You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

560 lines
21KB

  1. /*
  2. * Copyright (c) 2009 Rob Sykes <robs@users.sourceforge.net>
  3. * Copyright (c) 2013 Paul B Mahol
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <float.h>
  22. #include "libavutil/opt.h"
  23. #include "audio.h"
  24. #include "avfilter.h"
  25. #include "internal.h"
  26. typedef struct ChannelStats {
  27. double last;
  28. double last_non_zero;
  29. double min_non_zero;
  30. double sigma_x, sigma_x2;
  31. double avg_sigma_x2, min_sigma_x2, max_sigma_x2;
  32. double min, max;
  33. double nmin, nmax;
  34. double min_run, max_run;
  35. double min_runs, max_runs;
  36. double min_diff, max_diff;
  37. double diff1_sum;
  38. double diff1_sum_x2;
  39. uint64_t mask, imask;
  40. uint64_t min_count, max_count;
  41. uint64_t zero_runs;
  42. uint64_t nb_samples;
  43. } ChannelStats;
  44. typedef struct AudioStatsContext {
  45. const AVClass *class;
  46. ChannelStats *chstats;
  47. int nb_channels;
  48. uint64_t tc_samples;
  49. double time_constant;
  50. double mult;
  51. int metadata;
  52. int reset_count;
  53. int nb_frames;
  54. int maxbitdepth;
  55. } AudioStatsContext;
  56. #define OFFSET(x) offsetof(AudioStatsContext, x)
  57. #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  58. static const AVOption astats_options[] = {
  59. { "length", "set the window length", OFFSET(time_constant), AV_OPT_TYPE_DOUBLE, {.dbl=.05}, .01, 10, FLAGS },
  60. { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
  61. { "reset", "recalculate stats after this many frames", OFFSET(reset_count), AV_OPT_TYPE_INT, {.i64=0}, 0, INT_MAX, FLAGS },
  62. { NULL }
  63. };
  64. AVFILTER_DEFINE_CLASS(astats);
  65. static int query_formats(AVFilterContext *ctx)
  66. {
  67. AVFilterFormats *formats;
  68. AVFilterChannelLayouts *layouts;
  69. static const enum AVSampleFormat sample_fmts[] = {
  70. AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16P,
  71. AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32P,
  72. AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64P,
  73. AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLTP,
  74. AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBLP,
  75. AV_SAMPLE_FMT_NONE
  76. };
  77. int ret;
  78. layouts = ff_all_channel_counts();
  79. if (!layouts)
  80. return AVERROR(ENOMEM);
  81. ret = ff_set_common_channel_layouts(ctx, layouts);
  82. if (ret < 0)
  83. return ret;
  84. formats = ff_make_format_list(sample_fmts);
  85. if (!formats)
  86. return AVERROR(ENOMEM);
  87. ret = ff_set_common_formats(ctx, formats);
  88. if (ret < 0)
  89. return ret;
  90. formats = ff_all_samplerates();
  91. if (!formats)
  92. return AVERROR(ENOMEM);
  93. return ff_set_common_samplerates(ctx, formats);
  94. }
  95. static void reset_stats(AudioStatsContext *s)
  96. {
  97. int c;
  98. for (c = 0; c < s->nb_channels; c++) {
  99. ChannelStats *p = &s->chstats[c];
  100. p->min = p->nmin = p->min_sigma_x2 = DBL_MAX;
  101. p->max = p->nmax = p->max_sigma_x2 = DBL_MIN;
  102. p->min_non_zero = DBL_MAX;
  103. p->min_diff = DBL_MAX;
  104. p->max_diff = DBL_MIN;
  105. p->sigma_x = 0;
  106. p->sigma_x2 = 0;
  107. p->avg_sigma_x2 = 0;
  108. p->min_run = 0;
  109. p->max_run = 0;
  110. p->min_runs = 0;
  111. p->max_runs = 0;
  112. p->diff1_sum = 0;
  113. p->diff1_sum_x2 = 0;
  114. p->mask = 0;
  115. p->imask = 0xFFFFFFFFFFFFFFFF;
  116. p->min_count = 0;
  117. p->max_count = 0;
  118. p->zero_runs = 0;
  119. p->nb_samples = 0;
  120. }
  121. }
  122. static int config_output(AVFilterLink *outlink)
  123. {
  124. AudioStatsContext *s = outlink->src->priv;
  125. s->chstats = av_calloc(sizeof(*s->chstats), outlink->channels);
  126. if (!s->chstats)
  127. return AVERROR(ENOMEM);
  128. s->nb_channels = outlink->channels;
  129. s->mult = exp((-1 / s->time_constant / outlink->sample_rate));
  130. s->tc_samples = 5 * s->time_constant * outlink->sample_rate + .5;
  131. s->nb_frames = 0;
  132. s->maxbitdepth = av_get_bytes_per_sample(outlink->format) * 8;
  133. reset_stats(s);
  134. return 0;
  135. }
  136. static void bit_depth(AudioStatsContext *s, uint64_t mask, uint64_t imask, AVRational *depth)
  137. {
  138. unsigned result = s->maxbitdepth;
  139. mask = mask & (~imask);
  140. for (; result && !(mask & 1); --result, mask >>= 1);
  141. depth->den = result;
  142. depth->num = 0;
  143. for (; result; --result, mask >>= 1)
  144. if (mask & 1)
  145. depth->num++;
  146. }
  147. static inline void update_stat(AudioStatsContext *s, ChannelStats *p, double d, double nd, int64_t i)
  148. {
  149. if (d < p->min) {
  150. p->min = d;
  151. p->nmin = nd;
  152. p->min_run = 1;
  153. p->min_runs = 0;
  154. p->min_count = 1;
  155. } else if (d == p->min) {
  156. p->min_count++;
  157. p->min_run = d == p->last ? p->min_run + 1 : 1;
  158. } else if (p->last == p->min) {
  159. p->min_runs += p->min_run * p->min_run;
  160. }
  161. if (d != 0 && FFABS(d) < p->min_non_zero)
  162. p->min_non_zero = FFABS(d);
  163. if (d > p->max) {
  164. p->max = d;
  165. p->nmax = nd;
  166. p->max_run = 1;
  167. p->max_runs = 0;
  168. p->max_count = 1;
  169. } else if (d == p->max) {
  170. p->max_count++;
  171. p->max_run = d == p->last ? p->max_run + 1 : 1;
  172. } else if (p->last == p->max) {
  173. p->max_runs += p->max_run * p->max_run;
  174. }
  175. if (d != 0) {
  176. p->zero_runs += FFSIGN(d) != FFSIGN(p->last_non_zero);
  177. p->last_non_zero = d;
  178. }
  179. p->sigma_x += nd;
  180. p->sigma_x2 += nd * nd;
  181. p->avg_sigma_x2 = p->avg_sigma_x2 * s->mult + (1.0 - s->mult) * nd * nd;
  182. p->min_diff = FFMIN(p->min_diff, fabs(d - p->last));
  183. p->max_diff = FFMAX(p->max_diff, fabs(d - p->last));
  184. p->diff1_sum += fabs(d - p->last);
  185. p->diff1_sum_x2 += (d - p->last) * (d - p->last);
  186. p->last = d;
  187. p->mask |= i;
  188. p->imask &= i;
  189. if (p->nb_samples >= s->tc_samples) {
  190. p->max_sigma_x2 = FFMAX(p->max_sigma_x2, p->avg_sigma_x2);
  191. p->min_sigma_x2 = FFMIN(p->min_sigma_x2, p->avg_sigma_x2);
  192. }
  193. p->nb_samples++;
  194. }
  195. static void set_meta(AVDictionary **metadata, int chan, const char *key,
  196. const char *fmt, double val)
  197. {
  198. uint8_t value[128];
  199. uint8_t key2[128];
  200. snprintf(value, sizeof(value), fmt, val);
  201. if (chan)
  202. snprintf(key2, sizeof(key2), "lavfi.astats.%d.%s", chan, key);
  203. else
  204. snprintf(key2, sizeof(key2), "lavfi.astats.%s", key);
  205. av_dict_set(metadata, key2, value, 0);
  206. }
  207. #define LINEAR_TO_DB(x) (log10(x) * 20)
  208. static void set_metadata(AudioStatsContext *s, AVDictionary **metadata)
  209. {
  210. uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0;
  211. double min_runs = 0, max_runs = 0,
  212. min = DBL_MAX, max = DBL_MIN, min_diff = DBL_MAX, max_diff = 0,
  213. nmin = DBL_MAX, nmax = DBL_MIN,
  214. max_sigma_x = 0,
  215. diff1_sum = 0,
  216. diff1_sum_x2 = 0,
  217. sigma_x = 0,
  218. sigma_x2 = 0,
  219. min_sigma_x2 = DBL_MAX,
  220. max_sigma_x2 = DBL_MIN;
  221. AVRational depth;
  222. int c;
  223. for (c = 0; c < s->nb_channels; c++) {
  224. ChannelStats *p = &s->chstats[c];
  225. if (p->nb_samples < s->tc_samples)
  226. p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples;
  227. min = FFMIN(min, p->min);
  228. max = FFMAX(max, p->max);
  229. nmin = FFMIN(nmin, p->nmin);
  230. nmax = FFMAX(nmax, p->nmax);
  231. min_diff = FFMIN(min_diff, p->min_diff);
  232. max_diff = FFMAX(max_diff, p->max_diff);
  233. diff1_sum += p->diff1_sum;
  234. diff1_sum_x2 += p->diff1_sum_x2;
  235. min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2);
  236. max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2);
  237. sigma_x += p->sigma_x;
  238. sigma_x2 += p->sigma_x2;
  239. min_count += p->min_count;
  240. max_count += p->max_count;
  241. min_runs += p->min_runs;
  242. max_runs += p->max_runs;
  243. mask |= p->mask;
  244. imask &= p->imask;
  245. nb_samples += p->nb_samples;
  246. if (fabs(p->sigma_x) > fabs(max_sigma_x))
  247. max_sigma_x = p->sigma_x;
  248. set_meta(metadata, c + 1, "DC_offset", "%f", p->sigma_x / p->nb_samples);
  249. set_meta(metadata, c + 1, "Min_level", "%f", p->min);
  250. set_meta(metadata, c + 1, "Max_level", "%f", p->max);
  251. set_meta(metadata, c + 1, "Min_difference", "%f", p->min_diff);
  252. set_meta(metadata, c + 1, "Max_difference", "%f", p->max_diff);
  253. set_meta(metadata, c + 1, "Mean_difference", "%f", p->diff1_sum / (p->nb_samples - 1));
  254. set_meta(metadata, c + 1, "RMS_difference", "%f", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1)));
  255. set_meta(metadata, c + 1, "Peak_level", "%f", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax)));
  256. set_meta(metadata, c + 1, "RMS_level", "%f", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples)));
  257. set_meta(metadata, c + 1, "RMS_peak", "%f", LINEAR_TO_DB(sqrt(p->max_sigma_x2)));
  258. set_meta(metadata, c + 1, "RMS_trough", "%f", LINEAR_TO_DB(sqrt(p->min_sigma_x2)));
  259. set_meta(metadata, c + 1, "Crest_factor", "%f", p->sigma_x2 ? FFMAX(-p->min, p->max) / sqrt(p->sigma_x2 / p->nb_samples) : 1);
  260. set_meta(metadata, c + 1, "Flat_factor", "%f", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count)));
  261. set_meta(metadata, c + 1, "Peak_count", "%f", (float)(p->min_count + p->max_count));
  262. bit_depth(s, p->mask, p->imask, &depth);
  263. set_meta(metadata, c + 1, "Bit_depth", "%f", depth.num);
  264. set_meta(metadata, c + 1, "Bit_depth2", "%f", depth.den);
  265. set_meta(metadata, c + 1, "Dynamic_range", "%f", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero));
  266. set_meta(metadata, c + 1, "Zero_crossings", "%f", p->zero_runs);
  267. set_meta(metadata, c + 1, "Zero_crossings_rate", "%f", p->zero_runs/(double)p->nb_samples);
  268. }
  269. set_meta(metadata, 0, "Overall.DC_offset", "%f", max_sigma_x / (nb_samples / s->nb_channels));
  270. set_meta(metadata, 0, "Overall.Min_level", "%f", min);
  271. set_meta(metadata, 0, "Overall.Max_level", "%f", max);
  272. set_meta(metadata, 0, "Overall.Min_difference", "%f", min_diff);
  273. set_meta(metadata, 0, "Overall.Max_difference", "%f", max_diff);
  274. set_meta(metadata, 0, "Overall.Mean_difference", "%f", diff1_sum / (nb_samples - s->nb_channels));
  275. set_meta(metadata, 0, "Overall.RMS_difference", "%f", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels)));
  276. set_meta(metadata, 0, "Overall.Peak_level", "%f", LINEAR_TO_DB(FFMAX(-nmin, nmax)));
  277. set_meta(metadata, 0, "Overall.RMS_level", "%f", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples)));
  278. set_meta(metadata, 0, "Overall.RMS_peak", "%f", LINEAR_TO_DB(sqrt(max_sigma_x2)));
  279. set_meta(metadata, 0, "Overall.RMS_trough", "%f", LINEAR_TO_DB(sqrt(min_sigma_x2)));
  280. set_meta(metadata, 0, "Overall.Flat_factor", "%f", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count)));
  281. set_meta(metadata, 0, "Overall.Peak_count", "%f", (float)(min_count + max_count) / (double)s->nb_channels);
  282. bit_depth(s, mask, imask, &depth);
  283. set_meta(metadata, 0, "Overall.Bit_depth", "%f", depth.num);
  284. set_meta(metadata, 0, "Overall.Bit_depth2", "%f", depth.den);
  285. set_meta(metadata, 0, "Overall.Number_of_samples", "%f", nb_samples / s->nb_channels);
  286. }
  287. static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
  288. {
  289. AudioStatsContext *s = inlink->dst->priv;
  290. AVDictionary **metadata = &buf->metadata;
  291. const int channels = s->nb_channels;
  292. int i, c;
  293. if (s->reset_count > 0) {
  294. if (s->nb_frames >= s->reset_count) {
  295. reset_stats(s);
  296. s->nb_frames = 0;
  297. }
  298. s->nb_frames++;
  299. }
  300. switch (inlink->format) {
  301. case AV_SAMPLE_FMT_DBLP:
  302. for (c = 0; c < channels; c++) {
  303. ChannelStats *p = &s->chstats[c];
  304. const double *src = (const double *)buf->extended_data[c];
  305. for (i = 0; i < buf->nb_samples; i++, src++)
  306. update_stat(s, p, *src, *src, llrint(*src * (UINT64_C(1) << 63)));
  307. }
  308. break;
  309. case AV_SAMPLE_FMT_DBL: {
  310. const double *src = (const double *)buf->extended_data[0];
  311. for (i = 0; i < buf->nb_samples; i++) {
  312. for (c = 0; c < channels; c++, src++)
  313. update_stat(s, &s->chstats[c], *src, *src, llrint(*src * (UINT64_C(1) << 63)));
  314. }}
  315. break;
  316. case AV_SAMPLE_FMT_FLTP:
  317. for (c = 0; c < channels; c++) {
  318. ChannelStats *p = &s->chstats[c];
  319. const float *src = (const float *)buf->extended_data[c];
  320. for (i = 0; i < buf->nb_samples; i++, src++)
  321. update_stat(s, p, *src, *src, llrint(*src * (UINT64_C(1) << 31)));
  322. }
  323. break;
  324. case AV_SAMPLE_FMT_FLT: {
  325. const float *src = (const float *)buf->extended_data[0];
  326. for (i = 0; i < buf->nb_samples; i++) {
  327. for (c = 0; c < channels; c++, src++)
  328. update_stat(s, &s->chstats[c], *src, *src, llrint(*src * (UINT64_C(1) << 31)));
  329. }}
  330. break;
  331. case AV_SAMPLE_FMT_S64P:
  332. for (c = 0; c < channels; c++) {
  333. ChannelStats *p = &s->chstats[c];
  334. const int64_t *src = (const int64_t *)buf->extended_data[c];
  335. for (i = 0; i < buf->nb_samples; i++, src++)
  336. update_stat(s, p, *src, *src / (double)INT64_MAX, *src);
  337. }
  338. break;
  339. case AV_SAMPLE_FMT_S64: {
  340. const int64_t *src = (const int64_t *)buf->extended_data[0];
  341. for (i = 0; i < buf->nb_samples; i++) {
  342. for (c = 0; c < channels; c++, src++)
  343. update_stat(s, &s->chstats[c], *src, *src / (double)INT64_MAX, *src);
  344. }}
  345. break;
  346. case AV_SAMPLE_FMT_S32P:
  347. for (c = 0; c < channels; c++) {
  348. ChannelStats *p = &s->chstats[c];
  349. const int32_t *src = (const int32_t *)buf->extended_data[c];
  350. for (i = 0; i < buf->nb_samples; i++, src++)
  351. update_stat(s, p, *src, *src / (double)INT32_MAX, *src);
  352. }
  353. break;
  354. case AV_SAMPLE_FMT_S32: {
  355. const int32_t *src = (const int32_t *)buf->extended_data[0];
  356. for (i = 0; i < buf->nb_samples; i++) {
  357. for (c = 0; c < channels; c++, src++)
  358. update_stat(s, &s->chstats[c], *src, *src / (double)INT32_MAX, *src);
  359. }}
  360. break;
  361. case AV_SAMPLE_FMT_S16P:
  362. for (c = 0; c < channels; c++) {
  363. ChannelStats *p = &s->chstats[c];
  364. const int16_t *src = (const int16_t *)buf->extended_data[c];
  365. for (i = 0; i < buf->nb_samples; i++, src++)
  366. update_stat(s, p, *src, *src / (double)INT16_MAX, *src);
  367. }
  368. break;
  369. case AV_SAMPLE_FMT_S16: {
  370. const int16_t *src = (const int16_t *)buf->extended_data[0];
  371. for (i = 0; i < buf->nb_samples; i++) {
  372. for (c = 0; c < channels; c++, src++)
  373. update_stat(s, &s->chstats[c], *src, *src / (double)INT16_MAX, *src);
  374. }}
  375. break;
  376. }
  377. if (s->metadata)
  378. set_metadata(s, metadata);
  379. return ff_filter_frame(inlink->dst->outputs[0], buf);
  380. }
  381. static void print_stats(AVFilterContext *ctx)
  382. {
  383. AudioStatsContext *s = ctx->priv;
  384. uint64_t mask = 0, imask = 0xFFFFFFFFFFFFFFFF, min_count = 0, max_count = 0, nb_samples = 0;
  385. double min_runs = 0, max_runs = 0,
  386. min = DBL_MAX, max = DBL_MIN, min_diff = DBL_MAX, max_diff = 0,
  387. nmin = DBL_MAX, nmax = DBL_MIN,
  388. max_sigma_x = 0,
  389. diff1_sum_x2 = 0,
  390. diff1_sum = 0,
  391. sigma_x = 0,
  392. sigma_x2 = 0,
  393. min_sigma_x2 = DBL_MAX,
  394. max_sigma_x2 = DBL_MIN;
  395. AVRational depth;
  396. int c;
  397. for (c = 0; c < s->nb_channels; c++) {
  398. ChannelStats *p = &s->chstats[c];
  399. if (p->nb_samples < s->tc_samples)
  400. p->min_sigma_x2 = p->max_sigma_x2 = p->sigma_x2 / p->nb_samples;
  401. min = FFMIN(min, p->min);
  402. max = FFMAX(max, p->max);
  403. nmin = FFMIN(nmin, p->nmin);
  404. nmax = FFMAX(nmax, p->nmax);
  405. min_diff = FFMIN(min_diff, p->min_diff);
  406. max_diff = FFMAX(max_diff, p->max_diff);
  407. diff1_sum_x2 += p->diff1_sum_x2;
  408. diff1_sum += p->diff1_sum;
  409. min_sigma_x2 = FFMIN(min_sigma_x2, p->min_sigma_x2);
  410. max_sigma_x2 = FFMAX(max_sigma_x2, p->max_sigma_x2);
  411. sigma_x += p->sigma_x;
  412. sigma_x2 += p->sigma_x2;
  413. min_count += p->min_count;
  414. max_count += p->max_count;
  415. min_runs += p->min_runs;
  416. max_runs += p->max_runs;
  417. mask |= p->mask;
  418. imask &= p->imask;
  419. nb_samples += p->nb_samples;
  420. if (fabs(p->sigma_x) > fabs(max_sigma_x))
  421. max_sigma_x = p->sigma_x;
  422. av_log(ctx, AV_LOG_INFO, "Channel: %d\n", c + 1);
  423. av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", p->sigma_x / p->nb_samples);
  424. av_log(ctx, AV_LOG_INFO, "Min level: %f\n", p->min);
  425. av_log(ctx, AV_LOG_INFO, "Max level: %f\n", p->max);
  426. av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", p->min_diff);
  427. av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", p->max_diff);
  428. av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", p->diff1_sum / (p->nb_samples - 1));
  429. av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(p->diff1_sum_x2 / (p->nb_samples - 1)));
  430. av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-p->nmin, p->nmax)));
  431. av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(p->sigma_x2 / p->nb_samples)));
  432. av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(p->max_sigma_x2)));
  433. if (p->min_sigma_x2 != 1)
  434. av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n",LINEAR_TO_DB(sqrt(p->min_sigma_x2)));
  435. av_log(ctx, AV_LOG_INFO, "Crest factor: %f\n", p->sigma_x2 ? FFMAX(-p->nmin, p->nmax) / sqrt(p->sigma_x2 / p->nb_samples) : 1);
  436. av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((p->min_runs + p->max_runs) / (p->min_count + p->max_count)));
  437. av_log(ctx, AV_LOG_INFO, "Peak count: %"PRId64"\n", p->min_count + p->max_count);
  438. bit_depth(s, p->mask, p->imask, &depth);
  439. av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den);
  440. av_log(ctx, AV_LOG_INFO, "Dynamic range: %f\n", LINEAR_TO_DB(2 * FFMAX(FFABS(p->min), FFABS(p->max))/ p->min_non_zero));
  441. av_log(ctx, AV_LOG_INFO, "Zero crossings: %"PRId64"\n", p->zero_runs);
  442. av_log(ctx, AV_LOG_INFO, "Zero crossings rate: %f\n", p->zero_runs/(double)p->nb_samples);
  443. }
  444. av_log(ctx, AV_LOG_INFO, "Overall\n");
  445. av_log(ctx, AV_LOG_INFO, "DC offset: %f\n", max_sigma_x / (nb_samples / s->nb_channels));
  446. av_log(ctx, AV_LOG_INFO, "Min level: %f\n", min);
  447. av_log(ctx, AV_LOG_INFO, "Max level: %f\n", max);
  448. av_log(ctx, AV_LOG_INFO, "Min difference: %f\n", min_diff);
  449. av_log(ctx, AV_LOG_INFO, "Max difference: %f\n", max_diff);
  450. av_log(ctx, AV_LOG_INFO, "Mean difference: %f\n", diff1_sum / (nb_samples - s->nb_channels));
  451. av_log(ctx, AV_LOG_INFO, "RMS difference: %f\n", sqrt(diff1_sum_x2 / (nb_samples - s->nb_channels)));
  452. av_log(ctx, AV_LOG_INFO, "Peak level dB: %f\n", LINEAR_TO_DB(FFMAX(-nmin, nmax)));
  453. av_log(ctx, AV_LOG_INFO, "RMS level dB: %f\n", LINEAR_TO_DB(sqrt(sigma_x2 / nb_samples)));
  454. av_log(ctx, AV_LOG_INFO, "RMS peak dB: %f\n", LINEAR_TO_DB(sqrt(max_sigma_x2)));
  455. if (min_sigma_x2 != 1)
  456. av_log(ctx, AV_LOG_INFO, "RMS trough dB: %f\n", LINEAR_TO_DB(sqrt(min_sigma_x2)));
  457. av_log(ctx, AV_LOG_INFO, "Flat factor: %f\n", LINEAR_TO_DB((min_runs + max_runs) / (min_count + max_count)));
  458. av_log(ctx, AV_LOG_INFO, "Peak count: %f\n", (min_count + max_count) / (double)s->nb_channels);
  459. bit_depth(s, mask, imask, &depth);
  460. av_log(ctx, AV_LOG_INFO, "Bit depth: %u/%u\n", depth.num, depth.den);
  461. av_log(ctx, AV_LOG_INFO, "Number of samples: %"PRId64"\n", nb_samples / s->nb_channels);
  462. }
  463. static av_cold void uninit(AVFilterContext *ctx)
  464. {
  465. AudioStatsContext *s = ctx->priv;
  466. if (s->nb_channels)
  467. print_stats(ctx);
  468. av_freep(&s->chstats);
  469. }
  470. static const AVFilterPad astats_inputs[] = {
  471. {
  472. .name = "default",
  473. .type = AVMEDIA_TYPE_AUDIO,
  474. .filter_frame = filter_frame,
  475. },
  476. { NULL }
  477. };
  478. static const AVFilterPad astats_outputs[] = {
  479. {
  480. .name = "default",
  481. .type = AVMEDIA_TYPE_AUDIO,
  482. .config_props = config_output,
  483. },
  484. { NULL }
  485. };
  486. AVFilter ff_af_astats = {
  487. .name = "astats",
  488. .description = NULL_IF_CONFIG_SMALL("Show time domain statistics about audio frames."),
  489. .query_formats = query_formats,
  490. .priv_size = sizeof(AudioStatsContext),
  491. .priv_class = &astats_class,
  492. .uninit = uninit,
  493. .inputs = astats_inputs,
  494. .outputs = astats_outputs,
  495. };