You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

804 lines
24KB

  1. /*
  2. * Copyright (c) 2017 Paul B Mahol
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * An arbitrary audio FIR filter
  23. */
  24. #include <float.h>
  25. #include "libavutil/common.h"
  26. #include "libavutil/float_dsp.h"
  27. #include "libavutil/intreadwrite.h"
  28. #include "libavutil/opt.h"
  29. #include "libavutil/xga_font_data.h"
  30. #include "libavcodec/avfft.h"
  31. #include "audio.h"
  32. #include "avfilter.h"
  33. #include "filters.h"
  34. #include "formats.h"
  35. #include "internal.h"
  36. #include "af_afir.h"
  37. static void fcmul_add_c(float *sum, const float *t, const float *c, ptrdiff_t len)
  38. {
  39. int n;
  40. for (n = 0; n < len; n++) {
  41. const float cre = c[2 * n ];
  42. const float cim = c[2 * n + 1];
  43. const float tre = t[2 * n ];
  44. const float tim = t[2 * n + 1];
  45. sum[2 * n ] += tre * cre - tim * cim;
  46. sum[2 * n + 1] += tre * cim + tim * cre;
  47. }
  48. sum[2 * n] += t[2 * n] * c[2 * n];
  49. }
  50. static int fir_channel(AVFilterContext *ctx, void *arg, int ch, int nb_jobs)
  51. {
  52. AudioFIRContext *s = ctx->priv;
  53. const float *src = (const float *)s->in[0]->extended_data[ch];
  54. int index1 = (s->index + 1) % 3;
  55. int index2 = (s->index + 2) % 3;
  56. float *sum = s->sum[ch];
  57. AVFrame *out = arg;
  58. float *block;
  59. float *dst;
  60. int n, i, j;
  61. memset(sum, 0, sizeof(*sum) * s->fft_length);
  62. block = s->block[ch] + s->part_index * s->block_size;
  63. memset(block, 0, sizeof(*block) * s->fft_length);
  64. s->fdsp->vector_fmul_scalar(block + s->part_size, src, s->dry_gain, FFALIGN(s->nb_samples, 4));
  65. emms_c();
  66. av_rdft_calc(s->rdft[ch], block);
  67. block[2 * s->part_size] = block[1];
  68. block[1] = 0;
  69. j = s->part_index;
  70. for (i = 0; i < s->nb_partitions; i++) {
  71. const int coffset = i * s->coeff_size;
  72. const FFTComplex *coeff = s->coeff[ch * !s->one2many] + coffset;
  73. block = s->block[ch] + j * s->block_size;
  74. s->fcmul_add(sum, block, (const float *)coeff, s->part_size);
  75. if (j == 0)
  76. j = s->nb_partitions;
  77. j--;
  78. }
  79. sum[1] = sum[2 * s->part_size];
  80. av_rdft_calc(s->irdft[ch], sum);
  81. dst = (float *)s->buffer->extended_data[ch] + index1 * s->part_size;
  82. for (n = 0; n < s->part_size; n++) {
  83. dst[n] += sum[n];
  84. }
  85. dst = (float *)s->buffer->extended_data[ch] + index2 * s->part_size;
  86. memcpy(dst, sum + s->part_size, s->part_size * sizeof(*dst));
  87. dst = (float *)s->buffer->extended_data[ch] + s->index * s->part_size;
  88. if (out) {
  89. float *ptr = (float *)out->extended_data[ch];
  90. s->fdsp->vector_fmul_scalar(ptr, dst, s->wet_gain, FFALIGN(out->nb_samples, 4));
  91. emms_c();
  92. }
  93. return 0;
  94. }
  95. static int fir_frame(AudioFIRContext *s, AVFrame *in, AVFilterLink *outlink)
  96. {
  97. AVFilterContext *ctx = outlink->src;
  98. AVFrame *out = NULL;
  99. int ret;
  100. s->nb_samples = in->nb_samples;
  101. if (!s->want_skip) {
  102. out = ff_get_audio_buffer(outlink, s->nb_samples);
  103. if (!out)
  104. return AVERROR(ENOMEM);
  105. }
  106. if (s->pts == AV_NOPTS_VALUE)
  107. s->pts = in->pts;
  108. s->in[0] = in;
  109. ctx->internal->execute(ctx, fir_channel, out, NULL, outlink->channels);
  110. s->part_index = (s->part_index + 1) % s->nb_partitions;
  111. if (!s->want_skip) {
  112. out->pts = s->pts;
  113. if (s->pts != AV_NOPTS_VALUE)
  114. s->pts += av_rescale_q(out->nb_samples, (AVRational){1, outlink->sample_rate}, outlink->time_base);
  115. }
  116. s->index++;
  117. if (s->index == 3)
  118. s->index = 0;
  119. av_frame_free(&in);
  120. if (s->want_skip == 1) {
  121. s->want_skip = 0;
  122. ret = 0;
  123. } else {
  124. ret = ff_filter_frame(outlink, out);
  125. }
  126. return ret;
  127. }
  128. static void drawtext(AVFrame *pic, int x, int y, const char *txt, uint32_t color)
  129. {
  130. const uint8_t *font;
  131. int font_height;
  132. int i;
  133. font = avpriv_cga_font, font_height = 8;
  134. for (i = 0; txt[i]; i++) {
  135. int char_y, mask;
  136. uint8_t *p = pic->data[0] + y * pic->linesize[0] + (x + i * 8) * 4;
  137. for (char_y = 0; char_y < font_height; char_y++) {
  138. for (mask = 0x80; mask; mask >>= 1) {
  139. if (font[txt[i] * font_height + char_y] & mask)
  140. AV_WL32(p, color);
  141. p += 4;
  142. }
  143. p += pic->linesize[0] - 8 * 4;
  144. }
  145. }
  146. }
  147. static void draw_line(AVFrame *out, int x0, int y0, int x1, int y1, uint32_t color)
  148. {
  149. int dx = FFABS(x1-x0);
  150. int dy = FFABS(y1-y0), sy = y0 < y1 ? 1 : -1;
  151. int err = (dx>dy ? dx : -dy) / 2, e2;
  152. for (;;) {
  153. AV_WL32(out->data[0] + y0 * out->linesize[0] + x0 * 4, color);
  154. if (x0 == x1 && y0 == y1)
  155. break;
  156. e2 = err;
  157. if (e2 >-dx) {
  158. err -= dy;
  159. x0--;
  160. }
  161. if (e2 < dy) {
  162. err += dx;
  163. y0 += sy;
  164. }
  165. }
  166. }
  167. static void draw_response(AVFilterContext *ctx, AVFrame *out)
  168. {
  169. AudioFIRContext *s = ctx->priv;
  170. float *mag, *phase, *delay, min = FLT_MAX, max = FLT_MIN;
  171. float min_delay = FLT_MAX, max_delay = FLT_MIN;
  172. int prev_ymag = -1, prev_yphase = -1, prev_ydelay = -1;
  173. char text[32];
  174. int channel, i, x;
  175. memset(out->data[0], 0, s->h * out->linesize[0]);
  176. phase = av_malloc_array(s->w, sizeof(*phase));
  177. mag = av_malloc_array(s->w, sizeof(*mag));
  178. delay = av_malloc_array(s->w, sizeof(*delay));
  179. if (!mag || !phase || !delay)
  180. goto end;
  181. channel = av_clip(s->ir_channel, 0, s->in[1]->channels - 1);
  182. for (i = 0; i < s->w; i++) {
  183. const float *src = (const float *)s->in[1]->extended_data[channel];
  184. double w = i * M_PI / (s->w - 1);
  185. double div, real_num = 0., imag_num = 0., real = 0., imag = 0.;
  186. for (x = 0; x < s->nb_taps; x++) {
  187. real += cos(-x * w) * src[x];
  188. imag += sin(-x * w) * src[x];
  189. real_num += cos(-x * w) * src[x] * x;
  190. imag_num += sin(-x * w) * src[x] * x;
  191. }
  192. mag[i] = hypot(real, imag);
  193. phase[i] = atan2(imag, real);
  194. div = real * real + imag * imag;
  195. delay[i] = (real_num * real + imag_num * imag) / div;
  196. min = fminf(min, mag[i]);
  197. max = fmaxf(max, mag[i]);
  198. min_delay = fminf(min_delay, delay[i]);
  199. max_delay = fmaxf(max_delay, delay[i]);
  200. }
  201. for (i = 0; i < s->w; i++) {
  202. int ymag = mag[i] / max * (s->h - 1);
  203. int ydelay = (delay[i] - min_delay) / (max_delay - min_delay) * (s->h - 1);
  204. int yphase = (0.5 * (1. + phase[i] / M_PI)) * (s->h - 1);
  205. ymag = s->h - 1 - av_clip(ymag, 0, s->h - 1);
  206. yphase = s->h - 1 - av_clip(yphase, 0, s->h - 1);
  207. ydelay = s->h - 1 - av_clip(ydelay, 0, s->h - 1);
  208. if (prev_ymag < 0)
  209. prev_ymag = ymag;
  210. if (prev_yphase < 0)
  211. prev_yphase = yphase;
  212. if (prev_ydelay < 0)
  213. prev_ydelay = ydelay;
  214. draw_line(out, i, ymag, FFMAX(i - 1, 0), prev_ymag, 0xFFFF00FF);
  215. draw_line(out, i, yphase, FFMAX(i - 1, 0), prev_yphase, 0xFF00FF00);
  216. draw_line(out, i, ydelay, FFMAX(i - 1, 0), prev_ydelay, 0xFF00FFFF);
  217. prev_ymag = ymag;
  218. prev_yphase = yphase;
  219. prev_ydelay = ydelay;
  220. }
  221. if (s->w > 400 && s->h > 100) {
  222. drawtext(out, 2, 2, "Max Magnitude:", 0xDDDDDDDD);
  223. snprintf(text, sizeof(text), "%.2f", max);
  224. drawtext(out, 15 * 8 + 2, 2, text, 0xDDDDDDDD);
  225. drawtext(out, 2, 12, "Min Magnitude:", 0xDDDDDDDD);
  226. snprintf(text, sizeof(text), "%.2f", min);
  227. drawtext(out, 15 * 8 + 2, 12, text, 0xDDDDDDDD);
  228. drawtext(out, 2, 22, "Max Delay:", 0xDDDDDDDD);
  229. snprintf(text, sizeof(text), "%.2f", max_delay);
  230. drawtext(out, 11 * 8 + 2, 22, text, 0xDDDDDDDD);
  231. drawtext(out, 2, 32, "Min Delay:", 0xDDDDDDDD);
  232. snprintf(text, sizeof(text), "%.2f", min_delay);
  233. drawtext(out, 11 * 8 + 2, 32, text, 0xDDDDDDDD);
  234. }
  235. end:
  236. av_free(delay);
  237. av_free(phase);
  238. av_free(mag);
  239. }
  240. static int convert_coeffs(AVFilterContext *ctx)
  241. {
  242. AudioFIRContext *s = ctx->priv;
  243. int ret, i, ch, n, N;
  244. float power = 0;
  245. s->nb_taps = ff_inlink_queued_samples(ctx->inputs[1]);
  246. if (s->nb_taps <= 0)
  247. return AVERROR(EINVAL);
  248. for (n = 4; (1 << n) < s->nb_taps; n++);
  249. N = FFMIN(n, 16);
  250. s->ir_length = 1 << n;
  251. s->fft_length = (1 << (N + 1)) + 1;
  252. s->part_size = 1 << (N - 1);
  253. s->block_size = FFALIGN(s->fft_length, 32);
  254. s->coeff_size = FFALIGN(s->part_size + 1, 32);
  255. s->nb_partitions = (s->nb_taps + s->part_size - 1) / s->part_size;
  256. s->nb_coeffs = s->ir_length + s->nb_partitions;
  257. for (ch = 0; ch < ctx->inputs[0]->channels; ch++) {
  258. s->sum[ch] = av_calloc(s->fft_length, sizeof(**s->sum));
  259. if (!s->sum[ch])
  260. return AVERROR(ENOMEM);
  261. }
  262. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  263. s->coeff[ch] = av_calloc(s->nb_partitions * s->coeff_size, sizeof(**s->coeff));
  264. if (!s->coeff[ch])
  265. return AVERROR(ENOMEM);
  266. }
  267. for (ch = 0; ch < ctx->inputs[0]->channels; ch++) {
  268. s->block[ch] = av_calloc(s->nb_partitions * s->block_size, sizeof(**s->block));
  269. if (!s->block[ch])
  270. return AVERROR(ENOMEM);
  271. }
  272. for (ch = 0; ch < ctx->inputs[0]->channels; ch++) {
  273. s->rdft[ch] = av_rdft_init(N, DFT_R2C);
  274. s->irdft[ch] = av_rdft_init(N, IDFT_C2R);
  275. if (!s->rdft[ch] || !s->irdft[ch])
  276. return AVERROR(ENOMEM);
  277. }
  278. s->buffer = ff_get_audio_buffer(ctx->inputs[0], s->part_size * 3);
  279. if (!s->buffer)
  280. return AVERROR(ENOMEM);
  281. ret = ff_inlink_consume_samples(ctx->inputs[1], s->nb_taps, s->nb_taps, &s->in[1]);
  282. if (ret < 0)
  283. return ret;
  284. if (ret == 0)
  285. return AVERROR_BUG;
  286. if (s->response)
  287. draw_response(ctx, s->video);
  288. s->gain = 1;
  289. switch (s->gtype) {
  290. case -1:
  291. /* nothing to do */
  292. break;
  293. case 0:
  294. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  295. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  296. for (i = 0; i < s->nb_taps; i++)
  297. power += FFABS(time[i]);
  298. }
  299. s->gain = ctx->inputs[1]->channels / power;
  300. break;
  301. case 1:
  302. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  303. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  304. for (i = 0; i < s->nb_taps; i++)
  305. power += time[i];
  306. }
  307. s->gain = ctx->inputs[1]->channels / power;
  308. break;
  309. case 2:
  310. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  311. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  312. for (i = 0; i < s->nb_taps; i++)
  313. power += time[i] * time[i];
  314. }
  315. s->gain = sqrtf(ch / power);
  316. break;
  317. default:
  318. return AVERROR_BUG;
  319. }
  320. s->gain = FFMIN(s->gain * s->ir_gain, 1.f);
  321. av_log(ctx, AV_LOG_DEBUG, "power %f, gain %f\n", power, s->gain);
  322. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  323. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  324. s->fdsp->vector_fmul_scalar(time, time, s->gain, FFALIGN(s->nb_taps, 4));
  325. }
  326. for (ch = 0; ch < ctx->inputs[1]->channels; ch++) {
  327. float *time = (float *)s->in[1]->extended_data[!s->one2many * ch];
  328. float *block = s->block[ch];
  329. FFTComplex *coeff = s->coeff[ch];
  330. for (i = FFMAX(1, s->length * s->nb_taps); i < s->nb_taps; i++)
  331. time[i] = 0;
  332. for (i = 0; i < s->nb_partitions; i++) {
  333. const float scale = 1.f / s->part_size;
  334. const int toffset = i * s->part_size;
  335. const int coffset = i * s->coeff_size;
  336. const int boffset = s->part_size;
  337. const int remaining = s->nb_taps - (i * s->part_size);
  338. const int size = remaining >= s->part_size ? s->part_size : remaining;
  339. memset(block, 0, sizeof(*block) * s->fft_length);
  340. memcpy(block + boffset, time + toffset, size * sizeof(*block));
  341. av_rdft_calc(s->rdft[0], block);
  342. coeff[coffset].re = block[0] * scale;
  343. coeff[coffset].im = 0;
  344. for (n = 1; n < s->part_size; n++) {
  345. coeff[coffset + n].re = block[2 * n] * scale;
  346. coeff[coffset + n].im = block[2 * n + 1] * scale;
  347. }
  348. coeff[coffset + s->part_size].re = block[1] * scale;
  349. coeff[coffset + s->part_size].im = 0;
  350. }
  351. }
  352. av_frame_free(&s->in[1]);
  353. av_log(ctx, AV_LOG_DEBUG, "nb_taps: %d\n", s->nb_taps);
  354. av_log(ctx, AV_LOG_DEBUG, "nb_partitions: %d\n", s->nb_partitions);
  355. av_log(ctx, AV_LOG_DEBUG, "partition size: %d\n", s->part_size);
  356. av_log(ctx, AV_LOG_DEBUG, "ir_length: %d\n", s->ir_length);
  357. s->have_coeffs = 1;
  358. return 0;
  359. }
  360. static int check_ir(AVFilterLink *link, AVFrame *frame)
  361. {
  362. AVFilterContext *ctx = link->dst;
  363. AudioFIRContext *s = ctx->priv;
  364. int nb_taps, max_nb_taps;
  365. nb_taps = ff_inlink_queued_samples(link);
  366. max_nb_taps = s->max_ir_len * ctx->outputs[0]->sample_rate;
  367. if (nb_taps > max_nb_taps) {
  368. av_log(ctx, AV_LOG_ERROR, "Too big number of coefficients: %d > %d.\n", nb_taps, max_nb_taps);
  369. return AVERROR(EINVAL);
  370. }
  371. return 0;
  372. }
  373. static int activate(AVFilterContext *ctx)
  374. {
  375. AudioFIRContext *s = ctx->priv;
  376. AVFilterLink *outlink = ctx->outputs[0];
  377. AVFrame *in = NULL;
  378. int ret, status;
  379. int64_t pts;
  380. FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx);
  381. if (s->response)
  382. FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[1], ctx);
  383. if (!s->eof_coeffs) {
  384. AVFrame *ir = NULL;
  385. ret = check_ir(ctx->inputs[1], ir);
  386. if (ret < 0)
  387. return ret;
  388. if (ff_outlink_get_status(ctx->inputs[1]) == AVERROR_EOF)
  389. s->eof_coeffs = 1;
  390. if (!s->eof_coeffs) {
  391. if (ff_outlink_frame_wanted(ctx->outputs[0]))
  392. ff_inlink_request_frame(ctx->inputs[1]);
  393. return 0;
  394. }
  395. }
  396. if (!s->have_coeffs && s->eof_coeffs) {
  397. ret = convert_coeffs(ctx);
  398. if (ret < 0)
  399. return ret;
  400. }
  401. if (s->need_padding) {
  402. in = ff_get_audio_buffer(outlink, s->part_size);
  403. if (!in)
  404. return AVERROR(ENOMEM);
  405. s->need_padding = 0;
  406. ret = 1;
  407. } else {
  408. ret = ff_inlink_consume_samples(ctx->inputs[0], s->part_size, s->part_size, &in);
  409. }
  410. if (ret > 0)
  411. ret = fir_frame(s, in, outlink);
  412. if (ret < 0)
  413. return ret;
  414. if (s->response && s->have_coeffs) {
  415. int64_t old_pts = s->video->pts;
  416. int64_t new_pts = av_rescale_q(s->pts, ctx->inputs[0]->time_base, ctx->outputs[1]->time_base);
  417. if (ff_outlink_frame_wanted(ctx->outputs[1]) && old_pts < new_pts) {
  418. s->video->pts = new_pts;
  419. return ff_filter_frame(ctx->outputs[1], av_frame_clone(s->video));
  420. }
  421. }
  422. if (ff_inlink_queued_samples(ctx->inputs[0]) >= s->part_size) {
  423. ff_filter_set_ready(ctx, 10);
  424. return 0;
  425. }
  426. if (ff_inlink_acknowledge_status(ctx->inputs[0], &status, &pts)) {
  427. if (status == AVERROR_EOF) {
  428. ff_outlink_set_status(ctx->outputs[0], status, pts);
  429. if (s->response)
  430. ff_outlink_set_status(ctx->outputs[1], status, pts);
  431. return 0;
  432. }
  433. }
  434. if (ff_outlink_frame_wanted(ctx->outputs[0]) &&
  435. !ff_outlink_get_status(ctx->inputs[0])) {
  436. ff_inlink_request_frame(ctx->inputs[0]);
  437. return 0;
  438. }
  439. if (s->response &&
  440. ff_outlink_frame_wanted(ctx->outputs[1]) &&
  441. !ff_outlink_get_status(ctx->inputs[0])) {
  442. ff_inlink_request_frame(ctx->inputs[0]);
  443. return 0;
  444. }
  445. return FFERROR_NOT_READY;
  446. }
  447. static int query_formats(AVFilterContext *ctx)
  448. {
  449. AudioFIRContext *s = ctx->priv;
  450. AVFilterFormats *formats;
  451. AVFilterChannelLayouts *layouts;
  452. static const enum AVSampleFormat sample_fmts[] = {
  453. AV_SAMPLE_FMT_FLTP,
  454. AV_SAMPLE_FMT_NONE
  455. };
  456. static const enum AVPixelFormat pix_fmts[] = {
  457. AV_PIX_FMT_RGB0,
  458. AV_PIX_FMT_NONE
  459. };
  460. int ret;
  461. if (s->response) {
  462. AVFilterLink *videolink = ctx->outputs[1];
  463. formats = ff_make_format_list(pix_fmts);
  464. if ((ret = ff_formats_ref(formats, &videolink->in_formats)) < 0)
  465. return ret;
  466. }
  467. layouts = ff_all_channel_counts();
  468. if (!layouts)
  469. return AVERROR(ENOMEM);
  470. if (s->ir_format) {
  471. ret = ff_set_common_channel_layouts(ctx, layouts);
  472. if (ret < 0)
  473. return ret;
  474. } else {
  475. AVFilterChannelLayouts *mono = NULL;
  476. ret = ff_add_channel_layout(&mono, AV_CH_LAYOUT_MONO);
  477. if (ret)
  478. return ret;
  479. if ((ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->out_channel_layouts)) < 0)
  480. return ret;
  481. if ((ret = ff_channel_layouts_ref(layouts, &ctx->outputs[0]->in_channel_layouts)) < 0)
  482. return ret;
  483. if ((ret = ff_channel_layouts_ref(mono, &ctx->inputs[1]->out_channel_layouts)) < 0)
  484. return ret;
  485. }
  486. formats = ff_make_format_list(sample_fmts);
  487. if ((ret = ff_set_common_formats(ctx, formats)) < 0)
  488. return ret;
  489. formats = ff_all_samplerates();
  490. return ff_set_common_samplerates(ctx, formats);
  491. }
  492. static int config_output(AVFilterLink *outlink)
  493. {
  494. AVFilterContext *ctx = outlink->src;
  495. AudioFIRContext *s = ctx->priv;
  496. s->one2many = ctx->inputs[1]->channels == 1;
  497. outlink->sample_rate = ctx->inputs[0]->sample_rate;
  498. outlink->time_base = ctx->inputs[0]->time_base;
  499. outlink->channel_layout = ctx->inputs[0]->channel_layout;
  500. outlink->channels = ctx->inputs[0]->channels;
  501. s->sum = av_calloc(outlink->channels, sizeof(*s->sum));
  502. s->coeff = av_calloc(ctx->inputs[1]->channels, sizeof(*s->coeff));
  503. s->block = av_calloc(ctx->inputs[0]->channels, sizeof(*s->block));
  504. s->rdft = av_calloc(outlink->channels, sizeof(*s->rdft));
  505. s->irdft = av_calloc(outlink->channels, sizeof(*s->irdft));
  506. if (!s->sum || !s->coeff || !s->block || !s->rdft || !s->irdft)
  507. return AVERROR(ENOMEM);
  508. s->nb_channels = outlink->channels;
  509. s->nb_coef_channels = ctx->inputs[1]->channels;
  510. s->want_skip = 1;
  511. s->need_padding = 1;
  512. s->pts = AV_NOPTS_VALUE;
  513. return 0;
  514. }
  515. static av_cold void uninit(AVFilterContext *ctx)
  516. {
  517. AudioFIRContext *s = ctx->priv;
  518. int ch;
  519. if (s->sum) {
  520. for (ch = 0; ch < s->nb_channels; ch++) {
  521. av_freep(&s->sum[ch]);
  522. }
  523. }
  524. av_freep(&s->sum);
  525. if (s->coeff) {
  526. for (ch = 0; ch < s->nb_coef_channels; ch++) {
  527. av_freep(&s->coeff[ch]);
  528. }
  529. }
  530. av_freep(&s->coeff);
  531. if (s->block) {
  532. for (ch = 0; ch < s->nb_channels; ch++) {
  533. av_freep(&s->block[ch]);
  534. }
  535. }
  536. av_freep(&s->block);
  537. if (s->rdft) {
  538. for (ch = 0; ch < s->nb_channels; ch++) {
  539. av_rdft_end(s->rdft[ch]);
  540. }
  541. }
  542. av_freep(&s->rdft);
  543. if (s->irdft) {
  544. for (ch = 0; ch < s->nb_channels; ch++) {
  545. av_rdft_end(s->irdft[ch]);
  546. }
  547. }
  548. av_freep(&s->irdft);
  549. av_frame_free(&s->in[1]);
  550. av_frame_free(&s->buffer);
  551. av_freep(&s->fdsp);
  552. for (int i = 0; i < ctx->nb_outputs; i++)
  553. av_freep(&ctx->output_pads[i].name);
  554. av_frame_free(&s->video);
  555. }
  556. static int config_video(AVFilterLink *outlink)
  557. {
  558. AVFilterContext *ctx = outlink->src;
  559. AudioFIRContext *s = ctx->priv;
  560. outlink->sample_aspect_ratio = (AVRational){1,1};
  561. outlink->w = s->w;
  562. outlink->h = s->h;
  563. outlink->frame_rate = s->frame_rate;
  564. outlink->time_base = av_inv_q(outlink->frame_rate);
  565. av_frame_free(&s->video);
  566. s->video = ff_get_video_buffer(outlink, outlink->w, outlink->h);
  567. if (!s->video)
  568. return AVERROR(ENOMEM);
  569. return 0;
  570. }
  571. static av_cold int init(AVFilterContext *ctx)
  572. {
  573. AudioFIRContext *s = ctx->priv;
  574. AVFilterPad pad, vpad;
  575. int ret;
  576. pad = (AVFilterPad){
  577. .name = av_strdup("default"),
  578. .type = AVMEDIA_TYPE_AUDIO,
  579. .config_props = config_output,
  580. };
  581. if (!pad.name)
  582. return AVERROR(ENOMEM);
  583. if (s->response) {
  584. vpad = (AVFilterPad){
  585. .name = av_strdup("filter_response"),
  586. .type = AVMEDIA_TYPE_VIDEO,
  587. .config_props = config_video,
  588. };
  589. if (!vpad.name)
  590. return AVERROR(ENOMEM);
  591. }
  592. ret = ff_insert_outpad(ctx, 0, &pad);
  593. if (ret < 0) {
  594. av_freep(&pad.name);
  595. return ret;
  596. }
  597. if (s->response) {
  598. ret = ff_insert_outpad(ctx, 1, &vpad);
  599. if (ret < 0) {
  600. av_freep(&vpad.name);
  601. return ret;
  602. }
  603. }
  604. s->fcmul_add = fcmul_add_c;
  605. s->fdsp = avpriv_float_dsp_alloc(0);
  606. if (!s->fdsp)
  607. return AVERROR(ENOMEM);
  608. if (ARCH_X86)
  609. ff_afir_init_x86(s);
  610. return 0;
  611. }
  612. static const AVFilterPad afir_inputs[] = {
  613. {
  614. .name = "main",
  615. .type = AVMEDIA_TYPE_AUDIO,
  616. },{
  617. .name = "ir",
  618. .type = AVMEDIA_TYPE_AUDIO,
  619. },
  620. { NULL }
  621. };
  622. #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  623. #define VF AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  624. #define OFFSET(x) offsetof(AudioFIRContext, x)
  625. static const AVOption afir_options[] = {
  626. { "dry", "set dry gain", OFFSET(dry_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, AF },
  627. { "wet", "set wet gain", OFFSET(wet_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 10, AF },
  628. { "length", "set IR length", OFFSET(length), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF },
  629. { "gtype", "set IR auto gain type",OFFSET(gtype), AV_OPT_TYPE_INT, {.i64=0}, -1, 2, AF, "gtype" },
  630. { "none", "without auto gain", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, "gtype" },
  631. { "peak", "peak gain", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "gtype" },
  632. { "dc", "DC gain", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "gtype" },
  633. { "gn", "gain to noise", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, "gtype" },
  634. { "irgain", "set IR gain", OFFSET(ir_gain), AV_OPT_TYPE_FLOAT, {.dbl=1}, 0, 1, AF },
  635. { "irfmt", "set IR format", OFFSET(ir_format), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, AF, "irfmt" },
  636. { "mono", "single channel", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, "irfmt" },
  637. { "input", "same as input", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, "irfmt" },
  638. { "maxir", "set max IR length", OFFSET(max_ir_len), AV_OPT_TYPE_FLOAT, {.dbl=30}, 0.1, 60, AF },
  639. { "response", "show IR frequency response", OFFSET(response), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, VF },
  640. { "channel", "set IR channel to display frequency response", OFFSET(ir_channel), AV_OPT_TYPE_INT, {.i64=0}, 0, 1024, VF },
  641. { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "hd720"}, 0, 0, VF },
  642. { "rate", "set video rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "25"}, 0, INT32_MAX, VF },
  643. { NULL }
  644. };
  645. AVFILTER_DEFINE_CLASS(afir);
  646. AVFilter ff_af_afir = {
  647. .name = "afir",
  648. .description = NULL_IF_CONFIG_SMALL("Apply Finite Impulse Response filter with supplied coefficients in 2nd stream."),
  649. .priv_size = sizeof(AudioFIRContext),
  650. .priv_class = &afir_class,
  651. .query_formats = query_formats,
  652. .init = init,
  653. .activate = activate,
  654. .uninit = uninit,
  655. .inputs = afir_inputs,
  656. .flags = AVFILTER_FLAG_DYNAMIC_OUTPUTS |
  657. AVFILTER_FLAG_SLICE_THREADS,
  658. };