You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1246 lines
44KB

  1. /*
  2. * Copyright (c) 2001-2003 The ffmpeg Project
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "avcodec.h"
  21. #include "get_bits.h"
  22. #include "put_bits.h"
  23. #include "bytestream.h"
  24. #include "adpcm.h"
  25. #include "adpcm_data.h"
  26. /**
  27. * @file
  28. * ADPCM decoders
  29. * First version by Francois Revol (revol@free.fr)
  30. * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
  31. * by Mike Melanson (melanson@pcisys.net)
  32. * CD-ROM XA ADPCM codec by BERO
  33. * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
  34. * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
  35. * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
  36. * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
  37. * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
  38. * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
  39. * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
  40. *
  41. * Features and limitations:
  42. *
  43. * Reference documents:
  44. * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
  45. * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
  46. * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
  47. * http://openquicktime.sourceforge.net/
  48. * XAnim sources (xa_codec.c) http://xanim.polter.net/
  49. * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
  50. * SoX source code http://sox.sourceforge.net/
  51. *
  52. * CD-ROM XA:
  53. * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
  54. * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
  55. * readstr http://www.geocities.co.jp/Playtown/2004/
  56. */
  57. /* These are for CD-ROM XA ADPCM */
  58. static const int xa_adpcm_table[5][2] = {
  59. { 0, 0 },
  60. { 60, 0 },
  61. { 115, -52 },
  62. { 98, -55 },
  63. { 122, -60 }
  64. };
  65. static const int ea_adpcm_table[] = {
  66. 0, 240, 460, 392,
  67. 0, 0, -208, -220,
  68. 0, 1, 3, 4,
  69. 7, 8, 10, 11,
  70. 0, -1, -3, -4
  71. };
  72. // padded to zero where table size is less then 16
  73. static const int swf_index_tables[4][16] = {
  74. /*2*/ { -1, 2 },
  75. /*3*/ { -1, -1, 2, 4 },
  76. /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
  77. /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
  78. };
  79. /* end of tables */
  80. typedef struct ADPCMDecodeContext {
  81. AVFrame frame;
  82. ADPCMChannelStatus status[6];
  83. } ADPCMDecodeContext;
  84. static av_cold int adpcm_decode_init(AVCodecContext * avctx)
  85. {
  86. ADPCMDecodeContext *c = avctx->priv_data;
  87. unsigned int min_channels = 1;
  88. unsigned int max_channels = 2;
  89. switch(avctx->codec->id) {
  90. case CODEC_ID_ADPCM_EA:
  91. min_channels = 2;
  92. break;
  93. case CODEC_ID_ADPCM_EA_R1:
  94. case CODEC_ID_ADPCM_EA_R2:
  95. case CODEC_ID_ADPCM_EA_R3:
  96. case CODEC_ID_ADPCM_EA_XAS:
  97. max_channels = 6;
  98. break;
  99. }
  100. if (avctx->channels < min_channels || avctx->channels > max_channels) {
  101. av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
  102. return AVERROR(EINVAL);
  103. }
  104. switch(avctx->codec->id) {
  105. case CODEC_ID_ADPCM_CT:
  106. c->status[0].step = c->status[1].step = 511;
  107. break;
  108. case CODEC_ID_ADPCM_IMA_WAV:
  109. if (avctx->bits_per_coded_sample != 4) {
  110. av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
  111. return -1;
  112. }
  113. break;
  114. case CODEC_ID_ADPCM_IMA_WS:
  115. if (avctx->extradata && avctx->extradata_size == 2 * 4) {
  116. c->status[0].predictor = AV_RL32(avctx->extradata);
  117. c->status[1].predictor = AV_RL32(avctx->extradata + 4);
  118. }
  119. break;
  120. default:
  121. break;
  122. }
  123. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  124. avcodec_get_frame_defaults(&c->frame);
  125. avctx->coded_frame = &c->frame;
  126. return 0;
  127. }
  128. static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
  129. {
  130. int step_index;
  131. int predictor;
  132. int sign, delta, diff, step;
  133. step = ff_adpcm_step_table[c->step_index];
  134. step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
  135. if (step_index < 0) step_index = 0;
  136. else if (step_index > 88) step_index = 88;
  137. sign = nibble & 8;
  138. delta = nibble & 7;
  139. /* perform direct multiplication instead of series of jumps proposed by
  140. * the reference ADPCM implementation since modern CPUs can do the mults
  141. * quickly enough */
  142. diff = ((2 * delta + 1) * step) >> shift;
  143. predictor = c->predictor;
  144. if (sign) predictor -= diff;
  145. else predictor += diff;
  146. c->predictor = av_clip_int16(predictor);
  147. c->step_index = step_index;
  148. return (short)c->predictor;
  149. }
  150. static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
  151. {
  152. int step_index;
  153. int predictor;
  154. int diff, step;
  155. step = ff_adpcm_step_table[c->step_index];
  156. step_index = c->step_index + ff_adpcm_index_table[nibble];
  157. step_index = av_clip(step_index, 0, 88);
  158. diff = step >> 3;
  159. if (nibble & 4) diff += step;
  160. if (nibble & 2) diff += step >> 1;
  161. if (nibble & 1) diff += step >> 2;
  162. if (nibble & 8)
  163. predictor = c->predictor - diff;
  164. else
  165. predictor = c->predictor + diff;
  166. c->predictor = av_clip_int16(predictor);
  167. c->step_index = step_index;
  168. return c->predictor;
  169. }
  170. static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
  171. {
  172. int predictor;
  173. predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
  174. predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
  175. c->sample2 = c->sample1;
  176. c->sample1 = av_clip_int16(predictor);
  177. c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
  178. if (c->idelta < 16) c->idelta = 16;
  179. return c->sample1;
  180. }
  181. static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
  182. {
  183. int sign, delta, diff;
  184. int new_step;
  185. sign = nibble & 8;
  186. delta = nibble & 7;
  187. /* perform direct multiplication instead of series of jumps proposed by
  188. * the reference ADPCM implementation since modern CPUs can do the mults
  189. * quickly enough */
  190. diff = ((2 * delta + 1) * c->step) >> 3;
  191. /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
  192. c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
  193. c->predictor = av_clip_int16(c->predictor);
  194. /* calculate new step and clamp it to range 511..32767 */
  195. new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
  196. c->step = av_clip(new_step, 511, 32767);
  197. return (short)c->predictor;
  198. }
  199. static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
  200. {
  201. int sign, delta, diff;
  202. sign = nibble & (1<<(size-1));
  203. delta = nibble & ((1<<(size-1))-1);
  204. diff = delta << (7 + c->step + shift);
  205. /* clamp result */
  206. c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
  207. /* calculate new step */
  208. if (delta >= (2*size - 3) && c->step < 3)
  209. c->step++;
  210. else if (delta == 0 && c->step > 0)
  211. c->step--;
  212. return (short) c->predictor;
  213. }
  214. static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
  215. {
  216. if(!c->step) {
  217. c->predictor = 0;
  218. c->step = 127;
  219. }
  220. c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
  221. c->predictor = av_clip_int16(c->predictor);
  222. c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
  223. c->step = av_clip(c->step, 127, 24567);
  224. return c->predictor;
  225. }
  226. static void xa_decode(short *out, const unsigned char *in,
  227. ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
  228. {
  229. int i, j;
  230. int shift,filter,f0,f1;
  231. int s_1,s_2;
  232. int d,s,t;
  233. for(i=0;i<4;i++) {
  234. shift = 12 - (in[4+i*2] & 15);
  235. filter = in[4+i*2] >> 4;
  236. f0 = xa_adpcm_table[filter][0];
  237. f1 = xa_adpcm_table[filter][1];
  238. s_1 = left->sample1;
  239. s_2 = left->sample2;
  240. for(j=0;j<28;j++) {
  241. d = in[16+i+j*4];
  242. t = (signed char)(d<<4)>>4;
  243. s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
  244. s_2 = s_1;
  245. s_1 = av_clip_int16(s);
  246. *out = s_1;
  247. out += inc;
  248. }
  249. if (inc==2) { /* stereo */
  250. left->sample1 = s_1;
  251. left->sample2 = s_2;
  252. s_1 = right->sample1;
  253. s_2 = right->sample2;
  254. out = out + 1 - 28*2;
  255. }
  256. shift = 12 - (in[5+i*2] & 15);
  257. filter = in[5+i*2] >> 4;
  258. f0 = xa_adpcm_table[filter][0];
  259. f1 = xa_adpcm_table[filter][1];
  260. for(j=0;j<28;j++) {
  261. d = in[16+i+j*4];
  262. t = (signed char)d >> 4;
  263. s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
  264. s_2 = s_1;
  265. s_1 = av_clip_int16(s);
  266. *out = s_1;
  267. out += inc;
  268. }
  269. if (inc==2) { /* stereo */
  270. right->sample1 = s_1;
  271. right->sample2 = s_2;
  272. out -= 1;
  273. } else {
  274. left->sample1 = s_1;
  275. left->sample2 = s_2;
  276. }
  277. }
  278. }
  279. /**
  280. * Get the number of samples that will be decoded from the packet.
  281. * In one case, this is actually the maximum number of samples possible to
  282. * decode with the given buf_size.
  283. *
  284. * @param[out] coded_samples set to the number of samples as coded in the
  285. * packet, or 0 if the codec does not encode the
  286. * number of samples in each frame.
  287. */
  288. static int get_nb_samples(AVCodecContext *avctx, const uint8_t *buf,
  289. int buf_size, int *coded_samples)
  290. {
  291. ADPCMDecodeContext *s = avctx->priv_data;
  292. int nb_samples = 0;
  293. int ch = avctx->channels;
  294. int has_coded_samples = 0;
  295. int header_size;
  296. *coded_samples = 0;
  297. if(ch <= 0)
  298. return 0;
  299. switch (avctx->codec->id) {
  300. /* constant, only check buf_size */
  301. case CODEC_ID_ADPCM_EA_XAS:
  302. if (buf_size < 76 * ch)
  303. return 0;
  304. nb_samples = 128;
  305. break;
  306. case CODEC_ID_ADPCM_IMA_QT:
  307. if (buf_size < 34 * ch)
  308. return 0;
  309. nb_samples = 64;
  310. break;
  311. /* simple 4-bit adpcm */
  312. case CODEC_ID_ADPCM_CT:
  313. case CODEC_ID_ADPCM_IMA_EA_SEAD:
  314. case CODEC_ID_ADPCM_IMA_WS:
  315. case CODEC_ID_ADPCM_YAMAHA:
  316. nb_samples = buf_size * 2 / ch;
  317. break;
  318. }
  319. if (nb_samples)
  320. return nb_samples;
  321. /* simple 4-bit adpcm, with header */
  322. header_size = 0;
  323. switch (avctx->codec->id) {
  324. case CODEC_ID_ADPCM_4XM:
  325. case CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
  326. case CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
  327. case CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4; break;
  328. }
  329. if (header_size > 0)
  330. return (buf_size - header_size) * 2 / ch;
  331. /* more complex formats */
  332. switch (avctx->codec->id) {
  333. case CODEC_ID_ADPCM_EA:
  334. has_coded_samples = 1;
  335. if (buf_size < 4)
  336. return 0;
  337. *coded_samples = AV_RL32(buf);
  338. *coded_samples -= *coded_samples % 28;
  339. nb_samples = (buf_size - 12) / 30 * 28;
  340. break;
  341. case CODEC_ID_ADPCM_IMA_EA_EACS:
  342. has_coded_samples = 1;
  343. if (buf_size < 4)
  344. return 0;
  345. *coded_samples = AV_RL32(buf);
  346. nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
  347. break;
  348. case CODEC_ID_ADPCM_EA_MAXIS_XA:
  349. nb_samples = ((buf_size - ch) / (2 * ch)) * 2 * ch;
  350. break;
  351. case CODEC_ID_ADPCM_EA_R1:
  352. case CODEC_ID_ADPCM_EA_R2:
  353. case CODEC_ID_ADPCM_EA_R3:
  354. /* maximum number of samples */
  355. /* has internal offsets and a per-frame switch to signal raw 16-bit */
  356. has_coded_samples = 1;
  357. if (buf_size < 4)
  358. return 0;
  359. switch (avctx->codec->id) {
  360. case CODEC_ID_ADPCM_EA_R1:
  361. header_size = 4 + 9 * ch;
  362. *coded_samples = AV_RL32(buf);
  363. break;
  364. case CODEC_ID_ADPCM_EA_R2:
  365. header_size = 4 + 5 * ch;
  366. *coded_samples = AV_RL32(buf);
  367. break;
  368. case CODEC_ID_ADPCM_EA_R3:
  369. header_size = 4 + 5 * ch;
  370. *coded_samples = AV_RB32(buf);
  371. break;
  372. }
  373. *coded_samples -= *coded_samples % 28;
  374. nb_samples = (buf_size - header_size) * 2 / ch;
  375. nb_samples -= nb_samples % 28;
  376. break;
  377. case CODEC_ID_ADPCM_IMA_DK3:
  378. if (avctx->block_align > 0)
  379. buf_size = FFMIN(buf_size, avctx->block_align);
  380. nb_samples = ((buf_size - 16) * 8 / 3) / ch;
  381. break;
  382. case CODEC_ID_ADPCM_IMA_DK4:
  383. nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
  384. break;
  385. case CODEC_ID_ADPCM_IMA_WAV:
  386. if (avctx->block_align > 0)
  387. buf_size = FFMIN(buf_size, avctx->block_align);
  388. nb_samples = 1 + (buf_size - 4 * ch) / (4 * ch) * 8;
  389. break;
  390. case CODEC_ID_ADPCM_MS:
  391. if (avctx->block_align > 0)
  392. buf_size = FFMIN(buf_size, avctx->block_align);
  393. nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
  394. break;
  395. case CODEC_ID_ADPCM_SBPRO_2:
  396. case CODEC_ID_ADPCM_SBPRO_3:
  397. case CODEC_ID_ADPCM_SBPRO_4:
  398. {
  399. int samples_per_byte;
  400. switch (avctx->codec->id) {
  401. case CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
  402. case CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
  403. case CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
  404. }
  405. if (!s->status[0].step_index) {
  406. nb_samples++;
  407. buf_size -= ch;
  408. }
  409. nb_samples += buf_size * samples_per_byte / ch;
  410. break;
  411. }
  412. case CODEC_ID_ADPCM_SWF:
  413. {
  414. int buf_bits = buf_size * 8 - 2;
  415. int nbits = (buf[0] >> 6) + 2;
  416. int block_hdr_size = 22 * ch;
  417. int block_size = block_hdr_size + nbits * ch * 4095;
  418. int nblocks = buf_bits / block_size;
  419. int bits_left = buf_bits - nblocks * block_size;
  420. nb_samples = nblocks * 4096;
  421. if (bits_left >= block_hdr_size)
  422. nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
  423. break;
  424. }
  425. case CODEC_ID_ADPCM_THP:
  426. has_coded_samples = 1;
  427. if (buf_size < 8)
  428. return 0;
  429. *coded_samples = AV_RB32(&buf[4]);
  430. *coded_samples -= *coded_samples % 14;
  431. nb_samples = (buf_size - 80) / (8 * ch) * 14;
  432. break;
  433. case CODEC_ID_ADPCM_XA:
  434. nb_samples = (buf_size / 128) * 224 / ch;
  435. break;
  436. }
  437. /* validate coded sample count */
  438. if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
  439. return AVERROR_INVALIDDATA;
  440. return nb_samples;
  441. }
  442. /* DK3 ADPCM support macro */
  443. #define DK3_GET_NEXT_NIBBLE() \
  444. if (decode_top_nibble_next) \
  445. { \
  446. nibble = last_byte >> 4; \
  447. decode_top_nibble_next = 0; \
  448. } \
  449. else \
  450. { \
  451. if (end_of_packet) \
  452. break; \
  453. last_byte = *src++; \
  454. if (src >= buf + buf_size) \
  455. end_of_packet = 1; \
  456. nibble = last_byte & 0x0F; \
  457. decode_top_nibble_next = 1; \
  458. }
  459. static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
  460. int *got_frame_ptr, AVPacket *avpkt)
  461. {
  462. const uint8_t *buf = avpkt->data;
  463. int buf_size = avpkt->size;
  464. ADPCMDecodeContext *c = avctx->priv_data;
  465. ADPCMChannelStatus *cs;
  466. int n, m, channel, i;
  467. short *samples;
  468. const uint8_t *src;
  469. int st; /* stereo */
  470. int count1, count2;
  471. int nb_samples, coded_samples, ret;
  472. nb_samples = get_nb_samples(avctx, buf, buf_size, &coded_samples);
  473. if (nb_samples <= 0) {
  474. av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
  475. return AVERROR_INVALIDDATA;
  476. }
  477. /* get output buffer */
  478. c->frame.nb_samples = nb_samples;
  479. if ((ret = avctx->get_buffer(avctx, &c->frame)) < 0) {
  480. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  481. return ret;
  482. }
  483. samples = (short *)c->frame.data[0];
  484. /* use coded_samples when applicable */
  485. /* it is always <= nb_samples, so the output buffer will be large enough */
  486. if (coded_samples) {
  487. if (coded_samples != nb_samples)
  488. av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
  489. c->frame.nb_samples = nb_samples = coded_samples;
  490. }
  491. src = buf;
  492. st = avctx->channels == 2 ? 1 : 0;
  493. switch(avctx->codec->id) {
  494. case CODEC_ID_ADPCM_IMA_QT:
  495. /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
  496. Channel data is interleaved per-chunk. */
  497. for (channel = 0; channel < avctx->channels; channel++) {
  498. int16_t predictor;
  499. int step_index;
  500. cs = &(c->status[channel]);
  501. /* (pppppp) (piiiiiii) */
  502. /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
  503. predictor = AV_RB16(src);
  504. step_index = predictor & 0x7F;
  505. predictor &= 0xFF80;
  506. src += 2;
  507. if (cs->step_index == step_index) {
  508. int diff = (int)predictor - cs->predictor;
  509. if (diff < 0)
  510. diff = - diff;
  511. if (diff > 0x7f)
  512. goto update;
  513. } else {
  514. update:
  515. cs->step_index = step_index;
  516. cs->predictor = predictor;
  517. }
  518. if (cs->step_index > 88){
  519. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
  520. cs->step_index = 88;
  521. }
  522. samples = (short *)c->frame.data[0] + channel;
  523. for (m = 0; m < 32; m++) {
  524. *samples = adpcm_ima_qt_expand_nibble(cs, src[0] & 0x0F, 3);
  525. samples += avctx->channels;
  526. *samples = adpcm_ima_qt_expand_nibble(cs, src[0] >> 4 , 3);
  527. samples += avctx->channels;
  528. src ++;
  529. }
  530. }
  531. break;
  532. case CODEC_ID_ADPCM_IMA_WAV:
  533. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  534. buf_size = avctx->block_align;
  535. for(i=0; i<avctx->channels; i++){
  536. cs = &(c->status[i]);
  537. cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
  538. cs->step_index = *src++;
  539. if (cs->step_index > 88){
  540. av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
  541. cs->step_index = 88;
  542. }
  543. if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
  544. }
  545. for (n = (nb_samples - 1) / 8; n > 0; n--) {
  546. for (i = 0; i < avctx->channels; i++) {
  547. cs = &c->status[i];
  548. for (m = 0; m < 4; m++) {
  549. uint8_t v = *src++;
  550. *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
  551. samples += avctx->channels;
  552. *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
  553. samples += avctx->channels;
  554. }
  555. samples -= 8 * avctx->channels - 1;
  556. }
  557. samples += 7 * avctx->channels;
  558. }
  559. break;
  560. case CODEC_ID_ADPCM_4XM:
  561. for (i = 0; i < avctx->channels; i++)
  562. c->status[i].predictor= (int16_t)bytestream_get_le16(&src);
  563. for (i = 0; i < avctx->channels; i++) {
  564. c->status[i].step_index= (int16_t)bytestream_get_le16(&src);
  565. c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
  566. }
  567. for (i = 0; i < avctx->channels; i++) {
  568. samples = (short *)c->frame.data[0] + i;
  569. cs = &c->status[i];
  570. for (n = nb_samples >> 1; n > 0; n--, src++) {
  571. uint8_t v = *src;
  572. *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
  573. samples += avctx->channels;
  574. *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
  575. samples += avctx->channels;
  576. }
  577. }
  578. break;
  579. case CODEC_ID_ADPCM_MS:
  580. {
  581. int block_predictor;
  582. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  583. buf_size = avctx->block_align;
  584. block_predictor = av_clip(*src++, 0, 6);
  585. c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
  586. c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
  587. if (st) {
  588. block_predictor = av_clip(*src++, 0, 6);
  589. c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
  590. c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
  591. }
  592. c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
  593. if (st){
  594. c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
  595. }
  596. c->status[0].sample1 = bytestream_get_le16(&src);
  597. if (st) c->status[1].sample1 = bytestream_get_le16(&src);
  598. c->status[0].sample2 = bytestream_get_le16(&src);
  599. if (st) c->status[1].sample2 = bytestream_get_le16(&src);
  600. *samples++ = c->status[0].sample2;
  601. if (st) *samples++ = c->status[1].sample2;
  602. *samples++ = c->status[0].sample1;
  603. if (st) *samples++ = c->status[1].sample1;
  604. for(n = (nb_samples - 2) >> (1 - st); n > 0; n--, src++) {
  605. *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 );
  606. *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
  607. }
  608. break;
  609. }
  610. case CODEC_ID_ADPCM_IMA_DK4:
  611. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  612. buf_size = avctx->block_align;
  613. for (channel = 0; channel < avctx->channels; channel++) {
  614. cs = &c->status[channel];
  615. cs->predictor = (int16_t)bytestream_get_le16(&src);
  616. cs->step_index = *src++;
  617. src++;
  618. *samples++ = cs->predictor;
  619. }
  620. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  621. uint8_t v = *src;
  622. *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
  623. *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
  624. }
  625. break;
  626. case CODEC_ID_ADPCM_IMA_DK3:
  627. {
  628. unsigned char last_byte = 0;
  629. unsigned char nibble;
  630. int decode_top_nibble_next = 0;
  631. int end_of_packet = 0;
  632. int diff_channel;
  633. if (avctx->block_align != 0 && buf_size > avctx->block_align)
  634. buf_size = avctx->block_align;
  635. c->status[0].predictor = (int16_t)AV_RL16(src + 10);
  636. c->status[1].predictor = (int16_t)AV_RL16(src + 12);
  637. c->status[0].step_index = src[14];
  638. c->status[1].step_index = src[15];
  639. /* sign extend the predictors */
  640. src += 16;
  641. diff_channel = c->status[1].predictor;
  642. /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
  643. * the buffer is consumed */
  644. while (1) {
  645. /* for this algorithm, c->status[0] is the sum channel and
  646. * c->status[1] is the diff channel */
  647. /* process the first predictor of the sum channel */
  648. DK3_GET_NEXT_NIBBLE();
  649. adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
  650. /* process the diff channel predictor */
  651. DK3_GET_NEXT_NIBBLE();
  652. adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
  653. /* process the first pair of stereo PCM samples */
  654. diff_channel = (diff_channel + c->status[1].predictor) / 2;
  655. *samples++ = c->status[0].predictor + c->status[1].predictor;
  656. *samples++ = c->status[0].predictor - c->status[1].predictor;
  657. /* process the second predictor of the sum channel */
  658. DK3_GET_NEXT_NIBBLE();
  659. adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
  660. /* process the second pair of stereo PCM samples */
  661. diff_channel = (diff_channel + c->status[1].predictor) / 2;
  662. *samples++ = c->status[0].predictor + c->status[1].predictor;
  663. *samples++ = c->status[0].predictor - c->status[1].predictor;
  664. }
  665. break;
  666. }
  667. case CODEC_ID_ADPCM_IMA_ISS:
  668. for (channel = 0; channel < avctx->channels; channel++) {
  669. cs = &c->status[channel];
  670. cs->predictor = (int16_t)bytestream_get_le16(&src);
  671. cs->step_index = *src++;
  672. src++;
  673. }
  674. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  675. uint8_t v1, v2;
  676. uint8_t v = *src;
  677. /* nibbles are swapped for mono */
  678. if (st) {
  679. v1 = v >> 4;
  680. v2 = v & 0x0F;
  681. } else {
  682. v2 = v >> 4;
  683. v1 = v & 0x0F;
  684. }
  685. *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
  686. *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
  687. }
  688. break;
  689. case CODEC_ID_ADPCM_IMA_WS:
  690. while (src < buf + buf_size) {
  691. uint8_t v = *src++;
  692. *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
  693. *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
  694. }
  695. break;
  696. case CODEC_ID_ADPCM_XA:
  697. while (buf_size >= 128) {
  698. xa_decode(samples, src, &c->status[0], &c->status[1],
  699. avctx->channels);
  700. src += 128;
  701. samples += 28 * 8;
  702. buf_size -= 128;
  703. }
  704. break;
  705. case CODEC_ID_ADPCM_IMA_EA_EACS:
  706. src += 4; // skip sample count (already read)
  707. for (i=0; i<=st; i++)
  708. c->status[i].step_index = bytestream_get_le32(&src);
  709. for (i=0; i<=st; i++)
  710. c->status[i].predictor = bytestream_get_le32(&src);
  711. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  712. *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3);
  713. *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
  714. }
  715. break;
  716. case CODEC_ID_ADPCM_IMA_EA_SEAD:
  717. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  718. *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
  719. *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
  720. }
  721. break;
  722. case CODEC_ID_ADPCM_EA:
  723. {
  724. int32_t previous_left_sample, previous_right_sample;
  725. int32_t current_left_sample, current_right_sample;
  726. int32_t next_left_sample, next_right_sample;
  727. int32_t coeff1l, coeff2l, coeff1r, coeff2r;
  728. uint8_t shift_left, shift_right;
  729. /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
  730. each coding 28 stereo samples. */
  731. if(avctx->channels != 2)
  732. return AVERROR_INVALIDDATA;
  733. src += 4; // skip sample count (already read)
  734. current_left_sample = (int16_t)bytestream_get_le16(&src);
  735. previous_left_sample = (int16_t)bytestream_get_le16(&src);
  736. current_right_sample = (int16_t)bytestream_get_le16(&src);
  737. previous_right_sample = (int16_t)bytestream_get_le16(&src);
  738. for (count1 = 0; count1 < nb_samples / 28; count1++) {
  739. coeff1l = ea_adpcm_table[ *src >> 4 ];
  740. coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
  741. coeff1r = ea_adpcm_table[*src & 0x0F];
  742. coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
  743. src++;
  744. shift_left = 20 - (*src >> 4);
  745. shift_right = 20 - (*src & 0x0F);
  746. src++;
  747. for (count2 = 0; count2 < 28; count2++) {
  748. next_left_sample = sign_extend(*src >> 4, 4) << shift_left;
  749. next_right_sample = sign_extend(*src, 4) << shift_right;
  750. src++;
  751. next_left_sample = (next_left_sample +
  752. (current_left_sample * coeff1l) +
  753. (previous_left_sample * coeff2l) + 0x80) >> 8;
  754. next_right_sample = (next_right_sample +
  755. (current_right_sample * coeff1r) +
  756. (previous_right_sample * coeff2r) + 0x80) >> 8;
  757. previous_left_sample = current_left_sample;
  758. current_left_sample = av_clip_int16(next_left_sample);
  759. previous_right_sample = current_right_sample;
  760. current_right_sample = av_clip_int16(next_right_sample);
  761. *samples++ = (unsigned short)current_left_sample;
  762. *samples++ = (unsigned short)current_right_sample;
  763. }
  764. }
  765. if (src - buf == buf_size - 2)
  766. src += 2; // Skip terminating 0x0000
  767. break;
  768. }
  769. case CODEC_ID_ADPCM_EA_MAXIS_XA:
  770. {
  771. int coeff[2][2], shift[2];
  772. for(channel = 0; channel < avctx->channels; channel++) {
  773. for (i=0; i<2; i++)
  774. coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
  775. shift[channel] = 20 - (*src & 0x0F);
  776. src++;
  777. }
  778. for (count1 = 0; count1 < nb_samples / 2; count1++) {
  779. for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
  780. for(channel = 0; channel < avctx->channels; channel++) {
  781. int32_t sample = sign_extend(src[channel] >> i, 4) << shift[channel];
  782. sample = (sample +
  783. c->status[channel].sample1 * coeff[channel][0] +
  784. c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
  785. c->status[channel].sample2 = c->status[channel].sample1;
  786. c->status[channel].sample1 = av_clip_int16(sample);
  787. *samples++ = c->status[channel].sample1;
  788. }
  789. }
  790. src+=avctx->channels;
  791. }
  792. /* consume whole packet */
  793. src = buf + buf_size;
  794. break;
  795. }
  796. case CODEC_ID_ADPCM_EA_R1:
  797. case CODEC_ID_ADPCM_EA_R2:
  798. case CODEC_ID_ADPCM_EA_R3: {
  799. /* channel numbering
  800. 2chan: 0=fl, 1=fr
  801. 4chan: 0=fl, 1=rl, 2=fr, 3=rr
  802. 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
  803. const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
  804. int32_t previous_sample, current_sample, next_sample;
  805. int32_t coeff1, coeff2;
  806. uint8_t shift;
  807. unsigned int channel;
  808. uint16_t *samplesC;
  809. const uint8_t *srcC;
  810. const uint8_t *src_end = buf + buf_size;
  811. int count = 0;
  812. src += 4; // skip sample count (already read)
  813. for (channel=0; channel<avctx->channels; channel++) {
  814. int32_t offset = (big_endian ? bytestream_get_be32(&src)
  815. : bytestream_get_le32(&src))
  816. + (avctx->channels-channel-1) * 4;
  817. if ((offset < 0) || (offset >= src_end - src - 4)) break;
  818. srcC = src + offset;
  819. samplesC = samples + channel;
  820. if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
  821. current_sample = (int16_t)bytestream_get_le16(&srcC);
  822. previous_sample = (int16_t)bytestream_get_le16(&srcC);
  823. } else {
  824. current_sample = c->status[channel].predictor;
  825. previous_sample = c->status[channel].prev_sample;
  826. }
  827. for (count1 = 0; count1 < nb_samples / 28; count1++) {
  828. if (*srcC == 0xEE) { /* only seen in R2 and R3 */
  829. srcC++;
  830. if (srcC > src_end - 30*2) break;
  831. current_sample = (int16_t)bytestream_get_be16(&srcC);
  832. previous_sample = (int16_t)bytestream_get_be16(&srcC);
  833. for (count2=0; count2<28; count2++) {
  834. *samplesC = (int16_t)bytestream_get_be16(&srcC);
  835. samplesC += avctx->channels;
  836. }
  837. } else {
  838. coeff1 = ea_adpcm_table[ *srcC>>4 ];
  839. coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
  840. shift = 20 - (*srcC++ & 0x0F);
  841. if (srcC > src_end - 14) break;
  842. for (count2=0; count2<28; count2++) {
  843. if (count2 & 1)
  844. next_sample = sign_extend(*srcC++, 4) << shift;
  845. else
  846. next_sample = sign_extend(*srcC >> 4, 4) << shift;
  847. next_sample += (current_sample * coeff1) +
  848. (previous_sample * coeff2);
  849. next_sample = av_clip_int16(next_sample >> 8);
  850. previous_sample = current_sample;
  851. current_sample = next_sample;
  852. *samplesC = current_sample;
  853. samplesC += avctx->channels;
  854. }
  855. }
  856. }
  857. if (!count) {
  858. count = count1;
  859. } else if (count != count1) {
  860. av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
  861. count = FFMAX(count, count1);
  862. }
  863. if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
  864. c->status[channel].predictor = current_sample;
  865. c->status[channel].prev_sample = previous_sample;
  866. }
  867. }
  868. c->frame.nb_samples = count * 28;
  869. src = src_end;
  870. break;
  871. }
  872. case CODEC_ID_ADPCM_EA_XAS:
  873. for (channel=0; channel<avctx->channels; channel++) {
  874. int coeff[2][4], shift[4];
  875. short *s2, *s = &samples[channel];
  876. for (n=0; n<4; n++, s+=32*avctx->channels) {
  877. for (i=0; i<2; i++)
  878. coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
  879. shift[n] = 20 - (src[2] & 0x0F);
  880. for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
  881. s2[0] = (src[0]&0xF0) + (src[1]<<8);
  882. }
  883. for (m=2; m<32; m+=2) {
  884. s = &samples[m*avctx->channels + channel];
  885. for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
  886. for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
  887. int level = sign_extend(*src >> (4 - i), 4) << shift[n];
  888. int pred = s2[-1*avctx->channels] * coeff[0][n]
  889. + s2[-2*avctx->channels] * coeff[1][n];
  890. s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
  891. }
  892. }
  893. }
  894. }
  895. break;
  896. case CODEC_ID_ADPCM_IMA_AMV:
  897. case CODEC_ID_ADPCM_IMA_SMJPEG:
  898. if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) {
  899. c->status[0].predictor = sign_extend(bytestream_get_le16(&src), 16);
  900. c->status[0].step_index = bytestream_get_le16(&src);
  901. src += 4;
  902. } else {
  903. c->status[0].predictor = sign_extend(bytestream_get_be16(&src), 16);
  904. c->status[0].step_index = bytestream_get_byte(&src);
  905. src += 1;
  906. }
  907. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  908. char hi, lo;
  909. lo = *src & 0x0F;
  910. hi = *src >> 4;
  911. if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
  912. FFSWAP(char, hi, lo);
  913. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  914. lo, 3);
  915. *samples++ = adpcm_ima_expand_nibble(&c->status[0],
  916. hi, 3);
  917. }
  918. break;
  919. case CODEC_ID_ADPCM_CT:
  920. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  921. uint8_t v = *src;
  922. *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
  923. *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
  924. }
  925. break;
  926. case CODEC_ID_ADPCM_SBPRO_4:
  927. case CODEC_ID_ADPCM_SBPRO_3:
  928. case CODEC_ID_ADPCM_SBPRO_2:
  929. if (!c->status[0].step_index) {
  930. /* the first byte is a raw sample */
  931. *samples++ = 128 * (*src++ - 0x80);
  932. if (st)
  933. *samples++ = 128 * (*src++ - 0x80);
  934. c->status[0].step_index = 1;
  935. nb_samples--;
  936. }
  937. if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
  938. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  939. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  940. src[0] >> 4, 4, 0);
  941. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  942. src[0] & 0x0F, 4, 0);
  943. }
  944. } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
  945. for (n = nb_samples / 3; n > 0; n--, src++) {
  946. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  947. src[0] >> 5 , 3, 0);
  948. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  949. (src[0] >> 2) & 0x07, 3, 0);
  950. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  951. src[0] & 0x03, 2, 0);
  952. }
  953. } else {
  954. for (n = nb_samples >> (2 - st); n > 0; n--, src++) {
  955. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  956. src[0] >> 6 , 2, 2);
  957. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  958. (src[0] >> 4) & 0x03, 2, 2);
  959. *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
  960. (src[0] >> 2) & 0x03, 2, 2);
  961. *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
  962. src[0] & 0x03, 2, 2);
  963. }
  964. }
  965. break;
  966. case CODEC_ID_ADPCM_SWF:
  967. {
  968. GetBitContext gb;
  969. const int *table;
  970. int k0, signmask, nb_bits, count;
  971. int size = buf_size*8;
  972. init_get_bits(&gb, buf, size);
  973. //read bits & initial values
  974. nb_bits = get_bits(&gb, 2)+2;
  975. //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
  976. table = swf_index_tables[nb_bits-2];
  977. k0 = 1 << (nb_bits-2);
  978. signmask = 1 << (nb_bits-1);
  979. while (get_bits_count(&gb) <= size - 22*avctx->channels) {
  980. for (i = 0; i < avctx->channels; i++) {
  981. *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
  982. c->status[i].step_index = get_bits(&gb, 6);
  983. }
  984. for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
  985. int i;
  986. for (i = 0; i < avctx->channels; i++) {
  987. // similar to IMA adpcm
  988. int delta = get_bits(&gb, nb_bits);
  989. int step = ff_adpcm_step_table[c->status[i].step_index];
  990. long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
  991. int k = k0;
  992. do {
  993. if (delta & k)
  994. vpdiff += step;
  995. step >>= 1;
  996. k >>= 1;
  997. } while(k);
  998. vpdiff += step;
  999. if (delta & signmask)
  1000. c->status[i].predictor -= vpdiff;
  1001. else
  1002. c->status[i].predictor += vpdiff;
  1003. c->status[i].step_index += table[delta & (~signmask)];
  1004. c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
  1005. c->status[i].predictor = av_clip_int16(c->status[i].predictor);
  1006. *samples++ = c->status[i].predictor;
  1007. }
  1008. }
  1009. }
  1010. src += buf_size;
  1011. break;
  1012. }
  1013. case CODEC_ID_ADPCM_YAMAHA:
  1014. for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
  1015. uint8_t v = *src;
  1016. *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
  1017. *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
  1018. }
  1019. break;
  1020. case CODEC_ID_ADPCM_THP:
  1021. {
  1022. int table[2][16];
  1023. int prev[2][2];
  1024. int ch;
  1025. src += 4; // skip channel size
  1026. src += 4; // skip number of samples (already read)
  1027. for (i = 0; i < 32; i++)
  1028. table[0][i] = (int16_t)bytestream_get_be16(&src);
  1029. /* Initialize the previous sample. */
  1030. for (i = 0; i < 4; i++)
  1031. prev[0][i] = (int16_t)bytestream_get_be16(&src);
  1032. for (ch = 0; ch <= st; ch++) {
  1033. samples = (short *)c->frame.data[0] + ch;
  1034. /* Read in every sample for this channel. */
  1035. for (i = 0; i < nb_samples / 14; i++) {
  1036. int index = (*src >> 4) & 7;
  1037. unsigned int exp = *src++ & 15;
  1038. int factor1 = table[ch][index * 2];
  1039. int factor2 = table[ch][index * 2 + 1];
  1040. /* Decode 14 samples. */
  1041. for (n = 0; n < 14; n++) {
  1042. int32_t sampledat;
  1043. if(n&1) sampledat = sign_extend(*src++, 4);
  1044. else sampledat = sign_extend(*src >> 4, 4);
  1045. sampledat = ((prev[ch][0]*factor1
  1046. + prev[ch][1]*factor2) >> 11) + (sampledat << exp);
  1047. *samples = av_clip_int16(sampledat);
  1048. prev[ch][1] = prev[ch][0];
  1049. prev[ch][0] = *samples++;
  1050. /* In case of stereo, skip one sample, this sample
  1051. is for the other channel. */
  1052. samples += st;
  1053. }
  1054. }
  1055. }
  1056. break;
  1057. }
  1058. default:
  1059. return -1;
  1060. }
  1061. *got_frame_ptr = 1;
  1062. *(AVFrame *)data = c->frame;
  1063. return src - buf;
  1064. }
  1065. #define ADPCM_DECODER(id_, name_, long_name_) \
  1066. AVCodec ff_ ## name_ ## _decoder = { \
  1067. .name = #name_, \
  1068. .type = AVMEDIA_TYPE_AUDIO, \
  1069. .id = id_, \
  1070. .priv_data_size = sizeof(ADPCMDecodeContext), \
  1071. .init = adpcm_decode_init, \
  1072. .decode = adpcm_decode_frame, \
  1073. .capabilities = CODEC_CAP_DR1, \
  1074. .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
  1075. }
  1076. /* Note: Do not forget to add new entries to the Makefile as well. */
  1077. ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
  1078. ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
  1079. ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
  1080. ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
  1081. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
  1082. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
  1083. ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
  1084. ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
  1085. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
  1086. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
  1087. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
  1088. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
  1089. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
  1090. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
  1091. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
  1092. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
  1093. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
  1094. ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
  1095. ADPCM_DECODER(CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
  1096. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
  1097. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
  1098. ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
  1099. ADPCM_DECODER(CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
  1100. ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
  1101. ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
  1102. ADPCM_DECODER(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");