You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1251 lines
45KB

  1. /*
  2. * AMR wideband decoder
  3. * Copyright (c) 2010 Marcelo Galvao Povoa
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AMR wideband decoder
  24. */
  25. #include "libavutil/lfg.h"
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "lsp.h"
  29. #include "celp_math.h"
  30. #include "celp_filters.h"
  31. #include "acelp_filters.h"
  32. #include "acelp_vectors.h"
  33. #include "acelp_pitch_delay.h"
  34. #define AMR_USE_16BIT_TABLES
  35. #include "amr.h"
  36. #include "amrwbdata.h"
  37. typedef struct {
  38. AVFrame avframe; ///< AVFrame for decoded samples
  39. AMRWBFrame frame; ///< AMRWB parameters decoded from bitstream
  40. enum Mode fr_cur_mode; ///< mode index of current frame
  41. uint8_t fr_quality; ///< frame quality index (FQI)
  42. float isf_cur[LP_ORDER]; ///< working ISF vector from current frame
  43. float isf_q_past[LP_ORDER]; ///< quantized ISF vector of the previous frame
  44. float isf_past_final[LP_ORDER]; ///< final processed ISF vector of the previous frame
  45. double isp[4][LP_ORDER]; ///< ISP vectors from current frame
  46. double isp_sub4_past[LP_ORDER]; ///< ISP vector for the 4th subframe of the previous frame
  47. float lp_coef[4][LP_ORDER]; ///< Linear Prediction Coefficients from ISP vector
  48. uint8_t base_pitch_lag; ///< integer part of pitch lag for the next relative subframe
  49. uint8_t pitch_lag_int; ///< integer part of pitch lag of the previous subframe
  50. float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE]; ///< current excitation and all necessary excitation history
  51. float *excitation; ///< points to current excitation in excitation_buf[]
  52. float pitch_vector[AMRWB_SFR_SIZE]; ///< adaptive codebook (pitch) vector for current subframe
  53. float fixed_vector[AMRWB_SFR_SIZE]; ///< algebraic codebook (fixed) vector for current subframe
  54. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  55. float pitch_gain[6]; ///< quantified pitch gains for the current and previous five subframes
  56. float fixed_gain[2]; ///< quantified fixed gains for the current and previous subframes
  57. float tilt_coef; ///< {beta_1} related to the voicing of the previous subframe
  58. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness to determine "onset"
  59. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  60. float prev_tr_gain; ///< previous initial gain used by noise enhancer for threshold
  61. float samples_az[LP_ORDER + AMRWB_SFR_SIZE]; ///< low-band samples and memory from synthesis at 12.8kHz
  62. float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE]; ///< low-band samples and memory processed for upsampling
  63. float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k]; ///< high-band samples and memory from synthesis at 16kHz
  64. float hpf_31_mem[2], hpf_400_mem[2]; ///< previous values in the high pass filters
  65. float demph_mem[1]; ///< previous value in the de-emphasis filter
  66. float bpf_6_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band band pass filter
  67. float lpf_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band low pass filter
  68. AVLFG prng; ///< random number generator for white noise excitation
  69. uint8_t first_frame; ///< flag active during decoding of the first frame
  70. } AMRWBContext;
  71. static av_cold int amrwb_decode_init(AVCodecContext *avctx)
  72. {
  73. AMRWBContext *ctx = avctx->priv_data;
  74. int i;
  75. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  76. av_lfg_init(&ctx->prng, 1);
  77. ctx->excitation = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1];
  78. ctx->first_frame = 1;
  79. for (i = 0; i < LP_ORDER; i++)
  80. ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
  81. for (i = 0; i < 4; i++)
  82. ctx->prediction_error[i] = MIN_ENERGY;
  83. avcodec_get_frame_defaults(&ctx->avframe);
  84. avctx->coded_frame = &ctx->avframe;
  85. return 0;
  86. }
  87. /**
  88. * Decode the frame header in the "MIME/storage" format. This format
  89. * is simpler and does not carry the auxiliary frame information.
  90. *
  91. * @param[in] ctx The Context
  92. * @param[in] buf Pointer to the input buffer
  93. *
  94. * @return The decoded header length in bytes
  95. */
  96. static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
  97. {
  98. GetBitContext gb;
  99. init_get_bits(&gb, buf, 8);
  100. /* Decode frame header (1st octet) */
  101. skip_bits(&gb, 1); // padding bit
  102. ctx->fr_cur_mode = get_bits(&gb, 4);
  103. ctx->fr_quality = get_bits1(&gb);
  104. skip_bits(&gb, 2); // padding bits
  105. return 1;
  106. }
  107. /**
  108. * Decode quantized ISF vectors using 36-bit indexes (6K60 mode only).
  109. *
  110. * @param[in] ind Array of 5 indexes
  111. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  112. *
  113. */
  114. static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
  115. {
  116. int i;
  117. for (i = 0; i < 9; i++)
  118. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  119. for (i = 0; i < 7; i++)
  120. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  121. for (i = 0; i < 5; i++)
  122. isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
  123. for (i = 0; i < 4; i++)
  124. isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
  125. for (i = 0; i < 7; i++)
  126. isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
  127. }
  128. /**
  129. * Decode quantized ISF vectors using 46-bit indexes (except 6K60 mode).
  130. *
  131. * @param[in] ind Array of 7 indexes
  132. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  133. *
  134. */
  135. static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
  136. {
  137. int i;
  138. for (i = 0; i < 9; i++)
  139. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  140. for (i = 0; i < 7; i++)
  141. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  142. for (i = 0; i < 3; i++)
  143. isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
  144. for (i = 0; i < 3; i++)
  145. isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
  146. for (i = 0; i < 3; i++)
  147. isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
  148. for (i = 0; i < 3; i++)
  149. isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
  150. for (i = 0; i < 4; i++)
  151. isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
  152. }
  153. /**
  154. * Apply mean and past ISF values using the prediction factor.
  155. * Updates past ISF vector.
  156. *
  157. * @param[in,out] isf_q Current quantized ISF
  158. * @param[in,out] isf_past Past quantized ISF
  159. *
  160. */
  161. static void isf_add_mean_and_past(float *isf_q, float *isf_past)
  162. {
  163. int i;
  164. float tmp;
  165. for (i = 0; i < LP_ORDER; i++) {
  166. tmp = isf_q[i];
  167. isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
  168. isf_q[i] += PRED_FACTOR * isf_past[i];
  169. isf_past[i] = tmp;
  170. }
  171. }
  172. /**
  173. * Interpolate the fourth ISP vector from current and past frames
  174. * to obtain an ISP vector for each subframe.
  175. *
  176. * @param[in,out] isp_q ISPs for each subframe
  177. * @param[in] isp4_past Past ISP for subframe 4
  178. */
  179. static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
  180. {
  181. int i, k;
  182. for (k = 0; k < 3; k++) {
  183. float c = isfp_inter[k];
  184. for (i = 0; i < LP_ORDER; i++)
  185. isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
  186. }
  187. }
  188. /**
  189. * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes).
  190. * Calculate integer lag and fractional lag always using 1/4 resolution.
  191. * In 1st and 3rd subframes the index is relative to last subframe integer lag.
  192. *
  193. * @param[out] lag_int Decoded integer pitch lag
  194. * @param[out] lag_frac Decoded fractional pitch lag
  195. * @param[in] pitch_index Adaptive codebook pitch index
  196. * @param[in,out] base_lag_int Base integer lag used in relative subframes
  197. * @param[in] subframe Current subframe index (0 to 3)
  198. */
  199. static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
  200. uint8_t *base_lag_int, int subframe)
  201. {
  202. if (subframe == 0 || subframe == 2) {
  203. if (pitch_index < 376) {
  204. *lag_int = (pitch_index + 137) >> 2;
  205. *lag_frac = pitch_index - (*lag_int << 2) + 136;
  206. } else if (pitch_index < 440) {
  207. *lag_int = (pitch_index + 257 - 376) >> 1;
  208. *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
  209. /* the actual resolution is 1/2 but expressed as 1/4 */
  210. } else {
  211. *lag_int = pitch_index - 280;
  212. *lag_frac = 0;
  213. }
  214. /* minimum lag for next subframe */
  215. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  216. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  217. // XXX: the spec states clearly that *base_lag_int should be
  218. // the nearest integer to *lag_int (minus 8), but the ref code
  219. // actually always uses its floor, I'm following the latter
  220. } else {
  221. *lag_int = (pitch_index + 1) >> 2;
  222. *lag_frac = pitch_index - (*lag_int << 2);
  223. *lag_int += *base_lag_int;
  224. }
  225. }
  226. /**
  227. * Decode an adaptive codebook index into pitch lag for 8k85 and 6k60 modes.
  228. * The description is analogous to decode_pitch_lag_high, but in 6k60 the
  229. * relative index is used for all subframes except the first.
  230. */
  231. static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
  232. uint8_t *base_lag_int, int subframe, enum Mode mode)
  233. {
  234. if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
  235. if (pitch_index < 116) {
  236. *lag_int = (pitch_index + 69) >> 1;
  237. *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
  238. } else {
  239. *lag_int = pitch_index - 24;
  240. *lag_frac = 0;
  241. }
  242. // XXX: same problem as before
  243. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  244. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  245. } else {
  246. *lag_int = (pitch_index + 1) >> 1;
  247. *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
  248. *lag_int += *base_lag_int;
  249. }
  250. }
  251. /**
  252. * Find the pitch vector by interpolating the past excitation at the
  253. * pitch delay, which is obtained in this function.
  254. *
  255. * @param[in,out] ctx The context
  256. * @param[in] amr_subframe Current subframe data
  257. * @param[in] subframe Current subframe index (0 to 3)
  258. */
  259. static void decode_pitch_vector(AMRWBContext *ctx,
  260. const AMRWBSubFrame *amr_subframe,
  261. const int subframe)
  262. {
  263. int pitch_lag_int, pitch_lag_frac;
  264. int i;
  265. float *exc = ctx->excitation;
  266. enum Mode mode = ctx->fr_cur_mode;
  267. if (mode <= MODE_8k85) {
  268. decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  269. &ctx->base_pitch_lag, subframe, mode);
  270. } else
  271. decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  272. &ctx->base_pitch_lag, subframe);
  273. ctx->pitch_lag_int = pitch_lag_int;
  274. pitch_lag_int += pitch_lag_frac > 0;
  275. /* Calculate the pitch vector by interpolating the past excitation at the
  276. pitch lag using a hamming windowed sinc function */
  277. ff_acelp_interpolatef(exc, exc + 1 - pitch_lag_int,
  278. ac_inter, 4,
  279. pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
  280. LP_ORDER, AMRWB_SFR_SIZE + 1);
  281. /* Check which pitch signal path should be used
  282. * 6k60 and 8k85 modes have the ltp flag set to 0 */
  283. if (amr_subframe->ltp) {
  284. memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
  285. } else {
  286. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  287. ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
  288. 0.18 * exc[i + 1];
  289. memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
  290. }
  291. }
  292. /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
  293. #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
  294. /** Get the bit at specified position */
  295. #define BIT_POS(x, p) (((x) >> (p)) & 1)
  296. /**
  297. * The next six functions decode_[i]p_track decode exactly i pulses
  298. * positions and amplitudes (-1 or 1) in a subframe track using
  299. * an encoded pulse indexing (TS 26.190 section 5.8.2).
  300. *
  301. * The results are given in out[], in which a negative number means
  302. * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) ).
  303. *
  304. * @param[out] out Output buffer (writes i elements)
  305. * @param[in] code Pulse index (no. of bits varies, see below)
  306. * @param[in] m (log2) Number of potential positions
  307. * @param[in] off Offset for decoded positions
  308. */
  309. static inline void decode_1p_track(int *out, int code, int m, int off)
  310. {
  311. int pos = BIT_STR(code, 0, m) + off; ///code: m+1 bits
  312. out[0] = BIT_POS(code, m) ? -pos : pos;
  313. }
  314. static inline void decode_2p_track(int *out, int code, int m, int off) ///code: 2m+1 bits
  315. {
  316. int pos0 = BIT_STR(code, m, m) + off;
  317. int pos1 = BIT_STR(code, 0, m) + off;
  318. out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
  319. out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
  320. out[1] = pos0 > pos1 ? -out[1] : out[1];
  321. }
  322. static void decode_3p_track(int *out, int code, int m, int off) ///code: 3m+1 bits
  323. {
  324. int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
  325. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  326. m - 1, off + half_2p);
  327. decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
  328. }
  329. static void decode_4p_track(int *out, int code, int m, int off) ///code: 4m bits
  330. {
  331. int half_4p, subhalf_2p;
  332. int b_offset = 1 << (m - 1);
  333. switch (BIT_STR(code, 4*m - 2, 2)) { /* case ID (2 bits) */
  334. case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
  335. half_4p = BIT_POS(code, 4*m - 3) << (m - 1); // which has 4 pulses
  336. subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
  337. decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
  338. m - 2, off + half_4p + subhalf_2p);
  339. decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
  340. m - 1, off + half_4p);
  341. break;
  342. case 1: /* 1 pulse in A, 3 pulses in B */
  343. decode_1p_track(out, BIT_STR(code, 3*m - 2, m),
  344. m - 1, off);
  345. decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
  346. m - 1, off + b_offset);
  347. break;
  348. case 2: /* 2 pulses in each half */
  349. decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
  350. m - 1, off);
  351. decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
  352. m - 1, off + b_offset);
  353. break;
  354. case 3: /* 3 pulses in A, 1 pulse in B */
  355. decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
  356. m - 1, off);
  357. decode_1p_track(out + 3, BIT_STR(code, 0, m),
  358. m - 1, off + b_offset);
  359. break;
  360. }
  361. }
  362. static void decode_5p_track(int *out, int code, int m, int off) ///code: 5m bits
  363. {
  364. int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
  365. decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
  366. m - 1, off + half_3p);
  367. decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
  368. }
  369. static void decode_6p_track(int *out, int code, int m, int off) ///code: 6m-2 bits
  370. {
  371. int b_offset = 1 << (m - 1);
  372. /* which half has more pulses in cases 0 to 2 */
  373. int half_more = BIT_POS(code, 6*m - 5) << (m - 1);
  374. int half_other = b_offset - half_more;
  375. switch (BIT_STR(code, 6*m - 4, 2)) { /* case ID (2 bits) */
  376. case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
  377. decode_1p_track(out, BIT_STR(code, 0, m),
  378. m - 1, off + half_more);
  379. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  380. m - 1, off + half_more);
  381. break;
  382. case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
  383. decode_1p_track(out, BIT_STR(code, 0, m),
  384. m - 1, off + half_other);
  385. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  386. m - 1, off + half_more);
  387. break;
  388. case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
  389. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  390. m - 1, off + half_other);
  391. decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
  392. m - 1, off + half_more);
  393. break;
  394. case 3: /* 3 pulses in A, 3 pulses in B */
  395. decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
  396. m - 1, off);
  397. decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
  398. m - 1, off + b_offset);
  399. break;
  400. }
  401. }
  402. /**
  403. * Decode the algebraic codebook index to pulse positions and signs,
  404. * then construct the algebraic codebook vector.
  405. *
  406. * @param[out] fixed_vector Buffer for the fixed codebook excitation
  407. * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only)
  408. * @param[in] pulse_lo LSBs part of the pulse index array
  409. * @param[in] mode Mode of the current frame
  410. */
  411. static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
  412. const uint16_t *pulse_lo, const enum Mode mode)
  413. {
  414. /* sig_pos stores for each track the decoded pulse position indexes
  415. * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
  416. int sig_pos[4][6];
  417. int spacing = (mode == MODE_6k60) ? 2 : 4;
  418. int i, j;
  419. switch (mode) {
  420. case MODE_6k60:
  421. for (i = 0; i < 2; i++)
  422. decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
  423. break;
  424. case MODE_8k85:
  425. for (i = 0; i < 4; i++)
  426. decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
  427. break;
  428. case MODE_12k65:
  429. for (i = 0; i < 4; i++)
  430. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  431. break;
  432. case MODE_14k25:
  433. for (i = 0; i < 2; i++)
  434. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  435. for (i = 2; i < 4; i++)
  436. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  437. break;
  438. case MODE_15k85:
  439. for (i = 0; i < 4; i++)
  440. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  441. break;
  442. case MODE_18k25:
  443. for (i = 0; i < 4; i++)
  444. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  445. ((int) pulse_hi[i] << 14), 4, 1);
  446. break;
  447. case MODE_19k85:
  448. for (i = 0; i < 2; i++)
  449. decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
  450. ((int) pulse_hi[i] << 10), 4, 1);
  451. for (i = 2; i < 4; i++)
  452. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  453. ((int) pulse_hi[i] << 14), 4, 1);
  454. break;
  455. case MODE_23k05:
  456. case MODE_23k85:
  457. for (i = 0; i < 4; i++)
  458. decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
  459. ((int) pulse_hi[i] << 11), 4, 1);
  460. break;
  461. }
  462. memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
  463. for (i = 0; i < 4; i++)
  464. for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
  465. int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
  466. fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
  467. }
  468. }
  469. /**
  470. * Decode pitch gain and fixed gain correction factor.
  471. *
  472. * @param[in] vq_gain Vector-quantized index for gains
  473. * @param[in] mode Mode of the current frame
  474. * @param[out] fixed_gain_factor Decoded fixed gain correction factor
  475. * @param[out] pitch_gain Decoded pitch gain
  476. */
  477. static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
  478. float *fixed_gain_factor, float *pitch_gain)
  479. {
  480. const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
  481. qua_gain_7b[vq_gain]);
  482. *pitch_gain = gains[0] * (1.0f / (1 << 14));
  483. *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
  484. }
  485. /**
  486. * Apply pitch sharpening filters to the fixed codebook vector.
  487. *
  488. * @param[in] ctx The context
  489. * @param[in,out] fixed_vector Fixed codebook excitation
  490. */
  491. // XXX: Spec states this procedure should be applied when the pitch
  492. // lag is less than 64, but this checking seems absent in reference and AMR-NB
  493. static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
  494. {
  495. int i;
  496. /* Tilt part */
  497. for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
  498. fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
  499. /* Periodicity enhancement part */
  500. for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
  501. fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
  502. }
  503. /**
  504. * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced).
  505. *
  506. * @param[in] p_vector, f_vector Pitch and fixed excitation vectors
  507. * @param[in] p_gain, f_gain Pitch and fixed gains
  508. */
  509. // XXX: There is something wrong with the precision here! The magnitudes
  510. // of the energies are not correct. Please check the reference code carefully
  511. static float voice_factor(float *p_vector, float p_gain,
  512. float *f_vector, float f_gain)
  513. {
  514. double p_ener = (double) ff_dot_productf(p_vector, p_vector,
  515. AMRWB_SFR_SIZE) * p_gain * p_gain;
  516. double f_ener = (double) ff_dot_productf(f_vector, f_vector,
  517. AMRWB_SFR_SIZE) * f_gain * f_gain;
  518. return (p_ener - f_ener) / (p_ener + f_ener);
  519. }
  520. /**
  521. * Reduce fixed vector sparseness by smoothing with one of three IR filters,
  522. * also known as "adaptive phase dispersion".
  523. *
  524. * @param[in] ctx The context
  525. * @param[in,out] fixed_vector Unfiltered fixed vector
  526. * @param[out] buf Space for modified vector if necessary
  527. *
  528. * @return The potentially overwritten filtered fixed vector address
  529. */
  530. static float *anti_sparseness(AMRWBContext *ctx,
  531. float *fixed_vector, float *buf)
  532. {
  533. int ir_filter_nr;
  534. if (ctx->fr_cur_mode > MODE_8k85) // no filtering in higher modes
  535. return fixed_vector;
  536. if (ctx->pitch_gain[0] < 0.6) {
  537. ir_filter_nr = 0; // strong filtering
  538. } else if (ctx->pitch_gain[0] < 0.9) {
  539. ir_filter_nr = 1; // medium filtering
  540. } else
  541. ir_filter_nr = 2; // no filtering
  542. /* detect 'onset' */
  543. if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
  544. if (ir_filter_nr < 2)
  545. ir_filter_nr++;
  546. } else {
  547. int i, count = 0;
  548. for (i = 0; i < 6; i++)
  549. if (ctx->pitch_gain[i] < 0.6)
  550. count++;
  551. if (count > 2)
  552. ir_filter_nr = 0;
  553. if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
  554. ir_filter_nr--;
  555. }
  556. /* update ir filter strength history */
  557. ctx->prev_ir_filter_nr = ir_filter_nr;
  558. ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
  559. if (ir_filter_nr < 2) {
  560. int i;
  561. const float *coef = ir_filters_lookup[ir_filter_nr];
  562. /* Circular convolution code in the reference
  563. * decoder was modified to avoid using one
  564. * extra array. The filtered vector is given by:
  565. *
  566. * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
  567. */
  568. memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
  569. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  570. if (fixed_vector[i])
  571. ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
  572. AMRWB_SFR_SIZE);
  573. fixed_vector = buf;
  574. }
  575. return fixed_vector;
  576. }
  577. /**
  578. * Calculate a stability factor {teta} based on distance between
  579. * current and past isf. A value of 1 shows maximum signal stability.
  580. */
  581. static float stability_factor(const float *isf, const float *isf_past)
  582. {
  583. int i;
  584. float acc = 0.0;
  585. for (i = 0; i < LP_ORDER - 1; i++)
  586. acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
  587. // XXX: This part is not so clear from the reference code
  588. // the result is more accurate changing the "/ 256" to "* 512"
  589. return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
  590. }
  591. /**
  592. * Apply a non-linear fixed gain smoothing in order to reduce
  593. * fluctuation in the energy of excitation.
  594. *
  595. * @param[in] fixed_gain Unsmoothed fixed gain
  596. * @param[in,out] prev_tr_gain Previous threshold gain (updated)
  597. * @param[in] voice_fac Frame voicing factor
  598. * @param[in] stab_fac Frame stability factor
  599. *
  600. * @return The smoothed gain
  601. */
  602. static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
  603. float voice_fac, float stab_fac)
  604. {
  605. float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
  606. float g0;
  607. // XXX: the following fixed-point constants used to in(de)crement
  608. // gain by 1.5dB were taken from the reference code, maybe it could
  609. // be simpler
  610. if (fixed_gain < *prev_tr_gain) {
  611. g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
  612. (6226 * (1.0f / (1 << 15)))); // +1.5 dB
  613. } else
  614. g0 = FFMAX(*prev_tr_gain, fixed_gain *
  615. (27536 * (1.0f / (1 << 15)))); // -1.5 dB
  616. *prev_tr_gain = g0; // update next frame threshold
  617. return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
  618. }
  619. /**
  620. * Filter the fixed_vector to emphasize the higher frequencies.
  621. *
  622. * @param[in,out] fixed_vector Fixed codebook vector
  623. * @param[in] voice_fac Frame voicing factor
  624. */
  625. static void pitch_enhancer(float *fixed_vector, float voice_fac)
  626. {
  627. int i;
  628. float cpe = 0.125 * (1 + voice_fac);
  629. float last = fixed_vector[0]; // holds c(i - 1)
  630. fixed_vector[0] -= cpe * fixed_vector[1];
  631. for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
  632. float cur = fixed_vector[i];
  633. fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
  634. last = cur;
  635. }
  636. fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
  637. }
  638. /**
  639. * Conduct 16th order linear predictive coding synthesis from excitation.
  640. *
  641. * @param[in] ctx Pointer to the AMRWBContext
  642. * @param[in] lpc Pointer to the LPC coefficients
  643. * @param[out] excitation Buffer for synthesis final excitation
  644. * @param[in] fixed_gain Fixed codebook gain for synthesis
  645. * @param[in] fixed_vector Algebraic codebook vector
  646. * @param[in,out] samples Pointer to the output samples and memory
  647. */
  648. static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
  649. float fixed_gain, const float *fixed_vector,
  650. float *samples)
  651. {
  652. ff_weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
  653. ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
  654. /* emphasize pitch vector contribution in low bitrate modes */
  655. if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
  656. int i;
  657. float energy = ff_dot_productf(excitation, excitation,
  658. AMRWB_SFR_SIZE);
  659. // XXX: Weird part in both ref code and spec. A unknown parameter
  660. // {beta} seems to be identical to the current pitch gain
  661. float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
  662. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  663. excitation[i] += pitch_factor * ctx->pitch_vector[i];
  664. ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
  665. energy, AMRWB_SFR_SIZE);
  666. }
  667. ff_celp_lp_synthesis_filterf(samples, lpc, excitation,
  668. AMRWB_SFR_SIZE, LP_ORDER);
  669. }
  670. /**
  671. * Apply to synthesis a de-emphasis filter of the form:
  672. * H(z) = 1 / (1 - m * z^-1)
  673. *
  674. * @param[out] out Output buffer
  675. * @param[in] in Input samples array with in[-1]
  676. * @param[in] m Filter coefficient
  677. * @param[in,out] mem State from last filtering
  678. */
  679. static void de_emphasis(float *out, float *in, float m, float mem[1])
  680. {
  681. int i;
  682. out[0] = in[0] + m * mem[0];
  683. for (i = 1; i < AMRWB_SFR_SIZE; i++)
  684. out[i] = in[i] + out[i - 1] * m;
  685. mem[0] = out[AMRWB_SFR_SIZE - 1];
  686. }
  687. /**
  688. * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
  689. * a FIR interpolation filter. Uses past data from before *in address.
  690. *
  691. * @param[out] out Buffer for interpolated signal
  692. * @param[in] in Current signal data (length 0.8*o_size)
  693. * @param[in] o_size Output signal length
  694. */
  695. static void upsample_5_4(float *out, const float *in, int o_size)
  696. {
  697. const float *in0 = in - UPS_FIR_SIZE + 1;
  698. int i, j, k;
  699. int int_part = 0, frac_part;
  700. i = 0;
  701. for (j = 0; j < o_size / 5; j++) {
  702. out[i] = in[int_part];
  703. frac_part = 4;
  704. i++;
  705. for (k = 1; k < 5; k++) {
  706. out[i] = ff_dot_productf(in0 + int_part, upsample_fir[4 - frac_part],
  707. UPS_MEM_SIZE);
  708. int_part++;
  709. frac_part--;
  710. i++;
  711. }
  712. }
  713. }
  714. /**
  715. * Calculate the high-band gain based on encoded index (23k85 mode) or
  716. * on the low-band speech signal and the Voice Activity Detection flag.
  717. *
  718. * @param[in] ctx The context
  719. * @param[in] synth LB speech synthesis at 12.8k
  720. * @param[in] hb_idx Gain index for mode 23k85 only
  721. * @param[in] vad VAD flag for the frame
  722. */
  723. static float find_hb_gain(AMRWBContext *ctx, const float *synth,
  724. uint16_t hb_idx, uint8_t vad)
  725. {
  726. int wsp = (vad > 0);
  727. float tilt;
  728. if (ctx->fr_cur_mode == MODE_23k85)
  729. return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
  730. tilt = ff_dot_productf(synth, synth + 1, AMRWB_SFR_SIZE - 1) /
  731. ff_dot_productf(synth, synth, AMRWB_SFR_SIZE);
  732. /* return gain bounded by [0.1, 1.0] */
  733. return av_clipf((1.0 - FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
  734. }
  735. /**
  736. * Generate the high-band excitation with the same energy from the lower
  737. * one and scaled by the given gain.
  738. *
  739. * @param[in] ctx The context
  740. * @param[out] hb_exc Buffer for the excitation
  741. * @param[in] synth_exc Low-band excitation used for synthesis
  742. * @param[in] hb_gain Wanted excitation gain
  743. */
  744. static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
  745. const float *synth_exc, float hb_gain)
  746. {
  747. int i;
  748. float energy = ff_dot_productf(synth_exc, synth_exc, AMRWB_SFR_SIZE);
  749. /* Generate a white-noise excitation */
  750. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  751. hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
  752. ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc,
  753. energy * hb_gain * hb_gain,
  754. AMRWB_SFR_SIZE_16k);
  755. }
  756. /**
  757. * Calculate the auto-correlation for the ISF difference vector.
  758. */
  759. static float auto_correlation(float *diff_isf, float mean, int lag)
  760. {
  761. int i;
  762. float sum = 0.0;
  763. for (i = 7; i < LP_ORDER - 2; i++) {
  764. float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
  765. sum += prod * prod;
  766. }
  767. return sum;
  768. }
  769. /**
  770. * Extrapolate a ISF vector to the 16kHz range (20th order LP)
  771. * used at mode 6k60 LP filter for the high frequency band.
  772. *
  773. * @param[out] out Buffer for extrapolated isf
  774. * @param[in] isf Input isf vector
  775. */
  776. static void extrapolate_isf(float out[LP_ORDER_16k], float isf[LP_ORDER])
  777. {
  778. float diff_isf[LP_ORDER - 2], diff_mean;
  779. float *diff_hi = diff_isf - LP_ORDER + 1; // diff array for extrapolated indexes
  780. float corr_lag[3];
  781. float est, scale;
  782. int i, i_max_corr;
  783. memcpy(out, isf, (LP_ORDER - 1) * sizeof(float));
  784. out[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
  785. /* Calculate the difference vector */
  786. for (i = 0; i < LP_ORDER - 2; i++)
  787. diff_isf[i] = isf[i + 1] - isf[i];
  788. diff_mean = 0.0;
  789. for (i = 2; i < LP_ORDER - 2; i++)
  790. diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
  791. /* Find which is the maximum autocorrelation */
  792. i_max_corr = 0;
  793. for (i = 0; i < 3; i++) {
  794. corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
  795. if (corr_lag[i] > corr_lag[i_max_corr])
  796. i_max_corr = i;
  797. }
  798. i_max_corr++;
  799. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  800. out[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
  801. - isf[i - 2 - i_max_corr];
  802. /* Calculate an estimate for ISF(18) and scale ISF based on the error */
  803. est = 7965 + (out[2] - out[3] - out[4]) / 6.0;
  804. scale = 0.5 * (FFMIN(est, 7600) - out[LP_ORDER - 2]) /
  805. (out[LP_ORDER_16k - 2] - out[LP_ORDER - 2]);
  806. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  807. diff_hi[i] = scale * (out[i] - out[i - 1]);
  808. /* Stability insurance */
  809. for (i = LP_ORDER; i < LP_ORDER_16k - 1; i++)
  810. if (diff_hi[i] + diff_hi[i - 1] < 5.0) {
  811. if (diff_hi[i] > diff_hi[i - 1]) {
  812. diff_hi[i - 1] = 5.0 - diff_hi[i];
  813. } else
  814. diff_hi[i] = 5.0 - diff_hi[i - 1];
  815. }
  816. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  817. out[i] = out[i - 1] + diff_hi[i] * (1.0f / (1 << 15));
  818. /* Scale the ISF vector for 16000 Hz */
  819. for (i = 0; i < LP_ORDER_16k - 1; i++)
  820. out[i] *= 0.8;
  821. }
  822. /**
  823. * Spectral expand the LP coefficients using the equation:
  824. * y[i] = x[i] * (gamma ** i)
  825. *
  826. * @param[out] out Output buffer (may use input array)
  827. * @param[in] lpc LP coefficients array
  828. * @param[in] gamma Weighting factor
  829. * @param[in] size LP array size
  830. */
  831. static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
  832. {
  833. int i;
  834. float fac = gamma;
  835. for (i = 0; i < size; i++) {
  836. out[i] = lpc[i] * fac;
  837. fac *= gamma;
  838. }
  839. }
  840. /**
  841. * Conduct 20th order linear predictive coding synthesis for the high
  842. * frequency band excitation at 16kHz.
  843. *
  844. * @param[in] ctx The context
  845. * @param[in] subframe Current subframe index (0 to 3)
  846. * @param[in,out] samples Pointer to the output speech samples
  847. * @param[in] exc Generated white-noise scaled excitation
  848. * @param[in] isf Current frame isf vector
  849. * @param[in] isf_past Past frame final isf vector
  850. */
  851. static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
  852. const float *exc, const float *isf, const float *isf_past)
  853. {
  854. float hb_lpc[LP_ORDER_16k];
  855. enum Mode mode = ctx->fr_cur_mode;
  856. if (mode == MODE_6k60) {
  857. float e_isf[LP_ORDER_16k]; // ISF vector for extrapolation
  858. double e_isp[LP_ORDER_16k];
  859. ff_weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
  860. 1.0 - isfp_inter[subframe], LP_ORDER);
  861. extrapolate_isf(e_isf, e_isf);
  862. e_isf[LP_ORDER_16k - 1] *= 2.0;
  863. ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
  864. ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
  865. lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
  866. } else {
  867. lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
  868. }
  869. ff_celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
  870. (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
  871. }
  872. /**
  873. * Apply a 15th order filter to high-band samples.
  874. * The filter characteristic depends on the given coefficients.
  875. *
  876. * @param[out] out Buffer for filtered output
  877. * @param[in] fir_coef Filter coefficients
  878. * @param[in,out] mem State from last filtering (updated)
  879. * @param[in] in Input speech data (high-band)
  880. *
  881. * @remark It is safe to pass the same array in in and out parameters
  882. */
  883. static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
  884. float mem[HB_FIR_SIZE], const float *in)
  885. {
  886. int i, j;
  887. float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE]; // past and current samples
  888. memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
  889. memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
  890. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
  891. out[i] = 0.0;
  892. for (j = 0; j <= HB_FIR_SIZE; j++)
  893. out[i] += data[i + j] * fir_coef[j];
  894. }
  895. memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
  896. }
  897. /**
  898. * Update context state before the next subframe.
  899. */
  900. static void update_sub_state(AMRWBContext *ctx)
  901. {
  902. memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
  903. (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
  904. memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
  905. memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
  906. memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
  907. LP_ORDER * sizeof(float));
  908. memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
  909. UPS_MEM_SIZE * sizeof(float));
  910. memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
  911. LP_ORDER_16k * sizeof(float));
  912. }
  913. static int amrwb_decode_frame(AVCodecContext *avctx, void *data,
  914. int *got_frame_ptr, AVPacket *avpkt)
  915. {
  916. AMRWBContext *ctx = avctx->priv_data;
  917. AMRWBFrame *cf = &ctx->frame;
  918. const uint8_t *buf = avpkt->data;
  919. int buf_size = avpkt->size;
  920. int expected_fr_size, header_size;
  921. float *buf_out;
  922. float spare_vector[AMRWB_SFR_SIZE]; // extra stack space to hold result from anti-sparseness processing
  923. float fixed_gain_factor; // fixed gain correction factor (gamma)
  924. float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  925. float synth_fixed_gain; // the fixed gain that synthesis should use
  926. float voice_fac, stab_fac; // parameters used for gain smoothing
  927. float synth_exc[AMRWB_SFR_SIZE]; // post-processed excitation for synthesis
  928. float hb_exc[AMRWB_SFR_SIZE_16k]; // excitation for the high frequency band
  929. float hb_samples[AMRWB_SFR_SIZE_16k]; // filtered high-band samples from synthesis
  930. float hb_gain;
  931. int sub, i, ret;
  932. /* get output buffer */
  933. ctx->avframe.nb_samples = 4 * AMRWB_SFR_SIZE_16k;
  934. if ((ret = avctx->get_buffer(avctx, &ctx->avframe)) < 0) {
  935. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  936. return ret;
  937. }
  938. buf_out = (float *)ctx->avframe.data[0];
  939. header_size = decode_mime_header(ctx, buf);
  940. expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
  941. if (buf_size < expected_fr_size) {
  942. av_log(avctx, AV_LOG_ERROR,
  943. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  944. *got_frame_ptr = 0;
  945. return buf_size;
  946. }
  947. if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
  948. av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
  949. if (ctx->fr_cur_mode == MODE_SID) /* Comfort noise frame */
  950. av_log_missing_feature(avctx, "SID mode", 1);
  951. if (ctx->fr_cur_mode >= MODE_SID)
  952. return -1;
  953. ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
  954. buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
  955. /* Decode the quantized ISF vector */
  956. if (ctx->fr_cur_mode == MODE_6k60) {
  957. decode_isf_indices_36b(cf->isp_id, ctx->isf_cur);
  958. } else {
  959. decode_isf_indices_46b(cf->isp_id, ctx->isf_cur);
  960. }
  961. isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past);
  962. ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1);
  963. stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
  964. ctx->isf_cur[LP_ORDER - 1] *= 2.0;
  965. ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
  966. /* Generate a ISP vector for each subframe */
  967. if (ctx->first_frame) {
  968. ctx->first_frame = 0;
  969. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
  970. }
  971. interpolate_isp(ctx->isp, ctx->isp_sub4_past);
  972. for (sub = 0; sub < 4; sub++)
  973. ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
  974. for (sub = 0; sub < 4; sub++) {
  975. const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
  976. float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
  977. /* Decode adaptive codebook (pitch vector) */
  978. decode_pitch_vector(ctx, cur_subframe, sub);
  979. /* Decode innovative codebook (fixed vector) */
  980. decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
  981. cur_subframe->pul_il, ctx->fr_cur_mode);
  982. pitch_sharpening(ctx, ctx->fixed_vector);
  983. decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
  984. &fixed_gain_factor, &ctx->pitch_gain[0]);
  985. ctx->fixed_gain[0] =
  986. ff_amr_set_fixed_gain(fixed_gain_factor,
  987. ff_dot_productf(ctx->fixed_vector, ctx->fixed_vector,
  988. AMRWB_SFR_SIZE) / AMRWB_SFR_SIZE,
  989. ctx->prediction_error,
  990. ENERGY_MEAN, energy_pred_fac);
  991. /* Calculate voice factor and store tilt for next subframe */
  992. voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
  993. ctx->fixed_vector, ctx->fixed_gain[0]);
  994. ctx->tilt_coef = voice_fac * 0.25 + 0.25;
  995. /* Construct current excitation */
  996. for (i = 0; i < AMRWB_SFR_SIZE; i++) {
  997. ctx->excitation[i] *= ctx->pitch_gain[0];
  998. ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
  999. ctx->excitation[i] = truncf(ctx->excitation[i]);
  1000. }
  1001. /* Post-processing of excitation elements */
  1002. synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
  1003. voice_fac, stab_fac);
  1004. synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
  1005. spare_vector);
  1006. pitch_enhancer(synth_fixed_vector, voice_fac);
  1007. synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
  1008. synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
  1009. /* Synthesis speech post-processing */
  1010. de_emphasis(&ctx->samples_up[UPS_MEM_SIZE],
  1011. &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
  1012. ff_acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE],
  1013. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles,
  1014. hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
  1015. upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
  1016. AMRWB_SFR_SIZE_16k);
  1017. /* High frequency band (6.4 - 7.0 kHz) generation part */
  1018. ff_acelp_apply_order_2_transfer_function(hb_samples,
  1019. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles,
  1020. hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
  1021. hb_gain = find_hb_gain(ctx, hb_samples,
  1022. cur_subframe->hb_gain, cf->vad);
  1023. scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
  1024. hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
  1025. hb_exc, ctx->isf_cur, ctx->isf_past_final);
  1026. /* High-band post-processing filters */
  1027. hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
  1028. &ctx->samples_hb[LP_ORDER_16k]);
  1029. if (ctx->fr_cur_mode == MODE_23k85)
  1030. hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
  1031. hb_samples);
  1032. /* Add the low and high frequency bands */
  1033. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  1034. sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
  1035. /* Update buffers and history */
  1036. update_sub_state(ctx);
  1037. }
  1038. /* update state for next frame */
  1039. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
  1040. memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
  1041. *got_frame_ptr = 1;
  1042. *(AVFrame *)data = ctx->avframe;
  1043. return expected_fr_size;
  1044. }
  1045. AVCodec ff_amrwb_decoder = {
  1046. .name = "amrwb",
  1047. .type = AVMEDIA_TYPE_AUDIO,
  1048. .id = CODEC_ID_AMR_WB,
  1049. .priv_data_size = sizeof(AMRWBContext),
  1050. .init = amrwb_decode_init,
  1051. .decode = amrwb_decode_frame,
  1052. .capabilities = CODEC_CAP_DR1,
  1053. .long_name = NULL_IF_CONFIG_SMALL("Adaptive Multi-Rate WideBand"),
  1054. .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_FLT,AV_SAMPLE_FMT_NONE},
  1055. };