974. } else
  975. return; //no need to do MC for inter blocks
  976. uvmx = (tx + ((tx&3) == 3)) >> 1;
  977. uvmy = (ty + ((ty&3) == 3)) >> 1;
  978. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  979. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  980. CLIP_RANGE(uvsrc_x, s->mb_x, s->mb_width * 8, 8);
  981. CLIP_RANGE(uvsrc_y, s->mb_y, s->mb_height * 8, 8);
  982. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  983. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  984. if((unsigned)uvsrc_x > (s->h_edge_pos >> 1) - ((uvmx >> 1)&1) - 8
  985. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - ((uvmy >> 1)&1) - 8){
  986. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  987. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  988. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  989. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  990. srcU = s->edge_emu_buffer;
  991. srcV = s->edge_emu_buffer + 16;
  992. }
  993. if(!s->quarter_sample) // hpel mc
  994. uvdxy = 0;
  995. else
  996. uvdxy = ((uvmy & 1) << 1) | (uvmx & 1);
  997. dsp->put_no_rnd_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize, 8);
  998. dsp->put_no_rnd_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize, 8);
  999. }
  1000. /**
  1001. * Decode Simple/Main Profiles sequence header
  1002. * @see Figure 7-8, p16-17
  1003. * @param avctx Codec context
  1004. * @param gb GetBit context initialized from Codec context extra_data
  1005. * @return Status
  1006. */
  1007. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  1008. {
  1009. VC1Context *v = avctx->priv_data;
  1010. av_log(avctx, AV_LOG_INFO, "Header: %0X\n", show_bits(gb, 32));
  1011. v->profile = get_bits(gb, 2);
  1012. if (v->profile == 2)
  1013. {
  1014. av_log(avctx, AV_LOG_ERROR, "Profile value 2 is forbidden (and WMV3 Complex Profile is unsupported)\n");
  1015. return -1;
  1016. }
  1017. if (v->profile == PROFILE_ADVANCED)
  1018. {
  1019. v->level = get_bits(gb, 3);
  1020. if(v->level >= 5)
  1021. {
  1022. av_log(avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  1023. }
  1024. v->chromaformat = get_bits(gb, 2);
  1025. if (v->chromaformat != 1)
  1026. {
  1027. av_log(avctx, AV_LOG_ERROR,
  1028. "Only 4:2:0 chroma format supported\n");
  1029. return -1;
  1030. }
  1031. }
  1032. else
  1033. {
  1034. v->res_sm = get_bits(gb, 2); //reserved
  1035. if (v->res_sm)
  1036. {
  1037. av_log(avctx, AV_LOG_ERROR,
  1038. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  1039. return -1;
  1040. }
  1041. }
  1042. // (fps-2)/4 (->30)
  1043. v->frmrtq_postproc = get_bits(gb, 3); //common
  1044. // (bitrate-32kbps)/64kbps
  1045. v->bitrtq_postproc = get_bits(gb, 5); //common
  1046. v->s.loop_filter = get_bits(gb, 1); //common
  1047. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  1048. {
  1049. av_log(avctx, AV_LOG_ERROR,
  1050. "LOOPFILTER shell not be enabled in simple profile\n");
  1051. }
  1052. if (v->profile < PROFILE_ADVANCED)
  1053. {
  1054. v->res_x8 = get_bits(gb, 1); //reserved
  1055. if (v->res_x8)
  1056. {
  1057. av_log(avctx, AV_LOG_ERROR,
  1058. "1 for reserved RES_X8 is forbidden\n");
  1059. //return -1;
  1060. }
  1061. v->multires = get_bits(gb, 1);
  1062. v->res_fasttx = get_bits(gb, 1);
  1063. if (!v->res_fasttx)
  1064. {
  1065. av_log(avctx, AV_LOG_ERROR,
  1066. "0 for reserved RES_FASTTX is forbidden\n");
  1067. //return -1;
  1068. }
  1069. }
  1070. v->fastuvmc = get_bits(gb, 1); //common
  1071. if (!v->profile && !v->fastuvmc)
  1072. {
  1073. av_log(avctx, AV_LOG_ERROR,
  1074. "FASTUVMC unavailable in Simple Profile\n");
  1075. return -1;
  1076. }
  1077. v->extended_mv = get_bits(gb, 1); //common
  1078. if (!v->profile && v->extended_mv)
  1079. {
  1080. av_log(avctx, AV_LOG_ERROR,
  1081. "Extended MVs unavailable in Simple Profile\n");
  1082. return -1;
  1083. }
  1084. v->dquant = get_bits(gb, 2); //common
  1085. v->vstransform = get_bits(gb, 1); //common
  1086. if (v->profile < PROFILE_ADVANCED)
  1087. {
  1088. v->res_transtab = get_bits(gb, 1);
  1089. if (v->res_transtab)
  1090. {
  1091. av_log(avctx, AV_LOG_ERROR,
  1092. "1 for reserved RES_TRANSTAB is forbidden\n");
  1093. return -1;
  1094. }
  1095. }
  1096. v->overlap = get_bits(gb, 1); //common
  1097. if (v->profile < PROFILE_ADVANCED)
  1098. {
  1099. v->s.resync_marker = get_bits(gb, 1);
  1100. v->rangered = get_bits(gb, 1);
  1101. if (v->rangered && v->profile == PROFILE_SIMPLE)
  1102. {
  1103. av_log(avctx, AV_LOG_INFO,
  1104. "RANGERED should be set to 0 in simple profile\n");
  1105. }
  1106. }
  1107. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  1108. v->quantizer_mode = get_bits(gb, 2); //common
  1109. if (v->profile < PROFILE_ADVANCED)
  1110. {
  1111. v->finterpflag = get_bits(gb, 1); //common
  1112. v->res_rtm_flag = get_bits(gb, 1); //reserved
  1113. if (!v->res_rtm_flag)
  1114. {
  1115. av_log(avctx, AV_LOG_ERROR,
  1116. "0 for reserved RES_RTM_FLAG is forbidden\n");
  1117. //return -1;
  1118. }
  1119. av_log(avctx, AV_LOG_DEBUG,
  1120. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1121. "LoopFilter=%i, MultiRes=%i, FastUVMV=%i, Extended MV=%i\n"
  1122. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1123. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1124. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1125. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1126. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1127. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1128. );
  1129. return 0;
  1130. }
  1131. return -1;
  1132. }
  1133. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1134. {
  1135. int pqindex, lowquant, status;
  1136. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1137. skip_bits(gb, 2); //framecnt unused
  1138. v->rangeredfrm = 0;
  1139. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1140. v->s.pict_type = get_bits(gb, 1);
  1141. if (v->s.avctx->max_b_frames) {
  1142. if (!v->s.pict_type) {
  1143. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1144. else v->s.pict_type = B_TYPE;
  1145. } else v->s.pict_type = P_TYPE;
  1146. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1147. if(v->s.pict_type == I_TYPE)
  1148. get_bits(gb, 7); // skip buffer fullness
  1149. /* Quantizer stuff */
  1150. pqindex = get_bits(gb, 5);
  1151. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1152. v->pq = pquant_table[0][pqindex];
  1153. else
  1154. v->pq = pquant_table[v->quantizer_mode-1][pqindex];
  1155. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1156. v->pquantizer = pqindex < 9;
  1157. if (v->quantizer_mode == QUANT_UNIFORM || v->quantizer_mode == QUANT_NON_UNIFORM)
  1158. v->pquantizer = v->quantizer_mode == QUANT_UNIFORM;
  1159. v->pqindex = pqindex;
  1160. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1161. else v->halfpq = 0;
  1162. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1163. v->pquantizer = get_bits(gb, 1);
  1164. v->dquantfrm = 0;
  1165. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1166. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1167. //TODO: complete parsing for P/B/BI frames
  1168. switch(v->s.pict_type) {
  1169. case P_TYPE:
  1170. if (v->pq < 5) v->tt_index = 0;
  1171. else if(v->pq < 13) v->tt_index = 1;
  1172. else v->tt_index = 2;
  1173. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1174. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1175. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1176. v->range_x = 1 << (v->k_x - 1);
  1177. v->range_y = 1 << (v->k_y - 1);
  1178. if (v->profile == PROFILE_ADVANCED)
  1179. {
  1180. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1181. }
  1182. else
  1183. if (v->multires) v->respic = get_bits(gb, 2);
  1184. lowquant = (v->pq > 12) ? 0 : 1;
  1185. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1186. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1187. {
  1188. v->mv_mode2 = mv_pmode_table[lowquant][get_prefix(gb, 1, 3)];
  1189. v->lumscale = get_bits(gb, 6);
  1190. v->lumshift = get_bits(gb, 6);
  1191. }
  1192. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1193. v->s.quarter_sample = 0;
  1194. else
  1195. v->s.quarter_sample = 1;
  1196. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1197. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1198. || v->mv_mode == MV_PMODE_MIXED_MV)
  1199. {
  1200. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1201. if (status < 0) return -1;
  1202. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1203. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1204. } else {
  1205. v->mv_type_is_raw = 0;
  1206. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1207. }
  1208. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1209. if (status < 0) return -1;
  1210. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1211. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1212. /* Hopefully this is correct for P frames */
  1213. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1214. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1215. if (v->dquant)
  1216. {
  1217. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1218. vop_dquant_decoding(v);
  1219. }
  1220. v->ttfrm = 0; //FIXME Is that so ?
  1221. if (v->vstransform)
  1222. {
  1223. v->ttmbf = get_bits(gb, 1);
  1224. if (v->ttmbf)
  1225. {
  1226. v->ttfrm = get_bits(gb, 2);
  1227. }
  1228. }
  1229. break;
  1230. case B_TYPE:
  1231. break;
  1232. }
  1233. /* AC Syntax */
  1234. v->c_ac_table_index = decode012(gb);
  1235. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1236. {
  1237. v->y_ac_table_index = decode012(gb);
  1238. }
  1239. /* DC Syntax */
  1240. v->s.dc_table_index = get_bits(gb, 1);
  1241. return 0;
  1242. }
  1243. /***********************************************************************/
  1244. /**
  1245. * @defgroup block VC-1 Block-level functions
  1246. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1247. * @todo TODO: Integrate to MpegEncContext facilities
  1248. * @{
  1249. */
  1250. /**
  1251. * @def GET_MQUANT
  1252. * @brief Get macroblock-level quantizer scale
  1253. * @warning XXX: qdiff to the frame quant, not previous quant ?
  1254. * @fixme XXX: Don't know how to initialize mquant otherwise in last case
  1255. */
  1256. #define GET_MQUANT() \
  1257. if (v->dquantfrm) \
  1258. { \
  1259. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1260. { \
  1261. if (v->dqbilevel) \
  1262. { \
  1263. mquant = (get_bits(gb, 1)) ? v->pq : v->altpq; \
  1264. } \
  1265. else \
  1266. { \
  1267. mqdiff = get_bits(gb, 3); \
  1268. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1269. else mquant = get_bits(gb, 5); \
  1270. } \
  1271. } \
  1272. else if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1273. { \
  1274. switch(v->dqsbedge){ \
  1275. case 0: /* left */ \
  1276. mquant = (s->mb_x) ? v->pq : v->altpq; \
  1277. break; \
  1278. case 1: /* top */ \
  1279. mquant = (s->mb_y) ? v->pq : v->altpq; \
  1280. break; \
  1281. case 2: /* right */ \
  1282. mquant = (s->mb_x != (s->mb_width - 1)) ? v->pq : v->altpq; \
  1283. break; \
  1284. case 3: /* bottom */ \
  1285. mquant = (s->mb_y != (s->mb_height-1)) ? v->pq : v->altpq; \
  1286. break; \
  1287. default: \
  1288. mquant = v->pq; \
  1289. } \
  1290. } \
  1291. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1292. { \
  1293. switch(v->dqsbedge){ \
  1294. case 0: /* left and top */ \
  1295. mquant = (s->mb_x && s->mb_y) ? v->pq : v->altpq; \
  1296. break; \
  1297. case 1: /* top and right */ \
  1298. mquant = (s->mb_y && s->mb_x != (s->mb_width - 1)) ? v->pq : v->altpq; \
  1299. break; \
  1300. case 2: /* right and bottom */ \
  1301. mquant = (s->mb_x != (s->mb_width - 1) && s->mb_y != (s->mb_height-1)) ? v->pq : v->altpq; \
  1302. break; \
  1303. case 3: /* bottom and left */ \
  1304. mquant = (s->mb_x && s->mb_y != (s->mb_height-1)) ? v->pq : v->altpq; \
  1305. break; \
  1306. default: \
  1307. mquant = v->pq; \
  1308. } \
  1309. } \
  1310. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1311. { \
  1312. mquant = (s->mb_x && s->mb_y && s->mb_x != (s->mb_width - 1) && s->mb_y != (s->mb_height-1)) ? v->pq : v->altpq; \
  1313. } \
  1314. else mquant = v->pq; \
  1315. }
  1316. /**
  1317. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1318. * @brief Get MV differentials
  1319. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1320. * @param _dmv_x Horizontal differential for decoded MV
  1321. * @param _dmv_y Vertical differential for decoded MV
  1322. * @todo TODO: Use MpegEncContext arrays to store them
  1323. */
  1324. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1325. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1326. VC1_MV_DIFF_VLC_BITS, 2); \
  1327. if (index > 36) \
  1328. { \
  1329. mb_has_coeffs = 1; \
  1330. index -= 37; \
  1331. } \
  1332. else mb_has_coeffs = 0; \
  1333. s->mb_intra = 0; \
  1334. if (!index) { _dmv_x = _dmv_y = 0; } \
  1335. else if (index == 35) \
  1336. { \
  1337. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1338. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1339. } \
  1340. else if (index == 36) \
  1341. { \
  1342. _dmv_x = 0; \
  1343. _dmv_y = 0; \
  1344. s->mb_intra = 1; \
  1345. } \
  1346. else \
  1347. { \
  1348. index1 = index%6; \
  1349. if (!s->quarter_sample && index1 == 5) val = 1; \
  1350. else val = 0; \
  1351. if(size_table[index1] - val > 0) \
  1352. val = get_bits(gb, size_table[index1] - val); \
  1353. else val = 0; \
  1354. sign = 0 - (val&1); \
  1355. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1356. \
  1357. index1 = index/6; \
  1358. if (!s->quarter_sample && index1 == 5) val = 1; \
  1359. else val = 0; \
  1360. if(size_table[index1] - val > 0) \
  1361. val = get_bits(gb, size_table[index1] - val); \
  1362. else val = 0; \
  1363. sign = 0 - (val&1); \
  1364. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1365. }
  1366. /** Predict and set motion vector
  1367. */
  1368. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1369. {
  1370. int xy, wrap, off = 0;
  1371. int16_t *A, *B, *C;
  1372. int px, py;
  1373. int sum;
  1374. /* scale MV difference to be quad-pel */
  1375. dmv_x <<= 1 - s->quarter_sample;
  1376. dmv_y <<= 1 - s->quarter_sample;
  1377. wrap = s->b8_stride;
  1378. xy = s->block_index[n];
  1379. if(s->mb_intra){
  1380. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1381. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1382. if(mv1) { /* duplicate motion data for 1-MV block */
  1383. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1384. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1385. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1386. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1387. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1388. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1389. }
  1390. return;
  1391. }
  1392. C = s->current_picture.motion_val[0][xy - 1];
  1393. A = s->current_picture.motion_val[0][xy - wrap];
  1394. if(mv1)
  1395. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1396. else {
  1397. //in 4-MV mode different blocks have different B predictor position
  1398. switch(n){
  1399. case 0:
  1400. off = (s->mb_x > 0) ? -1 : 1;
  1401. break;
  1402. case 1:
  1403. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1404. break;
  1405. case 2:
  1406. off = 1;
  1407. break;
  1408. case 3:
  1409. off = -1;
  1410. }
  1411. }
  1412. B = s->current_picture.motion_val[0][xy - wrap + off];
  1413. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1414. if(s->mb_width == 1) {
  1415. px = A[0];
  1416. py = A[1];
  1417. } else {
  1418. px = mid_pred(A[0], B[0], C[0]);
  1419. py = mid_pred(A[1], B[1], C[1]);
  1420. }
  1421. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1422. px = C[0];
  1423. py = C[1];
  1424. } else {
  1425. px = py = 0;
  1426. }
  1427. /* Pullback MV as specified in 8.3.5.3.4 */
  1428. {
  1429. int qx, qy, X, Y;
  1430. qx = s->mb_x << 6; //FIXME: add real block coords for 4MV mode
  1431. qy = s->mb_y << 6;
  1432. X = (s->mb_width << 6) - 4;
  1433. Y = (s->mb_height << 6) - 4;
  1434. if(mv1) {
  1435. if(qx + px < -60) px = -60 - qx;
  1436. if(qy + py < -60) py = -60 - qy;
  1437. } else {
  1438. if(qx + px < -28) px = -28 - qx;
  1439. if(qy + py < -28) py = -28 - qy;
  1440. }
  1441. if(qx + px > X) px = X - qx;
  1442. if(qy + py > Y) py = Y - qy;
  1443. }
  1444. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1445. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1446. if(is_intra[xy - wrap])
  1447. sum = ABS(px) + ABS(py);
  1448. else
  1449. sum = ABS(px - A[0]) + ABS(py - A[1]);
  1450. if(sum > 32) {
  1451. if(get_bits1(&s->gb)) {
  1452. px = A[0];
  1453. py = A[1];
  1454. } else {
  1455. px = C[0];
  1456. py = C[1];
  1457. }
  1458. } else {
  1459. if(is_intra[xy - 1])
  1460. sum = ABS(px) + ABS(py);
  1461. else
  1462. sum = ABS(px - C[0]) + ABS(py - C[1]);
  1463. if(sum > 32) {
  1464. if(get_bits1(&s->gb)) {
  1465. px = A[0];
  1466. py = A[1];
  1467. } else {
  1468. px = C[0];
  1469. py = C[1];
  1470. }
  1471. }
  1472. }
  1473. }
  1474. /* store MV using signed modulus of MV range defined in 4.11 */
  1475. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1476. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1477. if(mv1) { /* duplicate motion data for 1-MV block */
  1478. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1479. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1480. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1481. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1482. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1483. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1484. }
  1485. }
  1486. /** Get predicted DC value for I-frames only
  1487. * prediction dir: left=0, top=1
  1488. * @param s MpegEncContext
  1489. * @param[in] n block index in the current MB
  1490. * @param dc_val_ptr Pointer to DC predictor
  1491. * @param dir_ptr Prediction direction for use in AC prediction
  1492. */
  1493. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1494. int16_t **dc_val_ptr, int *dir_ptr)
  1495. {
  1496. int a, b, c, wrap, pred, scale;
  1497. int16_t *dc_val;
  1498. static const uint16_t dcpred[32] = {
  1499. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1500. 114, 102, 93, 85, 79, 73, 68, 64,
  1501. 60, 57, 54, 51, 49, 47, 45, 43,
  1502. 41, 39, 38, 37, 35, 34, 33
  1503. };
  1504. /* find prediction - wmv3_dc_scale always used here in fact */
  1505. if (n < 4) scale = s->y_dc_scale;
  1506. else scale = s->c_dc_scale;
  1507. wrap = s->block_wrap[n];
  1508. dc_val= s->dc_val[0] + s->block_index[n];
  1509. /* B A
  1510. * C X
  1511. */
  1512. c = dc_val[ - 1];
  1513. b = dc_val[ - 1 - wrap];
  1514. a = dc_val[ - wrap];
  1515. if (pq < 9 || !overlap)
  1516. {
  1517. /* Set outer values */
  1518. if (!s->mb_y && (n!=2 && n!=3)) b=a=dcpred[scale];
  1519. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1520. }
  1521. else
  1522. {
  1523. /* Set outer values */
  1524. if (!s->mb_y && (n!=2 && n!=3)) b=a=0;
  1525. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1526. }
  1527. if (abs(a - b) <= abs(b - c)) {
  1528. pred = c;
  1529. *dir_ptr = 1;//left
  1530. } else {
  1531. pred = a;
  1532. *dir_ptr = 0;//top
  1533. }
  1534. /* update predictor */
  1535. *dc_val_ptr = &dc_val[0];
  1536. return pred;
  1537. }
  1538. /** Get predicted DC value
  1539. * prediction dir: left=0, top=1
  1540. * @param s MpegEncContext
  1541. * @param[in] n block index in the current MB
  1542. * @param dc_val_ptr Pointer to DC predictor
  1543. * @param dir_ptr Prediction direction for use in AC prediction
  1544. */
  1545. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1546. int a_avail, int c_avail,
  1547. int16_t **dc_val_ptr, int *dir_ptr)
  1548. {
  1549. int a, b, c, wrap, pred, scale;
  1550. int16_t *dc_val;
  1551. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1552. int mb_pos2, q1, q2;
  1553. /* find prediction - wmv3_dc_scale always used here in fact */
  1554. if (n < 4) scale = s->y_dc_scale;
  1555. else scale = s->c_dc_scale;
  1556. wrap = s->block_wrap[n];
  1557. dc_val= s->dc_val[0] + s->block_index[n];
  1558. /* B A
  1559. * C X
  1560. */
  1561. c = dc_val[ - 1];
  1562. b = dc_val[ - 1 - wrap];
  1563. a = dc_val[ - wrap];
  1564. if(a_avail && c_avail) {
  1565. if(abs(a - b) <= abs(b - c)) {
  1566. pred = c;
  1567. *dir_ptr = 1;//left
  1568. } else {
  1569. pred = a;
  1570. *dir_ptr = 0;//top
  1571. }
  1572. } else if(a_avail) {
  1573. pred = a;
  1574. *dir_ptr = 0;//top
  1575. } else if(c_avail) {
  1576. pred = c;
  1577. *dir_ptr = 1;//left
  1578. } else {
  1579. pred = 0;
  1580. *dir_ptr = 1;//left
  1581. }
  1582. /* scale coeffs if needed
  1583. mb_pos2 = mb_pos - *dir_ptr - (1 - *dir_ptr) * s->mb_stride;
  1584. q1 = s->y_dc_scale_table[s->current_picture.qscale_table[mb_pos]];
  1585. q2 = s->y_dc_scale_table[s->current_picture.qscale_table[mb_pos2]];
  1586. if(q2 && q1!=q2 && ((*dir_ptr && c_avail) || (!*dir_ptr && a_avail))) {
  1587. pred = (pred * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1588. } */
  1589. /* update predictor */
  1590. *dc_val_ptr = &dc_val[0];
  1591. return pred;
  1592. }
  1593. /**
  1594. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  1595. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1596. * @todo TODO: Integrate to MpegEncContext facilities
  1597. * @{
  1598. */
  1599. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  1600. {
  1601. int xy, wrap, pred, a, b, c;
  1602. xy = s->block_index[n];
  1603. wrap = s->b8_stride;
  1604. /* B C
  1605. * A X
  1606. */
  1607. a = s->coded_block[xy - 1 ];
  1608. b = s->coded_block[xy - 1 - wrap];
  1609. c = s->coded_block[xy - wrap];
  1610. if (b == c) {
  1611. pred = a;
  1612. } else {
  1613. pred = c;
  1614. }
  1615. /* store value */
  1616. *coded_block_ptr = &s->coded_block[xy];
  1617. return pred;
  1618. }
  1619. /**
  1620. * Decode one AC coefficient
  1621. * @param v The VC1 context
  1622. * @param last Last coefficient
  1623. * @param skip How much zero coefficients to skip
  1624. * @param value Decoded AC coefficient value
  1625. * @see 8.1.3.4
  1626. */
  1627. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  1628. {
  1629. GetBitContext *gb = &v->s.gb;
  1630. int index, escape, run = 0, level = 0, lst = 0;
  1631. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1632. if (index != vc1_ac_sizes[codingset] - 1) {
  1633. run = vc1_index_decode_table[codingset][index][0];
  1634. level = vc1_index_decode_table[codingset][index][1];
  1635. lst = index >= vc1_last_decode_table[codingset];
  1636. if(get_bits(gb, 1))
  1637. level = -level;
  1638. } else {
  1639. escape = decode210(gb);
  1640. if (escape != 2) {
  1641. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1642. run = vc1_index_decode_table[codingset][index][0];
  1643. level = vc1_index_decode_table[codingset][index][1];
  1644. lst = index >= vc1_last_decode_table[codingset];
  1645. if(escape == 0) {
  1646. if(lst)
  1647. level += vc1_last_delta_level_table[codingset][run];
  1648. else
  1649. level += vc1_delta_level_table[codingset][run];
  1650. } else {
  1651. if(lst)
  1652. run += vc1_last_delta_run_table[codingset][level] + 1;
  1653. else
  1654. run += vc1_delta_run_table[codingset][level] + 1;
  1655. }
  1656. if(get_bits(gb, 1))
  1657. level = -level;
  1658. } else {
  1659. int sign;
  1660. lst = get_bits(gb, 1);
  1661. if(v->s.esc3_level_length == 0) {
  1662. if(v->pq < 8 || v->dquantfrm) { // table 59
  1663. v->s.esc3_level_length = get_bits(gb, 3);
  1664. if(!v->s.esc3_level_length)
  1665. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  1666. } else { //table 60
  1667. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  1668. }
  1669. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  1670. }
  1671. run = get_bits(gb, v->s.esc3_run_length);
  1672. sign = get_bits(gb, 1);
  1673. level = get_bits(gb, v->s.esc3_level_length);
  1674. if(sign)
  1675. level = -level;
  1676. }
  1677. }
  1678. *last = lst;
  1679. *skip = run;
  1680. *value = level;
  1681. }
  1682. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1683. * @param v VC1Context
  1684. * @param block block to decode
  1685. * @param coded are AC coeffs present or not
  1686. * @param codingset set of VLC to decode data
  1687. */
  1688. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  1689. {
  1690. GetBitContext *gb = &v->s.gb;
  1691. MpegEncContext *s = &v->s;
  1692. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1693. int run_diff, i;
  1694. int16_t *dc_val;
  1695. int16_t *ac_val, *ac_val2;
  1696. int dcdiff;
  1697. /* Get DC differential */
  1698. if (n < 4) {
  1699. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1700. } else {
  1701. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1702. }
  1703. if (dcdiff < 0){
  1704. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1705. return -1;
  1706. }
  1707. if (dcdiff)
  1708. {
  1709. if (dcdiff == 119 /* ESC index value */)
  1710. {
  1711. /* TODO: Optimize */
  1712. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  1713. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  1714. else dcdiff = get_bits(gb, 8);
  1715. }
  1716. else
  1717. {
  1718. if (v->pq == 1)
  1719. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1720. else if (v->pq == 2)
  1721. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  1722. }
  1723. if (get_bits(gb, 1))
  1724. dcdiff = -dcdiff;
  1725. }
  1726. /* Prediction */
  1727. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  1728. *dc_val = dcdiff;
  1729. /* Store the quantized DC coeff, used for prediction */
  1730. if (n < 4) {
  1731. block[0] = dcdiff * s->y_dc_scale;
  1732. } else {
  1733. block[0] = dcdiff * s->c_dc_scale;
  1734. }
  1735. /* Skip ? */
  1736. run_diff = 0;
  1737. i = 0;
  1738. if (!coded) {
  1739. goto not_coded;
  1740. }
  1741. //AC Decoding
  1742. i = 1;
  1743. {
  1744. int last = 0, skip, value;
  1745. const int8_t *zz_table;
  1746. int scale;
  1747. int k;
  1748. scale = v->pq * 2 + v->halfpq;
  1749. if(v->s.ac_pred) {
  1750. if(!dc_pred_dir)
  1751. zz_table = vc1_horizontal_zz;
  1752. else
  1753. zz_table = vc1_vertical_zz;
  1754. } else
  1755. zz_table = vc1_normal_zz;
  1756. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1757. ac_val2 = ac_val;
  1758. if(dc_pred_dir) //left
  1759. ac_val -= 16;
  1760. else //top
  1761. ac_val -= 16 * s->block_wrap[n];
  1762. while (!last) {
  1763. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1764. i += skip;
  1765. if(i > 63)
  1766. break;
  1767. block[zz_table[i++]] = value;
  1768. }
  1769. /* apply AC prediction if needed */
  1770. if(s->ac_pred) {
  1771. if(dc_pred_dir) { //left
  1772. for(k = 1; k < 8; k++)
  1773. block[k << 3] += ac_val[k];
  1774. } else { //top
  1775. for(k = 1; k < 8; k++)
  1776. block[k] += ac_val[k + 8];
  1777. }
  1778. }
  1779. /* save AC coeffs for further prediction */
  1780. for(k = 1; k < 8; k++) {
  1781. ac_val2[k] = block[k << 3];
  1782. ac_val2[k + 8] = block[k];
  1783. }
  1784. /* scale AC coeffs */
  1785. for(k = 1; k < 64; k++)
  1786. if(block[k]) {
  1787. block[k] *= scale;
  1788. if(!v->pquantizer)
  1789. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1790. }
  1791. if(s->ac_pred) i = 63;
  1792. }
  1793. not_coded:
  1794. if(!coded) {
  1795. int k, scale;
  1796. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1797. ac_val2 = ac_val;
  1798. scale = v->pq * 2 + v->halfpq;
  1799. memset(ac_val2, 0, 16 * 2);
  1800. if(dc_pred_dir) {//left
  1801. ac_val -= 16;
  1802. if(s->ac_pred)
  1803. memcpy(ac_val2, ac_val, 8 * 2);
  1804. } else {//top
  1805. ac_val -= 16 * s->block_wrap[n];
  1806. if(s->ac_pred)
  1807. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1808. }
  1809. /* apply AC prediction if needed */
  1810. if(s->ac_pred) {
  1811. if(dc_pred_dir) { //left
  1812. for(k = 1; k < 8; k++) {
  1813. block[k << 3] = ac_val[k] * scale;
  1814. if(!v->pquantizer)
  1815. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  1816. }
  1817. } else { //top
  1818. for(k = 1; k < 8; k++) {
  1819. block[k] = ac_val[k + 8] * scale;
  1820. if(!v->pquantizer)
  1821. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1822. }
  1823. }
  1824. i = 63;
  1825. }
  1826. }
  1827. s->block_last_index[n] = i;
  1828. return 0;
  1829. }
  1830. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  1831. * @param v VC1Context
  1832. * @param block block to decode
  1833. * @param coded are AC coeffs present or not
  1834. * @param mquant block quantizer
  1835. * @param codingset set of VLC to decode data
  1836. */
  1837. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  1838. {
  1839. GetBitContext *gb = &v->s.gb;
  1840. MpegEncContext *s = &v->s;
  1841. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1842. int run_diff, i;
  1843. int16_t *dc_val;
  1844. int16_t *ac_val, *ac_val2;
  1845. int dcdiff;
  1846. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1847. int a_avail = v->a_avail, c_avail = v->c_avail;
  1848. /* XXX: Guard against dumb values of mquant */
  1849. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  1850. /* Set DC scale - y and c use the same */
  1851. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1852. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1853. /* Get DC differential */
  1854. if (n < 4) {
  1855. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1856. } else {
  1857. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1858. }
  1859. if (dcdiff < 0){
  1860. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1861. return -1;
  1862. }
  1863. if (dcdiff)
  1864. {
  1865. if (dcdiff == 119 /* ESC index value */)
  1866. {
  1867. /* TODO: Optimize */
  1868. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1869. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1870. else dcdiff = get_bits(gb, 8);
  1871. }
  1872. else
  1873. {
  1874. if (mquant == 1)
  1875. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1876. else if (mquant == 2)
  1877. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  1878. }
  1879. if (get_bits(gb, 1))
  1880. dcdiff = -dcdiff;
  1881. }
  1882. /* Prediction */
  1883. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  1884. *dc_val = dcdiff;
  1885. /* Store the quantized DC coeff, used for prediction */
  1886. if (n < 4) {
  1887. block[0] = dcdiff * s->y_dc_scale;
  1888. } else {
  1889. block[0] = dcdiff * s->c_dc_scale;
  1890. }
  1891. /* Skip ? */
  1892. run_diff = 0;
  1893. i = 0;
  1894. if (!coded) {
  1895. goto not_coded;
  1896. }
  1897. //AC Decoding
  1898. i = 1;
  1899. {
  1900. int last = 0, skip, value;
  1901. const int8_t *zz_table;
  1902. int scale;
  1903. int k;
  1904. int use_pred = s->ac_pred;
  1905. scale = mquant * 2;
  1906. zz_table = vc1_simple_progressive_8x8_zz;
  1907. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1908. ac_val2 = ac_val;
  1909. if(!a_avail) dc_pred_dir = 1;
  1910. if(!c_avail) dc_pred_dir = 0;
  1911. if(!a_avail && !c_avail) use_pred = 0;
  1912. if(dc_pred_dir) //left
  1913. ac_val -= 16;
  1914. else //top
  1915. ac_val -= 16 * s->block_wrap[n];
  1916. while (!last) {
  1917. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1918. i += skip;
  1919. if(i > 63)
  1920. break;
  1921. block[zz_table[i++]] = value;
  1922. }
  1923. /* apply AC prediction if needed */
  1924. if(use_pred) {
  1925. /* scale predictors if needed*/
  1926. int mb_pos2, q1, q2;
  1927. mb_pos2 = mb_pos - dc_pred_dir - (1 - dc_pred_dir) * s->mb_stride;
  1928. q1 = s->current_picture.qscale_table[mb_pos];
  1929. q2 = s->current_picture.qscale_table[mb_pos2];
  1930. if(0 && q2 && q1!=q2 && ((dc_pred_dir && c_avail) || (!dc_pred_dir && a_avail))) {
  1931. q1 = q1 * 2 - 1;
  1932. q2 = q2 * 2 - 1;
  1933. if(dc_pred_dir) { //left
  1934. for(k = 1; k < 8; k++)
  1935. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1936. } else { //top
  1937. for(k = 1; k < 8; k++)
  1938. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1939. }
  1940. } else {
  1941. if(dc_pred_dir) { //left
  1942. for(k = 1; k < 8; k++)
  1943. block[k << 3] += ac_val[k];
  1944. } else { //top
  1945. for(k = 1; k < 8; k++)
  1946. block[k] += ac_val[k + 8];
  1947. }
  1948. }
  1949. }
  1950. /* save AC coeffs for further prediction */
  1951. for(k = 1; k < 8; k++) {
  1952. ac_val2[k] = block[k << 3];
  1953. ac_val2[k + 8] = block[k];
  1954. }
  1955. /* scale AC coeffs */
  1956. for(k = 1; k < 64; k++)
  1957. if(block[k]) {
  1958. block[k] *= scale;
  1959. if(!v->pquantizer)
  1960. block[k] += (block[k] < 0) ? -mquant : mquant;
  1961. }
  1962. if(use_pred) i = 63;
  1963. }
  1964. not_coded:
  1965. if(!coded) {
  1966. int k, scale;
  1967. int use_pred = s->ac_pred;
  1968. int mb_pos2, q1, q2;
  1969. mb_pos2 = mb_pos - dc_pred_dir - (1 - dc_pred_dir) * s->mb_stride;
  1970. q1 = s->current_picture.qscale_table[mb_pos];
  1971. q2 = s->current_picture.qscale_table[mb_pos2];
  1972. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1973. ac_val2 = ac_val;
  1974. if(!c_avail) {
  1975. memset(ac_val, 0, 8 * sizeof(ac_val[0]));
  1976. dc_pred_dir = 0;
  1977. }
  1978. if(!a_avail) {
  1979. memset(ac_val + 8, 0, 8 * sizeof(ac_val[0]));
  1980. dc_pred_dir = 1;
  1981. }
  1982. if(!a_avail && !c_avail) use_pred = 0;
  1983. scale = mquant * 2;
  1984. memset(ac_val2, 0, 16 * 2);
  1985. if(dc_pred_dir) {//left
  1986. ac_val -= 16;
  1987. if(use_pred) {
  1988. memcpy(ac_val2, ac_val, 8 * 2);
  1989. if(0 && q2 && q1!=q2 && c_avail) {
  1990. q1 = q1 * 2 - 1;
  1991. q2 = q2 * 2 - 1;
  1992. for(k = 1; k < 8; k++)
  1993. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1994. }
  1995. }
  1996. } else {//top
  1997. ac_val -= 16 * s->block_wrap[n];
  1998. if(use_pred) {
  1999. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2000. if(0 && q2 && q1!=q2 && a_avail) {
  2001. q1 = q1 * 2 - 1;
  2002. q2 = q2 * 2 - 1;
  2003. for(k = 1; k < 8; k++)
  2004. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2005. }
  2006. }
  2007. }
  2008. /* apply AC prediction if needed */
  2009. if(use_pred) {
  2010. if(dc_pred_dir) { //left
  2011. for(k = 1; k < 8; k++) {
  2012. block[k << 3] = ac_val2[k] * scale;
  2013. if(!v->pquantizer)
  2014. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2015. }
  2016. } else { //top
  2017. for(k = 1; k < 8; k++) {
  2018. block[k] = ac_val2[k + 8] * scale;
  2019. if(!v->pquantizer)
  2020. block[k] += (block[k] < 0) ? -mquant : mquant;
  2021. }
  2022. }
  2023. i = 63;
  2024. }
  2025. }
  2026. s->block_last_index[n] = i;
  2027. return 0;
  2028. }
  2029. /** Decode P block
  2030. */
  2031. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2032. {
  2033. MpegEncContext *s = &v->s;
  2034. GetBitContext *gb = &s->gb;
  2035. int i, j;
  2036. int subblkpat = 0;
  2037. int scale, off, idx, last, skip, value;
  2038. int ttblk = ttmb & 7;
  2039. if(ttmb == -1) {
  2040. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2041. }
  2042. if(ttblk == TT_4X4) {
  2043. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2044. }
  2045. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2046. subblkpat = decode012(gb);
  2047. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2048. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2049. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2050. }
  2051. scale = 2 * mquant;
  2052. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2053. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2054. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2055. ttblk = TT_8X4;
  2056. }
  2057. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2058. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2059. ttblk = TT_4X8;
  2060. }
  2061. switch(ttblk) {
  2062. case TT_8X8:
  2063. i = 0;
  2064. last = 0;
  2065. while (!last) {
  2066. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2067. i += skip;
  2068. if(i > 63)
  2069. break;
  2070. idx = vc1_simple_progressive_8x8_zz[i++];
  2071. block[idx] = value * scale;
  2072. }
  2073. vc1_inv_trans(block, 8, 8);
  2074. break;
  2075. case TT_4X4:
  2076. for(j = 0; j < 4; j++) {
  2077. last = subblkpat & (1 << (3 - j));
  2078. i = 0;
  2079. off = (j & 1) * 4 + (j & 2) * 16;
  2080. while (!last) {
  2081. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2082. i += skip;
  2083. if(i > 15)
  2084. break;
  2085. idx = vc1_simple_progressive_4x4_zz[i++];
  2086. block[idx + off] = value * scale;
  2087. }
  2088. if(!(subblkpat & (1 << (3 - j))))
  2089. vc1_inv_trans(block + off, 4, 4);
  2090. }
  2091. break;
  2092. case TT_8X4:
  2093. for(j = 0; j < 2; j++) {
  2094. last = subblkpat & (1 << (1 - j));
  2095. i = 0;
  2096. off = j * 32;
  2097. while (!last) {
  2098. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2099. i += skip;
  2100. if(i > 31)
  2101. break;
  2102. idx = vc1_simple_progressive_8x4_zz[i++];
  2103. block[idx + off] = value * scale;
  2104. }
  2105. if(!(subblkpat & (1 << (1 - j))))
  2106. vc1_inv_trans(block + off, 8, 4);
  2107. }
  2108. break;
  2109. case TT_4X8:
  2110. for(j = 0; j < 2; j++) {
  2111. last = subblkpat & (1 << (1 - j));
  2112. i = 0;
  2113. off = j * 4;
  2114. while (!last) {
  2115. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2116. i += skip;
  2117. if(i > 31)
  2118. break;
  2119. idx = vc1_simple_progressive_4x8_zz[i++];
  2120. block[idx + off] = value * scale;
  2121. }
  2122. if(!(subblkpat & (1 << (1 - j))))
  2123. vc1_inv_trans(block + off, 4, 8);
  2124. }
  2125. break;
  2126. }
  2127. return 0;
  2128. }
  2129. /** Decode one P-frame MB (in Simple/Main profile)
  2130. * @todo TODO: Extend to AP
  2131. * @fixme FIXME: DC value for inter blocks not set
  2132. */
  2133. static int vc1_decode_p_mb(VC1Context *v, DCTELEM block[6][64])
  2134. {
  2135. MpegEncContext *s = &v->s;
  2136. GetBitContext *gb = &s->gb;
  2137. int i, j;
  2138. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2139. int cbp; /* cbp decoding stuff */
  2140. int mqdiff, mquant; /* MB quantization */
  2141. int ttmb = v->ttmb; /* MB Transform type */
  2142. int status;
  2143. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2144. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2145. int mb_has_coeffs = 1; /* last_flag */
  2146. int dmv_x, dmv_y; /* Differential MV components */
  2147. int index, index1; /* LUT indices */
  2148. int val, sign; /* temp values */
  2149. int first_block = 1;
  2150. int dst_idx, off;
  2151. int skipped, fourmv;
  2152. mquant = v->pq; /* Loosy initialization */
  2153. if (v->mv_type_is_raw)
  2154. fourmv = get_bits1(gb);
  2155. else
  2156. fourmv = v->mv_type_mb_plane[mb_pos];
  2157. if (v->skip_is_raw)
  2158. skipped = get_bits1(gb);
  2159. else
  2160. skipped = v->s.mbskip_table[mb_pos];
  2161. s->dsp.clear_blocks(s->block[0]);
  2162. if (!fourmv) /* 1MV mode */
  2163. {
  2164. if (!skipped)
  2165. {
  2166. GET_MVDATA(dmv_x, dmv_y);
  2167. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2168. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2169. /* FIXME Set DC val for inter block ? */
  2170. if (s->mb_intra && !mb_has_coeffs)
  2171. {
  2172. GET_MQUANT();
  2173. s->ac_pred = get_bits(gb, 1);
  2174. cbp = 0;
  2175. }
  2176. else if (mb_has_coeffs)
  2177. {
  2178. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  2179. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2180. GET_MQUANT();
  2181. }
  2182. else
  2183. {
  2184. mquant = v->pq;
  2185. cbp = 0;
  2186. }
  2187. s->current_picture.qscale_table[mb_pos] = mquant;
  2188. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2189. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  2190. VC1_TTMB_VLC_BITS, 2);
  2191. if(!s->mb_intra) vc1_mc_1mv(v);
  2192. dst_idx = 0;
  2193. for (i=0; i<6; i++)
  2194. {
  2195. s->dc_val[0][s->block_index[i]] = 0;
  2196. dst_idx += i >> 2;
  2197. val = ((cbp >> (5 - i)) & 1);
  2198. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2199. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2200. if(s->mb_intra) {
  2201. /* check if prediction blocks A and C are available */
  2202. v->a_avail = v->c_avail = 0;
  2203. if(i == 2 || i == 3 || s->mb_y)
  2204. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2205. if(i == 1 || i == 3 || s->mb_x)
  2206. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2207. vc1_decode_intra_block(v, block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2208. vc1_inv_trans(block[i], 8, 8);
  2209. for(j = 0; j < 64; j++) block[i][j] += 128;
  2210. s->dsp.put_pixels_clamped(block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2211. /* TODO: proper loop filtering */
  2212. if(v->pq >= 9 && v->overlap) {
  2213. if(v->a_avail)
  2214. s->dsp.h263_v_loop_filter(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), s->y_dc_scale);
  2215. if(v->c_avail)
  2216. s->dsp.h263_h_loop_filter(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), s->y_dc_scale);
  2217. }
  2218. } else if(val) {
  2219. vc1_decode_p_block(v, block[i], i, mquant, ttmb, first_block);
  2220. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2221. first_block = 0;
  2222. s->dsp.add_pixels_clamped(block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2223. }
  2224. }
  2225. }
  2226. else //Skipped
  2227. {
  2228. s->mb_intra = 0;
  2229. for(i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
  2230. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2231. s->current_picture.qscale_table[mb_pos] = 0;
  2232. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2233. vc1_mc_1mv(v);
  2234. return 0;
  2235. }
  2236. } //1MV mode
  2237. else //4MV mode
  2238. {
  2239. if (!skipped /* unskipped MB */)
  2240. {
  2241. int intra_count = 0, coded_inter = 0;
  2242. int is_intra[6], is_coded[6];
  2243. /* Get CBPCY */
  2244. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2245. for (i=0; i<6; i++)
  2246. {
  2247. val = ((cbp >> (5 - i)) & 1);
  2248. s->dc_val[0][s->block_index[i]] = 0;
  2249. s->mb_intra = 0;
  2250. if(i < 4) {
  2251. dmv_x = dmv_y = 0;
  2252. s->mb_intra = 0;
  2253. mb_has_coeffs = 0;
  2254. if(val) {
  2255. GET_MVDATA(dmv_x, dmv_y);
  2256. }
  2257. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2258. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2259. intra_count += s->mb_intra;
  2260. is_intra[i] = s->mb_intra;
  2261. is_coded[i] = mb_has_coeffs;
  2262. }
  2263. if(i&4){
  2264. is_intra[i] = (intra_count >= 3);
  2265. is_coded[i] = val;
  2266. }
  2267. if(i == 4) vc1_mc_4mv_chroma(v);
  2268. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2269. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2270. }
  2271. dst_idx = 0;
  2272. GET_MQUANT();
  2273. s->current_picture.qscale_table[mb_pos] = mquant;
  2274. /* test if block is intra and has pred */
  2275. {
  2276. int intrapred = 0;
  2277. for(i=0; i<6; i++)
  2278. if(is_intra[i]) {
  2279. if(v->mb_type[0][s->block_index[i] - s->block_wrap[i]] || v->mb_type[0][s->block_index[i] - 1]) {
  2280. intrapred = 1;
  2281. break;
  2282. }
  2283. }
  2284. if(intrapred)s->ac_pred = get_bits(gb, 1);
  2285. else s->ac_pred = 0;
  2286. }
  2287. if (!v->ttmbf && coded_inter)
  2288. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 12);
  2289. for (i=0; i<6; i++)
  2290. {
  2291. dst_idx += i >> 2;
  2292. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2293. s->mb_intra = is_intra[i];
  2294. if (is_intra[i]) {
  2295. /* check if prediction blocks A and C are available */
  2296. v->a_avail = v->c_avail = 0;
  2297. if(i == 2 || i == 3 || s->mb_y)
  2298. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2299. if(i == 1 || i == 3 || s->mb_x)
  2300. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2301. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2302. //s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2303. /* TODO: proper loop filtering */
  2304. if(v->pq >= 9 && v->overlap) {
  2305. if(v->a_avail)
  2306. s->dsp.h263_v_loop_filter(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), s->y_dc_scale);
  2307. if(v->c_avail)
  2308. s->dsp.h263_h_loop_filter(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), s->y_dc_scale);
  2309. }
  2310. } else if(is_coded[i]) {
  2311. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2312. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2313. first_block = 0;
  2314. //s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2315. }
  2316. }
  2317. return status;
  2318. }
  2319. else //Skipped MB
  2320. {
  2321. for (i=0; i<4; i++)
  2322. {
  2323. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2324. vc1_mc_4mv_luma(v, i);
  2325. }
  2326. vc1_mc_4mv_chroma(v);
  2327. for(i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
  2328. s->current_picture.qscale_table[mb_pos] = 0;
  2329. return 0;
  2330. }
  2331. }
  2332. /* Should never happen */
  2333. return -1;
  2334. }
  2335. /** Decode blocks of I-frame
  2336. */
  2337. static void vc1_decode_i_blocks(VC1Context *v)
  2338. {
  2339. int k;
  2340. MpegEncContext *s = &v->s;
  2341. int cbp, val;
  2342. uint8_t *coded_val;
  2343. int mb_pos;
  2344. /* select codingmode used for VLC tables selection */
  2345. switch(v->y_ac_table_index){
  2346. case 0:
  2347. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2348. break;
  2349. case 1:
  2350. v->codingset = CS_HIGH_MOT_INTRA;
  2351. break;
  2352. case 2:
  2353. v->codingset = CS_MID_RATE_INTRA;
  2354. break;
  2355. }
  2356. switch(v->c_ac_table_index){
  2357. case 0:
  2358. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2359. break;
  2360. case 1:
  2361. v->codingset2 = CS_HIGH_MOT_INTER;
  2362. break;
  2363. case 2:
  2364. v->codingset2 = CS_MID_RATE_INTER;
  2365. break;
  2366. }
  2367. /* Set DC scale - y and c use the same */
  2368. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2369. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2370. //do frame decode
  2371. s->mb_x = s->mb_y = 0;
  2372. s->mb_intra = 1;
  2373. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2374. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2375. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2376. ff_init_block_index(s);
  2377. ff_update_block_index(s);
  2378. s->dsp.clear_blocks(s->block[0]);
  2379. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2380. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2381. s->current_picture.qscale_table[mb_pos] = v->pq;
  2382. // do actual MB decoding and displaying
  2383. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2384. v->s.ac_pred = get_bits(&v->s.gb, 1);
  2385. for(k = 0; k < 6; k++) {
  2386. val = ((cbp >> (5 - k)) & 1);
  2387. if (k < 4) {
  2388. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2389. val = val ^ pred;
  2390. *coded_val = val;
  2391. }
  2392. cbp |= val << (5 - k);
  2393. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  2394. vc1_inv_trans(s->block[k], 8, 8);
  2395. if(v->pq >= 9 && v->overlap) {
  2396. vc1_overlap_block(s, s->block[k], k, (s->mb_y || k>1), (s->mb_x || (k != 0 && k != 2)));
  2397. }
  2398. }
  2399. vc1_put_block(v, s->block);
  2400. if(v->pq >= 9 && v->overlap) { /* XXX: do proper overlapping insted of loop filter */
  2401. if(s->mb_y) {
  2402. s->dsp.h263_v_loop_filter(s->dest[0], s->linesize, s->y_dc_scale);
  2403. s->dsp.h263_v_loop_filter(s->dest[0] + 8, s->linesize, s->y_dc_scale);
  2404. s->dsp.h263_v_loop_filter(s->dest[1], s->uvlinesize, s->y_dc_scale);
  2405. s->dsp.h263_v_loop_filter(s->dest[2], s->uvlinesize, s->y_dc_scale);
  2406. }
  2407. s->dsp.h263_v_loop_filter(s->dest[0] + 8 * s->linesize, s->linesize, s->y_dc_scale);
  2408. s->dsp.h263_v_loop_filter(s->dest[0] + 8 * s->linesize + 8, s->linesize, s->y_dc_scale);
  2409. if(s->mb_x) {
  2410. s->dsp.h263_h_loop_filter(s->dest[0], s->linesize, s->y_dc_scale);
  2411. s->dsp.h263_h_loop_filter(s->dest[0] + 8 * s->linesize, s->linesize, s->y_dc_scale);
  2412. s->dsp.h263_h_loop_filter(s->dest[1], s->uvlinesize, s->y_dc_scale);
  2413. s->dsp.h263_h_loop_filter(s->dest[2], s->uvlinesize, s->y_dc_scale);
  2414. }
  2415. s->dsp.h263_h_loop_filter(s->dest[0] + 8, s->linesize, s->y_dc_scale);
  2416. s->dsp.h263_h_loop_filter(s->dest[0] + 8 * s->linesize + 8, s->linesize, s->y_dc_scale);
  2417. }
  2418. if(get_bits_count(&s->gb) > v->bits) {
  2419. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2420. return;
  2421. }
  2422. }
  2423. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2424. }
  2425. }
  2426. static void vc1_decode_p_blocks(VC1Context *v)
  2427. {
  2428. MpegEncContext *s = &v->s;
  2429. /* select codingmode used for VLC tables selection */
  2430. switch(v->c_ac_table_index){
  2431. case 0:
  2432. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2433. break;
  2434. case 1:
  2435. v->codingset = CS_HIGH_MOT_INTRA;
  2436. break;
  2437. case 2:
  2438. v->codingset = CS_MID_RATE_INTRA;
  2439. break;
  2440. }
  2441. switch(v->c_ac_table_index){
  2442. case 0:
  2443. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2444. break;
  2445. case 1:
  2446. v->codingset2 = CS_HIGH_MOT_INTER;
  2447. break;
  2448. case 2:
  2449. v->codingset2 = CS_MID_RATE_INTER;
  2450. break;
  2451. }
  2452. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2453. s->first_slice_line = 1;
  2454. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2455. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2456. ff_init_block_index(s);
  2457. ff_update_block_index(s);
  2458. s->dsp.clear_blocks(s->block[0]);
  2459. vc1_decode_p_mb(v, s->block);
  2460. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2461. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2462. return;
  2463. }
  2464. }
  2465. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2466. s->first_slice_line = 0;
  2467. }
  2468. }
  2469. static void vc1_decode_blocks(VC1Context *v)
  2470. {
  2471. v->s.esc3_level_length = 0;
  2472. switch(v->s.pict_type) {
  2473. case I_TYPE:
  2474. vc1_decode_i_blocks(v);
  2475. break;
  2476. case P_TYPE:
  2477. vc1_decode_p_blocks(v);
  2478. break;
  2479. }
  2480. }
  2481. /** Initialize a VC1/WMV3 decoder
  2482. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2483. * @todo TODO: Decypher remaining bits in extra_data
  2484. */
  2485. static int vc1_decode_init(AVCodecContext *avctx)
  2486. {
  2487. VC1Context *v = avctx->priv_data;
  2488. MpegEncContext *s = &v->s;
  2489. GetBitContext gb;
  2490. if (!avctx->extradata_size || !avctx->extradata) return -1;
  2491. avctx->pix_fmt = PIX_FMT_YUV420P;
  2492. v->s.avctx = avctx;
  2493. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  2494. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  2495. if(ff_h263_decode_init(avctx) < 0)
  2496. return -1;
  2497. if (vc1_init_common(v) < 0) return -1;
  2498. av_log(avctx, AV_LOG_INFO, "This decoder is not supposed to produce picture. Dont report this as a bug!\n");
  2499. av_log(avctx, AV_LOG_INFO, "If you see a picture, don't believe your eyes.\n");
  2500. avctx->coded_width = avctx->width;
  2501. avctx->coded_height = avctx->height;
  2502. if (avctx->codec_id == CODEC_ID_WMV3)
  2503. {
  2504. int count = 0;
  2505. // looks like WMV3 has a sequence header stored in the extradata
  2506. // advanced sequence header may be before the first frame
  2507. // the last byte of the extradata is a version number, 1 for the
  2508. // samples we can decode
  2509. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  2510. if (decode_sequence_header(avctx, &gb) < 0)
  2511. return -1;
  2512. count = avctx->extradata_size*8 - get_bits_count(&gb);
  2513. if (count>0)
  2514. {
  2515. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  2516. count, get_bits(&gb, count));
  2517. }
  2518. else if (count < 0)
  2519. {
  2520. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  2521. }
  2522. }
  2523. avctx->has_b_frames= !!(avctx->max_b_frames);
  2524. s->mb_width = (avctx->coded_width+15)>>4;
  2525. s->mb_height = (avctx->coded_height+15)>>4;
  2526. /* Allocate mb bitplanes */
  2527. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2528. /* allocate block type info in that way so it could be used with s->block_index[] */
  2529. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  2530. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  2531. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  2532. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  2533. /* Init coded blocks info */
  2534. if (v->profile == PROFILE_ADVANCED)
  2535. {
  2536. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  2537. // return -1;
  2538. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  2539. // return -1;
  2540. }
  2541. return 0;
  2542. }
  2543. /** Decode a VC1/WMV3 frame
  2544. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2545. * @warning Initial try at using MpegEncContext stuff
  2546. */
  2547. static int vc1_decode_frame(AVCodecContext *avctx,
  2548. void *data, int *data_size,
  2549. uint8_t *buf, int buf_size)
  2550. {
  2551. VC1Context *v = avctx->priv_data;
  2552. MpegEncContext *s = &v->s;
  2553. AVFrame *pict = data;
  2554. /* no supplementary picture */
  2555. if (buf_size == 0) {
  2556. /* special case for last picture */
  2557. if (s->low_delay==0 && s->next_picture_ptr) {
  2558. *pict= *(AVFrame*)s->next_picture_ptr;
  2559. s->next_picture_ptr= NULL;
  2560. *data_size = sizeof(AVFrame);
  2561. }
  2562. return 0;
  2563. }
  2564. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  2565. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  2566. int i= ff_find_unused_picture(s, 0);
  2567. s->current_picture_ptr= &s->picture[i];
  2568. }
  2569. avctx->has_b_frames= !s->low_delay;
  2570. init_get_bits(&s->gb, buf, buf_size*8);
  2571. // do parse frame header
  2572. if(vc1_parse_frame_header(v, &s->gb) == -1)
  2573. return -1;
  2574. if(s->pict_type != I_TYPE && s->pict_type != P_TYPE)return -1;
  2575. // for hurry_up==5
  2576. s->current_picture.pict_type= s->pict_type;
  2577. s->current_picture.key_frame= s->pict_type == I_TYPE;
  2578. /* skip B-frames if we don't have reference frames */
  2579. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)) return -1;//buf_size;
  2580. /* skip b frames if we are in a hurry */
  2581. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  2582. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  2583. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  2584. || avctx->skip_frame >= AVDISCARD_ALL)
  2585. return buf_size;
  2586. /* skip everything if we are in a hurry>=5 */
  2587. if(avctx->hurry_up>=5) return -1;//buf_size;
  2588. if(s->next_p_frame_damaged){
  2589. if(s->pict_type==B_TYPE)
  2590. return buf_size;
  2591. else
  2592. s->next_p_frame_damaged=0;
  2593. }
  2594. if(MPV_frame_start(s, avctx) < 0)
  2595. return -1;
  2596. ff_er_frame_start(s);
  2597. v->bits = buf_size * 8;
  2598. vc1_decode_blocks(v);
  2599. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  2600. // if(get_bits_count(&s->gb) > buf_size * 8)
  2601. // return -1;
  2602. ff_er_frame_end(s);
  2603. MPV_frame_end(s);
  2604. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  2605. assert(s->current_picture.pict_type == s->pict_type);
  2606. if (s->pict_type == B_TYPE || s->low_delay) {
  2607. *pict= *(AVFrame*)s->current_picture_ptr;
  2608. } else if (s->last_picture_ptr != NULL) {
  2609. *pict= *(AVFrame*)s->last_picture_ptr;
  2610. }
  2611. if(s->last_picture_ptr || s->low_delay){
  2612. *data_size = sizeof(AVFrame);
  2613. ff_print_debug_info(s, pict);
  2614. }
  2615. /* Return the Picture timestamp as the frame number */
  2616. /* we substract 1 because it is added on utils.c */
  2617. avctx->frame_number = s->picture_number - 1;
  2618. return buf_size;
  2619. }
  2620. /** Close a VC1/WMV3 decoder
  2621. * @warning Initial try at using MpegEncContext stuff
  2622. */
  2623. static int vc1_decode_end(AVCodecContext *avctx)
  2624. {
  2625. VC1Context *v = avctx->priv_data;
  2626. av_freep(&v->hrd_rate);
  2627. av_freep(&v->hrd_buffer);
  2628. MPV_common_end(&v->s);
  2629. av_freep(&v->mv_type_mb_plane);
  2630. av_freep(&v->mb_type_base);
  2631. return 0;
  2632. }
  2633. AVCodec vc1_decoder = {
  2634. "vc1",
  2635. CODEC_TYPE_VIDEO,
  2636. CODEC_ID_VC1,
  2637. sizeof(VC1Context),
  2638. vc1_decode_init,
  2639. NULL,
  2640. vc1_decode_end,
  2641. vc1_decode_frame,
  2642. CODEC_CAP_DELAY,
  2643. NULL
  2644. };
  2645. AVCodec wmv3_decoder = {
  2646. "wmv3",
  2647. CODEC_TYPE_VIDEO,
  2648. CODEC_ID_WMV3,
  2649. sizeof(VC1Context),
  2650. vc1_decode_init,
  2651. NULL,
  2652. vc1_decode_end,
  2653. vc1_decode_frame,
  2654. CODEC_CAP_DELAY,
  2655. NULL
  2656. };