You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1540 lines
52KB

  1. /*
  2. * Chinese AVS video (AVS1-P2, JiZhun profile) decoder.
  3. * Copyright (c) 2006 Stefan Gehrer <stefan.gehrer@gmx.de>
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18. */
  19. #include "avcodec.h"
  20. #include "bitstream.h"
  21. #include "golomb.h"
  22. #include "mpegvideo.h"
  23. #include "cavsdata.h"
  24. typedef struct {
  25. MpegEncContext s;
  26. Picture picture; //currently decoded frame
  27. Picture DPB[2]; //reference frames
  28. int dist[2]; //temporal distances from current frame to ref frames
  29. int profile, level;
  30. int aspect_ratio;
  31. int mb_width, mb_height;
  32. int pic_type;
  33. int progressive;
  34. int pic_structure;
  35. int skip_mode_flag;
  36. int loop_filter_disable;
  37. int alpha_offset, beta_offset;
  38. int ref_flag;
  39. int mbx, mby;
  40. int flags;
  41. int stc;
  42. uint8_t *cy, *cu, *cv;
  43. int left_qp;
  44. uint8_t *top_qp;
  45. /* mv motion vector cache
  46. 0: D3 B2 B3 C2
  47. 4: A1 X0 X1 -
  48. 8: A3 X2 X3 -
  49. X are the vectors in the current macroblock (5,6,9,10)
  50. A is the macroblock to the left (4,8)
  51. B is the macroblock to the top (1,2)
  52. C is the macroblock to the top-right (3)
  53. D is the macroblock to the top-left (0)
  54. the same is repeated for backward motion vectors */
  55. vector_t mv[2*4*3];
  56. vector_t *top_mv[2];
  57. vector_t *col_mv;
  58. /* luma pred mode cache
  59. 0: -- B2 B3
  60. 3: A1 X0 X1
  61. 6: A3 X2 X3 */
  62. int pred_mode_Y[3*3];
  63. int *top_pred_Y;
  64. int l_stride, c_stride;
  65. int luma_scan[4];
  66. int qp;
  67. int qp_fixed;
  68. int cbp;
  69. /* intra prediction is done with un-deblocked samples
  70. they are saved here before deblocking the MB */
  71. uint8_t *top_border_y, *top_border_u, *top_border_v;
  72. uint8_t left_border_y[16], left_border_u[10], left_border_v[10];
  73. uint8_t topleft_border_y, topleft_border_u, topleft_border_v;
  74. void (*intra_pred_l[8])(uint8_t *d,uint8_t *top,uint8_t *left,int stride);
  75. void (*intra_pred_c[7])(uint8_t *d,uint8_t *top,uint8_t *left,int stride);
  76. uint8_t *col_type_base;
  77. uint8_t *col_type;
  78. int sym_factor;
  79. int direct_den[2];
  80. int scale_den[2];
  81. int got_keyframe;
  82. } AVSContext;
  83. /*****************************************************************************
  84. *
  85. * in-loop deblocking filter
  86. *
  87. ****************************************************************************/
  88. static inline int get_bs_p(vector_t *mvP, vector_t *mvQ) {
  89. if((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA))
  90. return 2;
  91. if(mvP->ref != mvQ->ref)
  92. return 1;
  93. if( (abs(mvP->x - mvQ->x) >= 4) || (abs(mvP->y - mvQ->y) >= 4) )
  94. return 1;
  95. return 0;
  96. }
  97. static inline int get_bs_b(vector_t *mvP, vector_t *mvQ) {
  98. if((mvP->ref == REF_INTRA) || (mvQ->ref == REF_INTRA)) {
  99. return 2;
  100. } else {
  101. vector_t *mvPbw = mvP + MV_BWD_OFFS;
  102. vector_t *mvQbw = mvQ + MV_BWD_OFFS;
  103. if( (abs( mvP->x - mvQ->x) >= 4) ||
  104. (abs( mvP->y - mvQ->y) >= 4) ||
  105. (abs(mvPbw->x - mvQbw->x) >= 4) ||
  106. (abs(mvPbw->y - mvQbw->y) >= 4) )
  107. return 1;
  108. }
  109. return 0;
  110. }
  111. /* boundary strength (bs) mapping:
  112. *
  113. * --4---5--
  114. * 0 2 |
  115. * | 6 | 7 |
  116. * 1 3 |
  117. * ---------
  118. *
  119. */
  120. #define SET_PARAMS \
  121. alpha = alpha_tab[clip(qp_avg + h->alpha_offset,0,63)]; \
  122. beta = beta_tab[clip(qp_avg + h->beta_offset, 0,63)]; \
  123. tc = tc_tab[clip(qp_avg + h->alpha_offset,0,63)];
  124. static void filter_mb(AVSContext *h, enum mb_t mb_type) {
  125. DECLARE_ALIGNED_8(uint8_t, bs[8]);
  126. int qp_avg, alpha, beta, tc;
  127. int i;
  128. /* save un-deblocked lines */
  129. h->topleft_border_y = h->top_border_y[h->mbx*16+15];
  130. h->topleft_border_u = h->top_border_u[h->mbx*10+8];
  131. h->topleft_border_v = h->top_border_v[h->mbx*10+8];
  132. memcpy(&h->top_border_y[h->mbx*16], h->cy + 15* h->l_stride,16);
  133. memcpy(&h->top_border_u[h->mbx*10+1], h->cu + 7* h->c_stride,8);
  134. memcpy(&h->top_border_v[h->mbx*10+1], h->cv + 7* h->c_stride,8);
  135. for(i=0;i<8;i++) {
  136. h->left_border_y[i*2+0] = *(h->cy + 15 + (i*2+0)*h->l_stride);
  137. h->left_border_y[i*2+1] = *(h->cy + 15 + (i*2+1)*h->l_stride);
  138. h->left_border_u[i+1] = *(h->cu + 7 + i*h->c_stride);
  139. h->left_border_v[i+1] = *(h->cv + 7 + i*h->c_stride);
  140. }
  141. if(!h->loop_filter_disable) {
  142. /* clear bs */
  143. *((uint64_t *)bs) = 0;
  144. /* determine bs */
  145. switch(mb_type) {
  146. case I_8X8:
  147. *((uint64_t *)bs) = 0x0202020202020202ULL;
  148. break;
  149. case P_8X8:
  150. case P_8X16:
  151. bs[2] = get_bs_p(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1]);
  152. bs[3] = get_bs_p(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3]);
  153. case P_16X8:
  154. bs[6] = get_bs_p(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2]);
  155. bs[7] = get_bs_p(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3]);
  156. case P_16X16:
  157. case P_SKIP:
  158. bs[0] = get_bs_p(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0]);
  159. bs[1] = get_bs_p(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2]);
  160. bs[4] = get_bs_p(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0]);
  161. bs[5] = get_bs_p(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1]);
  162. break;
  163. case B_SKIP:
  164. case B_DIRECT:
  165. case B_8X8:
  166. bs[2] = get_bs_b(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1]);
  167. bs[3] = get_bs_b(&h->mv[MV_FWD_X2], &h->mv[MV_FWD_X3]);
  168. bs[6] = get_bs_b(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2]);
  169. bs[7] = get_bs_b(&h->mv[MV_FWD_X1], &h->mv[MV_FWD_X3]);
  170. case B_FWD_16X16:
  171. case B_BWD_16X16:
  172. case B_SYM_16X16:
  173. bs[0] = get_bs_b(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0]);
  174. bs[1] = get_bs_b(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2]);
  175. bs[4] = get_bs_b(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0]);
  176. bs[5] = get_bs_b(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1]);
  177. break;
  178. default:
  179. if(mb_type & 1) { //16X8
  180. bs[6] = bs[7] = get_bs_b(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X2]);
  181. } else { //8X16
  182. bs[2] = bs[3] = get_bs_b(&h->mv[MV_FWD_X0], &h->mv[MV_FWD_X1]);
  183. }
  184. bs[0] = get_bs_b(&h->mv[MV_FWD_A1], &h->mv[MV_FWD_X0]);
  185. bs[1] = get_bs_b(&h->mv[MV_FWD_A3], &h->mv[MV_FWD_X2]);
  186. bs[4] = get_bs_b(&h->mv[MV_FWD_B2], &h->mv[MV_FWD_X0]);
  187. bs[5] = get_bs_b(&h->mv[MV_FWD_B3], &h->mv[MV_FWD_X1]);
  188. }
  189. if( *((uint64_t *)bs) ) {
  190. if(h->flags & A_AVAIL) {
  191. qp_avg = (h->qp + h->left_qp + 1) >> 1;
  192. SET_PARAMS;
  193. h->s.dsp.cavs_filter_lv(h->cy,h->l_stride,alpha,beta,tc,bs[0],bs[1]);
  194. h->s.dsp.cavs_filter_cv(h->cu,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
  195. h->s.dsp.cavs_filter_cv(h->cv,h->c_stride,alpha,beta,tc,bs[0],bs[1]);
  196. }
  197. qp_avg = h->qp;
  198. SET_PARAMS;
  199. h->s.dsp.cavs_filter_lv(h->cy + 8,h->l_stride,alpha,beta,tc,bs[2],bs[3]);
  200. h->s.dsp.cavs_filter_lh(h->cy + 8*h->l_stride,h->l_stride,alpha,beta,tc,
  201. bs[6],bs[7]);
  202. if(h->flags & B_AVAIL) {
  203. qp_avg = (h->qp + h->top_qp[h->mbx] + 1) >> 1;
  204. SET_PARAMS;
  205. h->s.dsp.cavs_filter_lh(h->cy,h->l_stride,alpha,beta,tc,bs[4],bs[5]);
  206. h->s.dsp.cavs_filter_ch(h->cu,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
  207. h->s.dsp.cavs_filter_ch(h->cv,h->c_stride,alpha,beta,tc,bs[4],bs[5]);
  208. }
  209. }
  210. }
  211. h->left_qp = h->qp;
  212. h->top_qp[h->mbx] = h->qp;
  213. }
  214. #undef SET_PARAMS
  215. /*****************************************************************************
  216. *
  217. * spatial intra prediction
  218. *
  219. ****************************************************************************/
  220. static inline void load_intra_pred_luma(AVSContext *h, uint8_t *top,
  221. uint8_t *left, int block) {
  222. int i;
  223. switch(block) {
  224. case 0:
  225. memcpy(&left[1],h->left_border_y,16);
  226. left[0] = left[1];
  227. left[17] = left[16];
  228. memcpy(&top[1],&h->top_border_y[h->mbx*16],16);
  229. top[17] = top[16];
  230. top[0] = top[1];
  231. if((h->flags & A_AVAIL) && (h->flags & B_AVAIL))
  232. left[0] = top[0] = h->topleft_border_y;
  233. break;
  234. case 1:
  235. for(i=0;i<8;i++)
  236. left[i+1] = *(h->cy + 7 + i*h->l_stride);
  237. memset(&left[9],left[8],9);
  238. left[0] = left[1];
  239. memcpy(&top[1],&h->top_border_y[h->mbx*16+8],8);
  240. if(h->flags & C_AVAIL)
  241. memcpy(&top[9],&h->top_border_y[(h->mbx + 1)*16],8);
  242. else
  243. memset(&top[9],top[8],9);
  244. top[17] = top[16];
  245. top[0] = top[1];
  246. if(h->flags & B_AVAIL)
  247. left[0] = top[0] = h->top_border_y[h->mbx*16+7];
  248. break;
  249. case 2:
  250. memcpy(&left[1],&h->left_border_y[8],8);
  251. memset(&left[9],left[8],9);
  252. memcpy(&top[1],h->cy + 7*h->l_stride,16);
  253. top[17] = top[16];
  254. left[0] = h->left_border_y[7];
  255. top[0] = top[1];
  256. if(h->flags & A_AVAIL)
  257. top[0] = left[0];
  258. break;
  259. case 3:
  260. for(i=0;i<9;i++)
  261. left[i] = *(h->cy + 7 + (i+7)*h->l_stride);
  262. memset(&left[9],left[8],9);
  263. memcpy(&top[0],h->cy + 7 + 7*h->l_stride,9);
  264. memset(&top[9],top[8],9);
  265. break;
  266. }
  267. }
  268. static void intra_pred_vert(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  269. int y;
  270. uint64_t a = *((uint64_t *)(&top[1]));
  271. for(y=0;y<8;y++) {
  272. *((uint64_t *)(d+y*stride)) = a;
  273. }
  274. }
  275. static void intra_pred_horiz(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  276. int y;
  277. uint64_t a;
  278. for(y=0;y<8;y++) {
  279. a = left[y+1] * 0x0101010101010101ULL;
  280. *((uint64_t *)(d+y*stride)) = a;
  281. }
  282. }
  283. static void intra_pred_dc_128(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  284. int y;
  285. uint64_t a = 0x8080808080808080ULL;
  286. for(y=0;y<8;y++)
  287. *((uint64_t *)(d+y*stride)) = a;
  288. }
  289. static void intra_pred_plane(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  290. int x,y,ia;
  291. int ih = 0;
  292. int iv = 0;
  293. uint8_t *cm = cropTbl + MAX_NEG_CROP;
  294. for(x=0; x<4; x++) {
  295. ih += (x+1)*(top[5+x]-top[3-x]);
  296. iv += (x+1)*(left[5+x]-left[3-x]);
  297. }
  298. ia = (top[8]+left[8])<<4;
  299. ih = (17*ih+16)>>5;
  300. iv = (17*iv+16)>>5;
  301. for(y=0; y<8; y++)
  302. for(x=0; x<8; x++)
  303. d[y*stride+x] = cm[(ia+(x-3)*ih+(y-3)*iv+16)>>5];
  304. }
  305. #define LOWPASS(ARRAY,INDEX) \
  306. (( ARRAY[(INDEX)-1] + 2*ARRAY[(INDEX)] + ARRAY[(INDEX)+1] + 2) >> 2)
  307. static void intra_pred_lp(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  308. int x,y;
  309. for(y=0; y<8; y++)
  310. for(x=0; x<8; x++)
  311. d[y*stride+x] = (LOWPASS(top,x+1) + LOWPASS(left,y+1)) >> 1;
  312. }
  313. static void intra_pred_down_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  314. int x,y;
  315. for(y=0; y<8; y++)
  316. for(x=0; x<8; x++)
  317. d[y*stride+x] = (LOWPASS(top,x+y+2) + LOWPASS(left,x+y+2)) >> 1;
  318. }
  319. static void intra_pred_down_right(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  320. int x,y;
  321. for(y=0; y<8; y++)
  322. for(x=0; x<8; x++)
  323. if(x==y)
  324. d[y*stride+x] = (left[1]+2*top[0]+top[1]+2)>>2;
  325. else if(x>y)
  326. d[y*stride+x] = LOWPASS(top,x-y);
  327. else
  328. d[y*stride+x] = LOWPASS(left,y-x);
  329. }
  330. static void intra_pred_lp_left(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  331. int x,y;
  332. for(y=0; y<8; y++)
  333. for(x=0; x<8; x++)
  334. d[y*stride+x] = LOWPASS(left,y+1);
  335. }
  336. static void intra_pred_lp_top(uint8_t *d,uint8_t *top,uint8_t *left,int stride) {
  337. int x,y;
  338. for(y=0; y<8; y++)
  339. for(x=0; x<8; x++)
  340. d[y*stride+x] = LOWPASS(top,x+1);
  341. }
  342. #undef LOWPASS
  343. static inline void modify_pred(const int_fast8_t *mod_table, int *mode) {
  344. int newmode = mod_table[*mode];
  345. if(newmode < 0) {
  346. av_log(NULL, AV_LOG_ERROR, "Illegal intra prediction mode\n");
  347. *mode = 0;
  348. } else {
  349. *mode = newmode;
  350. }
  351. }
  352. /*****************************************************************************
  353. *
  354. * motion compensation
  355. *
  356. ****************************************************************************/
  357. static inline void mc_dir_part(AVSContext *h,Picture *pic,int square,
  358. int chroma_height,int delta,int list,uint8_t *dest_y,
  359. uint8_t *dest_cb,uint8_t *dest_cr,int src_x_offset,
  360. int src_y_offset,qpel_mc_func *qpix_op,
  361. h264_chroma_mc_func chroma_op,vector_t *mv){
  362. MpegEncContext * const s = &h->s;
  363. const int mx= mv->x + src_x_offset*8;
  364. const int my= mv->y + src_y_offset*8;
  365. const int luma_xy= (mx&3) + ((my&3)<<2);
  366. uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->l_stride;
  367. uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->c_stride;
  368. uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->c_stride;
  369. int extra_width= 0; //(s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
  370. int extra_height= extra_width;
  371. int emu=0;
  372. const int full_mx= mx>>2;
  373. const int full_my= my>>2;
  374. const int pic_width = 16*h->mb_width;
  375. const int pic_height = 16*h->mb_height;
  376. if(!pic->data[0])
  377. return;
  378. if(mx&7) extra_width -= 3;
  379. if(my&7) extra_height -= 3;
  380. if( full_mx < 0-extra_width
  381. || full_my < 0-extra_height
  382. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  383. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  384. ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->l_stride, h->l_stride,
  385. 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  386. src_y= s->edge_emu_buffer + 2 + 2*h->l_stride;
  387. emu=1;
  388. }
  389. qpix_op[luma_xy](dest_y, src_y, h->l_stride); //FIXME try variable height perhaps?
  390. if(!square){
  391. qpix_op[luma_xy](dest_y + delta, src_y + delta, h->l_stride);
  392. }
  393. if(emu){
  394. ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->c_stride,
  395. 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  396. src_cb= s->edge_emu_buffer;
  397. }
  398. chroma_op(dest_cb, src_cb, h->c_stride, chroma_height, mx&7, my&7);
  399. if(emu){
  400. ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->c_stride,
  401. 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  402. src_cr= s->edge_emu_buffer;
  403. }
  404. chroma_op(dest_cr, src_cr, h->c_stride, chroma_height, mx&7, my&7);
  405. }
  406. static inline void mc_part_std(AVSContext *h,int square,int chroma_height,int delta,
  407. uint8_t *dest_y,uint8_t *dest_cb,uint8_t *dest_cr,
  408. int x_offset, int y_offset,qpel_mc_func *qpix_put,
  409. h264_chroma_mc_func chroma_put,qpel_mc_func *qpix_avg,
  410. h264_chroma_mc_func chroma_avg, vector_t *mv){
  411. qpel_mc_func *qpix_op= qpix_put;
  412. h264_chroma_mc_func chroma_op= chroma_put;
  413. dest_y += 2*x_offset + 2*y_offset*h->l_stride;
  414. dest_cb += x_offset + y_offset*h->c_stride;
  415. dest_cr += x_offset + y_offset*h->c_stride;
  416. x_offset += 8*h->mbx;
  417. y_offset += 8*h->mby;
  418. if(mv->ref >= 0){
  419. Picture *ref= &h->DPB[mv->ref];
  420. mc_dir_part(h, ref, square, chroma_height, delta, 0,
  421. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  422. qpix_op, chroma_op, mv);
  423. qpix_op= qpix_avg;
  424. chroma_op= chroma_avg;
  425. }
  426. if((mv+MV_BWD_OFFS)->ref >= 0){
  427. Picture *ref= &h->DPB[0];
  428. mc_dir_part(h, ref, square, chroma_height, delta, 1,
  429. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  430. qpix_op, chroma_op, mv+MV_BWD_OFFS);
  431. }
  432. }
  433. static void inter_pred(AVSContext *h) {
  434. /* always do 8x8 blocks TODO: are larger blocks worth it? */
  435. mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 0,
  436. h->s.dsp.put_cavs_qpel_pixels_tab[1],
  437. h->s.dsp.put_h264_chroma_pixels_tab[1],
  438. h->s.dsp.avg_cavs_qpel_pixels_tab[1],
  439. h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X0]);
  440. mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 0,
  441. h->s.dsp.put_cavs_qpel_pixels_tab[1],
  442. h->s.dsp.put_h264_chroma_pixels_tab[1],
  443. h->s.dsp.avg_cavs_qpel_pixels_tab[1],
  444. h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X1]);
  445. mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 0, 4,
  446. h->s.dsp.put_cavs_qpel_pixels_tab[1],
  447. h->s.dsp.put_h264_chroma_pixels_tab[1],
  448. h->s.dsp.avg_cavs_qpel_pixels_tab[1],
  449. h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X2]);
  450. mc_part_std(h, 1, 4, 0, h->cy, h->cu, h->cv, 4, 4,
  451. h->s.dsp.put_cavs_qpel_pixels_tab[1],
  452. h->s.dsp.put_h264_chroma_pixels_tab[1],
  453. h->s.dsp.avg_cavs_qpel_pixels_tab[1],
  454. h->s.dsp.avg_h264_chroma_pixels_tab[1],&h->mv[MV_FWD_X3]);
  455. /* set intra prediction modes to default values */
  456. h->pred_mode_Y[3] = h->pred_mode_Y[6] = INTRA_L_LP;
  457. h->top_pred_Y[h->mbx*2+0] = h->top_pred_Y[h->mbx*2+1] = INTRA_L_LP;
  458. }
  459. /*****************************************************************************
  460. *
  461. * motion vector prediction
  462. *
  463. ****************************************************************************/
  464. static inline void set_mvs(vector_t *mv, enum block_t size) {
  465. switch(size) {
  466. case BLK_16X16:
  467. mv[MV_STRIDE ] = mv[0];
  468. mv[MV_STRIDE+1] = mv[0];
  469. case BLK_16X8:
  470. mv[1] = mv[0];
  471. break;
  472. case BLK_8X16:
  473. mv[MV_STRIDE] = mv[0];
  474. break;
  475. }
  476. }
  477. static inline void store_mvs(AVSContext *h) {
  478. h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 0] = h->mv[MV_FWD_X0];
  479. h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 1] = h->mv[MV_FWD_X1];
  480. h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 2] = h->mv[MV_FWD_X2];
  481. h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + 3] = h->mv[MV_FWD_X3];
  482. }
  483. static inline void scale_mv(AVSContext *h, int *d_x, int *d_y, vector_t *src, int distp) {
  484. int den = h->scale_den[src->ref];
  485. *d_x = (src->x*distp*den + 256 + (src->x>>31)) >> 9;
  486. *d_y = (src->y*distp*den + 256 + (src->y>>31)) >> 9;
  487. }
  488. static inline void mv_pred_median(AVSContext *h, vector_t *mvP, vector_t *mvA, vector_t *mvB, vector_t *mvC) {
  489. int ax, ay, bx, by, cx, cy;
  490. int len_ab, len_bc, len_ca, len_mid;
  491. /* scale candidates according to their temporal span */
  492. scale_mv(h, &ax, &ay, mvA, mvP->dist);
  493. scale_mv(h, &bx, &by, mvB, mvP->dist);
  494. scale_mv(h, &cx, &cy, mvC, mvP->dist);
  495. /* find the geometrical median of the three candidates */
  496. len_ab = abs(ax - bx) + abs(ay - by);
  497. len_bc = abs(bx - cx) + abs(by - cy);
  498. len_ca = abs(cx - ax) + abs(cy - ay);
  499. len_mid = mid_pred(len_ab, len_bc, len_ca);
  500. if(len_mid == len_ab) {
  501. mvP->x = cx;
  502. mvP->y = cy;
  503. } else if(len_mid == len_bc) {
  504. mvP->x = ax;
  505. mvP->y = ay;
  506. } else {
  507. mvP->x = bx;
  508. mvP->y = by;
  509. }
  510. }
  511. static inline void mv_pred_direct(AVSContext *h, vector_t *pmv_fw,
  512. vector_t *pmv_bw, vector_t *col_mv) {
  513. int den = h->direct_den[col_mv->ref];
  514. int m = col_mv->x >> 31;
  515. pmv_fw->dist = h->dist[1];
  516. pmv_bw->dist = h->dist[0];
  517. pmv_fw->ref = 1;
  518. pmv_bw->ref = 0;
  519. /* scale the co-located motion vector according to its temporal span */
  520. pmv_fw->x = (((den+(den*col_mv->x*pmv_fw->dist^m)-m-1)>>14)^m)-m;
  521. pmv_bw->x = m-(((den+(den*col_mv->x*pmv_bw->dist^m)-m-1)>>14)^m);
  522. m = col_mv->y >> 31;
  523. pmv_fw->y = (((den+(den*col_mv->y*pmv_fw->dist^m)-m-1)>>14)^m)-m;
  524. pmv_bw->y = m-(((den+(den*col_mv->y*pmv_bw->dist^m)-m-1)>>14)^m);
  525. }
  526. static inline void mv_pred_sym(AVSContext *h, vector_t *src, enum block_t size) {
  527. vector_t *dst = src + MV_BWD_OFFS;
  528. /* backward mv is the scaled and negated forward mv */
  529. dst->x = -((src->x * h->sym_factor + 256) >> 9);
  530. dst->y = -((src->y * h->sym_factor + 256) >> 9);
  531. dst->ref = 0;
  532. dst->dist = h->dist[0];
  533. set_mvs(dst, size);
  534. }
  535. static void mv_pred(AVSContext *h, enum mv_loc_t nP, enum mv_loc_t nC,
  536. enum mv_pred_t mode, enum block_t size, int ref) {
  537. vector_t *mvP = &h->mv[nP];
  538. vector_t *mvA = &h->mv[nP-1];
  539. vector_t *mvB = &h->mv[nP-4];
  540. vector_t *mvC = &h->mv[nC];
  541. int mvAref = mvA->ref;
  542. int mvBref = mvB->ref;
  543. int mvCref;
  544. mvP->ref = ref;
  545. mvP->dist = h->dist[mvP->ref];
  546. if(mvC->ref == NOT_AVAIL)
  547. mvC = &h->mv[nP-5]; // set to top-left (mvD)
  548. mvCref = mvC->ref;
  549. if(mode == MV_PRED_PSKIP) {
  550. if((mvAref == NOT_AVAIL) || (mvBref == NOT_AVAIL) ||
  551. ((mvA->x | mvA->y | mvA->ref) == 0) ||
  552. ((mvB->x | mvB->y | mvB->ref) == 0) ) {
  553. mvP->x = mvP->y = 0;
  554. set_mvs(mvP,size);
  555. return;
  556. }
  557. }
  558. /* if there is only one suitable candidate, take it */
  559. if((mvAref >= 0) && (mvBref < 0) && (mvCref < 0)) {
  560. mvP->x = mvA->x;
  561. mvP->y = mvA->y;
  562. } else if((mvAref < 0) && (mvBref >= 0) && (mvCref < 0)) {
  563. mvP->x = mvB->x;
  564. mvP->y = mvB->y;
  565. } else if((mvAref < 0) && (mvBref < 0) && (mvCref >= 0)) {
  566. mvP->x = mvC->x;
  567. mvP->y = mvC->y;
  568. } else {
  569. switch(mode) {
  570. case MV_PRED_LEFT:
  571. if(mvAref == mvP->ref) {
  572. mvP->x = mvA->x;
  573. mvP->y = mvA->y;
  574. } else
  575. mv_pred_median(h, mvP, mvA, mvB, mvC);
  576. break;
  577. case MV_PRED_TOP:
  578. if(mvBref == mvP->ref) {
  579. mvP->x = mvB->x;
  580. mvP->y = mvB->y;
  581. } else
  582. mv_pred_median(h, mvP, mvA, mvB, mvC);
  583. break;
  584. case MV_PRED_TOPRIGHT:
  585. if(mvCref == mvP->ref) {
  586. mvP->x = mvC->x;
  587. mvP->y = mvC->y;
  588. } else
  589. mv_pred_median(h, mvP, mvA, mvB, mvC);
  590. break;
  591. default:
  592. mv_pred_median(h, mvP, mvA, mvB, mvC);
  593. break;
  594. }
  595. }
  596. if(mode < MV_PRED_PSKIP) {
  597. mvP->x += get_se_golomb(&h->s.gb);
  598. mvP->y += get_se_golomb(&h->s.gb);
  599. }
  600. set_mvs(mvP,size);
  601. }
  602. /*****************************************************************************
  603. *
  604. * residual data decoding
  605. *
  606. ****************************************************************************/
  607. /* kth-order exponential golomb code */
  608. static inline int get_ue_code(GetBitContext *gb, int order) {
  609. if(order) {
  610. int ret = get_ue_golomb(gb) << order;
  611. return ret + get_bits(gb,order);
  612. }
  613. return get_ue_golomb(gb);
  614. }
  615. static int decode_residual_block(AVSContext *h, GetBitContext *gb,
  616. const residual_vlc_t *r, int esc_golomb_order,
  617. int qp, uint8_t *dst, int stride) {
  618. int i,pos = -1;
  619. int level_code, esc_code, level, run, mask;
  620. int level_buf[64];
  621. int run_buf[64];
  622. int dqm = dequant_mul[qp];
  623. int dqs = dequant_shift[qp];
  624. int dqa = 1 << (dqs - 1);
  625. const uint8_t *scantab = ff_zigzag_direct;
  626. DCTELEM block[64];
  627. memset(block,0,64*sizeof(DCTELEM));
  628. for(i=0;i<65;i++) {
  629. level_code = get_ue_code(gb,r->golomb_order);
  630. if(level_code >= ESCAPE_CODE) {
  631. run = (level_code - ESCAPE_CODE) >> 1;
  632. esc_code = get_ue_code(gb,esc_golomb_order);
  633. level = esc_code + (run > r->max_run ? 1 : r->level_add[run]);
  634. while(level > r->inc_limit)
  635. r++;
  636. mask = -(level_code & 1);
  637. level = (level^mask) - mask;
  638. } else {
  639. if(level_code < 0)
  640. return -1;
  641. level = r->rltab[level_code][0];
  642. if(!level) //end of block signal
  643. break;
  644. run = r->rltab[level_code][1];
  645. r += r->rltab[level_code][2];
  646. }
  647. level_buf[i] = level;
  648. run_buf[i] = run;
  649. }
  650. /* inverse scan and dequantization */
  651. while(--i >= 0){
  652. pos += 1 + run_buf[i];
  653. if(pos > 63) {
  654. av_log(h->s.avctx, AV_LOG_ERROR,
  655. "position out of block bounds at pic %d MB(%d,%d)\n",
  656. h->picture.poc, h->mbx, h->mby);
  657. return -1;
  658. }
  659. block[scantab[pos]] = (level_buf[i]*dqm + dqa) >> dqs;
  660. }
  661. h->s.dsp.cavs_idct8_add(dst,block,stride);
  662. return 0;
  663. }
  664. static inline void decode_residual_chroma(AVSContext *h) {
  665. if(h->cbp & (1<<4))
  666. decode_residual_block(h,&h->s.gb,chroma_2dvlc,0, chroma_qp[h->qp],
  667. h->cu,h->c_stride);
  668. if(h->cbp & (1<<5))
  669. decode_residual_block(h,&h->s.gb,chroma_2dvlc,0, chroma_qp[h->qp],
  670. h->cv,h->c_stride);
  671. }
  672. static inline void decode_residual_inter(AVSContext *h) {
  673. int block;
  674. /* get coded block pattern */
  675. h->cbp = cbp_tab[get_ue_golomb(&h->s.gb)][1];
  676. /* get quantizer */
  677. if(h->cbp && !h->qp_fixed)
  678. h->qp += get_se_golomb(&h->s.gb);
  679. for(block=0;block<4;block++)
  680. if(h->cbp & (1<<block))
  681. decode_residual_block(h,&h->s.gb,inter_2dvlc,0,h->qp,
  682. h->cy + h->luma_scan[block], h->l_stride);
  683. decode_residual_chroma(h);
  684. }
  685. /*****************************************************************************
  686. *
  687. * macroblock level
  688. *
  689. ****************************************************************************/
  690. static inline void init_mb(AVSContext *h) {
  691. int i;
  692. /* copy predictors from top line (MB B and C) into cache */
  693. for(i=0;i<3;i++) {
  694. h->mv[MV_FWD_B2+i] = h->top_mv[0][h->mbx*2+i];
  695. h->mv[MV_BWD_B2+i] = h->top_mv[1][h->mbx*2+i];
  696. }
  697. h->pred_mode_Y[1] = h->top_pred_Y[h->mbx*2+0];
  698. h->pred_mode_Y[2] = h->top_pred_Y[h->mbx*2+1];
  699. /* clear top predictors if MB B is not available */
  700. if(!(h->flags & B_AVAIL)) {
  701. h->mv[MV_FWD_B2] = un_mv;
  702. h->mv[MV_FWD_B3] = un_mv;
  703. h->mv[MV_BWD_B2] = un_mv;
  704. h->mv[MV_BWD_B3] = un_mv;
  705. h->pred_mode_Y[1] = h->pred_mode_Y[2] = NOT_AVAIL;
  706. h->flags &= ~(C_AVAIL|D_AVAIL);
  707. } else if(h->mbx) {
  708. h->flags |= D_AVAIL;
  709. }
  710. if(h->mbx == h->mb_width-1) //MB C not available
  711. h->flags &= ~C_AVAIL;
  712. /* clear top-right predictors if MB C is not available */
  713. if(!(h->flags & C_AVAIL)) {
  714. h->mv[MV_FWD_C2] = un_mv;
  715. h->mv[MV_BWD_C2] = un_mv;
  716. }
  717. /* clear top-left predictors if MB D is not available */
  718. if(!(h->flags & D_AVAIL)) {
  719. h->mv[MV_FWD_D3] = un_mv;
  720. h->mv[MV_BWD_D3] = un_mv;
  721. }
  722. /* set pointer for co-located macroblock type */
  723. h->col_type = &h->col_type_base[h->mby*h->mb_width + h->mbx];
  724. }
  725. static inline void check_for_slice(AVSContext *h);
  726. static inline int next_mb(AVSContext *h) {
  727. int i;
  728. h->flags |= A_AVAIL;
  729. h->cy += 16;
  730. h->cu += 8;
  731. h->cv += 8;
  732. /* copy mvs as predictors to the left */
  733. for(i=0;i<=20;i+=4)
  734. h->mv[i] = h->mv[i+2];
  735. /* copy bottom mvs from cache to top line */
  736. h->top_mv[0][h->mbx*2+0] = h->mv[MV_FWD_X2];
  737. h->top_mv[0][h->mbx*2+1] = h->mv[MV_FWD_X3];
  738. h->top_mv[1][h->mbx*2+0] = h->mv[MV_BWD_X2];
  739. h->top_mv[1][h->mbx*2+1] = h->mv[MV_BWD_X3];
  740. /* next MB address */
  741. h->mbx++;
  742. if(h->mbx == h->mb_width) { //new mb line
  743. h->flags = B_AVAIL|C_AVAIL;
  744. /* clear left pred_modes */
  745. h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
  746. /* clear left mv predictors */
  747. for(i=0;i<=20;i+=4)
  748. h->mv[i] = un_mv;
  749. h->mbx = 0;
  750. h->mby++;
  751. /* re-calculate sample pointers */
  752. h->cy = h->picture.data[0] + h->mby*16*h->l_stride;
  753. h->cu = h->picture.data[1] + h->mby*8*h->c_stride;
  754. h->cv = h->picture.data[2] + h->mby*8*h->c_stride;
  755. if(h->mby == h->mb_height) { //frame end
  756. return 0;
  757. } else {
  758. //check_for_slice(h);
  759. }
  760. }
  761. return 1;
  762. }
  763. static void decode_mb_i(AVSContext *h, int is_i_pic) {
  764. GetBitContext *gb = &h->s.gb;
  765. int block, pred_mode_uv;
  766. uint8_t top[18];
  767. uint8_t left[18];
  768. uint8_t *d;
  769. /* get intra prediction modes from stream */
  770. for(block=0;block<4;block++) {
  771. int nA,nB,predpred;
  772. int pos = scan3x3[block];
  773. nA = h->pred_mode_Y[pos-1];
  774. nB = h->pred_mode_Y[pos-3];
  775. if((nA == NOT_AVAIL) || (nB == NOT_AVAIL))
  776. predpred = 2;
  777. else
  778. predpred = FFMIN(nA,nB);
  779. if(get_bits1(gb))
  780. h->pred_mode_Y[pos] = predpred;
  781. else {
  782. h->pred_mode_Y[pos] = get_bits(gb,2);
  783. if(h->pred_mode_Y[pos] >= predpred)
  784. h->pred_mode_Y[pos]++;
  785. }
  786. }
  787. pred_mode_uv = get_ue_golomb(gb);
  788. if(pred_mode_uv > 6) {
  789. av_log(h->s.avctx, AV_LOG_ERROR, "illegal intra chroma pred mode\n");
  790. pred_mode_uv = 0;
  791. }
  792. /* save pred modes before they get modified */
  793. h->pred_mode_Y[3] = h->pred_mode_Y[5];
  794. h->pred_mode_Y[6] = h->pred_mode_Y[8];
  795. h->top_pred_Y[h->mbx*2+0] = h->pred_mode_Y[7];
  796. h->top_pred_Y[h->mbx*2+1] = h->pred_mode_Y[8];
  797. /* modify pred modes according to availability of neighbour samples */
  798. if(!(h->flags & A_AVAIL)) {
  799. modify_pred(left_modifier_l, &h->pred_mode_Y[4] );
  800. modify_pred(left_modifier_l, &h->pred_mode_Y[7] );
  801. modify_pred(left_modifier_c, &pred_mode_uv );
  802. }
  803. if(!(h->flags & B_AVAIL)) {
  804. modify_pred(top_modifier_l, &h->pred_mode_Y[4] );
  805. modify_pred(top_modifier_l, &h->pred_mode_Y[5] );
  806. modify_pred(top_modifier_c, &pred_mode_uv );
  807. }
  808. /* get coded block pattern */
  809. if(is_i_pic)
  810. h->cbp = cbp_tab[get_ue_golomb(gb)][0];
  811. if(h->cbp && !h->qp_fixed)
  812. h->qp += get_se_golomb(gb); //qp_delta
  813. /* luma intra prediction interleaved with residual decode/transform/add */
  814. for(block=0;block<4;block++) {
  815. d = h->cy + h->luma_scan[block];
  816. load_intra_pred_luma(h, top, left, block);
  817. h->intra_pred_l[h->pred_mode_Y[scan3x3[block]]]
  818. (d, top, left, h->l_stride);
  819. if(h->cbp & (1<<block))
  820. decode_residual_block(h,gb,intra_2dvlc,1,h->qp,d,h->l_stride);
  821. }
  822. /* chroma intra prediction */
  823. /* extend borders by one pixel */
  824. h->left_border_u[9] = h->left_border_u[8];
  825. h->left_border_v[9] = h->left_border_v[8];
  826. h->top_border_u[h->mbx*10+9] = h->top_border_u[h->mbx*10+8];
  827. h->top_border_v[h->mbx*10+9] = h->top_border_v[h->mbx*10+8];
  828. if(h->mbx && h->mby) {
  829. h->top_border_u[h->mbx*10] = h->left_border_u[0] = h->topleft_border_u;
  830. h->top_border_v[h->mbx*10] = h->left_border_v[0] = h->topleft_border_v;
  831. } else {
  832. h->left_border_u[0] = h->left_border_u[1];
  833. h->left_border_v[0] = h->left_border_v[1];
  834. h->top_border_u[h->mbx*10] = h->top_border_u[h->mbx*10+1];
  835. h->top_border_v[h->mbx*10] = h->top_border_v[h->mbx*10+1];
  836. }
  837. h->intra_pred_c[pred_mode_uv](h->cu, &h->top_border_u[h->mbx*10],
  838. h->left_border_u, h->c_stride);
  839. h->intra_pred_c[pred_mode_uv](h->cv, &h->top_border_v[h->mbx*10],
  840. h->left_border_v, h->c_stride);
  841. decode_residual_chroma(h);
  842. filter_mb(h,I_8X8);
  843. /* mark motion vectors as intra */
  844. h->mv[MV_FWD_X0] = intra_mv;
  845. set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
  846. h->mv[MV_BWD_X0] = intra_mv;
  847. set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
  848. if(h->pic_type != FF_B_TYPE)
  849. *h->col_type = I_8X8;
  850. }
  851. static void mb_skip_p(AVSContext *h) {
  852. mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_PSKIP, BLK_16X16, 0);
  853. inter_pred(h);
  854. store_mvs(h);
  855. filter_mb(h,P_SKIP);
  856. *h->col_type = P_SKIP;
  857. }
  858. static void mb_skip_b(AVSContext *h) {
  859. int i;
  860. if(!(*h->col_type)) {
  861. /* intra MB at co-location, do in-plane prediction */
  862. mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_BSKIP, BLK_16X16, 1);
  863. mv_pred(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_BSKIP, BLK_16X16, 0);
  864. } else {
  865. /* direct prediction from co-located P MB, block-wise */
  866. for(i=0;i<4;i++)
  867. mv_pred_direct(h,&h->mv[mv_scan[i]],
  868. &h->mv[mv_scan[i]+MV_BWD_OFFS],
  869. &h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + i]);
  870. }
  871. }
  872. static void decode_mb_p(AVSContext *h, enum mb_t mb_type) {
  873. GetBitContext *gb = &h->s.gb;
  874. int ref[4];
  875. switch(mb_type) {
  876. case P_SKIP:
  877. mb_skip_p(h);
  878. return;
  879. case P_16X16:
  880. ref[0] = h->ref_flag ? 0 : get_bits1(gb);
  881. mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16,ref[0]);
  882. break;
  883. case P_16X8:
  884. ref[0] = h->ref_flag ? 0 : get_bits1(gb);
  885. ref[2] = h->ref_flag ? 0 : get_bits1(gb);
  886. mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_TOP, BLK_16X8, ref[0]);
  887. mv_pred(h, MV_FWD_X2, MV_FWD_A1, MV_PRED_LEFT, BLK_16X8, ref[2]);
  888. break;
  889. case P_8X16:
  890. ref[0] = h->ref_flag ? 0 : get_bits1(gb);
  891. ref[1] = h->ref_flag ? 0 : get_bits1(gb);
  892. mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_LEFT, BLK_8X16, ref[0]);
  893. mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_TOPRIGHT, BLK_8X16, ref[1]);
  894. break;
  895. case P_8X8:
  896. ref[0] = h->ref_flag ? 0 : get_bits1(gb);
  897. ref[1] = h->ref_flag ? 0 : get_bits1(gb);
  898. ref[2] = h->ref_flag ? 0 : get_bits1(gb);
  899. ref[3] = h->ref_flag ? 0 : get_bits1(gb);
  900. mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_MEDIAN, BLK_8X8, ref[0]);
  901. mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_MEDIAN, BLK_8X8, ref[1]);
  902. mv_pred(h, MV_FWD_X2, MV_FWD_X1, MV_PRED_MEDIAN, BLK_8X8, ref[2]);
  903. mv_pred(h, MV_FWD_X3, MV_FWD_X0, MV_PRED_MEDIAN, BLK_8X8, ref[3]);
  904. }
  905. inter_pred(h);
  906. store_mvs(h);
  907. decode_residual_inter(h);
  908. filter_mb(h,mb_type);
  909. *h->col_type = mb_type;
  910. }
  911. static void decode_mb_b(AVSContext *h, enum mb_t mb_type) {
  912. int block;
  913. enum sub_mb_t sub_type[4];
  914. int flags;
  915. /* reset all MVs */
  916. h->mv[MV_FWD_X0] = dir_mv;
  917. set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
  918. h->mv[MV_BWD_X0] = dir_mv;
  919. set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
  920. switch(mb_type) {
  921. case B_SKIP:
  922. mb_skip_b(h);
  923. inter_pred(h);
  924. filter_mb(h,B_SKIP);
  925. return;
  926. case B_DIRECT:
  927. mb_skip_b(h);
  928. break;
  929. case B_FWD_16X16:
  930. mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16, 1);
  931. break;
  932. case B_SYM_16X16:
  933. mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_MEDIAN, BLK_16X16, 1);
  934. mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_16X16);
  935. break;
  936. case B_BWD_16X16:
  937. mv_pred(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_MEDIAN, BLK_16X16, 0);
  938. break;
  939. case B_8X8:
  940. for(block=0;block<4;block++)
  941. sub_type[block] = get_bits(&h->s.gb,2);
  942. for(block=0;block<4;block++) {
  943. switch(sub_type[block]) {
  944. case B_SUB_DIRECT:
  945. if(!(*h->col_type)) {
  946. /* intra MB at co-location, do in-plane prediction */
  947. mv_pred(h, mv_scan[block], mv_scan[block]-3,
  948. MV_PRED_BSKIP, BLK_8X8, 1);
  949. mv_pred(h, mv_scan[block]+MV_BWD_OFFS,
  950. mv_scan[block]-3+MV_BWD_OFFS,
  951. MV_PRED_BSKIP, BLK_8X8, 0);
  952. } else
  953. mv_pred_direct(h,&h->mv[mv_scan[block]],
  954. &h->mv[mv_scan[block]+MV_BWD_OFFS],
  955. &h->col_mv[(h->mby*h->mb_width + h->mbx)*4 + block]);
  956. break;
  957. case B_SUB_FWD:
  958. mv_pred(h, mv_scan[block], mv_scan[block]-3,
  959. MV_PRED_MEDIAN, BLK_8X8, 1);
  960. break;
  961. case B_SUB_SYM:
  962. mv_pred(h, mv_scan[block], mv_scan[block]-3,
  963. MV_PRED_MEDIAN, BLK_8X8, 1);
  964. mv_pred_sym(h, &h->mv[mv_scan[block]], BLK_8X8);
  965. break;
  966. }
  967. }
  968. for(block=0;block<4;block++) {
  969. if(sub_type[block] == B_SUB_BWD)
  970. mv_pred(h, mv_scan[block]+MV_BWD_OFFS,
  971. mv_scan[block]+MV_BWD_OFFS-3,
  972. MV_PRED_MEDIAN, BLK_8X8, 0);
  973. }
  974. break;
  975. default:
  976. assert((mb_type > B_SYM_16X16) && (mb_type < B_8X8));
  977. flags = b_partition_flags[(mb_type-1)>>1];
  978. if(mb_type & 1) { /* 16x8 macroblock types */
  979. if(flags & FWD0)
  980. mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_TOP, BLK_16X8, 1);
  981. if(flags & SYM0) {
  982. mv_pred(h, MV_FWD_X0, MV_FWD_C2, MV_PRED_TOP, BLK_16X8, 1);
  983. mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_16X8);
  984. }
  985. if(flags & FWD1)
  986. mv_pred(h, MV_FWD_X2, MV_FWD_A1, MV_PRED_LEFT, BLK_16X8, 1);
  987. if(flags & SYM1) {
  988. mv_pred(h, MV_FWD_X2, MV_FWD_A1, MV_PRED_LEFT, BLK_16X8, 1);
  989. mv_pred_sym(h, &h->mv[9], BLK_16X8);
  990. }
  991. if(flags & BWD0)
  992. mv_pred(h, MV_BWD_X0, MV_BWD_C2, MV_PRED_TOP, BLK_16X8, 0);
  993. if(flags & BWD1)
  994. mv_pred(h, MV_BWD_X2, MV_BWD_A1, MV_PRED_LEFT, BLK_16X8, 0);
  995. } else { /* 8x16 macroblock types */
  996. if(flags & FWD0)
  997. mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_LEFT, BLK_8X16, 1);
  998. if(flags & SYM0) {
  999. mv_pred(h, MV_FWD_X0, MV_FWD_B3, MV_PRED_LEFT, BLK_8X16, 1);
  1000. mv_pred_sym(h, &h->mv[MV_FWD_X0], BLK_8X16);
  1001. }
  1002. if(flags & FWD1)
  1003. mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_TOPRIGHT,BLK_8X16, 1);
  1004. if(flags & SYM1) {
  1005. mv_pred(h, MV_FWD_X1, MV_FWD_C2, MV_PRED_TOPRIGHT,BLK_8X16, 1);
  1006. mv_pred_sym(h, &h->mv[6], BLK_8X16);
  1007. }
  1008. if(flags & BWD0)
  1009. mv_pred(h, MV_BWD_X0, MV_BWD_B3, MV_PRED_LEFT, BLK_8X16, 0);
  1010. if(flags & BWD1)
  1011. mv_pred(h, MV_BWD_X1, MV_BWD_C2, MV_PRED_TOPRIGHT,BLK_8X16, 0);
  1012. }
  1013. }
  1014. inter_pred(h);
  1015. decode_residual_inter(h);
  1016. filter_mb(h,mb_type);
  1017. }
  1018. /*****************************************************************************
  1019. *
  1020. * slice level
  1021. *
  1022. ****************************************************************************/
  1023. static inline int decode_slice_header(AVSContext *h, GetBitContext *gb) {
  1024. if(h->stc > 0xAF)
  1025. av_log(h->s.avctx, AV_LOG_ERROR, "unexpected start code 0x%02x\n", h->stc);
  1026. h->mby = h->stc;
  1027. if((h->mby == 0) && (!h->qp_fixed)){
  1028. h->qp_fixed = get_bits1(gb);
  1029. h->qp = get_bits(gb,6);
  1030. }
  1031. /* inter frame or second slice can have weighting params */
  1032. if((h->pic_type != FF_I_TYPE) || (!h->pic_structure && h->mby >= h->mb_width/2))
  1033. if(get_bits1(gb)) { //slice_weighting_flag
  1034. av_log(h->s.avctx, AV_LOG_ERROR,
  1035. "weighted prediction not yet supported\n");
  1036. }
  1037. return 0;
  1038. }
  1039. static inline void check_for_slice(AVSContext *h) {
  1040. GetBitContext *gb = &h->s.gb;
  1041. int align;
  1042. align = (-get_bits_count(gb)) & 7;
  1043. if((show_bits_long(gb,24+align) & 0xFFFFFF) == 0x000001) {
  1044. get_bits_long(gb,24+align);
  1045. h->stc = get_bits(gb,8);
  1046. decode_slice_header(h,gb);
  1047. }
  1048. }
  1049. /*****************************************************************************
  1050. *
  1051. * frame level
  1052. *
  1053. ****************************************************************************/
  1054. static void init_pic(AVSContext *h) {
  1055. int i;
  1056. /* clear some predictors */
  1057. for(i=0;i<=20;i+=4)
  1058. h->mv[i] = un_mv;
  1059. h->mv[MV_BWD_X0] = dir_mv;
  1060. set_mvs(&h->mv[MV_BWD_X0], BLK_16X16);
  1061. h->mv[MV_FWD_X0] = dir_mv;
  1062. set_mvs(&h->mv[MV_FWD_X0], BLK_16X16);
  1063. h->pred_mode_Y[3] = h->pred_mode_Y[6] = NOT_AVAIL;
  1064. h->cy = h->picture.data[0];
  1065. h->cu = h->picture.data[1];
  1066. h->cv = h->picture.data[2];
  1067. h->l_stride = h->picture.linesize[0];
  1068. h->c_stride = h->picture.linesize[1];
  1069. h->luma_scan[2] = 8*h->l_stride;
  1070. h->luma_scan[3] = 8*h->l_stride+8;
  1071. h->mbx = h->mby = 0;
  1072. h->flags = 0;
  1073. }
  1074. static int decode_pic(AVSContext *h) {
  1075. MpegEncContext *s = &h->s;
  1076. int i,skip_count;
  1077. enum mb_t mb_type;
  1078. if (!s->context_initialized) {
  1079. if (MPV_common_init(s) < 0)
  1080. return -1;
  1081. }
  1082. get_bits(&s->gb,16);//bbv_dwlay
  1083. if(h->stc == PIC_PB_START_CODE) {
  1084. h->pic_type = get_bits(&s->gb,2) + FF_I_TYPE;
  1085. /* make sure we have the reference frames we need */
  1086. if(!h->DPB[0].data[0] ||
  1087. (!h->DPB[1].data[0] && h->pic_type == FF_B_TYPE))
  1088. return -1;
  1089. } else {
  1090. h->pic_type = FF_I_TYPE;
  1091. if(get_bits1(&s->gb))
  1092. get_bits(&s->gb,16);//time_code
  1093. }
  1094. /* release last B frame */
  1095. if(h->picture.data[0])
  1096. s->avctx->release_buffer(s->avctx, (AVFrame *)&h->picture);
  1097. s->avctx->get_buffer(s->avctx, (AVFrame *)&h->picture);
  1098. init_pic(h);
  1099. h->picture.poc = get_bits(&s->gb,8)*2;
  1100. /* get temporal distances and MV scaling factors */
  1101. if(h->pic_type != FF_B_TYPE) {
  1102. h->dist[0] = (h->picture.poc - h->DPB[0].poc + 512) % 512;
  1103. } else {
  1104. h->dist[0] = (h->DPB[0].poc - h->picture.poc + 512) % 512;
  1105. }
  1106. h->dist[1] = (h->picture.poc - h->DPB[1].poc + 512) % 512;
  1107. h->scale_den[0] = h->dist[0] ? 512/h->dist[0] : 0;
  1108. h->scale_den[1] = h->dist[1] ? 512/h->dist[1] : 0;
  1109. if(h->pic_type == FF_B_TYPE) {
  1110. h->sym_factor = h->dist[0]*h->scale_den[1];
  1111. } else {
  1112. h->direct_den[0] = h->dist[0] ? 16384/h->dist[0] : 0;
  1113. h->direct_den[1] = h->dist[1] ? 16384/h->dist[1] : 0;
  1114. }
  1115. if(s->low_delay)
  1116. get_ue_golomb(&s->gb); //bbv_check_times
  1117. h->progressive = get_bits1(&s->gb);
  1118. if(h->progressive)
  1119. h->pic_structure = 1;
  1120. else if(!(h->pic_structure = get_bits1(&s->gb) && (h->stc == PIC_PB_START_CODE)) )
  1121. get_bits1(&s->gb); //advanced_pred_mode_disable
  1122. skip_bits1(&s->gb); //top_field_first
  1123. skip_bits1(&s->gb); //repeat_first_field
  1124. h->qp_fixed = get_bits1(&s->gb);
  1125. h->qp = get_bits(&s->gb,6);
  1126. if(h->pic_type == FF_I_TYPE) {
  1127. if(!h->progressive && !h->pic_structure)
  1128. skip_bits1(&s->gb);//what is this?
  1129. skip_bits(&s->gb,4); //reserved bits
  1130. } else {
  1131. if(!(h->pic_type == FF_B_TYPE && h->pic_structure == 1))
  1132. h->ref_flag = get_bits1(&s->gb);
  1133. skip_bits(&s->gb,4); //reserved bits
  1134. h->skip_mode_flag = get_bits1(&s->gb);
  1135. }
  1136. h->loop_filter_disable = get_bits1(&s->gb);
  1137. if(!h->loop_filter_disable && get_bits1(&s->gb)) {
  1138. h->alpha_offset = get_se_golomb(&s->gb);
  1139. h->beta_offset = get_se_golomb(&s->gb);
  1140. } else {
  1141. h->alpha_offset = h->beta_offset = 0;
  1142. }
  1143. check_for_slice(h);
  1144. if(h->pic_type == FF_I_TYPE) {
  1145. do {
  1146. init_mb(h);
  1147. decode_mb_i(h,1);
  1148. } while(next_mb(h));
  1149. } else if(h->pic_type == FF_P_TYPE) {
  1150. do {
  1151. if(h->skip_mode_flag) {
  1152. skip_count = get_ue_golomb(&s->gb);
  1153. for(i=0;i<skip_count;i++) {
  1154. init_mb(h);
  1155. mb_skip_p(h);
  1156. if(!next_mb(h))
  1157. goto done;
  1158. }
  1159. mb_type = get_ue_golomb(&s->gb) + P_16X16;
  1160. } else {
  1161. mb_type = get_ue_golomb(&s->gb) + P_SKIP;
  1162. }
  1163. init_mb(h);
  1164. if(mb_type > P_8X8) {
  1165. h->cbp = cbp_tab[mb_type - P_8X8 - 1][0];
  1166. decode_mb_i(h,0);
  1167. } else {
  1168. decode_mb_p(h,mb_type);
  1169. }
  1170. } while(next_mb(h));
  1171. } else { //FF_B_TYPE
  1172. do {
  1173. if(h->skip_mode_flag) {
  1174. skip_count = get_ue_golomb(&s->gb);
  1175. for(i=0;i<skip_count;i++) {
  1176. init_mb(h);
  1177. mb_skip_b(h);
  1178. inter_pred(h);
  1179. filter_mb(h,B_SKIP);
  1180. if(!next_mb(h))
  1181. goto done;
  1182. }
  1183. mb_type = get_ue_golomb(&s->gb) + B_DIRECT;
  1184. } else {
  1185. mb_type = get_ue_golomb(&s->gb) + B_SKIP;
  1186. }
  1187. init_mb(h);
  1188. if(mb_type > B_8X8) {
  1189. h->cbp = cbp_tab[mb_type - B_8X8 - 1][0];
  1190. decode_mb_i(h,0);
  1191. } else {
  1192. decode_mb_b(h,mb_type);
  1193. }
  1194. } while(next_mb(h));
  1195. }
  1196. done:
  1197. if(h->pic_type != FF_B_TYPE) {
  1198. if(h->DPB[1].data[0])
  1199. s->avctx->release_buffer(s->avctx, (AVFrame *)&h->DPB[1]);
  1200. memcpy(&h->DPB[1], &h->DPB[0], sizeof(Picture));
  1201. memcpy(&h->DPB[0], &h->picture, sizeof(Picture));
  1202. memset(&h->picture,0,sizeof(Picture));
  1203. }
  1204. return 0;
  1205. }
  1206. /*****************************************************************************
  1207. *
  1208. * headers and interface
  1209. *
  1210. ****************************************************************************/
  1211. static void init_top_lines(AVSContext *h) {
  1212. /* alloc top line of predictors */
  1213. h->top_qp = av_malloc( h->mb_width);
  1214. h->top_mv[0] = av_malloc((h->mb_width*2+1)*sizeof(vector_t));
  1215. h->top_mv[1] = av_malloc((h->mb_width*2+1)*sizeof(vector_t));
  1216. h->top_pred_Y = av_malloc( h->mb_width*2*sizeof(*h->top_pred_Y));
  1217. h->top_border_y = av_malloc((h->mb_width+1)*16);
  1218. h->top_border_u = av_malloc((h->mb_width)*10);
  1219. h->top_border_v = av_malloc((h->mb_width)*10);
  1220. /* alloc space for co-located MVs and types */
  1221. h->col_mv = av_malloc( h->mb_width*h->mb_height*4*sizeof(vector_t));
  1222. h->col_type_base = av_malloc(h->mb_width*h->mb_height);
  1223. }
  1224. static int decode_seq_header(AVSContext *h) {
  1225. MpegEncContext *s = &h->s;
  1226. extern const AVRational ff_frame_rate_tab[];
  1227. int frame_rate_code;
  1228. h->profile = get_bits(&s->gb,8);
  1229. h->level = get_bits(&s->gb,8);
  1230. skip_bits1(&s->gb); //progressive sequence
  1231. s->width = get_bits(&s->gb,14);
  1232. s->height = get_bits(&s->gb,14);
  1233. skip_bits(&s->gb,2); //chroma format
  1234. skip_bits(&s->gb,3); //sample_precision
  1235. h->aspect_ratio = get_bits(&s->gb,4);
  1236. frame_rate_code = get_bits(&s->gb,4);
  1237. skip_bits(&s->gb,18);//bit_rate_lower
  1238. skip_bits1(&s->gb); //marker_bit
  1239. skip_bits(&s->gb,12);//bit_rate_upper
  1240. s->low_delay = get_bits1(&s->gb);
  1241. h->mb_width = (s->width + 15) >> 4;
  1242. h->mb_height = (s->height + 15) >> 4;
  1243. h->s.avctx->time_base.den = ff_frame_rate_tab[frame_rate_code].num;
  1244. h->s.avctx->time_base.num = ff_frame_rate_tab[frame_rate_code].den;
  1245. h->s.avctx->width = s->width;
  1246. h->s.avctx->height = s->height;
  1247. if(!h->top_qp)
  1248. init_top_lines(h);
  1249. return 0;
  1250. }
  1251. /**
  1252. * finds the end of the current frame in the bitstream.
  1253. * @return the position of the first byte of the next frame, or -1
  1254. */
  1255. int ff_cavs_find_frame_end(ParseContext *pc, const uint8_t *buf, int buf_size) {
  1256. int pic_found, i;
  1257. uint32_t state;
  1258. pic_found= pc->frame_start_found;
  1259. state= pc->state;
  1260. i=0;
  1261. if(!pic_found){
  1262. for(i=0; i<buf_size; i++){
  1263. state= (state<<8) | buf[i];
  1264. if(state == PIC_I_START_CODE || state == PIC_PB_START_CODE){
  1265. i++;
  1266. pic_found=1;
  1267. break;
  1268. }
  1269. }
  1270. }
  1271. if(pic_found){
  1272. /* EOF considered as end of frame */
  1273. if (buf_size == 0)
  1274. return 0;
  1275. for(; i<buf_size; i++){
  1276. state= (state<<8) | buf[i];
  1277. if((state&0xFFFFFF00) == 0x100){
  1278. if(state < SLICE_MIN_START_CODE || state > SLICE_MAX_START_CODE){
  1279. pc->frame_start_found=0;
  1280. pc->state=-1;
  1281. return i-3;
  1282. }
  1283. }
  1284. }
  1285. }
  1286. pc->frame_start_found= pic_found;
  1287. pc->state= state;
  1288. return END_NOT_FOUND;
  1289. }
  1290. void ff_cavs_flush(AVCodecContext * avctx) {
  1291. AVSContext *h = avctx->priv_data;
  1292. h->got_keyframe = 0;
  1293. }
  1294. static int cavs_decode_frame(AVCodecContext * avctx,void *data, int *data_size,
  1295. uint8_t * buf, int buf_size) {
  1296. AVSContext *h = avctx->priv_data;
  1297. MpegEncContext *s = &h->s;
  1298. int input_size;
  1299. const uint8_t *buf_end;
  1300. const uint8_t *buf_ptr;
  1301. AVFrame *picture = data;
  1302. uint32_t stc;
  1303. s->avctx = avctx;
  1304. if (buf_size == 0) {
  1305. if(!s->low_delay && h->DPB[0].data[0]) {
  1306. *data_size = sizeof(AVPicture);
  1307. *picture = *(AVFrame *) &h->DPB[0];
  1308. }
  1309. return 0;
  1310. }
  1311. buf_ptr = buf;
  1312. buf_end = buf + buf_size;
  1313. for(;;) {
  1314. buf_ptr = ff_find_start_code(buf_ptr,buf_end, &stc);
  1315. if(stc & 0xFFFFFE00)
  1316. return FFMAX(0, buf_ptr - buf - s->parse_context.last_index);
  1317. input_size = (buf_end - buf_ptr)*8;
  1318. switch(stc) {
  1319. case SEQ_START_CODE:
  1320. init_get_bits(&s->gb, buf_ptr, input_size);
  1321. decode_seq_header(h);
  1322. break;
  1323. case PIC_I_START_CODE:
  1324. if(!h->got_keyframe) {
  1325. if(h->DPB[0].data[0])
  1326. avctx->release_buffer(avctx, (AVFrame *)&h->DPB[0]);
  1327. if(h->DPB[1].data[0])
  1328. avctx->release_buffer(avctx, (AVFrame *)&h->DPB[1]);
  1329. h->got_keyframe = 1;
  1330. }
  1331. case PIC_PB_START_CODE:
  1332. *data_size = 0;
  1333. if(!h->got_keyframe)
  1334. break;
  1335. init_get_bits(&s->gb, buf_ptr, input_size);
  1336. h->stc = stc;
  1337. if(decode_pic(h))
  1338. break;
  1339. *data_size = sizeof(AVPicture);
  1340. if(h->pic_type != FF_B_TYPE) {
  1341. if(h->DPB[1].data[0]) {
  1342. *picture = *(AVFrame *) &h->DPB[1];
  1343. } else {
  1344. *data_size = 0;
  1345. }
  1346. } else
  1347. *picture = *(AVFrame *) &h->picture;
  1348. break;
  1349. case EXT_START_CODE:
  1350. //mpeg_decode_extension(avctx,buf_ptr, input_size);
  1351. break;
  1352. case USER_START_CODE:
  1353. //mpeg_decode_user_data(avctx,buf_ptr, input_size);
  1354. break;
  1355. default:
  1356. if (stc >= SLICE_MIN_START_CODE &&
  1357. stc <= SLICE_MAX_START_CODE) {
  1358. init_get_bits(&s->gb, buf_ptr, input_size);
  1359. decode_slice_header(h, &s->gb);
  1360. }
  1361. break;
  1362. }
  1363. }
  1364. }
  1365. static int cavs_decode_init(AVCodecContext * avctx) {
  1366. AVSContext *h = avctx->priv_data;
  1367. MpegEncContext * const s = &h->s;
  1368. MPV_decode_defaults(s);
  1369. s->avctx = avctx;
  1370. avctx->pix_fmt= PIX_FMT_YUV420P;
  1371. h->luma_scan[0] = 0;
  1372. h->luma_scan[1] = 8;
  1373. h->intra_pred_l[ INTRA_L_VERT] = intra_pred_vert;
  1374. h->intra_pred_l[ INTRA_L_HORIZ] = intra_pred_horiz;
  1375. h->intra_pred_l[ INTRA_L_LP] = intra_pred_lp;
  1376. h->intra_pred_l[ INTRA_L_DOWN_LEFT] = intra_pred_down_left;
  1377. h->intra_pred_l[INTRA_L_DOWN_RIGHT] = intra_pred_down_right;
  1378. h->intra_pred_l[ INTRA_L_LP_LEFT] = intra_pred_lp_left;
  1379. h->intra_pred_l[ INTRA_L_LP_TOP] = intra_pred_lp_top;
  1380. h->intra_pred_l[ INTRA_L_DC_128] = intra_pred_dc_128;
  1381. h->intra_pred_c[ INTRA_C_LP] = intra_pred_lp;
  1382. h->intra_pred_c[ INTRA_C_HORIZ] = intra_pred_horiz;
  1383. h->intra_pred_c[ INTRA_C_VERT] = intra_pred_vert;
  1384. h->intra_pred_c[ INTRA_C_PLANE] = intra_pred_plane;
  1385. h->intra_pred_c[ INTRA_C_LP_LEFT] = intra_pred_lp_left;
  1386. h->intra_pred_c[ INTRA_C_LP_TOP] = intra_pred_lp_top;
  1387. h->intra_pred_c[ INTRA_C_DC_128] = intra_pred_dc_128;
  1388. h->mv[ 7] = un_mv;
  1389. h->mv[19] = un_mv;
  1390. return 0;
  1391. }
  1392. static int cavs_decode_end(AVCodecContext * avctx) {
  1393. AVSContext *h = avctx->priv_data;
  1394. av_free(h->top_qp);
  1395. av_free(h->top_mv[0]);
  1396. av_free(h->top_mv[1]);
  1397. av_free(h->top_pred_Y);
  1398. av_free(h->top_border_y);
  1399. av_free(h->top_border_u);
  1400. av_free(h->top_border_v);
  1401. av_free(h->col_mv);
  1402. av_free(h->col_type_base);
  1403. return 0;
  1404. }
  1405. AVCodec cavs_decoder = {
  1406. "cavs",
  1407. CODEC_TYPE_VIDEO,
  1408. CODEC_ID_CAVS,
  1409. sizeof(AVSContext),
  1410. cavs_decode_init,
  1411. NULL,
  1412. cavs_decode_end,
  1413. cavs_decode_frame,
  1414. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  1415. .flush= ff_cavs_flush,
  1416. };