You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4312 lines
170KB

  1. /*
  2. * VP9 compatible video decoder
  3. *
  4. * Copyright (C) 2013 Ronald S. Bultje <rsbultje gmail com>
  5. * Copyright (C) 2013 Clément Bœsch <u pkh me>
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include "avcodec.h"
  24. #include "get_bits.h"
  25. #include "internal.h"
  26. #include "thread.h"
  27. #include "videodsp.h"
  28. #include "vp56.h"
  29. #include "vp9.h"
  30. #include "vp9data.h"
  31. #include "vp9dsp.h"
  32. #include "libavutil/avassert.h"
  33. #include "libavutil/pixdesc.h"
  34. #define VP9_SYNCCODE 0x498342
  35. enum CompPredMode {
  36. PRED_SINGLEREF,
  37. PRED_COMPREF,
  38. PRED_SWITCHABLE,
  39. };
  40. enum BlockLevel {
  41. BL_64X64,
  42. BL_32X32,
  43. BL_16X16,
  44. BL_8X8,
  45. };
  46. enum BlockSize {
  47. BS_64x64,
  48. BS_64x32,
  49. BS_32x64,
  50. BS_32x32,
  51. BS_32x16,
  52. BS_16x32,
  53. BS_16x16,
  54. BS_16x8,
  55. BS_8x16,
  56. BS_8x8,
  57. BS_8x4,
  58. BS_4x8,
  59. BS_4x4,
  60. N_BS_SIZES,
  61. };
  62. struct VP9mvrefPair {
  63. VP56mv mv[2];
  64. int8_t ref[2];
  65. };
  66. typedef struct VP9Frame {
  67. ThreadFrame tf;
  68. AVBufferRef *extradata;
  69. uint8_t *segmentation_map;
  70. struct VP9mvrefPair *mv;
  71. int uses_2pass;
  72. } VP9Frame;
  73. struct VP9Filter {
  74. uint8_t level[8 * 8];
  75. uint8_t /* bit=col */ mask[2 /* 0=y, 1=uv */][2 /* 0=col, 1=row */]
  76. [8 /* rows */][4 /* 0=16, 1=8, 2=4, 3=inner4 */];
  77. };
  78. typedef struct VP9Block {
  79. uint8_t seg_id, intra, comp, ref[2], mode[4], uvmode, skip;
  80. enum FilterMode filter;
  81. VP56mv mv[4 /* b_idx */][2 /* ref */];
  82. enum BlockSize bs;
  83. enum TxfmMode tx, uvtx;
  84. enum BlockLevel bl;
  85. enum BlockPartition bp;
  86. } VP9Block;
  87. typedef struct VP9Context {
  88. VP9DSPContext dsp;
  89. VideoDSPContext vdsp;
  90. GetBitContext gb;
  91. VP56RangeCoder c;
  92. VP56RangeCoder *c_b;
  93. unsigned c_b_size;
  94. VP9Block *b_base, *b;
  95. int pass;
  96. int row, row7, col, col7;
  97. uint8_t *dst[3];
  98. ptrdiff_t y_stride, uv_stride;
  99. // bitstream header
  100. uint8_t keyframe, last_keyframe;
  101. uint8_t last_bpp, bpp, bpp_index, bytesperpixel;
  102. uint8_t invisible;
  103. uint8_t use_last_frame_mvs;
  104. uint8_t errorres;
  105. uint8_t ss_h, ss_v;
  106. uint8_t intraonly;
  107. uint8_t resetctx;
  108. uint8_t refreshrefmask;
  109. uint8_t highprecisionmvs;
  110. enum FilterMode filtermode;
  111. uint8_t allowcompinter;
  112. uint8_t fixcompref;
  113. uint8_t refreshctx;
  114. uint8_t parallelmode;
  115. uint8_t framectxid;
  116. uint8_t refidx[3];
  117. uint8_t signbias[3];
  118. uint8_t varcompref[2];
  119. ThreadFrame refs[8], next_refs[8];
  120. #define CUR_FRAME 0
  121. #define REF_FRAME_MVPAIR 1
  122. #define REF_FRAME_SEGMAP 2
  123. VP9Frame frames[3];
  124. struct {
  125. uint8_t level;
  126. int8_t sharpness;
  127. uint8_t lim_lut[64];
  128. uint8_t mblim_lut[64];
  129. } filter;
  130. struct {
  131. uint8_t enabled;
  132. int8_t mode[2];
  133. int8_t ref[4];
  134. } lf_delta;
  135. uint8_t yac_qi;
  136. int8_t ydc_qdelta, uvdc_qdelta, uvac_qdelta;
  137. uint8_t lossless;
  138. #define MAX_SEGMENT 8
  139. struct {
  140. uint8_t enabled;
  141. uint8_t temporal;
  142. uint8_t absolute_vals;
  143. uint8_t update_map;
  144. uint8_t ignore_refmap;
  145. struct {
  146. uint8_t q_enabled;
  147. uint8_t lf_enabled;
  148. uint8_t ref_enabled;
  149. uint8_t skip_enabled;
  150. uint8_t ref_val;
  151. int16_t q_val;
  152. int8_t lf_val;
  153. int16_t qmul[2][2];
  154. uint8_t lflvl[4][2];
  155. } feat[MAX_SEGMENT];
  156. } segmentation;
  157. struct {
  158. unsigned log2_tile_cols, log2_tile_rows;
  159. unsigned tile_cols, tile_rows;
  160. unsigned tile_row_start, tile_row_end, tile_col_start, tile_col_end;
  161. } tiling;
  162. unsigned sb_cols, sb_rows, rows, cols;
  163. struct {
  164. prob_context p;
  165. uint8_t coef[4][2][2][6][6][3];
  166. } prob_ctx[4];
  167. struct {
  168. prob_context p;
  169. uint8_t coef[4][2][2][6][6][11];
  170. uint8_t seg[7];
  171. uint8_t segpred[3];
  172. } prob;
  173. struct {
  174. unsigned y_mode[4][10];
  175. unsigned uv_mode[10][10];
  176. unsigned filter[4][3];
  177. unsigned mv_mode[7][4];
  178. unsigned intra[4][2];
  179. unsigned comp[5][2];
  180. unsigned single_ref[5][2][2];
  181. unsigned comp_ref[5][2];
  182. unsigned tx32p[2][4];
  183. unsigned tx16p[2][3];
  184. unsigned tx8p[2][2];
  185. unsigned skip[3][2];
  186. unsigned mv_joint[4];
  187. struct {
  188. unsigned sign[2];
  189. unsigned classes[11];
  190. unsigned class0[2];
  191. unsigned bits[10][2];
  192. unsigned class0_fp[2][4];
  193. unsigned fp[4];
  194. unsigned class0_hp[2];
  195. unsigned hp[2];
  196. } mv_comp[2];
  197. unsigned partition[4][4][4];
  198. unsigned coef[4][2][2][6][6][3];
  199. unsigned eob[4][2][2][6][6][2];
  200. } counts;
  201. enum TxfmMode txfmmode;
  202. enum CompPredMode comppredmode;
  203. // contextual (left/above) cache
  204. DECLARE_ALIGNED(16, uint8_t, left_y_nnz_ctx)[16];
  205. DECLARE_ALIGNED(16, uint8_t, left_mode_ctx)[16];
  206. DECLARE_ALIGNED(16, VP56mv, left_mv_ctx)[16][2];
  207. DECLARE_ALIGNED(16, uint8_t, left_uv_nnz_ctx)[2][16];
  208. DECLARE_ALIGNED(8, uint8_t, left_partition_ctx)[8];
  209. DECLARE_ALIGNED(8, uint8_t, left_skip_ctx)[8];
  210. DECLARE_ALIGNED(8, uint8_t, left_txfm_ctx)[8];
  211. DECLARE_ALIGNED(8, uint8_t, left_segpred_ctx)[8];
  212. DECLARE_ALIGNED(8, uint8_t, left_intra_ctx)[8];
  213. DECLARE_ALIGNED(8, uint8_t, left_comp_ctx)[8];
  214. DECLARE_ALIGNED(8, uint8_t, left_ref_ctx)[8];
  215. DECLARE_ALIGNED(8, uint8_t, left_filter_ctx)[8];
  216. uint8_t *above_partition_ctx;
  217. uint8_t *above_mode_ctx;
  218. // FIXME maybe merge some of the below in a flags field?
  219. uint8_t *above_y_nnz_ctx;
  220. uint8_t *above_uv_nnz_ctx[2];
  221. uint8_t *above_skip_ctx; // 1bit
  222. uint8_t *above_txfm_ctx; // 2bit
  223. uint8_t *above_segpred_ctx; // 1bit
  224. uint8_t *above_intra_ctx; // 1bit
  225. uint8_t *above_comp_ctx; // 1bit
  226. uint8_t *above_ref_ctx; // 2bit
  227. uint8_t *above_filter_ctx;
  228. VP56mv (*above_mv_ctx)[2];
  229. // whole-frame cache
  230. uint8_t *intra_pred_data[3];
  231. struct VP9Filter *lflvl;
  232. DECLARE_ALIGNED(32, uint8_t, edge_emu_buffer)[135 * 144 * 2];
  233. // block reconstruction intermediates
  234. int block_alloc_using_2pass;
  235. int16_t *block_base, *block, *uvblock_base[2], *uvblock[2];
  236. uint8_t *eob_base, *uveob_base[2], *eob, *uveob[2];
  237. struct { int x, y; } min_mv, max_mv;
  238. DECLARE_ALIGNED(32, uint8_t, tmp_y)[64 * 64 * 2];
  239. DECLARE_ALIGNED(32, uint8_t, tmp_uv)[2][64 * 64 * 2];
  240. uint16_t mvscale[3][2];
  241. uint8_t mvstep[3][2];
  242. } VP9Context;
  243. static const uint8_t bwh_tab[2][N_BS_SIZES][2] = {
  244. {
  245. { 16, 16 }, { 16, 8 }, { 8, 16 }, { 8, 8 }, { 8, 4 }, { 4, 8 },
  246. { 4, 4 }, { 4, 2 }, { 2, 4 }, { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 },
  247. }, {
  248. { 8, 8 }, { 8, 4 }, { 4, 8 }, { 4, 4 }, { 4, 2 }, { 2, 4 },
  249. { 2, 2 }, { 2, 1 }, { 1, 2 }, { 1, 1 }, { 1, 1 }, { 1, 1 }, { 1, 1 },
  250. }
  251. };
  252. static int vp9_alloc_frame(AVCodecContext *ctx, VP9Frame *f)
  253. {
  254. VP9Context *s = ctx->priv_data;
  255. int ret, sz;
  256. if ((ret = ff_thread_get_buffer(ctx, &f->tf, AV_GET_BUFFER_FLAG_REF)) < 0)
  257. return ret;
  258. sz = 64 * s->sb_cols * s->sb_rows;
  259. if (!(f->extradata = av_buffer_allocz(sz * (1 + sizeof(struct VP9mvrefPair))))) {
  260. ff_thread_release_buffer(ctx, &f->tf);
  261. return AVERROR(ENOMEM);
  262. }
  263. f->segmentation_map = f->extradata->data;
  264. f->mv = (struct VP9mvrefPair *) (f->extradata->data + sz);
  265. return 0;
  266. }
  267. static void vp9_unref_frame(AVCodecContext *ctx, VP9Frame *f)
  268. {
  269. ff_thread_release_buffer(ctx, &f->tf);
  270. av_buffer_unref(&f->extradata);
  271. }
  272. static int vp9_ref_frame(AVCodecContext *ctx, VP9Frame *dst, VP9Frame *src)
  273. {
  274. int res;
  275. if ((res = ff_thread_ref_frame(&dst->tf, &src->tf)) < 0) {
  276. return res;
  277. } else if (!(dst->extradata = av_buffer_ref(src->extradata))) {
  278. vp9_unref_frame(ctx, dst);
  279. return AVERROR(ENOMEM);
  280. }
  281. dst->segmentation_map = src->segmentation_map;
  282. dst->mv = src->mv;
  283. dst->uses_2pass = src->uses_2pass;
  284. return 0;
  285. }
  286. static int update_size(AVCodecContext *ctx, int w, int h, enum AVPixelFormat fmt)
  287. {
  288. VP9Context *s = ctx->priv_data;
  289. uint8_t *p;
  290. int bytesperpixel = s->bytesperpixel;
  291. av_assert0(w > 0 && h > 0);
  292. if (s->intra_pred_data[0] && w == ctx->width && h == ctx->height && ctx->pix_fmt == fmt)
  293. return 0;
  294. ctx->width = w;
  295. ctx->height = h;
  296. ctx->pix_fmt = fmt;
  297. s->sb_cols = (w + 63) >> 6;
  298. s->sb_rows = (h + 63) >> 6;
  299. s->cols = (w + 7) >> 3;
  300. s->rows = (h + 7) >> 3;
  301. #define assign(var, type, n) var = (type) p; p += s->sb_cols * (n) * sizeof(*var)
  302. av_freep(&s->intra_pred_data[0]);
  303. // FIXME we slightly over-allocate here for subsampled chroma, but a little
  304. // bit of padding shouldn't affect performance...
  305. p = av_malloc(s->sb_cols * (128 + 192 * bytesperpixel +
  306. sizeof(*s->lflvl) + 16 * sizeof(*s->above_mv_ctx)));
  307. if (!p)
  308. return AVERROR(ENOMEM);
  309. assign(s->intra_pred_data[0], uint8_t *, 64 * bytesperpixel);
  310. assign(s->intra_pred_data[1], uint8_t *, 64 * bytesperpixel);
  311. assign(s->intra_pred_data[2], uint8_t *, 64 * bytesperpixel);
  312. assign(s->above_y_nnz_ctx, uint8_t *, 16);
  313. assign(s->above_mode_ctx, uint8_t *, 16);
  314. assign(s->above_mv_ctx, VP56mv(*)[2], 16);
  315. assign(s->above_uv_nnz_ctx[0], uint8_t *, 16);
  316. assign(s->above_uv_nnz_ctx[1], uint8_t *, 16);
  317. assign(s->above_partition_ctx, uint8_t *, 8);
  318. assign(s->above_skip_ctx, uint8_t *, 8);
  319. assign(s->above_txfm_ctx, uint8_t *, 8);
  320. assign(s->above_segpred_ctx, uint8_t *, 8);
  321. assign(s->above_intra_ctx, uint8_t *, 8);
  322. assign(s->above_comp_ctx, uint8_t *, 8);
  323. assign(s->above_ref_ctx, uint8_t *, 8);
  324. assign(s->above_filter_ctx, uint8_t *, 8);
  325. assign(s->lflvl, struct VP9Filter *, 1);
  326. #undef assign
  327. // these will be re-allocated a little later
  328. av_freep(&s->b_base);
  329. av_freep(&s->block_base);
  330. if (s->bpp != s->last_bpp) {
  331. ff_vp9dsp_init(&s->dsp, s->bpp);
  332. ff_videodsp_init(&s->vdsp, s->bpp);
  333. s->last_bpp = s->bpp;
  334. }
  335. return 0;
  336. }
  337. static int update_block_buffers(AVCodecContext *ctx)
  338. {
  339. VP9Context *s = ctx->priv_data;
  340. int chroma_blocks, chroma_eobs, bytesperpixel = s->bytesperpixel;
  341. if (s->b_base && s->block_base && s->block_alloc_using_2pass == s->frames[CUR_FRAME].uses_2pass)
  342. return 0;
  343. av_free(s->b_base);
  344. av_free(s->block_base);
  345. chroma_blocks = 64 * 64 >> (s->ss_h + s->ss_v);
  346. chroma_eobs = 16 * 16 >> (s->ss_h + s->ss_v);
  347. if (s->frames[CUR_FRAME].uses_2pass) {
  348. int sbs = s->sb_cols * s->sb_rows;
  349. s->b_base = av_malloc_array(s->cols * s->rows, sizeof(VP9Block));
  350. s->block_base = av_mallocz(((64 * 64 + 2 * chroma_blocks) * bytesperpixel * sizeof(int16_t) +
  351. 16 * 16 + 2 * chroma_eobs) * sbs);
  352. if (!s->b_base || !s->block_base)
  353. return AVERROR(ENOMEM);
  354. s->uvblock_base[0] = s->block_base + sbs * 64 * 64 * bytesperpixel;
  355. s->uvblock_base[1] = s->uvblock_base[0] + sbs * chroma_blocks * bytesperpixel;
  356. s->eob_base = (uint8_t *) (s->uvblock_base[1] + sbs * chroma_blocks * bytesperpixel);
  357. s->uveob_base[0] = s->eob_base + 16 * 16 * sbs;
  358. s->uveob_base[1] = s->uveob_base[0] + chroma_eobs * sbs;
  359. } else {
  360. s->b_base = av_malloc(sizeof(VP9Block));
  361. s->block_base = av_mallocz((64 * 64 + 2 * chroma_blocks) * bytesperpixel * sizeof(int16_t) +
  362. 16 * 16 + 2 * chroma_eobs);
  363. if (!s->b_base || !s->block_base)
  364. return AVERROR(ENOMEM);
  365. s->uvblock_base[0] = s->block_base + 64 * 64 * bytesperpixel;
  366. s->uvblock_base[1] = s->uvblock_base[0] + chroma_blocks * bytesperpixel;
  367. s->eob_base = (uint8_t *) (s->uvblock_base[1] + chroma_blocks * bytesperpixel);
  368. s->uveob_base[0] = s->eob_base + 16 * 16;
  369. s->uveob_base[1] = s->uveob_base[0] + chroma_eobs;
  370. }
  371. s->block_alloc_using_2pass = s->frames[CUR_FRAME].uses_2pass;
  372. return 0;
  373. }
  374. // for some reason the sign bit is at the end, not the start, of a bit sequence
  375. static av_always_inline int get_sbits_inv(GetBitContext *gb, int n)
  376. {
  377. int v = get_bits(gb, n);
  378. return get_bits1(gb) ? -v : v;
  379. }
  380. static av_always_inline int inv_recenter_nonneg(int v, int m)
  381. {
  382. return v > 2 * m ? v : v & 1 ? m - ((v + 1) >> 1) : m + (v >> 1);
  383. }
  384. // differential forward probability updates
  385. static int update_prob(VP56RangeCoder *c, int p)
  386. {
  387. static const int inv_map_table[254] = {
  388. 7, 20, 33, 46, 59, 72, 85, 98, 111, 124, 137, 150, 163, 176,
  389. 189, 202, 215, 228, 241, 254, 1, 2, 3, 4, 5, 6, 8, 9,
  390. 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24,
  391. 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39,
  392. 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54,
  393. 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
  394. 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
  395. 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 99, 100,
  396. 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 112, 113, 114, 115,
  397. 116, 117, 118, 119, 120, 121, 122, 123, 125, 126, 127, 128, 129, 130,
  398. 131, 132, 133, 134, 135, 136, 138, 139, 140, 141, 142, 143, 144, 145,
  399. 146, 147, 148, 149, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
  400. 161, 162, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175,
  401. 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 190, 191,
  402. 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 203, 204, 205, 206,
  403. 207, 208, 209, 210, 211, 212, 213, 214, 216, 217, 218, 219, 220, 221,
  404. 222, 223, 224, 225, 226, 227, 229, 230, 231, 232, 233, 234, 235, 236,
  405. 237, 238, 239, 240, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251,
  406. 252, 253,
  407. };
  408. int d;
  409. /* This code is trying to do a differential probability update. For a
  410. * current probability A in the range [1, 255], the difference to a new
  411. * probability of any value can be expressed differentially as 1-A,255-A
  412. * where some part of this (absolute range) exists both in positive as
  413. * well as the negative part, whereas another part only exists in one
  414. * half. We're trying to code this shared part differentially, i.e.
  415. * times two where the value of the lowest bit specifies the sign, and
  416. * the single part is then coded on top of this. This absolute difference
  417. * then again has a value of [0,254], but a bigger value in this range
  418. * indicates that we're further away from the original value A, so we
  419. * can code this as a VLC code, since higher values are increasingly
  420. * unlikely. The first 20 values in inv_map_table[] allow 'cheap, rough'
  421. * updates vs. the 'fine, exact' updates further down the range, which
  422. * adds one extra dimension to this differential update model. */
  423. if (!vp8_rac_get(c)) {
  424. d = vp8_rac_get_uint(c, 4) + 0;
  425. } else if (!vp8_rac_get(c)) {
  426. d = vp8_rac_get_uint(c, 4) + 16;
  427. } else if (!vp8_rac_get(c)) {
  428. d = vp8_rac_get_uint(c, 5) + 32;
  429. } else {
  430. d = vp8_rac_get_uint(c, 7);
  431. if (d >= 65)
  432. d = (d << 1) - 65 + vp8_rac_get(c);
  433. d += 64;
  434. }
  435. return p <= 128 ? 1 + inv_recenter_nonneg(inv_map_table[d], p - 1) :
  436. 255 - inv_recenter_nonneg(inv_map_table[d], 255 - p);
  437. }
  438. static enum AVPixelFormat read_colorspace_details(AVCodecContext *ctx)
  439. {
  440. static const enum AVColorSpace colorspaces[8] = {
  441. AVCOL_SPC_UNSPECIFIED, AVCOL_SPC_BT470BG, AVCOL_SPC_BT709, AVCOL_SPC_SMPTE170M,
  442. AVCOL_SPC_SMPTE240M, AVCOL_SPC_BT2020_NCL, AVCOL_SPC_RESERVED, AVCOL_SPC_RGB,
  443. };
  444. VP9Context *s = ctx->priv_data;
  445. enum AVPixelFormat res;
  446. int bits = ctx->profile <= 1 ? 0 : 1 + get_bits1(&s->gb); // 0:8, 1:10, 2:12
  447. s->bpp_index = bits;
  448. s->bpp = 8 + bits * 2;
  449. s->bytesperpixel = (7 + s->bpp) >> 3;
  450. ctx->colorspace = colorspaces[get_bits(&s->gb, 3)];
  451. if (ctx->colorspace == AVCOL_SPC_RGB) { // RGB = profile 1
  452. static const enum AVPixelFormat pix_fmt_rgb[3] = {
  453. AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12
  454. };
  455. if (ctx->profile & 1) {
  456. s->ss_h = s->ss_v = 1;
  457. res = pix_fmt_rgb[bits];
  458. ctx->color_range = AVCOL_RANGE_JPEG;
  459. } else {
  460. av_log(ctx, AV_LOG_ERROR, "RGB not supported in profile %d\n",
  461. ctx->profile);
  462. return AVERROR_INVALIDDATA;
  463. }
  464. } else {
  465. static const enum AVPixelFormat pix_fmt_for_ss[3][2 /* v */][2 /* h */] = {
  466. { { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P },
  467. { AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV420P } },
  468. { { AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10 },
  469. { AV_PIX_FMT_YUV440P10, AV_PIX_FMT_YUV420P10 } },
  470. { { AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12 },
  471. { AV_PIX_FMT_YUV440P12, AV_PIX_FMT_YUV420P12 } }
  472. };
  473. ctx->color_range = get_bits1(&s->gb) ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
  474. if (ctx->profile & 1) {
  475. s->ss_h = get_bits1(&s->gb);
  476. s->ss_v = get_bits1(&s->gb);
  477. if ((res = pix_fmt_for_ss[bits][s->ss_v][s->ss_h]) == AV_PIX_FMT_YUV420P) {
  478. av_log(ctx, AV_LOG_ERROR, "YUV 4:2:0 not supported in profile %d\n",
  479. ctx->profile);
  480. return AVERROR_INVALIDDATA;
  481. } else if (get_bits1(&s->gb)) {
  482. av_log(ctx, AV_LOG_ERROR, "Profile %d color details reserved bit set\n",
  483. ctx->profile);
  484. return AVERROR_INVALIDDATA;
  485. }
  486. } else {
  487. s->ss_h = s->ss_v = 1;
  488. res = pix_fmt_for_ss[bits][1][1];
  489. }
  490. }
  491. return res;
  492. }
  493. static int decode_frame_header(AVCodecContext *ctx,
  494. const uint8_t *data, int size, int *ref)
  495. {
  496. VP9Context *s = ctx->priv_data;
  497. int c, i, j, k, l, m, n, w, h, max, size2, res, sharp;
  498. enum AVPixelFormat fmt = ctx->pix_fmt;
  499. int last_invisible;
  500. const uint8_t *data2;
  501. /* general header */
  502. if ((res = init_get_bits8(&s->gb, data, size)) < 0) {
  503. av_log(ctx, AV_LOG_ERROR, "Failed to initialize bitstream reader\n");
  504. return res;
  505. }
  506. if (get_bits(&s->gb, 2) != 0x2) { // frame marker
  507. av_log(ctx, AV_LOG_ERROR, "Invalid frame marker\n");
  508. return AVERROR_INVALIDDATA;
  509. }
  510. ctx->profile = get_bits1(&s->gb);
  511. ctx->profile |= get_bits1(&s->gb) << 1;
  512. if (ctx->profile == 3) ctx->profile += get_bits1(&s->gb);
  513. if (ctx->profile > 3) {
  514. av_log(ctx, AV_LOG_ERROR, "Profile %d is not yet supported\n", ctx->profile);
  515. return AVERROR_INVALIDDATA;
  516. }
  517. if (get_bits1(&s->gb)) {
  518. *ref = get_bits(&s->gb, 3);
  519. return 0;
  520. }
  521. s->last_keyframe = s->keyframe;
  522. s->keyframe = !get_bits1(&s->gb);
  523. last_invisible = s->invisible;
  524. s->invisible = !get_bits1(&s->gb);
  525. s->errorres = get_bits1(&s->gb);
  526. s->use_last_frame_mvs = !s->errorres && !last_invisible;
  527. if (s->keyframe) {
  528. if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
  529. av_log(ctx, AV_LOG_ERROR, "Invalid sync code\n");
  530. return AVERROR_INVALIDDATA;
  531. }
  532. if ((fmt = read_colorspace_details(ctx)) < 0)
  533. return fmt;
  534. // for profile 1, here follows the subsampling bits
  535. s->refreshrefmask = 0xff;
  536. w = get_bits(&s->gb, 16) + 1;
  537. h = get_bits(&s->gb, 16) + 1;
  538. if (get_bits1(&s->gb)) // display size
  539. skip_bits(&s->gb, 32);
  540. } else {
  541. s->intraonly = s->invisible ? get_bits1(&s->gb) : 0;
  542. s->resetctx = s->errorres ? 0 : get_bits(&s->gb, 2);
  543. if (s->intraonly) {
  544. if (get_bits_long(&s->gb, 24) != VP9_SYNCCODE) { // synccode
  545. av_log(ctx, AV_LOG_ERROR, "Invalid sync code\n");
  546. return AVERROR_INVALIDDATA;
  547. }
  548. if (ctx->profile == 1) {
  549. if ((fmt = read_colorspace_details(ctx)) < 0)
  550. return fmt;
  551. } else {
  552. s->ss_h = s->ss_v = 1;
  553. s->bpp = 8;
  554. s->bpp_index = 0;
  555. s->bytesperpixel = 1;
  556. fmt = AV_PIX_FMT_YUV420P;
  557. ctx->colorspace = AVCOL_SPC_BT470BG;
  558. ctx->color_range = AVCOL_RANGE_JPEG;
  559. }
  560. s->refreshrefmask = get_bits(&s->gb, 8);
  561. w = get_bits(&s->gb, 16) + 1;
  562. h = get_bits(&s->gb, 16) + 1;
  563. if (get_bits1(&s->gb)) // display size
  564. skip_bits(&s->gb, 32);
  565. } else {
  566. s->refreshrefmask = get_bits(&s->gb, 8);
  567. s->refidx[0] = get_bits(&s->gb, 3);
  568. s->signbias[0] = get_bits1(&s->gb);
  569. s->refidx[1] = get_bits(&s->gb, 3);
  570. s->signbias[1] = get_bits1(&s->gb);
  571. s->refidx[2] = get_bits(&s->gb, 3);
  572. s->signbias[2] = get_bits1(&s->gb);
  573. if (!s->refs[s->refidx[0]].f->data[0] ||
  574. !s->refs[s->refidx[1]].f->data[0] ||
  575. !s->refs[s->refidx[2]].f->data[0]) {
  576. av_log(ctx, AV_LOG_ERROR, "Not all references are available\n");
  577. return AVERROR_INVALIDDATA;
  578. }
  579. if (get_bits1(&s->gb)) {
  580. w = s->refs[s->refidx[0]].f->width;
  581. h = s->refs[s->refidx[0]].f->height;
  582. } else if (get_bits1(&s->gb)) {
  583. w = s->refs[s->refidx[1]].f->width;
  584. h = s->refs[s->refidx[1]].f->height;
  585. } else if (get_bits1(&s->gb)) {
  586. w = s->refs[s->refidx[2]].f->width;
  587. h = s->refs[s->refidx[2]].f->height;
  588. } else {
  589. w = get_bits(&s->gb, 16) + 1;
  590. h = get_bits(&s->gb, 16) + 1;
  591. }
  592. // Note that in this code, "CUR_FRAME" is actually before we
  593. // have formally allocated a frame, and thus actually represents
  594. // the _last_ frame
  595. s->use_last_frame_mvs &= s->frames[CUR_FRAME].tf.f->width == w &&
  596. s->frames[CUR_FRAME].tf.f->height == h;
  597. if (get_bits1(&s->gb)) // display size
  598. skip_bits(&s->gb, 32);
  599. s->highprecisionmvs = get_bits1(&s->gb);
  600. s->filtermode = get_bits1(&s->gb) ? FILTER_SWITCHABLE :
  601. get_bits(&s->gb, 2);
  602. s->allowcompinter = s->signbias[0] != s->signbias[1] ||
  603. s->signbias[0] != s->signbias[2];
  604. if (s->allowcompinter) {
  605. if (s->signbias[0] == s->signbias[1]) {
  606. s->fixcompref = 2;
  607. s->varcompref[0] = 0;
  608. s->varcompref[1] = 1;
  609. } else if (s->signbias[0] == s->signbias[2]) {
  610. s->fixcompref = 1;
  611. s->varcompref[0] = 0;
  612. s->varcompref[1] = 2;
  613. } else {
  614. s->fixcompref = 0;
  615. s->varcompref[0] = 1;
  616. s->varcompref[1] = 2;
  617. }
  618. }
  619. for (i = 0; i < 3; i++) {
  620. AVFrame *ref = s->refs[s->refidx[i]].f;
  621. int refw = ref->width, refh = ref->height;
  622. if (ref->format != fmt) {
  623. av_log(ctx, AV_LOG_ERROR,
  624. "Ref pixfmt (%s) did not match current frame (%s)",
  625. av_get_pix_fmt_name(ref->format),
  626. av_get_pix_fmt_name(fmt));
  627. return AVERROR_INVALIDDATA;
  628. } else if (refw == w && refh == h) {
  629. s->mvscale[i][0] = s->mvscale[i][1] = 0;
  630. } else {
  631. if (w * 2 < refw || h * 2 < refh || w > 16 * refw || h > 16 * refh) {
  632. av_log(ctx, AV_LOG_ERROR,
  633. "Invalid ref frame dimensions %dx%d for frame size %dx%d\n",
  634. refw, refh, w, h);
  635. return AVERROR_INVALIDDATA;
  636. }
  637. s->mvscale[i][0] = (refw << 14) / w;
  638. s->mvscale[i][1] = (refh << 14) / h;
  639. s->mvstep[i][0] = 16 * s->mvscale[i][0] >> 14;
  640. s->mvstep[i][1] = 16 * s->mvscale[i][1] >> 14;
  641. }
  642. }
  643. }
  644. }
  645. s->refreshctx = s->errorres ? 0 : get_bits1(&s->gb);
  646. s->parallelmode = s->errorres ? 1 : get_bits1(&s->gb);
  647. s->framectxid = c = get_bits(&s->gb, 2);
  648. /* loopfilter header data */
  649. s->filter.level = get_bits(&s->gb, 6);
  650. sharp = get_bits(&s->gb, 3);
  651. // if sharpness changed, reinit lim/mblim LUTs. if it didn't change, keep
  652. // the old cache values since they are still valid
  653. if (s->filter.sharpness != sharp)
  654. memset(s->filter.lim_lut, 0, sizeof(s->filter.lim_lut));
  655. s->filter.sharpness = sharp;
  656. if ((s->lf_delta.enabled = get_bits1(&s->gb))) {
  657. if (get_bits1(&s->gb)) {
  658. for (i = 0; i < 4; i++)
  659. if (get_bits1(&s->gb))
  660. s->lf_delta.ref[i] = get_sbits_inv(&s->gb, 6);
  661. for (i = 0; i < 2; i++)
  662. if (get_bits1(&s->gb))
  663. s->lf_delta.mode[i] = get_sbits_inv(&s->gb, 6);
  664. }
  665. }
  666. /* quantization header data */
  667. s->yac_qi = get_bits(&s->gb, 8);
  668. s->ydc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
  669. s->uvdc_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
  670. s->uvac_qdelta = get_bits1(&s->gb) ? get_sbits_inv(&s->gb, 4) : 0;
  671. s->lossless = s->yac_qi == 0 && s->ydc_qdelta == 0 &&
  672. s->uvdc_qdelta == 0 && s->uvac_qdelta == 0;
  673. /* segmentation header info */
  674. s->segmentation.ignore_refmap = 0;
  675. if ((s->segmentation.enabled = get_bits1(&s->gb))) {
  676. if ((s->segmentation.update_map = get_bits1(&s->gb))) {
  677. for (i = 0; i < 7; i++)
  678. s->prob.seg[i] = get_bits1(&s->gb) ?
  679. get_bits(&s->gb, 8) : 255;
  680. if ((s->segmentation.temporal = get_bits1(&s->gb))) {
  681. for (i = 0; i < 3; i++)
  682. s->prob.segpred[i] = get_bits1(&s->gb) ?
  683. get_bits(&s->gb, 8) : 255;
  684. }
  685. }
  686. if ((!s->segmentation.update_map || s->segmentation.temporal) &&
  687. (w != s->frames[CUR_FRAME].tf.f->width ||
  688. h != s->frames[CUR_FRAME].tf.f->height)) {
  689. av_log(ctx, AV_LOG_WARNING,
  690. "Reference segmap (temp=%d,update=%d) enabled on size-change!\n",
  691. s->segmentation.temporal, s->segmentation.update_map);
  692. s->segmentation.ignore_refmap = 1;
  693. //return AVERROR_INVALIDDATA;
  694. }
  695. if (get_bits1(&s->gb)) {
  696. s->segmentation.absolute_vals = get_bits1(&s->gb);
  697. for (i = 0; i < 8; i++) {
  698. if ((s->segmentation.feat[i].q_enabled = get_bits1(&s->gb)))
  699. s->segmentation.feat[i].q_val = get_sbits_inv(&s->gb, 8);
  700. if ((s->segmentation.feat[i].lf_enabled = get_bits1(&s->gb)))
  701. s->segmentation.feat[i].lf_val = get_sbits_inv(&s->gb, 6);
  702. if ((s->segmentation.feat[i].ref_enabled = get_bits1(&s->gb)))
  703. s->segmentation.feat[i].ref_val = get_bits(&s->gb, 2);
  704. s->segmentation.feat[i].skip_enabled = get_bits1(&s->gb);
  705. }
  706. }
  707. } else {
  708. s->segmentation.feat[0].q_enabled = 0;
  709. s->segmentation.feat[0].lf_enabled = 0;
  710. s->segmentation.feat[0].skip_enabled = 0;
  711. s->segmentation.feat[0].ref_enabled = 0;
  712. }
  713. // set qmul[] based on Y/UV, AC/DC and segmentation Q idx deltas
  714. for (i = 0; i < (s->segmentation.enabled ? 8 : 1); i++) {
  715. int qyac, qydc, quvac, quvdc, lflvl, sh;
  716. if (s->segmentation.feat[i].q_enabled) {
  717. if (s->segmentation.absolute_vals)
  718. qyac = s->segmentation.feat[i].q_val;
  719. else
  720. qyac = s->yac_qi + s->segmentation.feat[i].q_val;
  721. } else {
  722. qyac = s->yac_qi;
  723. }
  724. qydc = av_clip_uintp2(qyac + s->ydc_qdelta, 8);
  725. quvdc = av_clip_uintp2(qyac + s->uvdc_qdelta, 8);
  726. quvac = av_clip_uintp2(qyac + s->uvac_qdelta, 8);
  727. qyac = av_clip_uintp2(qyac, 8);
  728. s->segmentation.feat[i].qmul[0][0] = vp9_dc_qlookup[s->bpp_index][qydc];
  729. s->segmentation.feat[i].qmul[0][1] = vp9_ac_qlookup[s->bpp_index][qyac];
  730. s->segmentation.feat[i].qmul[1][0] = vp9_dc_qlookup[s->bpp_index][quvdc];
  731. s->segmentation.feat[i].qmul[1][1] = vp9_ac_qlookup[s->bpp_index][quvac];
  732. sh = s->filter.level >= 32;
  733. if (s->segmentation.feat[i].lf_enabled) {
  734. if (s->segmentation.absolute_vals)
  735. lflvl = s->segmentation.feat[i].lf_val;
  736. else
  737. lflvl = s->filter.level + s->segmentation.feat[i].lf_val;
  738. } else {
  739. lflvl = s->filter.level;
  740. }
  741. if (s->lf_delta.enabled) {
  742. s->segmentation.feat[i].lflvl[0][0] =
  743. s->segmentation.feat[i].lflvl[0][1] =
  744. av_clip_uintp2(lflvl + (s->lf_delta.ref[0] << sh), 6);
  745. for (j = 1; j < 4; j++) {
  746. s->segmentation.feat[i].lflvl[j][0] =
  747. av_clip_uintp2(lflvl + ((s->lf_delta.ref[j] +
  748. s->lf_delta.mode[0]) * (1 << sh)), 6);
  749. s->segmentation.feat[i].lflvl[j][1] =
  750. av_clip_uintp2(lflvl + ((s->lf_delta.ref[j] +
  751. s->lf_delta.mode[1]) * (1 << sh)), 6);
  752. }
  753. } else {
  754. memset(s->segmentation.feat[i].lflvl, lflvl,
  755. sizeof(s->segmentation.feat[i].lflvl));
  756. }
  757. }
  758. /* tiling info */
  759. if ((res = update_size(ctx, w, h, fmt)) < 0) {
  760. av_log(ctx, AV_LOG_ERROR, "Failed to initialize decoder for %dx%d @ %d\n", w, h, fmt);
  761. return res;
  762. }
  763. for (s->tiling.log2_tile_cols = 0;
  764. (s->sb_cols >> s->tiling.log2_tile_cols) > 64;
  765. s->tiling.log2_tile_cols++) ;
  766. for (max = 0; (s->sb_cols >> max) >= 4; max++) ;
  767. max = FFMAX(0, max - 1);
  768. while (max > s->tiling.log2_tile_cols) {
  769. if (get_bits1(&s->gb))
  770. s->tiling.log2_tile_cols++;
  771. else
  772. break;
  773. }
  774. s->tiling.log2_tile_rows = decode012(&s->gb);
  775. s->tiling.tile_rows = 1 << s->tiling.log2_tile_rows;
  776. if (s->tiling.tile_cols != (1 << s->tiling.log2_tile_cols)) {
  777. s->tiling.tile_cols = 1 << s->tiling.log2_tile_cols;
  778. s->c_b = av_fast_realloc(s->c_b, &s->c_b_size,
  779. sizeof(VP56RangeCoder) * s->tiling.tile_cols);
  780. if (!s->c_b) {
  781. av_log(ctx, AV_LOG_ERROR, "Ran out of memory during range coder init\n");
  782. return AVERROR(ENOMEM);
  783. }
  784. }
  785. if (s->keyframe || s->errorres || s->intraonly) {
  786. s->prob_ctx[0].p = s->prob_ctx[1].p = s->prob_ctx[2].p =
  787. s->prob_ctx[3].p = vp9_default_probs;
  788. memcpy(s->prob_ctx[0].coef, vp9_default_coef_probs,
  789. sizeof(vp9_default_coef_probs));
  790. memcpy(s->prob_ctx[1].coef, vp9_default_coef_probs,
  791. sizeof(vp9_default_coef_probs));
  792. memcpy(s->prob_ctx[2].coef, vp9_default_coef_probs,
  793. sizeof(vp9_default_coef_probs));
  794. memcpy(s->prob_ctx[3].coef, vp9_default_coef_probs,
  795. sizeof(vp9_default_coef_probs));
  796. }
  797. // next 16 bits is size of the rest of the header (arith-coded)
  798. size2 = get_bits(&s->gb, 16);
  799. data2 = align_get_bits(&s->gb);
  800. if (size2 > size - (data2 - data)) {
  801. av_log(ctx, AV_LOG_ERROR, "Invalid compressed header size\n");
  802. return AVERROR_INVALIDDATA;
  803. }
  804. ff_vp56_init_range_decoder(&s->c, data2, size2);
  805. if (vp56_rac_get_prob_branchy(&s->c, 128)) { // marker bit
  806. av_log(ctx, AV_LOG_ERROR, "Marker bit was set\n");
  807. return AVERROR_INVALIDDATA;
  808. }
  809. if (s->keyframe || s->intraonly) {
  810. memset(s->counts.coef, 0, sizeof(s->counts.coef) + sizeof(s->counts.eob));
  811. } else {
  812. memset(&s->counts, 0, sizeof(s->counts));
  813. }
  814. // FIXME is it faster to not copy here, but do it down in the fw updates
  815. // as explicit copies if the fw update is missing (and skip the copy upon
  816. // fw update)?
  817. s->prob.p = s->prob_ctx[c].p;
  818. // txfm updates
  819. if (s->lossless) {
  820. s->txfmmode = TX_4X4;
  821. } else {
  822. s->txfmmode = vp8_rac_get_uint(&s->c, 2);
  823. if (s->txfmmode == 3)
  824. s->txfmmode += vp8_rac_get(&s->c);
  825. if (s->txfmmode == TX_SWITCHABLE) {
  826. for (i = 0; i < 2; i++)
  827. if (vp56_rac_get_prob_branchy(&s->c, 252))
  828. s->prob.p.tx8p[i] = update_prob(&s->c, s->prob.p.tx8p[i]);
  829. for (i = 0; i < 2; i++)
  830. for (j = 0; j < 2; j++)
  831. if (vp56_rac_get_prob_branchy(&s->c, 252))
  832. s->prob.p.tx16p[i][j] =
  833. update_prob(&s->c, s->prob.p.tx16p[i][j]);
  834. for (i = 0; i < 2; i++)
  835. for (j = 0; j < 3; j++)
  836. if (vp56_rac_get_prob_branchy(&s->c, 252))
  837. s->prob.p.tx32p[i][j] =
  838. update_prob(&s->c, s->prob.p.tx32p[i][j]);
  839. }
  840. }
  841. // coef updates
  842. for (i = 0; i < 4; i++) {
  843. uint8_t (*ref)[2][6][6][3] = s->prob_ctx[c].coef[i];
  844. if (vp8_rac_get(&s->c)) {
  845. for (j = 0; j < 2; j++)
  846. for (k = 0; k < 2; k++)
  847. for (l = 0; l < 6; l++)
  848. for (m = 0; m < 6; m++) {
  849. uint8_t *p = s->prob.coef[i][j][k][l][m];
  850. uint8_t *r = ref[j][k][l][m];
  851. if (m >= 3 && l == 0) // dc only has 3 pt
  852. break;
  853. for (n = 0; n < 3; n++) {
  854. if (vp56_rac_get_prob_branchy(&s->c, 252)) {
  855. p[n] = update_prob(&s->c, r[n]);
  856. } else {
  857. p[n] = r[n];
  858. }
  859. }
  860. p[3] = 0;
  861. }
  862. } else {
  863. for (j = 0; j < 2; j++)
  864. for (k = 0; k < 2; k++)
  865. for (l = 0; l < 6; l++)
  866. for (m = 0; m < 6; m++) {
  867. uint8_t *p = s->prob.coef[i][j][k][l][m];
  868. uint8_t *r = ref[j][k][l][m];
  869. if (m > 3 && l == 0) // dc only has 3 pt
  870. break;
  871. memcpy(p, r, 3);
  872. p[3] = 0;
  873. }
  874. }
  875. if (s->txfmmode == i)
  876. break;
  877. }
  878. // mode updates
  879. for (i = 0; i < 3; i++)
  880. if (vp56_rac_get_prob_branchy(&s->c, 252))
  881. s->prob.p.skip[i] = update_prob(&s->c, s->prob.p.skip[i]);
  882. if (!s->keyframe && !s->intraonly) {
  883. for (i = 0; i < 7; i++)
  884. for (j = 0; j < 3; j++)
  885. if (vp56_rac_get_prob_branchy(&s->c, 252))
  886. s->prob.p.mv_mode[i][j] =
  887. update_prob(&s->c, s->prob.p.mv_mode[i][j]);
  888. if (s->filtermode == FILTER_SWITCHABLE)
  889. for (i = 0; i < 4; i++)
  890. for (j = 0; j < 2; j++)
  891. if (vp56_rac_get_prob_branchy(&s->c, 252))
  892. s->prob.p.filter[i][j] =
  893. update_prob(&s->c, s->prob.p.filter[i][j]);
  894. for (i = 0; i < 4; i++)
  895. if (vp56_rac_get_prob_branchy(&s->c, 252))
  896. s->prob.p.intra[i] = update_prob(&s->c, s->prob.p.intra[i]);
  897. if (s->allowcompinter) {
  898. s->comppredmode = vp8_rac_get(&s->c);
  899. if (s->comppredmode)
  900. s->comppredmode += vp8_rac_get(&s->c);
  901. if (s->comppredmode == PRED_SWITCHABLE)
  902. for (i = 0; i < 5; i++)
  903. if (vp56_rac_get_prob_branchy(&s->c, 252))
  904. s->prob.p.comp[i] =
  905. update_prob(&s->c, s->prob.p.comp[i]);
  906. } else {
  907. s->comppredmode = PRED_SINGLEREF;
  908. }
  909. if (s->comppredmode != PRED_COMPREF) {
  910. for (i = 0; i < 5; i++) {
  911. if (vp56_rac_get_prob_branchy(&s->c, 252))
  912. s->prob.p.single_ref[i][0] =
  913. update_prob(&s->c, s->prob.p.single_ref[i][0]);
  914. if (vp56_rac_get_prob_branchy(&s->c, 252))
  915. s->prob.p.single_ref[i][1] =
  916. update_prob(&s->c, s->prob.p.single_ref[i][1]);
  917. }
  918. }
  919. if (s->comppredmode != PRED_SINGLEREF) {
  920. for (i = 0; i < 5; i++)
  921. if (vp56_rac_get_prob_branchy(&s->c, 252))
  922. s->prob.p.comp_ref[i] =
  923. update_prob(&s->c, s->prob.p.comp_ref[i]);
  924. }
  925. for (i = 0; i < 4; i++)
  926. for (j = 0; j < 9; j++)
  927. if (vp56_rac_get_prob_branchy(&s->c, 252))
  928. s->prob.p.y_mode[i][j] =
  929. update_prob(&s->c, s->prob.p.y_mode[i][j]);
  930. for (i = 0; i < 4; i++)
  931. for (j = 0; j < 4; j++)
  932. for (k = 0; k < 3; k++)
  933. if (vp56_rac_get_prob_branchy(&s->c, 252))
  934. s->prob.p.partition[3 - i][j][k] =
  935. update_prob(&s->c, s->prob.p.partition[3 - i][j][k]);
  936. // mv fields don't use the update_prob subexp model for some reason
  937. for (i = 0; i < 3; i++)
  938. if (vp56_rac_get_prob_branchy(&s->c, 252))
  939. s->prob.p.mv_joint[i] = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  940. for (i = 0; i < 2; i++) {
  941. if (vp56_rac_get_prob_branchy(&s->c, 252))
  942. s->prob.p.mv_comp[i].sign = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  943. for (j = 0; j < 10; j++)
  944. if (vp56_rac_get_prob_branchy(&s->c, 252))
  945. s->prob.p.mv_comp[i].classes[j] =
  946. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  947. if (vp56_rac_get_prob_branchy(&s->c, 252))
  948. s->prob.p.mv_comp[i].class0 = (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  949. for (j = 0; j < 10; j++)
  950. if (vp56_rac_get_prob_branchy(&s->c, 252))
  951. s->prob.p.mv_comp[i].bits[j] =
  952. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  953. }
  954. for (i = 0; i < 2; i++) {
  955. for (j = 0; j < 2; j++)
  956. for (k = 0; k < 3; k++)
  957. if (vp56_rac_get_prob_branchy(&s->c, 252))
  958. s->prob.p.mv_comp[i].class0_fp[j][k] =
  959. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  960. for (j = 0; j < 3; j++)
  961. if (vp56_rac_get_prob_branchy(&s->c, 252))
  962. s->prob.p.mv_comp[i].fp[j] =
  963. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  964. }
  965. if (s->highprecisionmvs) {
  966. for (i = 0; i < 2; i++) {
  967. if (vp56_rac_get_prob_branchy(&s->c, 252))
  968. s->prob.p.mv_comp[i].class0_hp =
  969. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  970. if (vp56_rac_get_prob_branchy(&s->c, 252))
  971. s->prob.p.mv_comp[i].hp =
  972. (vp8_rac_get_uint(&s->c, 7) << 1) | 1;
  973. }
  974. }
  975. }
  976. return (data2 - data) + size2;
  977. }
  978. static av_always_inline void clamp_mv(VP56mv *dst, const VP56mv *src,
  979. VP9Context *s)
  980. {
  981. dst->x = av_clip(src->x, s->min_mv.x, s->max_mv.x);
  982. dst->y = av_clip(src->y, s->min_mv.y, s->max_mv.y);
  983. }
  984. static void find_ref_mvs(VP9Context *s,
  985. VP56mv *pmv, int ref, int z, int idx, int sb)
  986. {
  987. static const int8_t mv_ref_blk_off[N_BS_SIZES][8][2] = {
  988. [BS_64x64] = {{ 3, -1 }, { -1, 3 }, { 4, -1 }, { -1, 4 },
  989. { -1, -1 }, { 0, -1 }, { -1, 0 }, { 6, -1 }},
  990. [BS_64x32] = {{ 0, -1 }, { -1, 0 }, { 4, -1 }, { -1, 2 },
  991. { -1, -1 }, { 0, -3 }, { -3, 0 }, { 2, -1 }},
  992. [BS_32x64] = {{ -1, 0 }, { 0, -1 }, { -1, 4 }, { 2, -1 },
  993. { -1, -1 }, { -3, 0 }, { 0, -3 }, { -1, 2 }},
  994. [BS_32x32] = {{ 1, -1 }, { -1, 1 }, { 2, -1 }, { -1, 2 },
  995. { -1, -1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
  996. [BS_32x16] = {{ 0, -1 }, { -1, 0 }, { 2, -1 }, { -1, -1 },
  997. { -1, 1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
  998. [BS_16x32] = {{ -1, 0 }, { 0, -1 }, { -1, 2 }, { -1, -1 },
  999. { 1, -1 }, { -3, 0 }, { 0, -3 }, { -3, -3 }},
  1000. [BS_16x16] = {{ 0, -1 }, { -1, 0 }, { 1, -1 }, { -1, 1 },
  1001. { -1, -1 }, { 0, -3 }, { -3, 0 }, { -3, -3 }},
  1002. [BS_16x8] = {{ 0, -1 }, { -1, 0 }, { 1, -1 }, { -1, -1 },
  1003. { 0, -2 }, { -2, 0 }, { -2, -1 }, { -1, -2 }},
  1004. [BS_8x16] = {{ -1, 0 }, { 0, -1 }, { -1, 1 }, { -1, -1 },
  1005. { -2, 0 }, { 0, -2 }, { -1, -2 }, { -2, -1 }},
  1006. [BS_8x8] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  1007. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  1008. [BS_8x4] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  1009. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  1010. [BS_4x8] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  1011. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  1012. [BS_4x4] = {{ 0, -1 }, { -1, 0 }, { -1, -1 }, { 0, -2 },
  1013. { -2, 0 }, { -1, -2 }, { -2, -1 }, { -2, -2 }},
  1014. };
  1015. VP9Block *b = s->b;
  1016. int row = s->row, col = s->col, row7 = s->row7;
  1017. const int8_t (*p)[2] = mv_ref_blk_off[b->bs];
  1018. #define INVALID_MV 0x80008000U
  1019. uint32_t mem = INVALID_MV;
  1020. int i;
  1021. #define RETURN_DIRECT_MV(mv) \
  1022. do { \
  1023. uint32_t m = AV_RN32A(&mv); \
  1024. if (!idx) { \
  1025. AV_WN32A(pmv, m); \
  1026. return; \
  1027. } else if (mem == INVALID_MV) { \
  1028. mem = m; \
  1029. } else if (m != mem) { \
  1030. AV_WN32A(pmv, m); \
  1031. return; \
  1032. } \
  1033. } while (0)
  1034. if (sb >= 0) {
  1035. if (sb == 2 || sb == 1) {
  1036. RETURN_DIRECT_MV(b->mv[0][z]);
  1037. } else if (sb == 3) {
  1038. RETURN_DIRECT_MV(b->mv[2][z]);
  1039. RETURN_DIRECT_MV(b->mv[1][z]);
  1040. RETURN_DIRECT_MV(b->mv[0][z]);
  1041. }
  1042. #define RETURN_MV(mv) \
  1043. do { \
  1044. if (sb > 0) { \
  1045. VP56mv tmp; \
  1046. uint32_t m; \
  1047. clamp_mv(&tmp, &mv, s); \
  1048. m = AV_RN32A(&tmp); \
  1049. if (!idx) { \
  1050. AV_WN32A(pmv, m); \
  1051. return; \
  1052. } else if (mem == INVALID_MV) { \
  1053. mem = m; \
  1054. } else if (m != mem) { \
  1055. AV_WN32A(pmv, m); \
  1056. return; \
  1057. } \
  1058. } else { \
  1059. uint32_t m = AV_RN32A(&mv); \
  1060. if (!idx) { \
  1061. clamp_mv(pmv, &mv, s); \
  1062. return; \
  1063. } else if (mem == INVALID_MV) { \
  1064. mem = m; \
  1065. } else if (m != mem) { \
  1066. clamp_mv(pmv, &mv, s); \
  1067. return; \
  1068. } \
  1069. } \
  1070. } while (0)
  1071. if (row > 0) {
  1072. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[(row - 1) * s->sb_cols * 8 + col];
  1073. if (mv->ref[0] == ref) {
  1074. RETURN_MV(s->above_mv_ctx[2 * col + (sb & 1)][0]);
  1075. } else if (mv->ref[1] == ref) {
  1076. RETURN_MV(s->above_mv_ctx[2 * col + (sb & 1)][1]);
  1077. }
  1078. }
  1079. if (col > s->tiling.tile_col_start) {
  1080. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[row * s->sb_cols * 8 + col - 1];
  1081. if (mv->ref[0] == ref) {
  1082. RETURN_MV(s->left_mv_ctx[2 * row7 + (sb >> 1)][0]);
  1083. } else if (mv->ref[1] == ref) {
  1084. RETURN_MV(s->left_mv_ctx[2 * row7 + (sb >> 1)][1]);
  1085. }
  1086. }
  1087. i = 2;
  1088. } else {
  1089. i = 0;
  1090. }
  1091. // previously coded MVs in this neighbourhood, using same reference frame
  1092. for (; i < 8; i++) {
  1093. int c = p[i][0] + col, r = p[i][1] + row;
  1094. if (c >= s->tiling.tile_col_start && c < s->cols && r >= 0 && r < s->rows) {
  1095. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[r * s->sb_cols * 8 + c];
  1096. if (mv->ref[0] == ref) {
  1097. RETURN_MV(mv->mv[0]);
  1098. } else if (mv->ref[1] == ref) {
  1099. RETURN_MV(mv->mv[1]);
  1100. }
  1101. }
  1102. }
  1103. // MV at this position in previous frame, using same reference frame
  1104. if (s->use_last_frame_mvs) {
  1105. struct VP9mvrefPair *mv = &s->frames[REF_FRAME_MVPAIR].mv[row * s->sb_cols * 8 + col];
  1106. if (!s->frames[REF_FRAME_MVPAIR].uses_2pass)
  1107. ff_thread_await_progress(&s->frames[REF_FRAME_MVPAIR].tf, row >> 3, 0);
  1108. if (mv->ref[0] == ref) {
  1109. RETURN_MV(mv->mv[0]);
  1110. } else if (mv->ref[1] == ref) {
  1111. RETURN_MV(mv->mv[1]);
  1112. }
  1113. }
  1114. #define RETURN_SCALE_MV(mv, scale) \
  1115. do { \
  1116. if (scale) { \
  1117. VP56mv mv_temp = { -mv.x, -mv.y }; \
  1118. RETURN_MV(mv_temp); \
  1119. } else { \
  1120. RETURN_MV(mv); \
  1121. } \
  1122. } while (0)
  1123. // previously coded MVs in this neighbourhood, using different reference frame
  1124. for (i = 0; i < 8; i++) {
  1125. int c = p[i][0] + col, r = p[i][1] + row;
  1126. if (c >= s->tiling.tile_col_start && c < s->cols && r >= 0 && r < s->rows) {
  1127. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[r * s->sb_cols * 8 + c];
  1128. if (mv->ref[0] != ref && mv->ref[0] >= 0) {
  1129. RETURN_SCALE_MV(mv->mv[0], s->signbias[mv->ref[0]] != s->signbias[ref]);
  1130. }
  1131. if (mv->ref[1] != ref && mv->ref[1] >= 0 &&
  1132. // BUG - libvpx has this condition regardless of whether
  1133. // we used the first ref MV and pre-scaling
  1134. AV_RN32A(&mv->mv[0]) != AV_RN32A(&mv->mv[1])) {
  1135. RETURN_SCALE_MV(mv->mv[1], s->signbias[mv->ref[1]] != s->signbias[ref]);
  1136. }
  1137. }
  1138. }
  1139. // MV at this position in previous frame, using different reference frame
  1140. if (s->use_last_frame_mvs) {
  1141. struct VP9mvrefPair *mv = &s->frames[REF_FRAME_MVPAIR].mv[row * s->sb_cols * 8 + col];
  1142. // no need to await_progress, because we already did that above
  1143. if (mv->ref[0] != ref && mv->ref[0] >= 0) {
  1144. RETURN_SCALE_MV(mv->mv[0], s->signbias[mv->ref[0]] != s->signbias[ref]);
  1145. }
  1146. if (mv->ref[1] != ref && mv->ref[1] >= 0 &&
  1147. // BUG - libvpx has this condition regardless of whether
  1148. // we used the first ref MV and pre-scaling
  1149. AV_RN32A(&mv->mv[0]) != AV_RN32A(&mv->mv[1])) {
  1150. RETURN_SCALE_MV(mv->mv[1], s->signbias[mv->ref[1]] != s->signbias[ref]);
  1151. }
  1152. }
  1153. AV_ZERO32(pmv);
  1154. #undef INVALID_MV
  1155. #undef RETURN_MV
  1156. #undef RETURN_SCALE_MV
  1157. }
  1158. static av_always_inline int read_mv_component(VP9Context *s, int idx, int hp)
  1159. {
  1160. int bit, sign = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].sign);
  1161. int n, c = vp8_rac_get_tree(&s->c, vp9_mv_class_tree,
  1162. s->prob.p.mv_comp[idx].classes);
  1163. s->counts.mv_comp[idx].sign[sign]++;
  1164. s->counts.mv_comp[idx].classes[c]++;
  1165. if (c) {
  1166. int m;
  1167. for (n = 0, m = 0; m < c; m++) {
  1168. bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].bits[m]);
  1169. n |= bit << m;
  1170. s->counts.mv_comp[idx].bits[m][bit]++;
  1171. }
  1172. n <<= 3;
  1173. bit = vp8_rac_get_tree(&s->c, vp9_mv_fp_tree, s->prob.p.mv_comp[idx].fp);
  1174. n |= bit << 1;
  1175. s->counts.mv_comp[idx].fp[bit]++;
  1176. if (hp) {
  1177. bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].hp);
  1178. s->counts.mv_comp[idx].hp[bit]++;
  1179. n |= bit;
  1180. } else {
  1181. n |= 1;
  1182. // bug in libvpx - we count for bw entropy purposes even if the
  1183. // bit wasn't coded
  1184. s->counts.mv_comp[idx].hp[1]++;
  1185. }
  1186. n += 8 << c;
  1187. } else {
  1188. n = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].class0);
  1189. s->counts.mv_comp[idx].class0[n]++;
  1190. bit = vp8_rac_get_tree(&s->c, vp9_mv_fp_tree,
  1191. s->prob.p.mv_comp[idx].class0_fp[n]);
  1192. s->counts.mv_comp[idx].class0_fp[n][bit]++;
  1193. n = (n << 3) | (bit << 1);
  1194. if (hp) {
  1195. bit = vp56_rac_get_prob(&s->c, s->prob.p.mv_comp[idx].class0_hp);
  1196. s->counts.mv_comp[idx].class0_hp[bit]++;
  1197. n |= bit;
  1198. } else {
  1199. n |= 1;
  1200. // bug in libvpx - we count for bw entropy purposes even if the
  1201. // bit wasn't coded
  1202. s->counts.mv_comp[idx].class0_hp[1]++;
  1203. }
  1204. }
  1205. return sign ? -(n + 1) : (n + 1);
  1206. }
  1207. static void fill_mv(VP9Context *s,
  1208. VP56mv *mv, int mode, int sb)
  1209. {
  1210. VP9Block *b = s->b;
  1211. if (mode == ZEROMV) {
  1212. AV_ZERO64(mv);
  1213. } else {
  1214. int hp;
  1215. // FIXME cache this value and reuse for other subblocks
  1216. find_ref_mvs(s, &mv[0], b->ref[0], 0, mode == NEARMV,
  1217. mode == NEWMV ? -1 : sb);
  1218. // FIXME maybe move this code into find_ref_mvs()
  1219. if ((mode == NEWMV || sb == -1) &&
  1220. !(hp = s->highprecisionmvs && abs(mv[0].x) < 64 && abs(mv[0].y) < 64)) {
  1221. if (mv[0].y & 1) {
  1222. if (mv[0].y < 0)
  1223. mv[0].y++;
  1224. else
  1225. mv[0].y--;
  1226. }
  1227. if (mv[0].x & 1) {
  1228. if (mv[0].x < 0)
  1229. mv[0].x++;
  1230. else
  1231. mv[0].x--;
  1232. }
  1233. }
  1234. if (mode == NEWMV) {
  1235. enum MVJoint j = vp8_rac_get_tree(&s->c, vp9_mv_joint_tree,
  1236. s->prob.p.mv_joint);
  1237. s->counts.mv_joint[j]++;
  1238. if (j >= MV_JOINT_V)
  1239. mv[0].y += read_mv_component(s, 0, hp);
  1240. if (j & 1)
  1241. mv[0].x += read_mv_component(s, 1, hp);
  1242. }
  1243. if (b->comp) {
  1244. // FIXME cache this value and reuse for other subblocks
  1245. find_ref_mvs(s, &mv[1], b->ref[1], 1, mode == NEARMV,
  1246. mode == NEWMV ? -1 : sb);
  1247. if ((mode == NEWMV || sb == -1) &&
  1248. !(hp = s->highprecisionmvs && abs(mv[1].x) < 64 && abs(mv[1].y) < 64)) {
  1249. if (mv[1].y & 1) {
  1250. if (mv[1].y < 0)
  1251. mv[1].y++;
  1252. else
  1253. mv[1].y--;
  1254. }
  1255. if (mv[1].x & 1) {
  1256. if (mv[1].x < 0)
  1257. mv[1].x++;
  1258. else
  1259. mv[1].x--;
  1260. }
  1261. }
  1262. if (mode == NEWMV) {
  1263. enum MVJoint j = vp8_rac_get_tree(&s->c, vp9_mv_joint_tree,
  1264. s->prob.p.mv_joint);
  1265. s->counts.mv_joint[j]++;
  1266. if (j >= MV_JOINT_V)
  1267. mv[1].y += read_mv_component(s, 0, hp);
  1268. if (j & 1)
  1269. mv[1].x += read_mv_component(s, 1, hp);
  1270. }
  1271. }
  1272. }
  1273. }
  1274. static av_always_inline void setctx_2d(uint8_t *ptr, int w, int h,
  1275. ptrdiff_t stride, int v)
  1276. {
  1277. switch (w) {
  1278. case 1:
  1279. do {
  1280. *ptr = v;
  1281. ptr += stride;
  1282. } while (--h);
  1283. break;
  1284. case 2: {
  1285. int v16 = v * 0x0101;
  1286. do {
  1287. AV_WN16A(ptr, v16);
  1288. ptr += stride;
  1289. } while (--h);
  1290. break;
  1291. }
  1292. case 4: {
  1293. uint32_t v32 = v * 0x01010101;
  1294. do {
  1295. AV_WN32A(ptr, v32);
  1296. ptr += stride;
  1297. } while (--h);
  1298. break;
  1299. }
  1300. case 8: {
  1301. #if HAVE_FAST_64BIT
  1302. uint64_t v64 = v * 0x0101010101010101ULL;
  1303. do {
  1304. AV_WN64A(ptr, v64);
  1305. ptr += stride;
  1306. } while (--h);
  1307. #else
  1308. uint32_t v32 = v * 0x01010101;
  1309. do {
  1310. AV_WN32A(ptr, v32);
  1311. AV_WN32A(ptr + 4, v32);
  1312. ptr += stride;
  1313. } while (--h);
  1314. #endif
  1315. break;
  1316. }
  1317. }
  1318. }
  1319. static void decode_mode(AVCodecContext *ctx)
  1320. {
  1321. static const uint8_t left_ctx[N_BS_SIZES] = {
  1322. 0x0, 0x8, 0x0, 0x8, 0xc, 0x8, 0xc, 0xe, 0xc, 0xe, 0xf, 0xe, 0xf
  1323. };
  1324. static const uint8_t above_ctx[N_BS_SIZES] = {
  1325. 0x0, 0x0, 0x8, 0x8, 0x8, 0xc, 0xc, 0xc, 0xe, 0xe, 0xe, 0xf, 0xf
  1326. };
  1327. static const uint8_t max_tx_for_bl_bp[N_BS_SIZES] = {
  1328. TX_32X32, TX_32X32, TX_32X32, TX_32X32, TX_16X16, TX_16X16,
  1329. TX_16X16, TX_8X8, TX_8X8, TX_8X8, TX_4X4, TX_4X4, TX_4X4
  1330. };
  1331. VP9Context *s = ctx->priv_data;
  1332. VP9Block *b = s->b;
  1333. int row = s->row, col = s->col, row7 = s->row7;
  1334. enum TxfmMode max_tx = max_tx_for_bl_bp[b->bs];
  1335. int bw4 = bwh_tab[1][b->bs][0], w4 = FFMIN(s->cols - col, bw4);
  1336. int bh4 = bwh_tab[1][b->bs][1], h4 = FFMIN(s->rows - row, bh4), y;
  1337. int have_a = row > 0, have_l = col > s->tiling.tile_col_start;
  1338. int vref, filter_id;
  1339. if (!s->segmentation.enabled) {
  1340. b->seg_id = 0;
  1341. } else if (s->keyframe || s->intraonly) {
  1342. b->seg_id = vp8_rac_get_tree(&s->c, vp9_segmentation_tree, s->prob.seg);
  1343. } else if (!s->segmentation.update_map ||
  1344. (s->segmentation.temporal &&
  1345. vp56_rac_get_prob_branchy(&s->c,
  1346. s->prob.segpred[s->above_segpred_ctx[col] +
  1347. s->left_segpred_ctx[row7]]))) {
  1348. if (!s->errorres && !s->segmentation.ignore_refmap) {
  1349. int pred = 8, x;
  1350. uint8_t *refsegmap = s->frames[REF_FRAME_SEGMAP].segmentation_map;
  1351. if (!s->frames[REF_FRAME_SEGMAP].uses_2pass)
  1352. ff_thread_await_progress(&s->frames[REF_FRAME_SEGMAP].tf, row >> 3, 0);
  1353. for (y = 0; y < h4; y++) {
  1354. int idx_base = (y + row) * 8 * s->sb_cols + col;
  1355. for (x = 0; x < w4; x++)
  1356. pred = FFMIN(pred, refsegmap[idx_base + x]);
  1357. }
  1358. av_assert1(pred < 8);
  1359. b->seg_id = pred;
  1360. } else {
  1361. b->seg_id = 0;
  1362. }
  1363. memset(&s->above_segpred_ctx[col], 1, w4);
  1364. memset(&s->left_segpred_ctx[row7], 1, h4);
  1365. } else {
  1366. b->seg_id = vp8_rac_get_tree(&s->c, vp9_segmentation_tree,
  1367. s->prob.seg);
  1368. memset(&s->above_segpred_ctx[col], 0, w4);
  1369. memset(&s->left_segpred_ctx[row7], 0, h4);
  1370. }
  1371. if (s->segmentation.enabled &&
  1372. (s->segmentation.update_map || s->keyframe || s->intraonly)) {
  1373. setctx_2d(&s->frames[CUR_FRAME].segmentation_map[row * 8 * s->sb_cols + col],
  1374. bw4, bh4, 8 * s->sb_cols, b->seg_id);
  1375. }
  1376. b->skip = s->segmentation.enabled &&
  1377. s->segmentation.feat[b->seg_id].skip_enabled;
  1378. if (!b->skip) {
  1379. int c = s->left_skip_ctx[row7] + s->above_skip_ctx[col];
  1380. b->skip = vp56_rac_get_prob(&s->c, s->prob.p.skip[c]);
  1381. s->counts.skip[c][b->skip]++;
  1382. }
  1383. if (s->keyframe || s->intraonly) {
  1384. b->intra = 1;
  1385. } else if (s->segmentation.feat[b->seg_id].ref_enabled) {
  1386. b->intra = !s->segmentation.feat[b->seg_id].ref_val;
  1387. } else {
  1388. int c, bit;
  1389. if (have_a && have_l) {
  1390. c = s->above_intra_ctx[col] + s->left_intra_ctx[row7];
  1391. c += (c == 2);
  1392. } else {
  1393. c = have_a ? 2 * s->above_intra_ctx[col] :
  1394. have_l ? 2 * s->left_intra_ctx[row7] : 0;
  1395. }
  1396. bit = vp56_rac_get_prob(&s->c, s->prob.p.intra[c]);
  1397. s->counts.intra[c][bit]++;
  1398. b->intra = !bit;
  1399. }
  1400. if ((b->intra || !b->skip) && s->txfmmode == TX_SWITCHABLE) {
  1401. int c;
  1402. if (have_a) {
  1403. if (have_l) {
  1404. c = (s->above_skip_ctx[col] ? max_tx :
  1405. s->above_txfm_ctx[col]) +
  1406. (s->left_skip_ctx[row7] ? max_tx :
  1407. s->left_txfm_ctx[row7]) > max_tx;
  1408. } else {
  1409. c = s->above_skip_ctx[col] ? 1 :
  1410. (s->above_txfm_ctx[col] * 2 > max_tx);
  1411. }
  1412. } else if (have_l) {
  1413. c = s->left_skip_ctx[row7] ? 1 :
  1414. (s->left_txfm_ctx[row7] * 2 > max_tx);
  1415. } else {
  1416. c = 1;
  1417. }
  1418. switch (max_tx) {
  1419. case TX_32X32:
  1420. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][0]);
  1421. if (b->tx) {
  1422. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][1]);
  1423. if (b->tx == 2)
  1424. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx32p[c][2]);
  1425. }
  1426. s->counts.tx32p[c][b->tx]++;
  1427. break;
  1428. case TX_16X16:
  1429. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][0]);
  1430. if (b->tx)
  1431. b->tx += vp56_rac_get_prob(&s->c, s->prob.p.tx16p[c][1]);
  1432. s->counts.tx16p[c][b->tx]++;
  1433. break;
  1434. case TX_8X8:
  1435. b->tx = vp56_rac_get_prob(&s->c, s->prob.p.tx8p[c]);
  1436. s->counts.tx8p[c][b->tx]++;
  1437. break;
  1438. case TX_4X4:
  1439. b->tx = TX_4X4;
  1440. break;
  1441. }
  1442. } else {
  1443. b->tx = FFMIN(max_tx, s->txfmmode);
  1444. }
  1445. if (s->keyframe || s->intraonly) {
  1446. uint8_t *a = &s->above_mode_ctx[col * 2];
  1447. uint8_t *l = &s->left_mode_ctx[(row7) << 1];
  1448. b->comp = 0;
  1449. if (b->bs > BS_8x8) {
  1450. // FIXME the memory storage intermediates here aren't really
  1451. // necessary, they're just there to make the code slightly
  1452. // simpler for now
  1453. b->mode[0] = a[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1454. vp9_default_kf_ymode_probs[a[0]][l[0]]);
  1455. if (b->bs != BS_8x4) {
  1456. b->mode[1] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1457. vp9_default_kf_ymode_probs[a[1]][b->mode[0]]);
  1458. l[0] = a[1] = b->mode[1];
  1459. } else {
  1460. l[0] = a[1] = b->mode[1] = b->mode[0];
  1461. }
  1462. if (b->bs != BS_4x8) {
  1463. b->mode[2] = a[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1464. vp9_default_kf_ymode_probs[a[0]][l[1]]);
  1465. if (b->bs != BS_8x4) {
  1466. b->mode[3] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1467. vp9_default_kf_ymode_probs[a[1]][b->mode[2]]);
  1468. l[1] = a[1] = b->mode[3];
  1469. } else {
  1470. l[1] = a[1] = b->mode[3] = b->mode[2];
  1471. }
  1472. } else {
  1473. b->mode[2] = b->mode[0];
  1474. l[1] = a[1] = b->mode[3] = b->mode[1];
  1475. }
  1476. } else {
  1477. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1478. vp9_default_kf_ymode_probs[*a][*l]);
  1479. b->mode[3] = b->mode[2] = b->mode[1] = b->mode[0];
  1480. // FIXME this can probably be optimized
  1481. memset(a, b->mode[0], bwh_tab[0][b->bs][0]);
  1482. memset(l, b->mode[0], bwh_tab[0][b->bs][1]);
  1483. }
  1484. b->uvmode = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1485. vp9_default_kf_uvmode_probs[b->mode[3]]);
  1486. } else if (b->intra) {
  1487. b->comp = 0;
  1488. if (b->bs > BS_8x8) {
  1489. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1490. s->prob.p.y_mode[0]);
  1491. s->counts.y_mode[0][b->mode[0]]++;
  1492. if (b->bs != BS_8x4) {
  1493. b->mode[1] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1494. s->prob.p.y_mode[0]);
  1495. s->counts.y_mode[0][b->mode[1]]++;
  1496. } else {
  1497. b->mode[1] = b->mode[0];
  1498. }
  1499. if (b->bs != BS_4x8) {
  1500. b->mode[2] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1501. s->prob.p.y_mode[0]);
  1502. s->counts.y_mode[0][b->mode[2]]++;
  1503. if (b->bs != BS_8x4) {
  1504. b->mode[3] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1505. s->prob.p.y_mode[0]);
  1506. s->counts.y_mode[0][b->mode[3]]++;
  1507. } else {
  1508. b->mode[3] = b->mode[2];
  1509. }
  1510. } else {
  1511. b->mode[2] = b->mode[0];
  1512. b->mode[3] = b->mode[1];
  1513. }
  1514. } else {
  1515. static const uint8_t size_group[10] = {
  1516. 3, 3, 3, 3, 2, 2, 2, 1, 1, 1
  1517. };
  1518. int sz = size_group[b->bs];
  1519. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1520. s->prob.p.y_mode[sz]);
  1521. b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0];
  1522. s->counts.y_mode[sz][b->mode[3]]++;
  1523. }
  1524. b->uvmode = vp8_rac_get_tree(&s->c, vp9_intramode_tree,
  1525. s->prob.p.uv_mode[b->mode[3]]);
  1526. s->counts.uv_mode[b->mode[3]][b->uvmode]++;
  1527. } else {
  1528. static const uint8_t inter_mode_ctx_lut[14][14] = {
  1529. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1530. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1531. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1532. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1533. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1534. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1535. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1536. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1537. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1538. { 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5 },
  1539. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
  1540. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 2, 1, 3 },
  1541. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 0, 3 },
  1542. { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 3, 3, 4 },
  1543. };
  1544. if (s->segmentation.feat[b->seg_id].ref_enabled) {
  1545. av_assert2(s->segmentation.feat[b->seg_id].ref_val != 0);
  1546. b->comp = 0;
  1547. b->ref[0] = s->segmentation.feat[b->seg_id].ref_val - 1;
  1548. } else {
  1549. // read comp_pred flag
  1550. if (s->comppredmode != PRED_SWITCHABLE) {
  1551. b->comp = s->comppredmode == PRED_COMPREF;
  1552. } else {
  1553. int c;
  1554. // FIXME add intra as ref=0xff (or -1) to make these easier?
  1555. if (have_a) {
  1556. if (have_l) {
  1557. if (s->above_comp_ctx[col] && s->left_comp_ctx[row7]) {
  1558. c = 4;
  1559. } else if (s->above_comp_ctx[col]) {
  1560. c = 2 + (s->left_intra_ctx[row7] ||
  1561. s->left_ref_ctx[row7] == s->fixcompref);
  1562. } else if (s->left_comp_ctx[row7]) {
  1563. c = 2 + (s->above_intra_ctx[col] ||
  1564. s->above_ref_ctx[col] == s->fixcompref);
  1565. } else {
  1566. c = (!s->above_intra_ctx[col] &&
  1567. s->above_ref_ctx[col] == s->fixcompref) ^
  1568. (!s->left_intra_ctx[row7] &&
  1569. s->left_ref_ctx[row & 7] == s->fixcompref);
  1570. }
  1571. } else {
  1572. c = s->above_comp_ctx[col] ? 3 :
  1573. (!s->above_intra_ctx[col] && s->above_ref_ctx[col] == s->fixcompref);
  1574. }
  1575. } else if (have_l) {
  1576. c = s->left_comp_ctx[row7] ? 3 :
  1577. (!s->left_intra_ctx[row7] && s->left_ref_ctx[row7] == s->fixcompref);
  1578. } else {
  1579. c = 1;
  1580. }
  1581. b->comp = vp56_rac_get_prob(&s->c, s->prob.p.comp[c]);
  1582. s->counts.comp[c][b->comp]++;
  1583. }
  1584. // read actual references
  1585. // FIXME probably cache a few variables here to prevent repetitive
  1586. // memory accesses below
  1587. if (b->comp) /* two references */ {
  1588. int fix_idx = s->signbias[s->fixcompref], var_idx = !fix_idx, c, bit;
  1589. b->ref[fix_idx] = s->fixcompref;
  1590. // FIXME can this codeblob be replaced by some sort of LUT?
  1591. if (have_a) {
  1592. if (have_l) {
  1593. if (s->above_intra_ctx[col]) {
  1594. if (s->left_intra_ctx[row7]) {
  1595. c = 2;
  1596. } else {
  1597. c = 1 + 2 * (s->left_ref_ctx[row7] != s->varcompref[1]);
  1598. }
  1599. } else if (s->left_intra_ctx[row7]) {
  1600. c = 1 + 2 * (s->above_ref_ctx[col] != s->varcompref[1]);
  1601. } else {
  1602. int refl = s->left_ref_ctx[row7], refa = s->above_ref_ctx[col];
  1603. if (refl == refa && refa == s->varcompref[1]) {
  1604. c = 0;
  1605. } else if (!s->left_comp_ctx[row7] && !s->above_comp_ctx[col]) {
  1606. if ((refa == s->fixcompref && refl == s->varcompref[0]) ||
  1607. (refl == s->fixcompref && refa == s->varcompref[0])) {
  1608. c = 4;
  1609. } else {
  1610. c = (refa == refl) ? 3 : 1;
  1611. }
  1612. } else if (!s->left_comp_ctx[row7]) {
  1613. if (refa == s->varcompref[1] && refl != s->varcompref[1]) {
  1614. c = 1;
  1615. } else {
  1616. c = (refl == s->varcompref[1] &&
  1617. refa != s->varcompref[1]) ? 2 : 4;
  1618. }
  1619. } else if (!s->above_comp_ctx[col]) {
  1620. if (refl == s->varcompref[1] && refa != s->varcompref[1]) {
  1621. c = 1;
  1622. } else {
  1623. c = (refa == s->varcompref[1] &&
  1624. refl != s->varcompref[1]) ? 2 : 4;
  1625. }
  1626. } else {
  1627. c = (refl == refa) ? 4 : 2;
  1628. }
  1629. }
  1630. } else {
  1631. if (s->above_intra_ctx[col]) {
  1632. c = 2;
  1633. } else if (s->above_comp_ctx[col]) {
  1634. c = 4 * (s->above_ref_ctx[col] != s->varcompref[1]);
  1635. } else {
  1636. c = 3 * (s->above_ref_ctx[col] != s->varcompref[1]);
  1637. }
  1638. }
  1639. } else if (have_l) {
  1640. if (s->left_intra_ctx[row7]) {
  1641. c = 2;
  1642. } else if (s->left_comp_ctx[row7]) {
  1643. c = 4 * (s->left_ref_ctx[row7] != s->varcompref[1]);
  1644. } else {
  1645. c = 3 * (s->left_ref_ctx[row7] != s->varcompref[1]);
  1646. }
  1647. } else {
  1648. c = 2;
  1649. }
  1650. bit = vp56_rac_get_prob(&s->c, s->prob.p.comp_ref[c]);
  1651. b->ref[var_idx] = s->varcompref[bit];
  1652. s->counts.comp_ref[c][bit]++;
  1653. } else /* single reference */ {
  1654. int bit, c;
  1655. if (have_a && !s->above_intra_ctx[col]) {
  1656. if (have_l && !s->left_intra_ctx[row7]) {
  1657. if (s->left_comp_ctx[row7]) {
  1658. if (s->above_comp_ctx[col]) {
  1659. c = 1 + (!s->fixcompref || !s->left_ref_ctx[row7] ||
  1660. !s->above_ref_ctx[col]);
  1661. } else {
  1662. c = (3 * !s->above_ref_ctx[col]) +
  1663. (!s->fixcompref || !s->left_ref_ctx[row7]);
  1664. }
  1665. } else if (s->above_comp_ctx[col]) {
  1666. c = (3 * !s->left_ref_ctx[row7]) +
  1667. (!s->fixcompref || !s->above_ref_ctx[col]);
  1668. } else {
  1669. c = 2 * !s->left_ref_ctx[row7] + 2 * !s->above_ref_ctx[col];
  1670. }
  1671. } else if (s->above_intra_ctx[col]) {
  1672. c = 2;
  1673. } else if (s->above_comp_ctx[col]) {
  1674. c = 1 + (!s->fixcompref || !s->above_ref_ctx[col]);
  1675. } else {
  1676. c = 4 * (!s->above_ref_ctx[col]);
  1677. }
  1678. } else if (have_l && !s->left_intra_ctx[row7]) {
  1679. if (s->left_intra_ctx[row7]) {
  1680. c = 2;
  1681. } else if (s->left_comp_ctx[row7]) {
  1682. c = 1 + (!s->fixcompref || !s->left_ref_ctx[row7]);
  1683. } else {
  1684. c = 4 * (!s->left_ref_ctx[row7]);
  1685. }
  1686. } else {
  1687. c = 2;
  1688. }
  1689. bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][0]);
  1690. s->counts.single_ref[c][0][bit]++;
  1691. if (!bit) {
  1692. b->ref[0] = 0;
  1693. } else {
  1694. // FIXME can this codeblob be replaced by some sort of LUT?
  1695. if (have_a) {
  1696. if (have_l) {
  1697. if (s->left_intra_ctx[row7]) {
  1698. if (s->above_intra_ctx[col]) {
  1699. c = 2;
  1700. } else if (s->above_comp_ctx[col]) {
  1701. c = 1 + 2 * (s->fixcompref == 1 ||
  1702. s->above_ref_ctx[col] == 1);
  1703. } else if (!s->above_ref_ctx[col]) {
  1704. c = 3;
  1705. } else {
  1706. c = 4 * (s->above_ref_ctx[col] == 1);
  1707. }
  1708. } else if (s->above_intra_ctx[col]) {
  1709. if (s->left_intra_ctx[row7]) {
  1710. c = 2;
  1711. } else if (s->left_comp_ctx[row7]) {
  1712. c = 1 + 2 * (s->fixcompref == 1 ||
  1713. s->left_ref_ctx[row7] == 1);
  1714. } else if (!s->left_ref_ctx[row7]) {
  1715. c = 3;
  1716. } else {
  1717. c = 4 * (s->left_ref_ctx[row7] == 1);
  1718. }
  1719. } else if (s->above_comp_ctx[col]) {
  1720. if (s->left_comp_ctx[row7]) {
  1721. if (s->left_ref_ctx[row7] == s->above_ref_ctx[col]) {
  1722. c = 3 * (s->fixcompref == 1 ||
  1723. s->left_ref_ctx[row7] == 1);
  1724. } else {
  1725. c = 2;
  1726. }
  1727. } else if (!s->left_ref_ctx[row7]) {
  1728. c = 1 + 2 * (s->fixcompref == 1 ||
  1729. s->above_ref_ctx[col] == 1);
  1730. } else {
  1731. c = 3 * (s->left_ref_ctx[row7] == 1) +
  1732. (s->fixcompref == 1 || s->above_ref_ctx[col] == 1);
  1733. }
  1734. } else if (s->left_comp_ctx[row7]) {
  1735. if (!s->above_ref_ctx[col]) {
  1736. c = 1 + 2 * (s->fixcompref == 1 ||
  1737. s->left_ref_ctx[row7] == 1);
  1738. } else {
  1739. c = 3 * (s->above_ref_ctx[col] == 1) +
  1740. (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1);
  1741. }
  1742. } else if (!s->above_ref_ctx[col]) {
  1743. if (!s->left_ref_ctx[row7]) {
  1744. c = 3;
  1745. } else {
  1746. c = 4 * (s->left_ref_ctx[row7] == 1);
  1747. }
  1748. } else if (!s->left_ref_ctx[row7]) {
  1749. c = 4 * (s->above_ref_ctx[col] == 1);
  1750. } else {
  1751. c = 2 * (s->left_ref_ctx[row7] == 1) +
  1752. 2 * (s->above_ref_ctx[col] == 1);
  1753. }
  1754. } else {
  1755. if (s->above_intra_ctx[col] ||
  1756. (!s->above_comp_ctx[col] && !s->above_ref_ctx[col])) {
  1757. c = 2;
  1758. } else if (s->above_comp_ctx[col]) {
  1759. c = 3 * (s->fixcompref == 1 || s->above_ref_ctx[col] == 1);
  1760. } else {
  1761. c = 4 * (s->above_ref_ctx[col] == 1);
  1762. }
  1763. }
  1764. } else if (have_l) {
  1765. if (s->left_intra_ctx[row7] ||
  1766. (!s->left_comp_ctx[row7] && !s->left_ref_ctx[row7])) {
  1767. c = 2;
  1768. } else if (s->left_comp_ctx[row7]) {
  1769. c = 3 * (s->fixcompref == 1 || s->left_ref_ctx[row7] == 1);
  1770. } else {
  1771. c = 4 * (s->left_ref_ctx[row7] == 1);
  1772. }
  1773. } else {
  1774. c = 2;
  1775. }
  1776. bit = vp56_rac_get_prob(&s->c, s->prob.p.single_ref[c][1]);
  1777. s->counts.single_ref[c][1][bit]++;
  1778. b->ref[0] = 1 + bit;
  1779. }
  1780. }
  1781. }
  1782. if (b->bs <= BS_8x8) {
  1783. if (s->segmentation.feat[b->seg_id].skip_enabled) {
  1784. b->mode[0] = b->mode[1] = b->mode[2] = b->mode[3] = ZEROMV;
  1785. } else {
  1786. static const uint8_t off[10] = {
  1787. 3, 0, 0, 1, 0, 0, 0, 0, 0, 0
  1788. };
  1789. // FIXME this needs to use the LUT tables from find_ref_mvs
  1790. // because not all are -1,0/0,-1
  1791. int c = inter_mode_ctx_lut[s->above_mode_ctx[col + off[b->bs]]]
  1792. [s->left_mode_ctx[row7 + off[b->bs]]];
  1793. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1794. s->prob.p.mv_mode[c]);
  1795. b->mode[1] = b->mode[2] = b->mode[3] = b->mode[0];
  1796. s->counts.mv_mode[c][b->mode[0] - 10]++;
  1797. }
  1798. }
  1799. if (s->filtermode == FILTER_SWITCHABLE) {
  1800. int c;
  1801. if (have_a && s->above_mode_ctx[col] >= NEARESTMV) {
  1802. if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
  1803. c = s->above_filter_ctx[col] == s->left_filter_ctx[row7] ?
  1804. s->left_filter_ctx[row7] : 3;
  1805. } else {
  1806. c = s->above_filter_ctx[col];
  1807. }
  1808. } else if (have_l && s->left_mode_ctx[row7] >= NEARESTMV) {
  1809. c = s->left_filter_ctx[row7];
  1810. } else {
  1811. c = 3;
  1812. }
  1813. filter_id = vp8_rac_get_tree(&s->c, vp9_filter_tree,
  1814. s->prob.p.filter[c]);
  1815. s->counts.filter[c][filter_id]++;
  1816. b->filter = vp9_filter_lut[filter_id];
  1817. } else {
  1818. b->filter = s->filtermode;
  1819. }
  1820. if (b->bs > BS_8x8) {
  1821. int c = inter_mode_ctx_lut[s->above_mode_ctx[col]][s->left_mode_ctx[row7]];
  1822. b->mode[0] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1823. s->prob.p.mv_mode[c]);
  1824. s->counts.mv_mode[c][b->mode[0] - 10]++;
  1825. fill_mv(s, b->mv[0], b->mode[0], 0);
  1826. if (b->bs != BS_8x4) {
  1827. b->mode[1] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1828. s->prob.p.mv_mode[c]);
  1829. s->counts.mv_mode[c][b->mode[1] - 10]++;
  1830. fill_mv(s, b->mv[1], b->mode[1], 1);
  1831. } else {
  1832. b->mode[1] = b->mode[0];
  1833. AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
  1834. AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
  1835. }
  1836. if (b->bs != BS_4x8) {
  1837. b->mode[2] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1838. s->prob.p.mv_mode[c]);
  1839. s->counts.mv_mode[c][b->mode[2] - 10]++;
  1840. fill_mv(s, b->mv[2], b->mode[2], 2);
  1841. if (b->bs != BS_8x4) {
  1842. b->mode[3] = vp8_rac_get_tree(&s->c, vp9_inter_mode_tree,
  1843. s->prob.p.mv_mode[c]);
  1844. s->counts.mv_mode[c][b->mode[3] - 10]++;
  1845. fill_mv(s, b->mv[3], b->mode[3], 3);
  1846. } else {
  1847. b->mode[3] = b->mode[2];
  1848. AV_COPY32(&b->mv[3][0], &b->mv[2][0]);
  1849. AV_COPY32(&b->mv[3][1], &b->mv[2][1]);
  1850. }
  1851. } else {
  1852. b->mode[2] = b->mode[0];
  1853. AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
  1854. AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
  1855. b->mode[3] = b->mode[1];
  1856. AV_COPY32(&b->mv[3][0], &b->mv[1][0]);
  1857. AV_COPY32(&b->mv[3][1], &b->mv[1][1]);
  1858. }
  1859. } else {
  1860. fill_mv(s, b->mv[0], b->mode[0], -1);
  1861. AV_COPY32(&b->mv[1][0], &b->mv[0][0]);
  1862. AV_COPY32(&b->mv[2][0], &b->mv[0][0]);
  1863. AV_COPY32(&b->mv[3][0], &b->mv[0][0]);
  1864. AV_COPY32(&b->mv[1][1], &b->mv[0][1]);
  1865. AV_COPY32(&b->mv[2][1], &b->mv[0][1]);
  1866. AV_COPY32(&b->mv[3][1], &b->mv[0][1]);
  1867. }
  1868. vref = b->ref[b->comp ? s->signbias[s->varcompref[0]] : 0];
  1869. }
  1870. #if HAVE_FAST_64BIT
  1871. #define SPLAT_CTX(var, val, n) \
  1872. switch (n) { \
  1873. case 1: var = val; break; \
  1874. case 2: AV_WN16A(&var, val * 0x0101); break; \
  1875. case 4: AV_WN32A(&var, val * 0x01010101); break; \
  1876. case 8: AV_WN64A(&var, val * 0x0101010101010101ULL); break; \
  1877. case 16: { \
  1878. uint64_t v64 = val * 0x0101010101010101ULL; \
  1879. AV_WN64A( &var, v64); \
  1880. AV_WN64A(&((uint8_t *) &var)[8], v64); \
  1881. break; \
  1882. } \
  1883. }
  1884. #else
  1885. #define SPLAT_CTX(var, val, n) \
  1886. switch (n) { \
  1887. case 1: var = val; break; \
  1888. case 2: AV_WN16A(&var, val * 0x0101); break; \
  1889. case 4: AV_WN32A(&var, val * 0x01010101); break; \
  1890. case 8: { \
  1891. uint32_t v32 = val * 0x01010101; \
  1892. AV_WN32A( &var, v32); \
  1893. AV_WN32A(&((uint8_t *) &var)[4], v32); \
  1894. break; \
  1895. } \
  1896. case 16: { \
  1897. uint32_t v32 = val * 0x01010101; \
  1898. AV_WN32A( &var, v32); \
  1899. AV_WN32A(&((uint8_t *) &var)[4], v32); \
  1900. AV_WN32A(&((uint8_t *) &var)[8], v32); \
  1901. AV_WN32A(&((uint8_t *) &var)[12], v32); \
  1902. break; \
  1903. } \
  1904. }
  1905. #endif
  1906. switch (bwh_tab[1][b->bs][0]) {
  1907. #define SET_CTXS(dir, off, n) \
  1908. do { \
  1909. SPLAT_CTX(s->dir##_skip_ctx[off], b->skip, n); \
  1910. SPLAT_CTX(s->dir##_txfm_ctx[off], b->tx, n); \
  1911. SPLAT_CTX(s->dir##_partition_ctx[off], dir##_ctx[b->bs], n); \
  1912. if (!s->keyframe && !s->intraonly) { \
  1913. SPLAT_CTX(s->dir##_intra_ctx[off], b->intra, n); \
  1914. SPLAT_CTX(s->dir##_comp_ctx[off], b->comp, n); \
  1915. SPLAT_CTX(s->dir##_mode_ctx[off], b->mode[3], n); \
  1916. if (!b->intra) { \
  1917. SPLAT_CTX(s->dir##_ref_ctx[off], vref, n); \
  1918. if (s->filtermode == FILTER_SWITCHABLE) { \
  1919. SPLAT_CTX(s->dir##_filter_ctx[off], filter_id, n); \
  1920. } \
  1921. } \
  1922. } \
  1923. } while (0)
  1924. case 1: SET_CTXS(above, col, 1); break;
  1925. case 2: SET_CTXS(above, col, 2); break;
  1926. case 4: SET_CTXS(above, col, 4); break;
  1927. case 8: SET_CTXS(above, col, 8); break;
  1928. }
  1929. switch (bwh_tab[1][b->bs][1]) {
  1930. case 1: SET_CTXS(left, row7, 1); break;
  1931. case 2: SET_CTXS(left, row7, 2); break;
  1932. case 4: SET_CTXS(left, row7, 4); break;
  1933. case 8: SET_CTXS(left, row7, 8); break;
  1934. }
  1935. #undef SPLAT_CTX
  1936. #undef SET_CTXS
  1937. if (!s->keyframe && !s->intraonly) {
  1938. if (b->bs > BS_8x8) {
  1939. int mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
  1940. AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][0], &b->mv[1][0]);
  1941. AV_COPY32(&s->left_mv_ctx[row7 * 2 + 0][1], &b->mv[1][1]);
  1942. AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][0], mv0);
  1943. AV_WN32A(&s->left_mv_ctx[row7 * 2 + 1][1], mv1);
  1944. AV_COPY32(&s->above_mv_ctx[col * 2 + 0][0], &b->mv[2][0]);
  1945. AV_COPY32(&s->above_mv_ctx[col * 2 + 0][1], &b->mv[2][1]);
  1946. AV_WN32A(&s->above_mv_ctx[col * 2 + 1][0], mv0);
  1947. AV_WN32A(&s->above_mv_ctx[col * 2 + 1][1], mv1);
  1948. } else {
  1949. int n, mv0 = AV_RN32A(&b->mv[3][0]), mv1 = AV_RN32A(&b->mv[3][1]);
  1950. for (n = 0; n < w4 * 2; n++) {
  1951. AV_WN32A(&s->above_mv_ctx[col * 2 + n][0], mv0);
  1952. AV_WN32A(&s->above_mv_ctx[col * 2 + n][1], mv1);
  1953. }
  1954. for (n = 0; n < h4 * 2; n++) {
  1955. AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][0], mv0);
  1956. AV_WN32A(&s->left_mv_ctx[row7 * 2 + n][1], mv1);
  1957. }
  1958. }
  1959. }
  1960. // FIXME kinda ugly
  1961. for (y = 0; y < h4; y++) {
  1962. int x, o = (row + y) * s->sb_cols * 8 + col;
  1963. struct VP9mvrefPair *mv = &s->frames[CUR_FRAME].mv[o];
  1964. if (b->intra) {
  1965. for (x = 0; x < w4; x++) {
  1966. mv[x].ref[0] =
  1967. mv[x].ref[1] = -1;
  1968. }
  1969. } else if (b->comp) {
  1970. for (x = 0; x < w4; x++) {
  1971. mv[x].ref[0] = b->ref[0];
  1972. mv[x].ref[1] = b->ref[1];
  1973. AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
  1974. AV_COPY32(&mv[x].mv[1], &b->mv[3][1]);
  1975. }
  1976. } else {
  1977. for (x = 0; x < w4; x++) {
  1978. mv[x].ref[0] = b->ref[0];
  1979. mv[x].ref[1] = -1;
  1980. AV_COPY32(&mv[x].mv[0], &b->mv[3][0]);
  1981. }
  1982. }
  1983. }
  1984. }
  1985. // FIXME merge cnt/eob arguments?
  1986. static av_always_inline int
  1987. decode_coeffs_b_generic(VP56RangeCoder *c, int16_t *coef, int n_coeffs,
  1988. int is_tx32x32, int is8bitsperpixel, int bpp, unsigned (*cnt)[6][3],
  1989. unsigned (*eob)[6][2], uint8_t (*p)[6][11],
  1990. int nnz, const int16_t *scan, const int16_t (*nb)[2],
  1991. const int16_t *band_counts, const int16_t *qmul)
  1992. {
  1993. int i = 0, band = 0, band_left = band_counts[band];
  1994. uint8_t *tp = p[0][nnz];
  1995. uint8_t cache[1024];
  1996. do {
  1997. int val, rc;
  1998. val = vp56_rac_get_prob_branchy(c, tp[0]); // eob
  1999. eob[band][nnz][val]++;
  2000. if (!val)
  2001. break;
  2002. skip_eob:
  2003. if (!vp56_rac_get_prob_branchy(c, tp[1])) { // zero
  2004. cnt[band][nnz][0]++;
  2005. if (!--band_left)
  2006. band_left = band_counts[++band];
  2007. cache[scan[i]] = 0;
  2008. nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
  2009. tp = p[band][nnz];
  2010. if (++i == n_coeffs)
  2011. break; //invalid input; blocks should end with EOB
  2012. goto skip_eob;
  2013. }
  2014. rc = scan[i];
  2015. if (!vp56_rac_get_prob_branchy(c, tp[2])) { // one
  2016. cnt[band][nnz][1]++;
  2017. val = 1;
  2018. cache[rc] = 1;
  2019. } else {
  2020. // fill in p[3-10] (model fill) - only once per frame for each pos
  2021. if (!tp[3])
  2022. memcpy(&tp[3], vp9_model_pareto8[tp[2]], 8);
  2023. cnt[band][nnz][2]++;
  2024. if (!vp56_rac_get_prob_branchy(c, tp[3])) { // 2, 3, 4
  2025. if (!vp56_rac_get_prob_branchy(c, tp[4])) {
  2026. cache[rc] = val = 2;
  2027. } else {
  2028. val = 3 + vp56_rac_get_prob(c, tp[5]);
  2029. cache[rc] = 3;
  2030. }
  2031. } else if (!vp56_rac_get_prob_branchy(c, tp[6])) { // cat1/2
  2032. cache[rc] = 4;
  2033. if (!vp56_rac_get_prob_branchy(c, tp[7])) {
  2034. val = 5 + vp56_rac_get_prob(c, 159);
  2035. } else {
  2036. val = 7 + (vp56_rac_get_prob(c, 165) << 1);
  2037. val += vp56_rac_get_prob(c, 145);
  2038. }
  2039. } else { // cat 3-6
  2040. cache[rc] = 5;
  2041. if (!vp56_rac_get_prob_branchy(c, tp[8])) {
  2042. if (!vp56_rac_get_prob_branchy(c, tp[9])) {
  2043. val = 11 + (vp56_rac_get_prob(c, 173) << 2);
  2044. val += (vp56_rac_get_prob(c, 148) << 1);
  2045. val += vp56_rac_get_prob(c, 140);
  2046. } else {
  2047. val = 19 + (vp56_rac_get_prob(c, 176) << 3);
  2048. val += (vp56_rac_get_prob(c, 155) << 2);
  2049. val += (vp56_rac_get_prob(c, 140) << 1);
  2050. val += vp56_rac_get_prob(c, 135);
  2051. }
  2052. } else if (!vp56_rac_get_prob_branchy(c, tp[10])) {
  2053. val = 35 + (vp56_rac_get_prob(c, 180) << 4);
  2054. val += (vp56_rac_get_prob(c, 157) << 3);
  2055. val += (vp56_rac_get_prob(c, 141) << 2);
  2056. val += (vp56_rac_get_prob(c, 134) << 1);
  2057. val += vp56_rac_get_prob(c, 130);
  2058. } else {
  2059. val = 67;
  2060. if (!is8bitsperpixel) {
  2061. if (bpp == 12) {
  2062. val += vp56_rac_get_prob(c, 255) << 17;
  2063. val += vp56_rac_get_prob(c, 255) << 16;
  2064. }
  2065. val += (vp56_rac_get_prob(c, 255) << 15);
  2066. val += (vp56_rac_get_prob(c, 255) << 14);
  2067. }
  2068. val += (vp56_rac_get_prob(c, 254) << 13);
  2069. val += (vp56_rac_get_prob(c, 254) << 12);
  2070. val += (vp56_rac_get_prob(c, 254) << 11);
  2071. val += (vp56_rac_get_prob(c, 252) << 10);
  2072. val += (vp56_rac_get_prob(c, 249) << 9);
  2073. val += (vp56_rac_get_prob(c, 243) << 8);
  2074. val += (vp56_rac_get_prob(c, 230) << 7);
  2075. val += (vp56_rac_get_prob(c, 196) << 6);
  2076. val += (vp56_rac_get_prob(c, 177) << 5);
  2077. val += (vp56_rac_get_prob(c, 153) << 4);
  2078. val += (vp56_rac_get_prob(c, 140) << 3);
  2079. val += (vp56_rac_get_prob(c, 133) << 2);
  2080. val += (vp56_rac_get_prob(c, 130) << 1);
  2081. val += vp56_rac_get_prob(c, 129);
  2082. }
  2083. }
  2084. }
  2085. #define STORE_COEF(c, i, v) do { \
  2086. if (is8bitsperpixel) { \
  2087. c[i] = v; \
  2088. } else { \
  2089. AV_WN32A(&c[i * 2], v); \
  2090. } \
  2091. } while (0)
  2092. if (!--band_left)
  2093. band_left = band_counts[++band];
  2094. if (is_tx32x32)
  2095. STORE_COEF(coef, rc, ((vp8_rac_get(c) ? -val : val) * qmul[!!i]) / 2);
  2096. else
  2097. STORE_COEF(coef, rc, (vp8_rac_get(c) ? -val : val) * qmul[!!i]);
  2098. nnz = (1 + cache[nb[i][0]] + cache[nb[i][1]]) >> 1;
  2099. tp = p[band][nnz];
  2100. } while (++i < n_coeffs);
  2101. return i;
  2102. }
  2103. static int decode_coeffs_b_8bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2104. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2105. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2106. const int16_t (*nb)[2], const int16_t *band_counts,
  2107. const int16_t *qmul)
  2108. {
  2109. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 0, 1, 8, cnt, eob, p,
  2110. nnz, scan, nb, band_counts, qmul);
  2111. }
  2112. static int decode_coeffs_b32_8bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2113. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2114. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2115. const int16_t (*nb)[2], const int16_t *band_counts,
  2116. const int16_t *qmul)
  2117. {
  2118. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 1, 1, 8, cnt, eob, p,
  2119. nnz, scan, nb, band_counts, qmul);
  2120. }
  2121. static int decode_coeffs_b_16bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2122. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2123. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2124. const int16_t (*nb)[2], const int16_t *band_counts,
  2125. const int16_t *qmul)
  2126. {
  2127. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 0, 0, s->bpp, cnt, eob, p,
  2128. nnz, scan, nb, band_counts, qmul);
  2129. }
  2130. static int decode_coeffs_b32_16bpp(VP9Context *s, int16_t *coef, int n_coeffs,
  2131. unsigned (*cnt)[6][3], unsigned (*eob)[6][2],
  2132. uint8_t (*p)[6][11], int nnz, const int16_t *scan,
  2133. const int16_t (*nb)[2], const int16_t *band_counts,
  2134. const int16_t *qmul)
  2135. {
  2136. return decode_coeffs_b_generic(&s->c, coef, n_coeffs, 1, 0, s->bpp, cnt, eob, p,
  2137. nnz, scan, nb, band_counts, qmul);
  2138. }
  2139. static av_always_inline void decode_coeffs(AVCodecContext *ctx, int is8bitsperpixel)
  2140. {
  2141. VP9Context *s = ctx->priv_data;
  2142. VP9Block *b = s->b;
  2143. int row = s->row, col = s->col;
  2144. uint8_t (*p)[6][11] = s->prob.coef[b->tx][0 /* y */][!b->intra];
  2145. unsigned (*c)[6][3] = s->counts.coef[b->tx][0 /* y */][!b->intra];
  2146. unsigned (*e)[6][2] = s->counts.eob[b->tx][0 /* y */][!b->intra];
  2147. int w4 = bwh_tab[1][b->bs][0] << 1, h4 = bwh_tab[1][b->bs][1] << 1;
  2148. int end_x = FFMIN(2 * (s->cols - col), w4);
  2149. int end_y = FFMIN(2 * (s->rows - row), h4);
  2150. int n, pl, x, y, res;
  2151. int16_t (*qmul)[2] = s->segmentation.feat[b->seg_id].qmul;
  2152. int tx = 4 * s->lossless + b->tx;
  2153. const int16_t * const *yscans = vp9_scans[tx];
  2154. const int16_t (* const *ynbs)[2] = vp9_scans_nb[tx];
  2155. const int16_t *uvscan = vp9_scans[b->uvtx][DCT_DCT];
  2156. const int16_t (*uvnb)[2] = vp9_scans_nb[b->uvtx][DCT_DCT];
  2157. uint8_t *a = &s->above_y_nnz_ctx[col * 2];
  2158. uint8_t *l = &s->left_y_nnz_ctx[(row & 7) << 1];
  2159. static const int16_t band_counts[4][8] = {
  2160. { 1, 2, 3, 4, 3, 16 - 13 },
  2161. { 1, 2, 3, 4, 11, 64 - 21 },
  2162. { 1, 2, 3, 4, 11, 256 - 21 },
  2163. { 1, 2, 3, 4, 11, 1024 - 21 },
  2164. };
  2165. const int16_t *y_band_counts = band_counts[b->tx];
  2166. const int16_t *uv_band_counts = band_counts[b->uvtx];
  2167. int bytesperpixel = is8bitsperpixel ? 1 : 2;
  2168. #define MERGE(la, end, step, rd) \
  2169. for (n = 0; n < end; n += step) \
  2170. la[n] = !!rd(&la[n])
  2171. #define MERGE_CTX(step, rd) \
  2172. do { \
  2173. MERGE(l, end_y, step, rd); \
  2174. MERGE(a, end_x, step, rd); \
  2175. } while (0)
  2176. #define DECODE_Y_COEF_LOOP(step, mode_index, v) \
  2177. for (n = 0, y = 0; y < end_y; y += step) { \
  2178. for (x = 0; x < end_x; x += step, n += step * step) { \
  2179. enum TxfmType txtp = vp9_intra_txfm_type[b->mode[mode_index]]; \
  2180. res = (is8bitsperpixel ? decode_coeffs_b##v##_8bpp : decode_coeffs_b##v##_16bpp) \
  2181. (s, s->block + 16 * n * bytesperpixel, 16 * step * step, \
  2182. c, e, p, a[x] + l[y], yscans[txtp], \
  2183. ynbs[txtp], y_band_counts, qmul[0]); \
  2184. a[x] = l[y] = !!res; \
  2185. if (step >= 4) { \
  2186. AV_WN16A(&s->eob[n], res); \
  2187. } else { \
  2188. s->eob[n] = res; \
  2189. } \
  2190. } \
  2191. }
  2192. #define SPLAT(la, end, step, cond) \
  2193. if (step == 2) { \
  2194. for (n = 1; n < end; n += step) \
  2195. la[n] = la[n - 1]; \
  2196. } else if (step == 4) { \
  2197. if (cond) { \
  2198. for (n = 0; n < end; n += step) \
  2199. AV_WN32A(&la[n], la[n] * 0x01010101); \
  2200. } else { \
  2201. for (n = 0; n < end; n += step) \
  2202. memset(&la[n + 1], la[n], FFMIN(end - n - 1, 3)); \
  2203. } \
  2204. } else /* step == 8 */ { \
  2205. if (cond) { \
  2206. if (HAVE_FAST_64BIT) { \
  2207. for (n = 0; n < end; n += step) \
  2208. AV_WN64A(&la[n], la[n] * 0x0101010101010101ULL); \
  2209. } else { \
  2210. for (n = 0; n < end; n += step) { \
  2211. uint32_t v32 = la[n] * 0x01010101; \
  2212. AV_WN32A(&la[n], v32); \
  2213. AV_WN32A(&la[n + 4], v32); \
  2214. } \
  2215. } \
  2216. } else { \
  2217. for (n = 0; n < end; n += step) \
  2218. memset(&la[n + 1], la[n], FFMIN(end - n - 1, 7)); \
  2219. } \
  2220. }
  2221. #define SPLAT_CTX(step) \
  2222. do { \
  2223. SPLAT(a, end_x, step, end_x == w4); \
  2224. SPLAT(l, end_y, step, end_y == h4); \
  2225. } while (0)
  2226. /* y tokens */
  2227. switch (b->tx) {
  2228. case TX_4X4:
  2229. DECODE_Y_COEF_LOOP(1, b->bs > BS_8x8 ? n : 0,);
  2230. break;
  2231. case TX_8X8:
  2232. MERGE_CTX(2, AV_RN16A);
  2233. DECODE_Y_COEF_LOOP(2, 0,);
  2234. SPLAT_CTX(2);
  2235. break;
  2236. case TX_16X16:
  2237. MERGE_CTX(4, AV_RN32A);
  2238. DECODE_Y_COEF_LOOP(4, 0,);
  2239. SPLAT_CTX(4);
  2240. break;
  2241. case TX_32X32:
  2242. MERGE_CTX(8, AV_RN64A);
  2243. DECODE_Y_COEF_LOOP(8, 0, 32);
  2244. SPLAT_CTX(8);
  2245. break;
  2246. }
  2247. #define DECODE_UV_COEF_LOOP(step, v) \
  2248. for (n = 0, y = 0; y < end_y; y += step) { \
  2249. for (x = 0; x < end_x; x += step, n += step * step) { \
  2250. res = (is8bitsperpixel ? decode_coeffs_b##v##_8bpp : decode_coeffs_b##v##_16bpp) \
  2251. (s, s->uvblock[pl] + 16 * n * bytesperpixel, \
  2252. 16 * step * step, c, e, p, a[x] + l[y], \
  2253. uvscan, uvnb, uv_band_counts, qmul[1]); \
  2254. a[x] = l[y] = !!res; \
  2255. if (step >= 4) { \
  2256. AV_WN16A(&s->uveob[pl][n], res); \
  2257. } else { \
  2258. s->uveob[pl][n] = res; \
  2259. } \
  2260. } \
  2261. }
  2262. p = s->prob.coef[b->uvtx][1 /* uv */][!b->intra];
  2263. c = s->counts.coef[b->uvtx][1 /* uv */][!b->intra];
  2264. e = s->counts.eob[b->uvtx][1 /* uv */][!b->intra];
  2265. w4 >>= s->ss_h;
  2266. end_x >>= s->ss_h;
  2267. h4 >>= s->ss_v;
  2268. end_y >>= s->ss_v;
  2269. for (pl = 0; pl < 2; pl++) {
  2270. a = &s->above_uv_nnz_ctx[pl][col << !s->ss_h];
  2271. l = &s->left_uv_nnz_ctx[pl][(row & 7) << !s->ss_v];
  2272. switch (b->uvtx) {
  2273. case TX_4X4:
  2274. DECODE_UV_COEF_LOOP(1,);
  2275. break;
  2276. case TX_8X8:
  2277. MERGE_CTX(2, AV_RN16A);
  2278. DECODE_UV_COEF_LOOP(2,);
  2279. SPLAT_CTX(2);
  2280. break;
  2281. case TX_16X16:
  2282. MERGE_CTX(4, AV_RN32A);
  2283. DECODE_UV_COEF_LOOP(4,);
  2284. SPLAT_CTX(4);
  2285. break;
  2286. case TX_32X32:
  2287. MERGE_CTX(8, AV_RN64A);
  2288. DECODE_UV_COEF_LOOP(8, 32);
  2289. SPLAT_CTX(8);
  2290. break;
  2291. }
  2292. }
  2293. }
  2294. static void decode_coeffs_8bpp(AVCodecContext *ctx)
  2295. {
  2296. decode_coeffs(ctx, 1);
  2297. }
  2298. static void decode_coeffs_16bpp(AVCodecContext *ctx)
  2299. {
  2300. decode_coeffs(ctx, 0);
  2301. }
  2302. static av_always_inline int check_intra_mode(VP9Context *s, int mode, uint8_t **a,
  2303. uint8_t *dst_edge, ptrdiff_t stride_edge,
  2304. uint8_t *dst_inner, ptrdiff_t stride_inner,
  2305. uint8_t *l, int col, int x, int w,
  2306. int row, int y, enum TxfmMode tx,
  2307. int p, int ss_h, int ss_v, int bytesperpixel)
  2308. {
  2309. int have_top = row > 0 || y > 0;
  2310. int have_left = col > s->tiling.tile_col_start || x > 0;
  2311. int have_right = x < w - 1;
  2312. int bpp = s->bpp;
  2313. static const uint8_t mode_conv[10][2 /* have_left */][2 /* have_top */] = {
  2314. [VERT_PRED] = { { DC_127_PRED, VERT_PRED },
  2315. { DC_127_PRED, VERT_PRED } },
  2316. [HOR_PRED] = { { DC_129_PRED, DC_129_PRED },
  2317. { HOR_PRED, HOR_PRED } },
  2318. [DC_PRED] = { { DC_128_PRED, TOP_DC_PRED },
  2319. { LEFT_DC_PRED, DC_PRED } },
  2320. [DIAG_DOWN_LEFT_PRED] = { { DC_127_PRED, DIAG_DOWN_LEFT_PRED },
  2321. { DC_127_PRED, DIAG_DOWN_LEFT_PRED } },
  2322. [DIAG_DOWN_RIGHT_PRED] = { { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED },
  2323. { DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_RIGHT_PRED } },
  2324. [VERT_RIGHT_PRED] = { { VERT_RIGHT_PRED, VERT_RIGHT_PRED },
  2325. { VERT_RIGHT_PRED, VERT_RIGHT_PRED } },
  2326. [HOR_DOWN_PRED] = { { HOR_DOWN_PRED, HOR_DOWN_PRED },
  2327. { HOR_DOWN_PRED, HOR_DOWN_PRED } },
  2328. [VERT_LEFT_PRED] = { { DC_127_PRED, VERT_LEFT_PRED },
  2329. { DC_127_PRED, VERT_LEFT_PRED } },
  2330. [HOR_UP_PRED] = { { DC_129_PRED, DC_129_PRED },
  2331. { HOR_UP_PRED, HOR_UP_PRED } },
  2332. [TM_VP8_PRED] = { { DC_129_PRED, VERT_PRED },
  2333. { HOR_PRED, TM_VP8_PRED } },
  2334. };
  2335. static const struct {
  2336. uint8_t needs_left:1;
  2337. uint8_t needs_top:1;
  2338. uint8_t needs_topleft:1;
  2339. uint8_t needs_topright:1;
  2340. uint8_t invert_left:1;
  2341. } edges[N_INTRA_PRED_MODES] = {
  2342. [VERT_PRED] = { .needs_top = 1 },
  2343. [HOR_PRED] = { .needs_left = 1 },
  2344. [DC_PRED] = { .needs_top = 1, .needs_left = 1 },
  2345. [DIAG_DOWN_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
  2346. [DIAG_DOWN_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2347. [VERT_RIGHT_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2348. [HOR_DOWN_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2349. [VERT_LEFT_PRED] = { .needs_top = 1, .needs_topright = 1 },
  2350. [HOR_UP_PRED] = { .needs_left = 1, .invert_left = 1 },
  2351. [TM_VP8_PRED] = { .needs_left = 1, .needs_top = 1, .needs_topleft = 1 },
  2352. [LEFT_DC_PRED] = { .needs_left = 1 },
  2353. [TOP_DC_PRED] = { .needs_top = 1 },
  2354. [DC_128_PRED] = { 0 },
  2355. [DC_127_PRED] = { 0 },
  2356. [DC_129_PRED] = { 0 }
  2357. };
  2358. av_assert2(mode >= 0 && mode < 10);
  2359. mode = mode_conv[mode][have_left][have_top];
  2360. if (edges[mode].needs_top) {
  2361. uint8_t *top, *topleft;
  2362. int n_px_need = 4 << tx, n_px_have = (((s->cols - col) << !ss_h) - x) * 4;
  2363. int n_px_need_tr = 0;
  2364. if (tx == TX_4X4 && edges[mode].needs_topright && have_right)
  2365. n_px_need_tr = 4;
  2366. // if top of sb64-row, use s->intra_pred_data[] instead of
  2367. // dst[-stride] for intra prediction (it contains pre- instead of
  2368. // post-loopfilter data)
  2369. if (have_top) {
  2370. top = !(row & 7) && !y ?
  2371. s->intra_pred_data[p] + (col * (8 >> ss_h) + x * 4) * bytesperpixel :
  2372. y == 0 ? &dst_edge[-stride_edge] : &dst_inner[-stride_inner];
  2373. if (have_left)
  2374. topleft = !(row & 7) && !y ?
  2375. s->intra_pred_data[p] + (col * (8 >> ss_h) + x * 4) * bytesperpixel :
  2376. y == 0 || x == 0 ? &dst_edge[-stride_edge] :
  2377. &dst_inner[-stride_inner];
  2378. }
  2379. if (have_top &&
  2380. (!edges[mode].needs_topleft || (have_left && top == topleft)) &&
  2381. (tx != TX_4X4 || !edges[mode].needs_topright || have_right) &&
  2382. n_px_need + n_px_need_tr <= n_px_have) {
  2383. *a = top;
  2384. } else {
  2385. if (have_top) {
  2386. if (n_px_need <= n_px_have) {
  2387. memcpy(*a, top, n_px_need * bytesperpixel);
  2388. } else {
  2389. #define memset_bpp(c, i1, v, i2, num) do { \
  2390. if (bytesperpixel == 1) { \
  2391. memset(&(c)[(i1)], (v)[(i2)], (num)); \
  2392. } else { \
  2393. int n, val = AV_RN16A(&(v)[(i2) * 2]); \
  2394. for (n = 0; n < (num); n++) { \
  2395. AV_WN16A(&(c)[((i1) + n) * 2], val); \
  2396. } \
  2397. } \
  2398. } while (0)
  2399. memcpy(*a, top, n_px_have * bytesperpixel);
  2400. memset_bpp(*a, n_px_have, (*a), n_px_have - 1, n_px_need - n_px_have);
  2401. }
  2402. } else {
  2403. #define memset_val(c, val, num) do { \
  2404. if (bytesperpixel == 1) { \
  2405. memset((c), (val), (num)); \
  2406. } else { \
  2407. int n; \
  2408. for (n = 0; n < (num); n++) { \
  2409. AV_WN16A(&(c)[n * 2], (val)); \
  2410. } \
  2411. } \
  2412. } while (0)
  2413. memset_val(*a, (128 << (bpp - 8)) - 1, n_px_need);
  2414. }
  2415. if (edges[mode].needs_topleft) {
  2416. if (have_left && have_top) {
  2417. #define assign_bpp(c, i1, v, i2) do { \
  2418. if (bytesperpixel == 1) { \
  2419. (c)[(i1)] = (v)[(i2)]; \
  2420. } else { \
  2421. AV_COPY16(&(c)[(i1) * 2], &(v)[(i2) * 2]); \
  2422. } \
  2423. } while (0)
  2424. assign_bpp(*a, -1, topleft, -1);
  2425. } else {
  2426. #define assign_val(c, i, v) do { \
  2427. if (bytesperpixel == 1) { \
  2428. (c)[(i)] = (v); \
  2429. } else { \
  2430. AV_WN16A(&(c)[(i) * 2], (v)); \
  2431. } \
  2432. } while (0)
  2433. assign_val((*a), -1, (128 << (bpp - 8)) + (have_top ? +1 : -1));
  2434. }
  2435. }
  2436. if (tx == TX_4X4 && edges[mode].needs_topright) {
  2437. if (have_top && have_right &&
  2438. n_px_need + n_px_need_tr <= n_px_have) {
  2439. memcpy(&(*a)[4 * bytesperpixel], &top[4 * bytesperpixel], 4 * bytesperpixel);
  2440. } else {
  2441. memset_bpp(*a, 4, *a, 3, 4);
  2442. }
  2443. }
  2444. }
  2445. }
  2446. if (edges[mode].needs_left) {
  2447. if (have_left) {
  2448. int n_px_need = 4 << tx, i, n_px_have = (((s->rows - row) << !ss_v) - y) * 4;
  2449. uint8_t *dst = x == 0 ? dst_edge : dst_inner;
  2450. ptrdiff_t stride = x == 0 ? stride_edge : stride_inner;
  2451. if (edges[mode].invert_left) {
  2452. if (n_px_need <= n_px_have) {
  2453. for (i = 0; i < n_px_need; i++)
  2454. assign_bpp(l, i, &dst[i * stride], -1);
  2455. } else {
  2456. for (i = 0; i < n_px_have; i++)
  2457. assign_bpp(l, i, &dst[i * stride], -1);
  2458. memset_bpp(l, n_px_have, l, n_px_have - 1, n_px_need - n_px_have);
  2459. }
  2460. } else {
  2461. if (n_px_need <= n_px_have) {
  2462. for (i = 0; i < n_px_need; i++)
  2463. assign_bpp(l, n_px_need - 1 - i, &dst[i * stride], -1);
  2464. } else {
  2465. for (i = 0; i < n_px_have; i++)
  2466. assign_bpp(l, n_px_need - 1 - i, &dst[i * stride], -1);
  2467. memset_bpp(l, 0, l, n_px_need - n_px_have, n_px_need - n_px_have);
  2468. }
  2469. }
  2470. } else {
  2471. memset_val(l, (128 << (bpp - 8)) + 1, 4 << tx);
  2472. }
  2473. }
  2474. return mode;
  2475. }
  2476. static av_always_inline void intra_recon(AVCodecContext *ctx, ptrdiff_t y_off,
  2477. ptrdiff_t uv_off, int bytesperpixel)
  2478. {
  2479. VP9Context *s = ctx->priv_data;
  2480. VP9Block *b = s->b;
  2481. int row = s->row, col = s->col;
  2482. int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
  2483. int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
  2484. int end_x = FFMIN(2 * (s->cols - col), w4);
  2485. int end_y = FFMIN(2 * (s->rows - row), h4);
  2486. int tx = 4 * s->lossless + b->tx, uvtx = b->uvtx + 4 * s->lossless;
  2487. int uvstep1d = 1 << b->uvtx, p;
  2488. uint8_t *dst = s->dst[0], *dst_r = s->frames[CUR_FRAME].tf.f->data[0] + y_off;
  2489. LOCAL_ALIGNED_32(uint8_t, a_buf, [96]);
  2490. LOCAL_ALIGNED_32(uint8_t, l, [64]);
  2491. for (n = 0, y = 0; y < end_y; y += step1d) {
  2492. uint8_t *ptr = dst, *ptr_r = dst_r;
  2493. for (x = 0; x < end_x; x += step1d, ptr += 4 * step1d * bytesperpixel,
  2494. ptr_r += 4 * step1d * bytesperpixel, n += step) {
  2495. int mode = b->mode[b->bs > BS_8x8 && b->tx == TX_4X4 ?
  2496. y * 2 + x : 0];
  2497. uint8_t *a = &a_buf[32];
  2498. enum TxfmType txtp = vp9_intra_txfm_type[mode];
  2499. int eob = b->skip ? 0 : b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n];
  2500. mode = check_intra_mode(s, mode, &a, ptr_r,
  2501. s->frames[CUR_FRAME].tf.f->linesize[0],
  2502. ptr, s->y_stride, l,
  2503. col, x, w4, row, y, b->tx, 0, 0, 0, bytesperpixel);
  2504. s->dsp.intra_pred[b->tx][mode](ptr, s->y_stride, l, a);
  2505. if (eob)
  2506. s->dsp.itxfm_add[tx][txtp](ptr, s->y_stride,
  2507. s->block + 16 * n * bytesperpixel, eob);
  2508. }
  2509. dst_r += 4 * step1d * s->frames[CUR_FRAME].tf.f->linesize[0];
  2510. dst += 4 * step1d * s->y_stride;
  2511. }
  2512. // U/V
  2513. w4 >>= s->ss_h;
  2514. end_x >>= s->ss_h;
  2515. end_y >>= s->ss_v;
  2516. step = 1 << (b->uvtx * 2);
  2517. for (p = 0; p < 2; p++) {
  2518. dst = s->dst[1 + p];
  2519. dst_r = s->frames[CUR_FRAME].tf.f->data[1 + p] + uv_off;
  2520. for (n = 0, y = 0; y < end_y; y += uvstep1d) {
  2521. uint8_t *ptr = dst, *ptr_r = dst_r;
  2522. for (x = 0; x < end_x; x += uvstep1d, ptr += 4 * uvstep1d * bytesperpixel,
  2523. ptr_r += 4 * uvstep1d * bytesperpixel, n += step) {
  2524. int mode = b->uvmode;
  2525. uint8_t *a = &a_buf[32];
  2526. int eob = b->skip ? 0 : b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n];
  2527. mode = check_intra_mode(s, mode, &a, ptr_r,
  2528. s->frames[CUR_FRAME].tf.f->linesize[1],
  2529. ptr, s->uv_stride, l, col, x, w4, row, y,
  2530. b->uvtx, p + 1, s->ss_h, s->ss_v, bytesperpixel);
  2531. s->dsp.intra_pred[b->uvtx][mode](ptr, s->uv_stride, l, a);
  2532. if (eob)
  2533. s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride,
  2534. s->uvblock[p] + 16 * n * bytesperpixel, eob);
  2535. }
  2536. dst_r += 4 * uvstep1d * s->frames[CUR_FRAME].tf.f->linesize[1];
  2537. dst += 4 * uvstep1d * s->uv_stride;
  2538. }
  2539. }
  2540. }
  2541. static void intra_recon_8bpp(AVCodecContext *ctx, ptrdiff_t y_off, ptrdiff_t uv_off)
  2542. {
  2543. intra_recon(ctx, y_off, uv_off, 1);
  2544. }
  2545. static void intra_recon_16bpp(AVCodecContext *ctx, ptrdiff_t y_off, ptrdiff_t uv_off)
  2546. {
  2547. intra_recon(ctx, y_off, uv_off, 2);
  2548. }
  2549. static av_always_inline void mc_luma_scaled(VP9Context *s, vp9_scaled_mc_func smc,
  2550. uint8_t *dst, ptrdiff_t dst_stride,
  2551. const uint8_t *ref, ptrdiff_t ref_stride,
  2552. ThreadFrame *ref_frame,
  2553. ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
  2554. int bw, int bh, int w, int h, int bytesperpixel,
  2555. const uint16_t *scale, const uint8_t *step)
  2556. {
  2557. #define scale_mv(n, dim) (((int64_t)(n) * scale[dim]) >> 14)
  2558. // BUG libvpx seems to scale the two components separately. This introduces
  2559. // rounding errors but we have to reproduce them to be exactly compatible
  2560. // with the output from libvpx...
  2561. int mx = scale_mv(mv->x * 2, 0) + scale_mv(x * 16, 0);
  2562. int my = scale_mv(mv->y * 2, 1) + scale_mv(y * 16, 1);
  2563. int refbw_m1, refbh_m1;
  2564. int th;
  2565. y = my >> 4;
  2566. x = mx >> 4;
  2567. ref += y * ref_stride + x * bytesperpixel;
  2568. mx &= 15;
  2569. my &= 15;
  2570. refbw_m1 = ((bw - 1) * step[0] + mx) >> 4;
  2571. refbh_m1 = ((bh - 1) * step[1] + my) >> 4;
  2572. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2573. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2574. // the longest loopfilter of the next sbrow
  2575. th = (y + refbh_m1 + 4 + 7) >> 6;
  2576. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2577. if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 4 >= h - refbh_m1) {
  2578. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2579. ref - 3 * ref_stride - 3 * bytesperpixel,
  2580. 288, ref_stride,
  2581. refbw_m1 + 8, refbh_m1 + 8,
  2582. x - 3, y - 3, w, h);
  2583. ref = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
  2584. ref_stride = 288;
  2585. }
  2586. smc(dst, dst_stride, ref, ref_stride, bh, mx, my, step[0], step[1]);
  2587. }
  2588. static av_always_inline void mc_chroma_scaled(VP9Context *s, vp9_scaled_mc_func smc,
  2589. uint8_t *dst_u, uint8_t *dst_v,
  2590. ptrdiff_t dst_stride,
  2591. const uint8_t *ref_u, ptrdiff_t src_stride_u,
  2592. const uint8_t *ref_v, ptrdiff_t src_stride_v,
  2593. ThreadFrame *ref_frame,
  2594. ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
  2595. int bw, int bh, int w, int h, int bytesperpixel,
  2596. const uint16_t *scale, const uint8_t *step)
  2597. {
  2598. int mx, my;
  2599. int refbw_m1, refbh_m1;
  2600. int th;
  2601. if (s->ss_h) {
  2602. // BUG https://code.google.com/p/webm/issues/detail?id=820
  2603. mx = scale_mv(mv->x, 0) + (scale_mv(x * 16, 0) & ~15) + (scale_mv(x * 32, 0) & 15);
  2604. } else {
  2605. mx = scale_mv(mv->x << 1, 0) + scale_mv(x * 16, 0);
  2606. }
  2607. if (s->ss_v) {
  2608. // BUG https://code.google.com/p/webm/issues/detail?id=820
  2609. my = scale_mv(mv->y, 1) + (scale_mv(y * 16, 1) & ~15) + (scale_mv(y * 32, 1) & 15);
  2610. } else {
  2611. my = scale_mv(mv->y << 1, 1) + scale_mv(y * 16, 1);
  2612. }
  2613. #undef scale_mv
  2614. y = my >> 4;
  2615. x = mx >> 4;
  2616. ref_u += y * src_stride_u + x * bytesperpixel;
  2617. ref_v += y * src_stride_v + x * bytesperpixel;
  2618. mx &= 15;
  2619. my &= 15;
  2620. refbw_m1 = ((bw - 1) * step[0] + mx) >> 4;
  2621. refbh_m1 = ((bh - 1) * step[1] + my) >> 4;
  2622. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2623. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2624. // the longest loopfilter of the next sbrow
  2625. th = (y + refbh_m1 + 4 + 7) >> (6 - s->ss_v);
  2626. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2627. if (x < 3 || y < 3 || x + 4 >= w - refbw_m1 || y + 4 >= h - refbh_m1) {
  2628. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2629. ref_u - 3 * src_stride_u - 3 * bytesperpixel,
  2630. 288, src_stride_u,
  2631. refbw_m1 + 8, refbh_m1 + 8,
  2632. x - 3, y - 3, w, h);
  2633. ref_u = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
  2634. smc(dst_u, dst_stride, ref_u, 288, bh, mx, my, step[0], step[1]);
  2635. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2636. ref_v - 3 * src_stride_v - 3 * bytesperpixel,
  2637. 288, src_stride_v,
  2638. refbw_m1 + 8, refbh_m1 + 8,
  2639. x - 3, y - 3, w, h);
  2640. ref_v = s->edge_emu_buffer + 3 * 288 + 3 * bytesperpixel;
  2641. smc(dst_v, dst_stride, ref_v, 288, bh, mx, my, step[0], step[1]);
  2642. } else {
  2643. smc(dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my, step[0], step[1]);
  2644. smc(dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my, step[0], step[1]);
  2645. }
  2646. }
  2647. #define mc_luma_dir(s, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, bw, bh, w, h, i) \
  2648. mc_luma_scaled(s, s->dsp.s##mc, dst, dst_ls, src, src_ls, tref, row, col, \
  2649. mv, bw, bh, w, h, bytesperpixel, \
  2650. s->mvscale[b->ref[i]], s->mvstep[b->ref[i]])
  2651. #define mc_chroma_dir(s, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2652. row, col, mv, bw, bh, w, h, i) \
  2653. mc_chroma_scaled(s, s->dsp.s##mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2654. row, col, mv, bw, bh, w, h, bytesperpixel, \
  2655. s->mvscale[b->ref[i]], s->mvstep[b->ref[i]])
  2656. #define SCALED 1
  2657. #define FN(x) x##_scaled_8bpp
  2658. #define BYTES_PER_PIXEL 1
  2659. #include "vp9_mc_template.c"
  2660. #undef FN
  2661. #undef BYTES_PER_PIXEL
  2662. #define FN(x) x##_scaled_16bpp
  2663. #define BYTES_PER_PIXEL 2
  2664. #include "vp9_mc_template.c"
  2665. #undef mc_luma_dir
  2666. #undef mc_chroma_dir
  2667. #undef FN
  2668. #undef BYTES_PER_PIXEL
  2669. #undef SCALED
  2670. static av_always_inline void mc_luma_unscaled(VP9Context *s, vp9_mc_func (*mc)[2],
  2671. uint8_t *dst, ptrdiff_t dst_stride,
  2672. const uint8_t *ref, ptrdiff_t ref_stride,
  2673. ThreadFrame *ref_frame,
  2674. ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
  2675. int bw, int bh, int w, int h, int bytesperpixel)
  2676. {
  2677. int mx = mv->x, my = mv->y, th;
  2678. y += my >> 3;
  2679. x += mx >> 3;
  2680. ref += y * ref_stride + x * bytesperpixel;
  2681. mx &= 7;
  2682. my &= 7;
  2683. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2684. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2685. // the longest loopfilter of the next sbrow
  2686. th = (y + bh + 4 * !!my + 7) >> 6;
  2687. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2688. if (x < !!mx * 3 || y < !!my * 3 ||
  2689. x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) {
  2690. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2691. ref - !!my * 3 * ref_stride - !!mx * 3 * bytesperpixel,
  2692. 160, ref_stride,
  2693. bw + !!mx * 7, bh + !!my * 7,
  2694. x - !!mx * 3, y - !!my * 3, w, h);
  2695. ref = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
  2696. ref_stride = 160;
  2697. }
  2698. mc[!!mx][!!my](dst, dst_stride, ref, ref_stride, bh, mx << 1, my << 1);
  2699. }
  2700. static av_always_inline void mc_chroma_unscaled(VP9Context *s, vp9_mc_func (*mc)[2],
  2701. uint8_t *dst_u, uint8_t *dst_v,
  2702. ptrdiff_t dst_stride,
  2703. const uint8_t *ref_u, ptrdiff_t src_stride_u,
  2704. const uint8_t *ref_v, ptrdiff_t src_stride_v,
  2705. ThreadFrame *ref_frame,
  2706. ptrdiff_t y, ptrdiff_t x, const VP56mv *mv,
  2707. int bw, int bh, int w, int h, int bytesperpixel)
  2708. {
  2709. int mx = mv->x << !s->ss_h, my = mv->y << !s->ss_v, th;
  2710. y += my >> 4;
  2711. x += mx >> 4;
  2712. ref_u += y * src_stride_u + x * bytesperpixel;
  2713. ref_v += y * src_stride_v + x * bytesperpixel;
  2714. mx &= 15;
  2715. my &= 15;
  2716. // FIXME bilinear filter only needs 0/1 pixels, not 3/4
  2717. // we use +7 because the last 7 pixels of each sbrow can be changed in
  2718. // the longest loopfilter of the next sbrow
  2719. th = (y + bh + 4 * !!my + 7) >> (6 - s->ss_v);
  2720. ff_thread_await_progress(ref_frame, FFMAX(th, 0), 0);
  2721. if (x < !!mx * 3 || y < !!my * 3 ||
  2722. x + !!mx * 4 > w - bw || y + !!my * 4 > h - bh) {
  2723. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2724. ref_u - !!my * 3 * src_stride_u - !!mx * 3 * bytesperpixel,
  2725. 160, src_stride_u,
  2726. bw + !!mx * 7, bh + !!my * 7,
  2727. x - !!mx * 3, y - !!my * 3, w, h);
  2728. ref_u = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
  2729. mc[!!mx][!!my](dst_u, dst_stride, ref_u, 160, bh, mx, my);
  2730. s->vdsp.emulated_edge_mc(s->edge_emu_buffer,
  2731. ref_v - !!my * 3 * src_stride_v - !!mx * 3 * bytesperpixel,
  2732. 160, src_stride_v,
  2733. bw + !!mx * 7, bh + !!my * 7,
  2734. x - !!mx * 3, y - !!my * 3, w, h);
  2735. ref_v = s->edge_emu_buffer + !!my * 3 * 160 + !!mx * 3 * bytesperpixel;
  2736. mc[!!mx][!!my](dst_v, dst_stride, ref_v, 160, bh, mx, my);
  2737. } else {
  2738. mc[!!mx][!!my](dst_u, dst_stride, ref_u, src_stride_u, bh, mx, my);
  2739. mc[!!mx][!!my](dst_v, dst_stride, ref_v, src_stride_v, bh, mx, my);
  2740. }
  2741. }
  2742. #define mc_luma_dir(s, mc, dst, dst_ls, src, src_ls, tref, row, col, mv, bw, bh, w, h, i) \
  2743. mc_luma_unscaled(s, s->dsp.mc, dst, dst_ls, src, src_ls, tref, row, col, \
  2744. mv, bw, bh, w, h, bytesperpixel)
  2745. #define mc_chroma_dir(s, mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2746. row, col, mv, bw, bh, w, h, i) \
  2747. mc_chroma_unscaled(s, s->dsp.mc, dstu, dstv, dst_ls, srcu, srcu_ls, srcv, srcv_ls, tref, \
  2748. row, col, mv, bw, bh, w, h, bytesperpixel)
  2749. #define SCALED 0
  2750. #define FN(x) x##_8bpp
  2751. #define BYTES_PER_PIXEL 1
  2752. #include "vp9_mc_template.c"
  2753. #undef FN
  2754. #undef BYTES_PER_PIXEL
  2755. #define FN(x) x##_16bpp
  2756. #define BYTES_PER_PIXEL 2
  2757. #include "vp9_mc_template.c"
  2758. #undef mc_luma_dir_dir
  2759. #undef mc_chroma_dir_dir
  2760. #undef FN
  2761. #undef BYTES_PER_PIXEL
  2762. #undef SCALED
  2763. static av_always_inline void inter_recon(AVCodecContext *ctx, int bytesperpixel)
  2764. {
  2765. VP9Context *s = ctx->priv_data;
  2766. VP9Block *b = s->b;
  2767. int row = s->row, col = s->col;
  2768. if (s->mvscale[b->ref[0]][0] || (b->comp && s->mvscale[b->ref[1]][0])) {
  2769. if (bytesperpixel == 1) {
  2770. inter_pred_scaled_8bpp(ctx);
  2771. } else {
  2772. inter_pred_scaled_16bpp(ctx);
  2773. }
  2774. } else {
  2775. if (bytesperpixel == 1) {
  2776. inter_pred_8bpp(ctx);
  2777. } else {
  2778. inter_pred_16bpp(ctx);
  2779. }
  2780. }
  2781. if (!b->skip) {
  2782. /* mostly copied intra_recon() */
  2783. int w4 = bwh_tab[1][b->bs][0] << 1, step1d = 1 << b->tx, n;
  2784. int h4 = bwh_tab[1][b->bs][1] << 1, x, y, step = 1 << (b->tx * 2);
  2785. int end_x = FFMIN(2 * (s->cols - col), w4);
  2786. int end_y = FFMIN(2 * (s->rows - row), h4);
  2787. int tx = 4 * s->lossless + b->tx, uvtx = b->uvtx + 4 * s->lossless;
  2788. int uvstep1d = 1 << b->uvtx, p;
  2789. uint8_t *dst = s->dst[0];
  2790. // y itxfm add
  2791. for (n = 0, y = 0; y < end_y; y += step1d) {
  2792. uint8_t *ptr = dst;
  2793. for (x = 0; x < end_x; x += step1d,
  2794. ptr += 4 * step1d * bytesperpixel, n += step) {
  2795. int eob = b->tx > TX_8X8 ? AV_RN16A(&s->eob[n]) : s->eob[n];
  2796. if (eob)
  2797. s->dsp.itxfm_add[tx][DCT_DCT](ptr, s->y_stride,
  2798. s->block + 16 * n * bytesperpixel, eob);
  2799. }
  2800. dst += 4 * s->y_stride * step1d;
  2801. }
  2802. // uv itxfm add
  2803. end_x >>= s->ss_h;
  2804. end_y >>= s->ss_v;
  2805. step = 1 << (b->uvtx * 2);
  2806. for (p = 0; p < 2; p++) {
  2807. dst = s->dst[p + 1];
  2808. for (n = 0, y = 0; y < end_y; y += uvstep1d) {
  2809. uint8_t *ptr = dst;
  2810. for (x = 0; x < end_x; x += uvstep1d,
  2811. ptr += 4 * uvstep1d * bytesperpixel, n += step) {
  2812. int eob = b->uvtx > TX_8X8 ? AV_RN16A(&s->uveob[p][n]) : s->uveob[p][n];
  2813. if (eob)
  2814. s->dsp.itxfm_add[uvtx][DCT_DCT](ptr, s->uv_stride,
  2815. s->uvblock[p] + 16 * n * bytesperpixel, eob);
  2816. }
  2817. dst += 4 * uvstep1d * s->uv_stride;
  2818. }
  2819. }
  2820. }
  2821. }
  2822. static void inter_recon_8bpp(AVCodecContext *ctx)
  2823. {
  2824. inter_recon(ctx, 1);
  2825. }
  2826. static void inter_recon_16bpp(AVCodecContext *ctx)
  2827. {
  2828. inter_recon(ctx, 2);
  2829. }
  2830. static av_always_inline void mask_edges(uint8_t (*mask)[8][4], int ss_h, int ss_v,
  2831. int row_and_7, int col_and_7,
  2832. int w, int h, int col_end, int row_end,
  2833. enum TxfmMode tx, int skip_inter)
  2834. {
  2835. static const unsigned wide_filter_col_mask[2] = { 0x11, 0x01 };
  2836. static const unsigned wide_filter_row_mask[2] = { 0x03, 0x07 };
  2837. // FIXME I'm pretty sure all loops can be replaced by a single LUT if
  2838. // we make VP9Filter.mask uint64_t (i.e. row/col all single variable)
  2839. // and make the LUT 5-indexed (bl, bp, is_uv, tx and row/col), and then
  2840. // use row_and_7/col_and_7 as shifts (1*col_and_7+8*row_and_7)
  2841. // the intended behaviour of the vp9 loopfilter is to work on 8-pixel
  2842. // edges. This means that for UV, we work on two subsampled blocks at
  2843. // a time, and we only use the topleft block's mode information to set
  2844. // things like block strength. Thus, for any block size smaller than
  2845. // 16x16, ignore the odd portion of the block.
  2846. if (tx == TX_4X4 && (ss_v | ss_h)) {
  2847. if (h == ss_v) {
  2848. if (row_and_7 & 1)
  2849. return;
  2850. if (!row_end)
  2851. h += 1;
  2852. }
  2853. if (w == ss_h) {
  2854. if (col_and_7 & 1)
  2855. return;
  2856. if (!col_end)
  2857. w += 1;
  2858. }
  2859. }
  2860. if (tx == TX_4X4 && !skip_inter) {
  2861. int t = 1 << col_and_7, m_col = (t << w) - t, y;
  2862. // on 32-px edges, use the 8-px wide loopfilter; else, use 4-px wide
  2863. int m_row_8 = m_col & wide_filter_col_mask[ss_h], m_row_4 = m_col - m_row_8;
  2864. for (y = row_and_7; y < h + row_and_7; y++) {
  2865. int col_mask_id = 2 - !(y & wide_filter_row_mask[ss_v]);
  2866. mask[0][y][1] |= m_row_8;
  2867. mask[0][y][2] |= m_row_4;
  2868. // for odd lines, if the odd col is not being filtered,
  2869. // skip odd row also:
  2870. // .---. <-- a
  2871. // | |
  2872. // |___| <-- b
  2873. // ^ ^
  2874. // c d
  2875. //
  2876. // if a/c are even row/col and b/d are odd, and d is skipped,
  2877. // e.g. right edge of size-66x66.webm, then skip b also (bug)
  2878. if ((ss_h & ss_v) && (col_end & 1) && (y & 1)) {
  2879. mask[1][y][col_mask_id] |= (t << (w - 1)) - t;
  2880. } else {
  2881. mask[1][y][col_mask_id] |= m_col;
  2882. }
  2883. if (!ss_h)
  2884. mask[0][y][3] |= m_col;
  2885. if (!ss_v)
  2886. mask[1][y][3] |= m_col;
  2887. }
  2888. } else {
  2889. int y, t = 1 << col_and_7, m_col = (t << w) - t;
  2890. if (!skip_inter) {
  2891. int mask_id = (tx == TX_8X8);
  2892. static const unsigned masks[4] = { 0xff, 0x55, 0x11, 0x01 };
  2893. int l2 = tx + ss_h - 1, step1d;
  2894. int m_row = m_col & masks[l2];
  2895. // at odd UV col/row edges tx16/tx32 loopfilter edges, force
  2896. // 8wd loopfilter to prevent going off the visible edge.
  2897. if (ss_h && tx > TX_8X8 && (w ^ (w - 1)) == 1) {
  2898. int m_row_16 = ((t << (w - 1)) - t) & masks[l2];
  2899. int m_row_8 = m_row - m_row_16;
  2900. for (y = row_and_7; y < h + row_and_7; y++) {
  2901. mask[0][y][0] |= m_row_16;
  2902. mask[0][y][1] |= m_row_8;
  2903. }
  2904. } else {
  2905. for (y = row_and_7; y < h + row_and_7; y++)
  2906. mask[0][y][mask_id] |= m_row;
  2907. }
  2908. l2 = tx + ss_v - 1;
  2909. step1d = 1 << l2;
  2910. if (ss_v && tx > TX_8X8 && (h ^ (h - 1)) == 1) {
  2911. for (y = row_and_7; y < h + row_and_7 - 1; y += step1d)
  2912. mask[1][y][0] |= m_col;
  2913. if (y - row_and_7 == h - 1)
  2914. mask[1][y][1] |= m_col;
  2915. } else {
  2916. for (y = row_and_7; y < h + row_and_7; y += step1d)
  2917. mask[1][y][mask_id] |= m_col;
  2918. }
  2919. } else if (tx != TX_4X4) {
  2920. int mask_id;
  2921. mask_id = (tx == TX_8X8) || (h == ss_v);
  2922. mask[1][row_and_7][mask_id] |= m_col;
  2923. mask_id = (tx == TX_8X8) || (w == ss_h);
  2924. for (y = row_and_7; y < h + row_and_7; y++)
  2925. mask[0][y][mask_id] |= t;
  2926. } else {
  2927. int t8 = t & wide_filter_col_mask[ss_h], t4 = t - t8;
  2928. for (y = row_and_7; y < h + row_and_7; y++) {
  2929. mask[0][y][2] |= t4;
  2930. mask[0][y][1] |= t8;
  2931. }
  2932. mask[1][row_and_7][2 - !(row_and_7 & wide_filter_row_mask[ss_v])] |= m_col;
  2933. }
  2934. }
  2935. }
  2936. static void decode_b(AVCodecContext *ctx, int row, int col,
  2937. struct VP9Filter *lflvl, ptrdiff_t yoff, ptrdiff_t uvoff,
  2938. enum BlockLevel bl, enum BlockPartition bp)
  2939. {
  2940. VP9Context *s = ctx->priv_data;
  2941. VP9Block *b = s->b;
  2942. enum BlockSize bs = bl * 3 + bp;
  2943. int bytesperpixel = s->bytesperpixel;
  2944. int w4 = bwh_tab[1][bs][0], h4 = bwh_tab[1][bs][1], lvl;
  2945. int emu[2];
  2946. AVFrame *f = s->frames[CUR_FRAME].tf.f;
  2947. s->row = row;
  2948. s->row7 = row & 7;
  2949. s->col = col;
  2950. s->col7 = col & 7;
  2951. s->min_mv.x = -(128 + col * 64);
  2952. s->min_mv.y = -(128 + row * 64);
  2953. s->max_mv.x = 128 + (s->cols - col - w4) * 64;
  2954. s->max_mv.y = 128 + (s->rows - row - h4) * 64;
  2955. if (s->pass < 2) {
  2956. b->bs = bs;
  2957. b->bl = bl;
  2958. b->bp = bp;
  2959. decode_mode(ctx);
  2960. b->uvtx = b->tx - ((s->ss_h && w4 * 2 == (1 << b->tx)) ||
  2961. (s->ss_v && h4 * 2 == (1 << b->tx)));
  2962. if (!b->skip) {
  2963. if (bytesperpixel == 1) {
  2964. decode_coeffs_8bpp(ctx);
  2965. } else {
  2966. decode_coeffs_16bpp(ctx);
  2967. }
  2968. } else {
  2969. int row7 = s->row7;
  2970. #define SPLAT_ZERO_CTX(v, n) \
  2971. switch (n) { \
  2972. case 1: v = 0; break; \
  2973. case 2: AV_ZERO16(&v); break; \
  2974. case 4: AV_ZERO32(&v); break; \
  2975. case 8: AV_ZERO64(&v); break; \
  2976. case 16: AV_ZERO128(&v); break; \
  2977. }
  2978. #define SPLAT_ZERO_YUV(dir, var, off, n, dir2) \
  2979. do { \
  2980. SPLAT_ZERO_CTX(s->dir##_y_##var[off * 2], n * 2); \
  2981. if (s->ss_##dir2) { \
  2982. SPLAT_ZERO_CTX(s->dir##_uv_##var[0][off], n); \
  2983. SPLAT_ZERO_CTX(s->dir##_uv_##var[1][off], n); \
  2984. } else { \
  2985. SPLAT_ZERO_CTX(s->dir##_uv_##var[0][off * 2], n * 2); \
  2986. SPLAT_ZERO_CTX(s->dir##_uv_##var[1][off * 2], n * 2); \
  2987. } \
  2988. } while (0)
  2989. switch (w4) {
  2990. case 1: SPLAT_ZERO_YUV(above, nnz_ctx, col, 1, h); break;
  2991. case 2: SPLAT_ZERO_YUV(above, nnz_ctx, col, 2, h); break;
  2992. case 4: SPLAT_ZERO_YUV(above, nnz_ctx, col, 4, h); break;
  2993. case 8: SPLAT_ZERO_YUV(above, nnz_ctx, col, 8, h); break;
  2994. }
  2995. switch (h4) {
  2996. case 1: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 1, v); break;
  2997. case 2: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 2, v); break;
  2998. case 4: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 4, v); break;
  2999. case 8: SPLAT_ZERO_YUV(left, nnz_ctx, row7, 8, v); break;
  3000. }
  3001. }
  3002. if (s->pass == 1) {
  3003. s->b++;
  3004. s->block += w4 * h4 * 64 * bytesperpixel;
  3005. s->uvblock[0] += w4 * h4 * 64 * bytesperpixel >> (s->ss_h + s->ss_v);
  3006. s->uvblock[1] += w4 * h4 * 64 * bytesperpixel >> (s->ss_h + s->ss_v);
  3007. s->eob += 4 * w4 * h4;
  3008. s->uveob[0] += 4 * w4 * h4 >> (s->ss_h + s->ss_v);
  3009. s->uveob[1] += 4 * w4 * h4 >> (s->ss_h + s->ss_v);
  3010. return;
  3011. }
  3012. }
  3013. // emulated overhangs if the stride of the target buffer can't hold. This
  3014. // allows to support emu-edge and so on even if we have large block
  3015. // overhangs
  3016. emu[0] = (col + w4) * 8 > f->linesize[0] ||
  3017. (row + h4) > s->rows;
  3018. emu[1] = (col + w4) * 4 > f->linesize[1] ||
  3019. (row + h4) > s->rows;
  3020. if (emu[0]) {
  3021. s->dst[0] = s->tmp_y;
  3022. s->y_stride = 128;
  3023. } else {
  3024. s->dst[0] = f->data[0] + yoff;
  3025. s->y_stride = f->linesize[0];
  3026. }
  3027. if (emu[1]) {
  3028. s->dst[1] = s->tmp_uv[0];
  3029. s->dst[2] = s->tmp_uv[1];
  3030. s->uv_stride = 128;
  3031. } else {
  3032. s->dst[1] = f->data[1] + uvoff;
  3033. s->dst[2] = f->data[2] + uvoff;
  3034. s->uv_stride = f->linesize[1];
  3035. }
  3036. if (b->intra) {
  3037. if (s->bpp > 8) {
  3038. intra_recon_16bpp(ctx, yoff, uvoff);
  3039. } else {
  3040. intra_recon_8bpp(ctx, yoff, uvoff);
  3041. }
  3042. } else {
  3043. if (s->bpp > 8) {
  3044. inter_recon_16bpp(ctx);
  3045. } else {
  3046. inter_recon_8bpp(ctx);
  3047. }
  3048. }
  3049. if (emu[0]) {
  3050. int w = FFMIN(s->cols - col, w4) * 8, h = FFMIN(s->rows - row, h4) * 8, n, o = 0;
  3051. for (n = 0; o < w; n++) {
  3052. int bw = 64 >> n;
  3053. av_assert2(n <= 4);
  3054. if (w & bw) {
  3055. s->dsp.mc[n][0][0][0][0](f->data[0] + yoff + o, f->linesize[0],
  3056. s->tmp_y + o, 128, h, 0, 0);
  3057. o += bw * bytesperpixel;
  3058. }
  3059. }
  3060. }
  3061. if (emu[1]) {
  3062. int w = FFMIN(s->cols - col, w4) * 8 >> s->ss_h;
  3063. int h = FFMIN(s->rows - row, h4) * 8 >> s->ss_v, n, o = 0;
  3064. for (n = 1; o < w; n++) {
  3065. int bw = 64 >> n;
  3066. av_assert2(n <= 4);
  3067. if (w & bw) {
  3068. s->dsp.mc[n][0][0][0][0](f->data[1] + uvoff + o, f->linesize[1],
  3069. s->tmp_uv[0] + o, 128, h, 0, 0);
  3070. s->dsp.mc[n][0][0][0][0](f->data[2] + uvoff + o, f->linesize[2],
  3071. s->tmp_uv[1] + o, 128, h, 0, 0);
  3072. o += bw * bytesperpixel;
  3073. }
  3074. }
  3075. }
  3076. // pick filter level and find edges to apply filter to
  3077. if (s->filter.level &&
  3078. (lvl = s->segmentation.feat[b->seg_id].lflvl[b->intra ? 0 : b->ref[0] + 1]
  3079. [b->mode[3] != ZEROMV]) > 0) {
  3080. int x_end = FFMIN(s->cols - col, w4), y_end = FFMIN(s->rows - row, h4);
  3081. int skip_inter = !b->intra && b->skip, col7 = s->col7, row7 = s->row7;
  3082. setctx_2d(&lflvl->level[row7 * 8 + col7], w4, h4, 8, lvl);
  3083. mask_edges(lflvl->mask[0], 0, 0, row7, col7, x_end, y_end, 0, 0, b->tx, skip_inter);
  3084. if (s->ss_h || s->ss_v)
  3085. mask_edges(lflvl->mask[1], s->ss_h, s->ss_v, row7, col7, x_end, y_end,
  3086. s->cols & 1 && col + w4 >= s->cols ? s->cols & 7 : 0,
  3087. s->rows & 1 && row + h4 >= s->rows ? s->rows & 7 : 0,
  3088. b->uvtx, skip_inter);
  3089. if (!s->filter.lim_lut[lvl]) {
  3090. int sharp = s->filter.sharpness;
  3091. int limit = lvl;
  3092. if (sharp > 0) {
  3093. limit >>= (sharp + 3) >> 2;
  3094. limit = FFMIN(limit, 9 - sharp);
  3095. }
  3096. limit = FFMAX(limit, 1);
  3097. s->filter.lim_lut[lvl] = limit;
  3098. s->filter.mblim_lut[lvl] = 2 * (lvl + 2) + limit;
  3099. }
  3100. }
  3101. if (s->pass == 2) {
  3102. s->b++;
  3103. s->block += w4 * h4 * 64 * bytesperpixel;
  3104. s->uvblock[0] += w4 * h4 * 64 * bytesperpixel >> (s->ss_v + s->ss_h);
  3105. s->uvblock[1] += w4 * h4 * 64 * bytesperpixel >> (s->ss_v + s->ss_h);
  3106. s->eob += 4 * w4 * h4;
  3107. s->uveob[0] += 4 * w4 * h4 >> (s->ss_v + s->ss_h);
  3108. s->uveob[1] += 4 * w4 * h4 >> (s->ss_v + s->ss_h);
  3109. }
  3110. }
  3111. static void decode_sb(AVCodecContext *ctx, int row, int col, struct VP9Filter *lflvl,
  3112. ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
  3113. {
  3114. VP9Context *s = ctx->priv_data;
  3115. int c = ((s->above_partition_ctx[col] >> (3 - bl)) & 1) |
  3116. (((s->left_partition_ctx[row & 0x7] >> (3 - bl)) & 1) << 1);
  3117. const uint8_t *p = s->keyframe || s->intraonly ? vp9_default_kf_partition_probs[bl][c] :
  3118. s->prob.p.partition[bl][c];
  3119. enum BlockPartition bp;
  3120. ptrdiff_t hbs = 4 >> bl;
  3121. AVFrame *f = s->frames[CUR_FRAME].tf.f;
  3122. ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
  3123. int bytesperpixel = s->bytesperpixel;
  3124. if (bl == BL_8X8) {
  3125. bp = vp8_rac_get_tree(&s->c, vp9_partition_tree, p);
  3126. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3127. } else if (col + hbs < s->cols) { // FIXME why not <=?
  3128. if (row + hbs < s->rows) { // FIXME why not <=?
  3129. bp = vp8_rac_get_tree(&s->c, vp9_partition_tree, p);
  3130. switch (bp) {
  3131. case PARTITION_NONE:
  3132. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3133. break;
  3134. case PARTITION_H:
  3135. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3136. yoff += hbs * 8 * y_stride;
  3137. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3138. decode_b(ctx, row + hbs, col, lflvl, yoff, uvoff, bl, bp);
  3139. break;
  3140. case PARTITION_V:
  3141. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3142. yoff += hbs * 8 * bytesperpixel;
  3143. uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
  3144. decode_b(ctx, row, col + hbs, lflvl, yoff, uvoff, bl, bp);
  3145. break;
  3146. case PARTITION_SPLIT:
  3147. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3148. decode_sb(ctx, row, col + hbs, lflvl,
  3149. yoff + 8 * hbs * bytesperpixel,
  3150. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3151. yoff += hbs * 8 * y_stride;
  3152. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3153. decode_sb(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3154. decode_sb(ctx, row + hbs, col + hbs, lflvl,
  3155. yoff + 8 * hbs * bytesperpixel,
  3156. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3157. break;
  3158. default:
  3159. av_assert0(0);
  3160. }
  3161. } else if (vp56_rac_get_prob_branchy(&s->c, p[1])) {
  3162. bp = PARTITION_SPLIT;
  3163. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3164. decode_sb(ctx, row, col + hbs, lflvl,
  3165. yoff + 8 * hbs * bytesperpixel,
  3166. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3167. } else {
  3168. bp = PARTITION_H;
  3169. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3170. }
  3171. } else if (row + hbs < s->rows) { // FIXME why not <=?
  3172. if (vp56_rac_get_prob_branchy(&s->c, p[2])) {
  3173. bp = PARTITION_SPLIT;
  3174. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3175. yoff += hbs * 8 * y_stride;
  3176. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3177. decode_sb(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3178. } else {
  3179. bp = PARTITION_V;
  3180. decode_b(ctx, row, col, lflvl, yoff, uvoff, bl, bp);
  3181. }
  3182. } else {
  3183. bp = PARTITION_SPLIT;
  3184. decode_sb(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3185. }
  3186. s->counts.partition[bl][c][bp]++;
  3187. }
  3188. static void decode_sb_mem(AVCodecContext *ctx, int row, int col, struct VP9Filter *lflvl,
  3189. ptrdiff_t yoff, ptrdiff_t uvoff, enum BlockLevel bl)
  3190. {
  3191. VP9Context *s = ctx->priv_data;
  3192. VP9Block *b = s->b;
  3193. ptrdiff_t hbs = 4 >> bl;
  3194. AVFrame *f = s->frames[CUR_FRAME].tf.f;
  3195. ptrdiff_t y_stride = f->linesize[0], uv_stride = f->linesize[1];
  3196. int bytesperpixel = s->bytesperpixel;
  3197. if (bl == BL_8X8) {
  3198. av_assert2(b->bl == BL_8X8);
  3199. decode_b(ctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
  3200. } else if (s->b->bl == bl) {
  3201. decode_b(ctx, row, col, lflvl, yoff, uvoff, b->bl, b->bp);
  3202. if (b->bp == PARTITION_H && row + hbs < s->rows) {
  3203. yoff += hbs * 8 * y_stride;
  3204. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3205. decode_b(ctx, row + hbs, col, lflvl, yoff, uvoff, b->bl, b->bp);
  3206. } else if (b->bp == PARTITION_V && col + hbs < s->cols) {
  3207. yoff += hbs * 8 * bytesperpixel;
  3208. uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
  3209. decode_b(ctx, row, col + hbs, lflvl, yoff, uvoff, b->bl, b->bp);
  3210. }
  3211. } else {
  3212. decode_sb_mem(ctx, row, col, lflvl, yoff, uvoff, bl + 1);
  3213. if (col + hbs < s->cols) { // FIXME why not <=?
  3214. if (row + hbs < s->rows) {
  3215. decode_sb_mem(ctx, row, col + hbs, lflvl, yoff + 8 * hbs * bytesperpixel,
  3216. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3217. yoff += hbs * 8 * y_stride;
  3218. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3219. decode_sb_mem(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3220. decode_sb_mem(ctx, row + hbs, col + hbs, lflvl,
  3221. yoff + 8 * hbs * bytesperpixel,
  3222. uvoff + (8 * hbs * bytesperpixel >> s->ss_h), bl + 1);
  3223. } else {
  3224. yoff += hbs * 8 * bytesperpixel;
  3225. uvoff += hbs * 8 * bytesperpixel >> s->ss_h;
  3226. decode_sb_mem(ctx, row, col + hbs, lflvl, yoff, uvoff, bl + 1);
  3227. }
  3228. } else if (row + hbs < s->rows) {
  3229. yoff += hbs * 8 * y_stride;
  3230. uvoff += hbs * 8 * uv_stride >> s->ss_v;
  3231. decode_sb_mem(ctx, row + hbs, col, lflvl, yoff, uvoff, bl + 1);
  3232. }
  3233. }
  3234. }
  3235. static av_always_inline void filter_plane_cols(VP9Context *s, int col, int ss_h, int ss_v,
  3236. uint8_t *lvl, uint8_t (*mask)[4],
  3237. uint8_t *dst, ptrdiff_t ls)
  3238. {
  3239. int y, x, bytesperpixel = s->bytesperpixel;
  3240. // filter edges between columns (e.g. block1 | block2)
  3241. for (y = 0; y < 8; y += 2 << ss_v, dst += 16 * ls, lvl += 16 << ss_v) {
  3242. uint8_t *ptr = dst, *l = lvl, *hmask1 = mask[y], *hmask2 = mask[y + 1 + ss_v];
  3243. unsigned hm1 = hmask1[0] | hmask1[1] | hmask1[2], hm13 = hmask1[3];
  3244. unsigned hm2 = hmask2[1] | hmask2[2], hm23 = hmask2[3];
  3245. unsigned hm = hm1 | hm2 | hm13 | hm23;
  3246. for (x = 1; hm & ~(x - 1); x <<= 1, ptr += 8 * bytesperpixel >> ss_h) {
  3247. if (col || x > 1) {
  3248. if (hm1 & x) {
  3249. int L = *l, H = L >> 4;
  3250. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3251. if (hmask1[0] & x) {
  3252. if (hmask2[0] & x) {
  3253. av_assert2(l[8 << ss_v] == L);
  3254. s->dsp.loop_filter_16[0](ptr, ls, E, I, H);
  3255. } else {
  3256. s->dsp.loop_filter_8[2][0](ptr, ls, E, I, H);
  3257. }
  3258. } else if (hm2 & x) {
  3259. L = l[8 << ss_v];
  3260. H |= (L >> 4) << 8;
  3261. E |= s->filter.mblim_lut[L] << 8;
  3262. I |= s->filter.lim_lut[L] << 8;
  3263. s->dsp.loop_filter_mix2[!!(hmask1[1] & x)]
  3264. [!!(hmask2[1] & x)]
  3265. [0](ptr, ls, E, I, H);
  3266. } else {
  3267. s->dsp.loop_filter_8[!!(hmask1[1] & x)]
  3268. [0](ptr, ls, E, I, H);
  3269. }
  3270. } else if (hm2 & x) {
  3271. int L = l[8 << ss_v], H = L >> 4;
  3272. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3273. s->dsp.loop_filter_8[!!(hmask2[1] & x)]
  3274. [0](ptr + 8 * ls, ls, E, I, H);
  3275. }
  3276. }
  3277. if (ss_h) {
  3278. if (x & 0xAA)
  3279. l += 2;
  3280. } else {
  3281. if (hm13 & x) {
  3282. int L = *l, H = L >> 4;
  3283. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3284. if (hm23 & x) {
  3285. L = l[8 << ss_v];
  3286. H |= (L >> 4) << 8;
  3287. E |= s->filter.mblim_lut[L] << 8;
  3288. I |= s->filter.lim_lut[L] << 8;
  3289. s->dsp.loop_filter_mix2[0][0][0](ptr + 4 * bytesperpixel, ls, E, I, H);
  3290. } else {
  3291. s->dsp.loop_filter_8[0][0](ptr + 4 * bytesperpixel, ls, E, I, H);
  3292. }
  3293. } else if (hm23 & x) {
  3294. int L = l[8 << ss_v], H = L >> 4;
  3295. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3296. s->dsp.loop_filter_8[0][0](ptr + 8 * ls + 4 * bytesperpixel, ls, E, I, H);
  3297. }
  3298. l++;
  3299. }
  3300. }
  3301. }
  3302. }
  3303. static av_always_inline void filter_plane_rows(VP9Context *s, int row, int ss_h, int ss_v,
  3304. uint8_t *lvl, uint8_t (*mask)[4],
  3305. uint8_t *dst, ptrdiff_t ls)
  3306. {
  3307. int y, x, bytesperpixel = s->bytesperpixel;
  3308. // block1
  3309. // filter edges between rows (e.g. ------)
  3310. // block2
  3311. for (y = 0; y < 8; y++, dst += 8 * ls >> ss_v) {
  3312. uint8_t *ptr = dst, *l = lvl, *vmask = mask[y];
  3313. unsigned vm = vmask[0] | vmask[1] | vmask[2], vm3 = vmask[3];
  3314. for (x = 1; vm & ~(x - 1); x <<= (2 << ss_h), ptr += 16 * bytesperpixel, l += 2 << ss_h) {
  3315. if (row || y) {
  3316. if (vm & x) {
  3317. int L = *l, H = L >> 4;
  3318. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3319. if (vmask[0] & x) {
  3320. if (vmask[0] & (x << (1 + ss_h))) {
  3321. av_assert2(l[1 + ss_h] == L);
  3322. s->dsp.loop_filter_16[1](ptr, ls, E, I, H);
  3323. } else {
  3324. s->dsp.loop_filter_8[2][1](ptr, ls, E, I, H);
  3325. }
  3326. } else if (vm & (x << (1 + ss_h))) {
  3327. L = l[1 + ss_h];
  3328. H |= (L >> 4) << 8;
  3329. E |= s->filter.mblim_lut[L] << 8;
  3330. I |= s->filter.lim_lut[L] << 8;
  3331. s->dsp.loop_filter_mix2[!!(vmask[1] & x)]
  3332. [!!(vmask[1] & (x << (1 + ss_h)))]
  3333. [1](ptr, ls, E, I, H);
  3334. } else {
  3335. s->dsp.loop_filter_8[!!(vmask[1] & x)]
  3336. [1](ptr, ls, E, I, H);
  3337. }
  3338. } else if (vm & (x << (1 + ss_h))) {
  3339. int L = l[1 + ss_h], H = L >> 4;
  3340. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3341. s->dsp.loop_filter_8[!!(vmask[1] & (x << (1 + ss_h)))]
  3342. [1](ptr + 8 * bytesperpixel, ls, E, I, H);
  3343. }
  3344. }
  3345. if (!ss_v) {
  3346. if (vm3 & x) {
  3347. int L = *l, H = L >> 4;
  3348. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3349. if (vm3 & (x << (1 + ss_h))) {
  3350. L = l[1 + ss_h];
  3351. H |= (L >> 4) << 8;
  3352. E |= s->filter.mblim_lut[L] << 8;
  3353. I |= s->filter.lim_lut[L] << 8;
  3354. s->dsp.loop_filter_mix2[0][0][1](ptr + ls * 4, ls, E, I, H);
  3355. } else {
  3356. s->dsp.loop_filter_8[0][1](ptr + ls * 4, ls, E, I, H);
  3357. }
  3358. } else if (vm3 & (x << (1 + ss_h))) {
  3359. int L = l[1 + ss_h], H = L >> 4;
  3360. int E = s->filter.mblim_lut[L], I = s->filter.lim_lut[L];
  3361. s->dsp.loop_filter_8[0][1](ptr + ls * 4 + 8 * bytesperpixel, ls, E, I, H);
  3362. }
  3363. }
  3364. }
  3365. if (ss_v) {
  3366. if (y & 1)
  3367. lvl += 16;
  3368. } else {
  3369. lvl += 8;
  3370. }
  3371. }
  3372. }
  3373. static void loopfilter_sb(AVCodecContext *ctx, struct VP9Filter *lflvl,
  3374. int row, int col, ptrdiff_t yoff, ptrdiff_t uvoff)
  3375. {
  3376. VP9Context *s = ctx->priv_data;
  3377. AVFrame *f = s->frames[CUR_FRAME].tf.f;
  3378. uint8_t *dst = f->data[0] + yoff;
  3379. ptrdiff_t ls_y = f->linesize[0], ls_uv = f->linesize[1];
  3380. uint8_t (*uv_masks)[8][4] = lflvl->mask[s->ss_h | s->ss_v];
  3381. int p;
  3382. // FIXME in how far can we interleave the v/h loopfilter calls? E.g.
  3383. // if you think of them as acting on a 8x8 block max, we can interleave
  3384. // each v/h within the single x loop, but that only works if we work on
  3385. // 8 pixel blocks, and we won't always do that (we want at least 16px
  3386. // to use SSE2 optimizations, perhaps 32 for AVX2)
  3387. filter_plane_cols(s, col, 0, 0, lflvl->level, lflvl->mask[0][0], dst, ls_y);
  3388. filter_plane_rows(s, row, 0, 0, lflvl->level, lflvl->mask[0][1], dst, ls_y);
  3389. for (p = 0; p < 2; p++) {
  3390. dst = f->data[1 + p] + uvoff;
  3391. filter_plane_cols(s, col, s->ss_h, s->ss_v, lflvl->level, uv_masks[0], dst, ls_uv);
  3392. filter_plane_rows(s, row, s->ss_h, s->ss_v, lflvl->level, uv_masks[1], dst, ls_uv);
  3393. }
  3394. }
  3395. static void set_tile_offset(int *start, int *end, int idx, int log2_n, int n)
  3396. {
  3397. int sb_start = ( idx * n) >> log2_n;
  3398. int sb_end = ((idx + 1) * n) >> log2_n;
  3399. *start = FFMIN(sb_start, n) << 3;
  3400. *end = FFMIN(sb_end, n) << 3;
  3401. }
  3402. static av_always_inline void adapt_prob(uint8_t *p, unsigned ct0, unsigned ct1,
  3403. int max_count, int update_factor)
  3404. {
  3405. unsigned ct = ct0 + ct1, p2, p1;
  3406. if (!ct)
  3407. return;
  3408. p1 = *p;
  3409. p2 = ((ct0 << 8) + (ct >> 1)) / ct;
  3410. p2 = av_clip(p2, 1, 255);
  3411. ct = FFMIN(ct, max_count);
  3412. update_factor = FASTDIV(update_factor * ct, max_count);
  3413. // (p1 * (256 - update_factor) + p2 * update_factor + 128) >> 8
  3414. *p = p1 + (((p2 - p1) * update_factor + 128) >> 8);
  3415. }
  3416. static void adapt_probs(VP9Context *s)
  3417. {
  3418. int i, j, k, l, m;
  3419. prob_context *p = &s->prob_ctx[s->framectxid].p;
  3420. int uf = (s->keyframe || s->intraonly || !s->last_keyframe) ? 112 : 128;
  3421. // coefficients
  3422. for (i = 0; i < 4; i++)
  3423. for (j = 0; j < 2; j++)
  3424. for (k = 0; k < 2; k++)
  3425. for (l = 0; l < 6; l++)
  3426. for (m = 0; m < 6; m++) {
  3427. uint8_t *pp = s->prob_ctx[s->framectxid].coef[i][j][k][l][m];
  3428. unsigned *e = s->counts.eob[i][j][k][l][m];
  3429. unsigned *c = s->counts.coef[i][j][k][l][m];
  3430. if (l == 0 && m >= 3) // dc only has 3 pt
  3431. break;
  3432. adapt_prob(&pp[0], e[0], e[1], 24, uf);
  3433. adapt_prob(&pp[1], c[0], c[1] + c[2], 24, uf);
  3434. adapt_prob(&pp[2], c[1], c[2], 24, uf);
  3435. }
  3436. if (s->keyframe || s->intraonly) {
  3437. memcpy(p->skip, s->prob.p.skip, sizeof(p->skip));
  3438. memcpy(p->tx32p, s->prob.p.tx32p, sizeof(p->tx32p));
  3439. memcpy(p->tx16p, s->prob.p.tx16p, sizeof(p->tx16p));
  3440. memcpy(p->tx8p, s->prob.p.tx8p, sizeof(p->tx8p));
  3441. return;
  3442. }
  3443. // skip flag
  3444. for (i = 0; i < 3; i++)
  3445. adapt_prob(&p->skip[i], s->counts.skip[i][0], s->counts.skip[i][1], 20, 128);
  3446. // intra/inter flag
  3447. for (i = 0; i < 4; i++)
  3448. adapt_prob(&p->intra[i], s->counts.intra[i][0], s->counts.intra[i][1], 20, 128);
  3449. // comppred flag
  3450. if (s->comppredmode == PRED_SWITCHABLE) {
  3451. for (i = 0; i < 5; i++)
  3452. adapt_prob(&p->comp[i], s->counts.comp[i][0], s->counts.comp[i][1], 20, 128);
  3453. }
  3454. // reference frames
  3455. if (s->comppredmode != PRED_SINGLEREF) {
  3456. for (i = 0; i < 5; i++)
  3457. adapt_prob(&p->comp_ref[i], s->counts.comp_ref[i][0],
  3458. s->counts.comp_ref[i][1], 20, 128);
  3459. }
  3460. if (s->comppredmode != PRED_COMPREF) {
  3461. for (i = 0; i < 5; i++) {
  3462. uint8_t *pp = p->single_ref[i];
  3463. unsigned (*c)[2] = s->counts.single_ref[i];
  3464. adapt_prob(&pp[0], c[0][0], c[0][1], 20, 128);
  3465. adapt_prob(&pp[1], c[1][0], c[1][1], 20, 128);
  3466. }
  3467. }
  3468. // block partitioning
  3469. for (i = 0; i < 4; i++)
  3470. for (j = 0; j < 4; j++) {
  3471. uint8_t *pp = p->partition[i][j];
  3472. unsigned *c = s->counts.partition[i][j];
  3473. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3474. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3475. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3476. }
  3477. // tx size
  3478. if (s->txfmmode == TX_SWITCHABLE) {
  3479. for (i = 0; i < 2; i++) {
  3480. unsigned *c16 = s->counts.tx16p[i], *c32 = s->counts.tx32p[i];
  3481. adapt_prob(&p->tx8p[i], s->counts.tx8p[i][0], s->counts.tx8p[i][1], 20, 128);
  3482. adapt_prob(&p->tx16p[i][0], c16[0], c16[1] + c16[2], 20, 128);
  3483. adapt_prob(&p->tx16p[i][1], c16[1], c16[2], 20, 128);
  3484. adapt_prob(&p->tx32p[i][0], c32[0], c32[1] + c32[2] + c32[3], 20, 128);
  3485. adapt_prob(&p->tx32p[i][1], c32[1], c32[2] + c32[3], 20, 128);
  3486. adapt_prob(&p->tx32p[i][2], c32[2], c32[3], 20, 128);
  3487. }
  3488. }
  3489. // interpolation filter
  3490. if (s->filtermode == FILTER_SWITCHABLE) {
  3491. for (i = 0; i < 4; i++) {
  3492. uint8_t *pp = p->filter[i];
  3493. unsigned *c = s->counts.filter[i];
  3494. adapt_prob(&pp[0], c[0], c[1] + c[2], 20, 128);
  3495. adapt_prob(&pp[1], c[1], c[2], 20, 128);
  3496. }
  3497. }
  3498. // inter modes
  3499. for (i = 0; i < 7; i++) {
  3500. uint8_t *pp = p->mv_mode[i];
  3501. unsigned *c = s->counts.mv_mode[i];
  3502. adapt_prob(&pp[0], c[2], c[1] + c[0] + c[3], 20, 128);
  3503. adapt_prob(&pp[1], c[0], c[1] + c[3], 20, 128);
  3504. adapt_prob(&pp[2], c[1], c[3], 20, 128);
  3505. }
  3506. // mv joints
  3507. {
  3508. uint8_t *pp = p->mv_joint;
  3509. unsigned *c = s->counts.mv_joint;
  3510. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3511. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3512. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3513. }
  3514. // mv components
  3515. for (i = 0; i < 2; i++) {
  3516. uint8_t *pp;
  3517. unsigned *c, (*c2)[2], sum;
  3518. adapt_prob(&p->mv_comp[i].sign, s->counts.mv_comp[i].sign[0],
  3519. s->counts.mv_comp[i].sign[1], 20, 128);
  3520. pp = p->mv_comp[i].classes;
  3521. c = s->counts.mv_comp[i].classes;
  3522. sum = c[1] + c[2] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9] + c[10];
  3523. adapt_prob(&pp[0], c[0], sum, 20, 128);
  3524. sum -= c[1];
  3525. adapt_prob(&pp[1], c[1], sum, 20, 128);
  3526. sum -= c[2] + c[3];
  3527. adapt_prob(&pp[2], c[2] + c[3], sum, 20, 128);
  3528. adapt_prob(&pp[3], c[2], c[3], 20, 128);
  3529. sum -= c[4] + c[5];
  3530. adapt_prob(&pp[4], c[4] + c[5], sum, 20, 128);
  3531. adapt_prob(&pp[5], c[4], c[5], 20, 128);
  3532. sum -= c[6];
  3533. adapt_prob(&pp[6], c[6], sum, 20, 128);
  3534. adapt_prob(&pp[7], c[7] + c[8], c[9] + c[10], 20, 128);
  3535. adapt_prob(&pp[8], c[7], c[8], 20, 128);
  3536. adapt_prob(&pp[9], c[9], c[10], 20, 128);
  3537. adapt_prob(&p->mv_comp[i].class0, s->counts.mv_comp[i].class0[0],
  3538. s->counts.mv_comp[i].class0[1], 20, 128);
  3539. pp = p->mv_comp[i].bits;
  3540. c2 = s->counts.mv_comp[i].bits;
  3541. for (j = 0; j < 10; j++)
  3542. adapt_prob(&pp[j], c2[j][0], c2[j][1], 20, 128);
  3543. for (j = 0; j < 2; j++) {
  3544. pp = p->mv_comp[i].class0_fp[j];
  3545. c = s->counts.mv_comp[i].class0_fp[j];
  3546. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3547. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3548. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3549. }
  3550. pp = p->mv_comp[i].fp;
  3551. c = s->counts.mv_comp[i].fp;
  3552. adapt_prob(&pp[0], c[0], c[1] + c[2] + c[3], 20, 128);
  3553. adapt_prob(&pp[1], c[1], c[2] + c[3], 20, 128);
  3554. adapt_prob(&pp[2], c[2], c[3], 20, 128);
  3555. if (s->highprecisionmvs) {
  3556. adapt_prob(&p->mv_comp[i].class0_hp, s->counts.mv_comp[i].class0_hp[0],
  3557. s->counts.mv_comp[i].class0_hp[1], 20, 128);
  3558. adapt_prob(&p->mv_comp[i].hp, s->counts.mv_comp[i].hp[0],
  3559. s->counts.mv_comp[i].hp[1], 20, 128);
  3560. }
  3561. }
  3562. // y intra modes
  3563. for (i = 0; i < 4; i++) {
  3564. uint8_t *pp = p->y_mode[i];
  3565. unsigned *c = s->counts.y_mode[i], sum, s2;
  3566. sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9];
  3567. adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128);
  3568. sum -= c[TM_VP8_PRED];
  3569. adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128);
  3570. sum -= c[VERT_PRED];
  3571. adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128);
  3572. s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED];
  3573. sum -= s2;
  3574. adapt_prob(&pp[3], s2, sum, 20, 128);
  3575. s2 -= c[HOR_PRED];
  3576. adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128);
  3577. adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128);
  3578. sum -= c[DIAG_DOWN_LEFT_PRED];
  3579. adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128);
  3580. sum -= c[VERT_LEFT_PRED];
  3581. adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128);
  3582. adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128);
  3583. }
  3584. // uv intra modes
  3585. for (i = 0; i < 10; i++) {
  3586. uint8_t *pp = p->uv_mode[i];
  3587. unsigned *c = s->counts.uv_mode[i], sum, s2;
  3588. sum = c[0] + c[1] + c[3] + c[4] + c[5] + c[6] + c[7] + c[8] + c[9];
  3589. adapt_prob(&pp[0], c[DC_PRED], sum, 20, 128);
  3590. sum -= c[TM_VP8_PRED];
  3591. adapt_prob(&pp[1], c[TM_VP8_PRED], sum, 20, 128);
  3592. sum -= c[VERT_PRED];
  3593. adapt_prob(&pp[2], c[VERT_PRED], sum, 20, 128);
  3594. s2 = c[HOR_PRED] + c[DIAG_DOWN_RIGHT_PRED] + c[VERT_RIGHT_PRED];
  3595. sum -= s2;
  3596. adapt_prob(&pp[3], s2, sum, 20, 128);
  3597. s2 -= c[HOR_PRED];
  3598. adapt_prob(&pp[4], c[HOR_PRED], s2, 20, 128);
  3599. adapt_prob(&pp[5], c[DIAG_DOWN_RIGHT_PRED], c[VERT_RIGHT_PRED], 20, 128);
  3600. sum -= c[DIAG_DOWN_LEFT_PRED];
  3601. adapt_prob(&pp[6], c[DIAG_DOWN_LEFT_PRED], sum, 20, 128);
  3602. sum -= c[VERT_LEFT_PRED];
  3603. adapt_prob(&pp[7], c[VERT_LEFT_PRED], sum, 20, 128);
  3604. adapt_prob(&pp[8], c[HOR_DOWN_PRED], c[HOR_UP_PRED], 20, 128);
  3605. }
  3606. }
  3607. static void free_buffers(VP9Context *s)
  3608. {
  3609. av_freep(&s->intra_pred_data[0]);
  3610. av_freep(&s->b_base);
  3611. av_freep(&s->block_base);
  3612. }
  3613. static av_cold int vp9_decode_free(AVCodecContext *ctx)
  3614. {
  3615. VP9Context *s = ctx->priv_data;
  3616. int i;
  3617. for (i = 0; i < 3; i++) {
  3618. if (s->frames[i].tf.f->data[0])
  3619. vp9_unref_frame(ctx, &s->frames[i]);
  3620. av_frame_free(&s->frames[i].tf.f);
  3621. }
  3622. for (i = 0; i < 8; i++) {
  3623. if (s->refs[i].f->data[0])
  3624. ff_thread_release_buffer(ctx, &s->refs[i]);
  3625. av_frame_free(&s->refs[i].f);
  3626. if (s->next_refs[i].f->data[0])
  3627. ff_thread_release_buffer(ctx, &s->next_refs[i]);
  3628. av_frame_free(&s->next_refs[i].f);
  3629. }
  3630. free_buffers(s);
  3631. av_freep(&s->c_b);
  3632. s->c_b_size = 0;
  3633. return 0;
  3634. }
  3635. static int vp9_decode_frame(AVCodecContext *ctx, void *frame,
  3636. int *got_frame, AVPacket *pkt)
  3637. {
  3638. const uint8_t *data = pkt->data;
  3639. int size = pkt->size;
  3640. VP9Context *s = ctx->priv_data;
  3641. int res, tile_row, tile_col, i, ref, row, col;
  3642. int retain_segmap_ref = s->segmentation.enabled && !s->segmentation.update_map;
  3643. ptrdiff_t yoff, uvoff, ls_y, ls_uv;
  3644. AVFrame *f;
  3645. int bytesperpixel;
  3646. if ((res = decode_frame_header(ctx, data, size, &ref)) < 0) {
  3647. return res;
  3648. } else if (res == 0) {
  3649. if (!s->refs[ref].f->data[0]) {
  3650. av_log(ctx, AV_LOG_ERROR, "Requested reference %d not available\n", ref);
  3651. return AVERROR_INVALIDDATA;
  3652. }
  3653. if ((res = av_frame_ref(frame, s->refs[ref].f)) < 0)
  3654. return res;
  3655. ((AVFrame *)frame)->pkt_pts = pkt->pts;
  3656. ((AVFrame *)frame)->pkt_dts = pkt->dts;
  3657. for (i = 0; i < 8; i++) {
  3658. if (s->next_refs[i].f->data[0])
  3659. ff_thread_release_buffer(ctx, &s->next_refs[i]);
  3660. if (s->refs[i].f->data[0] &&
  3661. (res = ff_thread_ref_frame(&s->next_refs[i], &s->refs[i])) < 0)
  3662. return res;
  3663. }
  3664. *got_frame = 1;
  3665. return pkt->size;
  3666. }
  3667. data += res;
  3668. size -= res;
  3669. if (!retain_segmap_ref) {
  3670. if (s->frames[REF_FRAME_SEGMAP].tf.f->data[0])
  3671. vp9_unref_frame(ctx, &s->frames[REF_FRAME_SEGMAP]);
  3672. if (!s->keyframe && !s->intraonly && !s->errorres && s->frames[CUR_FRAME].tf.f->data[0] &&
  3673. (res = vp9_ref_frame(ctx, &s->frames[REF_FRAME_SEGMAP], &s->frames[CUR_FRAME])) < 0)
  3674. return res;
  3675. }
  3676. if (s->frames[REF_FRAME_MVPAIR].tf.f->data[0])
  3677. vp9_unref_frame(ctx, &s->frames[REF_FRAME_MVPAIR]);
  3678. if (!s->intraonly && !s->keyframe && !s->errorres && s->frames[CUR_FRAME].tf.f->data[0] &&
  3679. (res = vp9_ref_frame(ctx, &s->frames[REF_FRAME_MVPAIR], &s->frames[CUR_FRAME])) < 0)
  3680. return res;
  3681. if (s->frames[CUR_FRAME].tf.f->data[0])
  3682. vp9_unref_frame(ctx, &s->frames[CUR_FRAME]);
  3683. if ((res = vp9_alloc_frame(ctx, &s->frames[CUR_FRAME])) < 0)
  3684. return res;
  3685. f = s->frames[CUR_FRAME].tf.f;
  3686. f->key_frame = s->keyframe;
  3687. f->pict_type = (s->keyframe || s->intraonly) ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
  3688. ls_y = f->linesize[0];
  3689. ls_uv =f->linesize[1];
  3690. // ref frame setup
  3691. for (i = 0; i < 8; i++) {
  3692. if (s->next_refs[i].f->data[0])
  3693. ff_thread_release_buffer(ctx, &s->next_refs[i]);
  3694. if (s->refreshrefmask & (1 << i)) {
  3695. res = ff_thread_ref_frame(&s->next_refs[i], &s->frames[CUR_FRAME].tf);
  3696. } else if (s->refs[i].f->data[0]) {
  3697. res = ff_thread_ref_frame(&s->next_refs[i], &s->refs[i]);
  3698. }
  3699. if (res < 0)
  3700. return res;
  3701. }
  3702. // main tile decode loop
  3703. bytesperpixel = s->bytesperpixel;
  3704. memset(s->above_partition_ctx, 0, s->cols);
  3705. memset(s->above_skip_ctx, 0, s->cols);
  3706. if (s->keyframe || s->intraonly) {
  3707. memset(s->above_mode_ctx, DC_PRED, s->cols * 2);
  3708. } else {
  3709. memset(s->above_mode_ctx, NEARESTMV, s->cols);
  3710. }
  3711. memset(s->above_y_nnz_ctx, 0, s->sb_cols * 16);
  3712. memset(s->above_uv_nnz_ctx[0], 0, s->sb_cols * 16 >> s->ss_h);
  3713. memset(s->above_uv_nnz_ctx[1], 0, s->sb_cols * 16 >> s->ss_h);
  3714. memset(s->above_segpred_ctx, 0, s->cols);
  3715. s->pass = s->frames[CUR_FRAME].uses_2pass =
  3716. ctx->active_thread_type == FF_THREAD_FRAME && s->refreshctx && !s->parallelmode;
  3717. if ((res = update_block_buffers(ctx)) < 0) {
  3718. av_log(ctx, AV_LOG_ERROR,
  3719. "Failed to allocate block buffers\n");
  3720. return res;
  3721. }
  3722. if (s->refreshctx && s->parallelmode) {
  3723. int j, k, l, m;
  3724. for (i = 0; i < 4; i++) {
  3725. for (j = 0; j < 2; j++)
  3726. for (k = 0; k < 2; k++)
  3727. for (l = 0; l < 6; l++)
  3728. for (m = 0; m < 6; m++)
  3729. memcpy(s->prob_ctx[s->framectxid].coef[i][j][k][l][m],
  3730. s->prob.coef[i][j][k][l][m], 3);
  3731. if (s->txfmmode == i)
  3732. break;
  3733. }
  3734. s->prob_ctx[s->framectxid].p = s->prob.p;
  3735. ff_thread_finish_setup(ctx);
  3736. } else if (!s->refreshctx) {
  3737. ff_thread_finish_setup(ctx);
  3738. }
  3739. do {
  3740. yoff = uvoff = 0;
  3741. s->b = s->b_base;
  3742. s->block = s->block_base;
  3743. s->uvblock[0] = s->uvblock_base[0];
  3744. s->uvblock[1] = s->uvblock_base[1];
  3745. s->eob = s->eob_base;
  3746. s->uveob[0] = s->uveob_base[0];
  3747. s->uveob[1] = s->uveob_base[1];
  3748. for (tile_row = 0; tile_row < s->tiling.tile_rows; tile_row++) {
  3749. set_tile_offset(&s->tiling.tile_row_start, &s->tiling.tile_row_end,
  3750. tile_row, s->tiling.log2_tile_rows, s->sb_rows);
  3751. if (s->pass != 2) {
  3752. for (tile_col = 0; tile_col < s->tiling.tile_cols; tile_col++) {
  3753. unsigned tile_size;
  3754. if (tile_col == s->tiling.tile_cols - 1 &&
  3755. tile_row == s->tiling.tile_rows - 1) {
  3756. tile_size = size;
  3757. } else {
  3758. tile_size = AV_RB32(data);
  3759. data += 4;
  3760. size -= 4;
  3761. }
  3762. if (tile_size > size) {
  3763. ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0);
  3764. return AVERROR_INVALIDDATA;
  3765. }
  3766. ff_vp56_init_range_decoder(&s->c_b[tile_col], data, tile_size);
  3767. if (vp56_rac_get_prob_branchy(&s->c_b[tile_col], 128)) { // marker bit
  3768. ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0);
  3769. return AVERROR_INVALIDDATA;
  3770. }
  3771. data += tile_size;
  3772. size -= tile_size;
  3773. }
  3774. }
  3775. for (row = s->tiling.tile_row_start; row < s->tiling.tile_row_end;
  3776. row += 8, yoff += ls_y * 64, uvoff += ls_uv * 64 >> s->ss_v) {
  3777. struct VP9Filter *lflvl_ptr = s->lflvl;
  3778. ptrdiff_t yoff2 = yoff, uvoff2 = uvoff;
  3779. for (tile_col = 0; tile_col < s->tiling.tile_cols; tile_col++) {
  3780. set_tile_offset(&s->tiling.tile_col_start, &s->tiling.tile_col_end,
  3781. tile_col, s->tiling.log2_tile_cols, s->sb_cols);
  3782. if (s->pass != 2) {
  3783. memset(s->left_partition_ctx, 0, 8);
  3784. memset(s->left_skip_ctx, 0, 8);
  3785. if (s->keyframe || s->intraonly) {
  3786. memset(s->left_mode_ctx, DC_PRED, 16);
  3787. } else {
  3788. memset(s->left_mode_ctx, NEARESTMV, 8);
  3789. }
  3790. memset(s->left_y_nnz_ctx, 0, 16);
  3791. memset(s->left_uv_nnz_ctx, 0, 32);
  3792. memset(s->left_segpred_ctx, 0, 8);
  3793. memcpy(&s->c, &s->c_b[tile_col], sizeof(s->c));
  3794. }
  3795. for (col = s->tiling.tile_col_start;
  3796. col < s->tiling.tile_col_end;
  3797. col += 8, yoff2 += 64 * bytesperpixel,
  3798. uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) {
  3799. // FIXME integrate with lf code (i.e. zero after each
  3800. // use, similar to invtxfm coefficients, or similar)
  3801. if (s->pass != 1) {
  3802. memset(lflvl_ptr->mask, 0, sizeof(lflvl_ptr->mask));
  3803. }
  3804. if (s->pass == 2) {
  3805. decode_sb_mem(ctx, row, col, lflvl_ptr,
  3806. yoff2, uvoff2, BL_64X64);
  3807. } else {
  3808. decode_sb(ctx, row, col, lflvl_ptr,
  3809. yoff2, uvoff2, BL_64X64);
  3810. }
  3811. }
  3812. if (s->pass != 2) {
  3813. memcpy(&s->c_b[tile_col], &s->c, sizeof(s->c));
  3814. }
  3815. }
  3816. if (s->pass == 1) {
  3817. continue;
  3818. }
  3819. // backup pre-loopfilter reconstruction data for intra
  3820. // prediction of next row of sb64s
  3821. if (row + 8 < s->rows) {
  3822. memcpy(s->intra_pred_data[0],
  3823. f->data[0] + yoff + 63 * ls_y,
  3824. 8 * s->cols * bytesperpixel);
  3825. memcpy(s->intra_pred_data[1],
  3826. f->data[1] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
  3827. 8 * s->cols * bytesperpixel >> s->ss_h);
  3828. memcpy(s->intra_pred_data[2],
  3829. f->data[2] + uvoff + ((64 >> s->ss_v) - 1) * ls_uv,
  3830. 8 * s->cols * bytesperpixel >> s->ss_h);
  3831. }
  3832. // loopfilter one row
  3833. if (s->filter.level) {
  3834. yoff2 = yoff;
  3835. uvoff2 = uvoff;
  3836. lflvl_ptr = s->lflvl;
  3837. for (col = 0; col < s->cols;
  3838. col += 8, yoff2 += 64 * bytesperpixel,
  3839. uvoff2 += 64 * bytesperpixel >> s->ss_h, lflvl_ptr++) {
  3840. loopfilter_sb(ctx, lflvl_ptr, row, col, yoff2, uvoff2);
  3841. }
  3842. }
  3843. // FIXME maybe we can make this more finegrained by running the
  3844. // loopfilter per-block instead of after each sbrow
  3845. // In fact that would also make intra pred left preparation easier?
  3846. ff_thread_report_progress(&s->frames[CUR_FRAME].tf, row >> 3, 0);
  3847. }
  3848. }
  3849. if (s->pass < 2 && s->refreshctx && !s->parallelmode) {
  3850. adapt_probs(s);
  3851. ff_thread_finish_setup(ctx);
  3852. }
  3853. } while (s->pass++ == 1);
  3854. ff_thread_report_progress(&s->frames[CUR_FRAME].tf, INT_MAX, 0);
  3855. // ref frame setup
  3856. for (i = 0; i < 8; i++) {
  3857. if (s->refs[i].f->data[0])
  3858. ff_thread_release_buffer(ctx, &s->refs[i]);
  3859. ff_thread_ref_frame(&s->refs[i], &s->next_refs[i]);
  3860. }
  3861. if (!s->invisible) {
  3862. if ((res = av_frame_ref(frame, s->frames[CUR_FRAME].tf.f)) < 0)
  3863. return res;
  3864. *got_frame = 1;
  3865. }
  3866. return pkt->size;
  3867. }
  3868. static void vp9_decode_flush(AVCodecContext *ctx)
  3869. {
  3870. VP9Context *s = ctx->priv_data;
  3871. int i;
  3872. for (i = 0; i < 3; i++)
  3873. vp9_unref_frame(ctx, &s->frames[i]);
  3874. for (i = 0; i < 8; i++)
  3875. ff_thread_release_buffer(ctx, &s->refs[i]);
  3876. }
  3877. static int init_frames(AVCodecContext *ctx)
  3878. {
  3879. VP9Context *s = ctx->priv_data;
  3880. int i;
  3881. for (i = 0; i < 3; i++) {
  3882. s->frames[i].tf.f = av_frame_alloc();
  3883. if (!s->frames[i].tf.f) {
  3884. vp9_decode_free(ctx);
  3885. av_log(ctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i);
  3886. return AVERROR(ENOMEM);
  3887. }
  3888. }
  3889. for (i = 0; i < 8; i++) {
  3890. s->refs[i].f = av_frame_alloc();
  3891. s->next_refs[i].f = av_frame_alloc();
  3892. if (!s->refs[i].f || !s->next_refs[i].f) {
  3893. vp9_decode_free(ctx);
  3894. av_log(ctx, AV_LOG_ERROR, "Failed to allocate frame buffer %d\n", i);
  3895. return AVERROR(ENOMEM);
  3896. }
  3897. }
  3898. return 0;
  3899. }
  3900. static av_cold int vp9_decode_init(AVCodecContext *ctx)
  3901. {
  3902. VP9Context *s = ctx->priv_data;
  3903. ctx->internal->allocate_progress = 1;
  3904. s->last_bpp = 0;
  3905. s->filter.sharpness = -1;
  3906. return init_frames(ctx);
  3907. }
  3908. static av_cold int vp9_decode_init_thread_copy(AVCodecContext *avctx)
  3909. {
  3910. return init_frames(avctx);
  3911. }
  3912. static int vp9_decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
  3913. {
  3914. int i, res;
  3915. VP9Context *s = dst->priv_data, *ssrc = src->priv_data;
  3916. // detect size changes in other threads
  3917. if (s->intra_pred_data[0] &&
  3918. (!ssrc->intra_pred_data[0] || s->cols != ssrc->cols || s->rows != ssrc->rows)) {
  3919. free_buffers(s);
  3920. }
  3921. for (i = 0; i < 3; i++) {
  3922. if (s->frames[i].tf.f->data[0])
  3923. vp9_unref_frame(dst, &s->frames[i]);
  3924. if (ssrc->frames[i].tf.f->data[0]) {
  3925. if ((res = vp9_ref_frame(dst, &s->frames[i], &ssrc->frames[i])) < 0)
  3926. return res;
  3927. }
  3928. }
  3929. for (i = 0; i < 8; i++) {
  3930. if (s->refs[i].f->data[0])
  3931. ff_thread_release_buffer(dst, &s->refs[i]);
  3932. if (ssrc->next_refs[i].f->data[0]) {
  3933. if ((res = ff_thread_ref_frame(&s->refs[i], &ssrc->next_refs[i])) < 0)
  3934. return res;
  3935. }
  3936. }
  3937. s->invisible = ssrc->invisible;
  3938. s->keyframe = ssrc->keyframe;
  3939. s->ss_v = ssrc->ss_v;
  3940. s->ss_h = ssrc->ss_h;
  3941. s->segmentation.enabled = ssrc->segmentation.enabled;
  3942. s->segmentation.update_map = ssrc->segmentation.update_map;
  3943. s->bytesperpixel = ssrc->bytesperpixel;
  3944. s->bpp = ssrc->bpp;
  3945. s->bpp_index = ssrc->bpp_index;
  3946. memcpy(&s->prob_ctx, &ssrc->prob_ctx, sizeof(s->prob_ctx));
  3947. memcpy(&s->lf_delta, &ssrc->lf_delta, sizeof(s->lf_delta));
  3948. if (ssrc->segmentation.enabled) {
  3949. memcpy(&s->segmentation.feat, &ssrc->segmentation.feat,
  3950. sizeof(s->segmentation.feat));
  3951. }
  3952. return 0;
  3953. }
  3954. static const AVProfile profiles[] = {
  3955. { FF_PROFILE_VP9_0, "Profile 0" },
  3956. { FF_PROFILE_VP9_1, "Profile 1" },
  3957. { FF_PROFILE_VP9_2, "Profile 2" },
  3958. { FF_PROFILE_VP9_3, "Profile 3" },
  3959. { FF_PROFILE_UNKNOWN },
  3960. };
  3961. AVCodec ff_vp9_decoder = {
  3962. .name = "vp9",
  3963. .long_name = NULL_IF_CONFIG_SMALL("Google VP9"),
  3964. .type = AVMEDIA_TYPE_VIDEO,
  3965. .id = AV_CODEC_ID_VP9,
  3966. .priv_data_size = sizeof(VP9Context),
  3967. .init = vp9_decode_init,
  3968. .close = vp9_decode_free,
  3969. .decode = vp9_decode_frame,
  3970. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
  3971. .flush = vp9_decode_flush,
  3972. .init_thread_copy = ONLY_IF_THREADS_ENABLED(vp9_decode_init_thread_copy),
  3973. .update_thread_context = ONLY_IF_THREADS_ENABLED(vp9_decode_update_thread_context),
  3974. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  3975. };