You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

429 lines
12KB

  1. /*
  2. * G.726 ADPCM audio codec
  3. * Copyright (c) 2004 Roman Shaposhnik.
  4. *
  5. * This is a very straightforward rendition of the G.726
  6. * Section 4 "Computational Details".
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include <limits.h>
  25. #include "avcodec.h"
  26. #include "bitstream.h"
  27. /**
  28. * G.726 11bit float.
  29. * G.726 Standard uses rather odd 11bit floating point arithmentic for
  30. * numerous occasions. It's a mistery to me why they did it this way
  31. * instead of simply using 32bit integer arithmetic.
  32. */
  33. typedef struct Float11 {
  34. int sign; /**< 1bit sign */
  35. int exp; /**< 4bit exponent */
  36. int mant; /**< 6bit mantissa */
  37. } Float11;
  38. static inline Float11* i2f(int16_t i, Float11* f)
  39. {
  40. f->sign = (i < 0);
  41. if (f->sign)
  42. i = -i;
  43. f->exp = av_log2_16bit(i) + !!i;
  44. f->mant = i? (i<<6) >> f->exp : 1<<5;
  45. return f;
  46. }
  47. static inline int16_t mult(Float11* f1, Float11* f2)
  48. {
  49. int res, exp;
  50. exp = f1->exp + f2->exp;
  51. res = (((f1->mant * f2->mant) + 0x30) >> 4) << 7;
  52. res = exp > 26 ? res << (exp - 26) : res >> (26 - exp);
  53. return (f1->sign ^ f2->sign) ? -res : res;
  54. }
  55. static inline int sgn(int value)
  56. {
  57. return (value < 0) ? -1 : 1;
  58. }
  59. typedef struct G726Tables {
  60. int bits; /**< bits per sample */
  61. const int* quant; /**< quantization table */
  62. const int* iquant; /**< inverse quantization table */
  63. const int* W; /**< special table #1 ;-) */
  64. const int* F; /**< special table #2 */
  65. } G726Tables;
  66. typedef struct G726Context {
  67. const G726Tables* tbls; /**< static tables needed for computation */
  68. Float11 sr[2]; /**< prev. reconstructed samples */
  69. Float11 dq[6]; /**< prev. difference */
  70. int a[2]; /**< second order predictor coeffs */
  71. int b[6]; /**< sixth order predictor coeffs */
  72. int pk[2]; /**< signs of prev. 2 sez + dq */
  73. int ap; /**< scale factor control */
  74. int yu; /**< fast scale factor */
  75. int yl; /**< slow scale factor */
  76. int dms; /**< short average magnitude of F[i] */
  77. int dml; /**< long average magnitude of F[i] */
  78. int td; /**< tone detect */
  79. int se; /**< estimated signal for the next iteration */
  80. int sez; /**< estimated second order prediction */
  81. int y; /**< quantizer scaling factor for the next iteration */
  82. } G726Context;
  83. static const int quant_tbl16[] = /**< 16kbit/s 2bits per sample */
  84. { 260, INT_MAX };
  85. static const int iquant_tbl16[] =
  86. { 116, 365, 365, 116 };
  87. static const int W_tbl16[] =
  88. { -22, 439, 439, -22 };
  89. static const int F_tbl16[] =
  90. { 0, 7, 7, 0 };
  91. static const int quant_tbl24[] = /**< 24kbit/s 3bits per sample */
  92. { 7, 217, 330, INT_MAX };
  93. static const int iquant_tbl24[] =
  94. { INT_MIN, 135, 273, 373, 373, 273, 135, INT_MIN };
  95. static const int W_tbl24[] =
  96. { -4, 30, 137, 582, 582, 137, 30, -4 };
  97. static const int F_tbl24[] =
  98. { 0, 1, 2, 7, 7, 2, 1, 0 };
  99. static const int quant_tbl32[] = /**< 32kbit/s 4bits per sample */
  100. { -125, 79, 177, 245, 299, 348, 399, INT_MAX };
  101. static const int iquant_tbl32[] =
  102. { INT_MIN, 4, 135, 213, 273, 323, 373, 425,
  103. 425, 373, 323, 273, 213, 135, 4, INT_MIN };
  104. static const int W_tbl32[] =
  105. { -12, 18, 41, 64, 112, 198, 355, 1122,
  106. 1122, 355, 198, 112, 64, 41, 18, -12};
  107. static const int F_tbl32[] =
  108. { 0, 0, 0, 1, 1, 1, 3, 7, 7, 3, 1, 1, 1, 0, 0, 0 };
  109. static const int quant_tbl40[] = /**< 40kbit/s 5bits per sample */
  110. { -122, -16, 67, 138, 197, 249, 297, 338,
  111. 377, 412, 444, 474, 501, 527, 552, INT_MAX };
  112. static const int iquant_tbl40[] =
  113. { INT_MIN, -66, 28, 104, 169, 224, 274, 318,
  114. 358, 395, 429, 459, 488, 514, 539, 566,
  115. 566, 539, 514, 488, 459, 429, 395, 358,
  116. 318, 274, 224, 169, 104, 28, -66, INT_MIN };
  117. static const int W_tbl40[] =
  118. { 14, 14, 24, 39, 40, 41, 58, 100,
  119. 141, 179, 219, 280, 358, 440, 529, 696,
  120. 696, 529, 440, 358, 280, 219, 179, 141,
  121. 100, 58, 41, 40, 39, 24, 14, 14 };
  122. static const int F_tbl40[] =
  123. { 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 6,
  124. 6, 6, 5, 4, 3, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
  125. static const G726Tables G726Tables_pool[] =
  126. {{ 2, quant_tbl16, iquant_tbl16, W_tbl16, F_tbl16 },
  127. { 3, quant_tbl24, iquant_tbl24, W_tbl24, F_tbl24 },
  128. { 4, quant_tbl32, iquant_tbl32, W_tbl32, F_tbl32 },
  129. { 5, quant_tbl40, iquant_tbl40, W_tbl40, F_tbl40 }};
  130. /**
  131. * Para 4.2.2 page 18: Adaptive quantizer.
  132. */
  133. static inline uint8_t quant(G726Context* c, int d)
  134. {
  135. int sign, exp, i, dln;
  136. sign = i = 0;
  137. if (d < 0) {
  138. sign = 1;
  139. d = -d;
  140. }
  141. exp = av_log2_16bit(d);
  142. dln = ((exp<<7) + (((d<<7)>>exp)&0x7f)) - (c->y>>2);
  143. while (c->tbls->quant[i] < INT_MAX && c->tbls->quant[i] < dln)
  144. ++i;
  145. if (sign)
  146. i = ~i;
  147. if (c->tbls->bits != 2 && i == 0) /* I'm not sure this is a good idea */
  148. i = 0xff;
  149. return i;
  150. }
  151. /**
  152. * Para 4.2.3 page 22: Inverse adaptive quantizer.
  153. */
  154. static inline int16_t inverse_quant(G726Context* c, int i)
  155. {
  156. int dql, dex, dqt;
  157. dql = c->tbls->iquant[i] + (c->y >> 2);
  158. dex = (dql>>7) & 0xf; /* 4bit exponent */
  159. dqt = (1<<7) + (dql & 0x7f); /* log2 -> linear */
  160. return (dql < 0) ? 0 : ((dqt<<7) >> (14-dex));
  161. }
  162. static inline int16_t g726_iterate(G726Context* c, int16_t I)
  163. {
  164. int dq, re_signal, pk0, fa1, i, tr, ylint, ylfrac, thr2, al, dq0;
  165. Float11 f;
  166. dq = inverse_quant(c, I);
  167. if (I >> (c->tbls->bits - 1)) /* get the sign */
  168. dq = -dq;
  169. re_signal = c->se + dq;
  170. /* Transition detect */
  171. ylint = (c->yl >> 15);
  172. ylfrac = (c->yl >> 10) & 0x1f;
  173. thr2 = (ylint > 9) ? 0x1f << 10 : (0x20 + ylfrac) << ylint;
  174. if (c->td == 1 && abs(dq) > ((thr2+(thr2>>1))>>1))
  175. tr = 1;
  176. else
  177. tr = 0;
  178. /* Update second order predictor coefficient A2 and A1 */
  179. pk0 = (c->sez + dq) ? sgn(c->sez + dq) : 0;
  180. dq0 = dq ? sgn(dq) : 0;
  181. if (tr) {
  182. c->a[0] = 0;
  183. c->a[1] = 0;
  184. for (i=0; i<6; i++)
  185. c->b[i] = 0;
  186. } else {
  187. /* This is a bit crazy, but it really is +255 not +256 */
  188. fa1 = av_clip((-c->a[0]*c->pk[0]*pk0)>>5, -256, 255);
  189. c->a[1] += 128*pk0*c->pk[1] + fa1 - (c->a[1]>>7);
  190. c->a[1] = av_clip(c->a[1], -12288, 12288);
  191. c->a[0] += 64*3*pk0*c->pk[0] - (c->a[0] >> 8);
  192. c->a[0] = av_clip(c->a[0], -(15360 - c->a[1]), 15360 - c->a[1]);
  193. for (i=0; i<6; i++)
  194. c->b[i] += 128*dq0*sgn(-c->dq[i].sign) - (c->b[i]>>8);
  195. }
  196. /* Update Dq and Sr and Pk */
  197. c->pk[1] = c->pk[0];
  198. c->pk[0] = pk0 ? pk0 : 1;
  199. c->sr[1] = c->sr[0];
  200. i2f(re_signal, &c->sr[0]);
  201. for (i=5; i>0; i--)
  202. c->dq[i] = c->dq[i-1];
  203. i2f(dq, &c->dq[0]);
  204. c->dq[0].sign = I >> (c->tbls->bits - 1); /* Isn't it crazy ?!?! */
  205. /* Update tone detect [I'm not sure 'tr == 0' is really needed] */
  206. c->td = (tr == 0 && c->a[1] < -11776);
  207. /* Update Ap */
  208. c->dms += ((c->tbls->F[I]<<9) - c->dms) >> 5;
  209. c->dml += ((c->tbls->F[I]<<11) - c->dml) >> 7;
  210. if (tr)
  211. c->ap = 256;
  212. else if (c->y > 1535 && !c->td && (abs((c->dms << 2) - c->dml) < (c->dml >> 3)))
  213. c->ap += (-c->ap) >> 4;
  214. else
  215. c->ap += (0x200 - c->ap) >> 4;
  216. /* Update Yu and Yl */
  217. c->yu = av_clip(c->y + (((c->tbls->W[I] << 5) - c->y) >> 5), 544, 5120);
  218. c->yl += c->yu + ((-c->yl)>>6);
  219. /* Next iteration for Y */
  220. al = (c->ap >= 256) ? 1<<6 : c->ap >> 2;
  221. c->y = (c->yl + (c->yu - (c->yl>>6))*al) >> 6;
  222. /* Next iteration for SE and SEZ */
  223. c->se = 0;
  224. for (i=0; i<6; i++)
  225. c->se += mult(i2f(c->b[i] >> 2, &f), &c->dq[i]);
  226. c->sez = c->se >> 1;
  227. for (i=0; i<2; i++)
  228. c->se += mult(i2f(c->a[i] >> 2, &f), &c->sr[i]);
  229. c->se >>= 1;
  230. return av_clip(re_signal << 2, -0xffff, 0xffff);
  231. }
  232. static av_cold int g726_reset(G726Context* c, int bit_rate)
  233. {
  234. int i;
  235. c->tbls = &G726Tables_pool[bit_rate/8000 - 2];
  236. for (i=0; i<2; i++) {
  237. i2f(0, &c->sr[i]);
  238. c->a[i] = 0;
  239. c->pk[i] = 1;
  240. }
  241. for (i=0; i<6; i++) {
  242. i2f(0, &c->dq[i]);
  243. c->b[i] = 0;
  244. }
  245. c->ap = 0;
  246. c->dms = 0;
  247. c->dml = 0;
  248. c->yu = 544;
  249. c->yl = 34816;
  250. c->td = 0;
  251. c->se = 0;
  252. c->sez = 0;
  253. c->y = 544;
  254. return 0;
  255. }
  256. static int16_t g726_decode(G726Context* c, int16_t i)
  257. {
  258. return g726_iterate(c, i);
  259. }
  260. #ifdef CONFIG_ENCODERS
  261. static int16_t g726_encode(G726Context* c, int16_t sig)
  262. {
  263. uint8_t i;
  264. i = quant(c, sig/4 - c->se) & ((1<<c->tbls->bits) - 1);
  265. g726_iterate(c, i);
  266. return i;
  267. }
  268. #endif
  269. /* Interfacing to the libavcodec */
  270. typedef struct AVG726Context {
  271. G726Context c;
  272. int bits_left;
  273. int bit_buffer;
  274. int code_size;
  275. } AVG726Context;
  276. static av_cold int g726_init(AVCodecContext * avctx)
  277. {
  278. AVG726Context* c = (AVG726Context*)avctx->priv_data;
  279. if (avctx->channels != 1 ||
  280. (avctx->bit_rate != 16000 && avctx->bit_rate != 24000 &&
  281. avctx->bit_rate != 32000 && avctx->bit_rate != 40000)) {
  282. av_log(avctx, AV_LOG_ERROR, "G726: unsupported audio format\n");
  283. return -1;
  284. }
  285. if (avctx->sample_rate != 8000 && avctx->strict_std_compliance>FF_COMPLIANCE_INOFFICIAL) {
  286. av_log(avctx, AV_LOG_ERROR, "G726: unsupported audio format\n");
  287. return -1;
  288. }
  289. g726_reset(&c->c, avctx->bit_rate);
  290. c->code_size = c->c.tbls->bits;
  291. c->bit_buffer = 0;
  292. c->bits_left = 0;
  293. avctx->coded_frame = avcodec_alloc_frame();
  294. if (!avctx->coded_frame)
  295. return AVERROR(ENOMEM);
  296. avctx->coded_frame->key_frame = 1;
  297. return 0;
  298. }
  299. static av_cold int g726_close(AVCodecContext *avctx)
  300. {
  301. av_freep(&avctx->coded_frame);
  302. return 0;
  303. }
  304. #ifdef CONFIG_ENCODERS
  305. static int g726_encode_frame(AVCodecContext *avctx,
  306. uint8_t *dst, int buf_size, void *data)
  307. {
  308. AVG726Context *c = avctx->priv_data;
  309. short *samples = data;
  310. PutBitContext pb;
  311. init_put_bits(&pb, dst, 1024*1024);
  312. for (; buf_size; buf_size--)
  313. put_bits(&pb, c->code_size, g726_encode(&c->c, *samples++));
  314. flush_put_bits(&pb);
  315. return put_bits_count(&pb)>>3;
  316. }
  317. #endif
  318. static int g726_decode_frame(AVCodecContext *avctx,
  319. void *data, int *data_size,
  320. const uint8_t *buf, int buf_size)
  321. {
  322. AVG726Context *c = avctx->priv_data;
  323. short *samples = data;
  324. uint8_t code;
  325. uint8_t mask;
  326. GetBitContext gb;
  327. if (!buf_size)
  328. goto out;
  329. mask = (1<<c->code_size) - 1;
  330. init_get_bits(&gb, buf, buf_size * 8);
  331. if (c->bits_left) {
  332. int s = c->code_size - c->bits_left;
  333. code = (c->bit_buffer << s) | get_bits(&gb, s);
  334. *samples++ = g726_decode(&c->c, code & mask);
  335. }
  336. while (get_bits_count(&gb) + c->code_size <= buf_size*8)
  337. *samples++ = g726_decode(&c->c, get_bits(&gb, c->code_size) & mask);
  338. c->bits_left = buf_size*8 - get_bits_count(&gb);
  339. c->bit_buffer = get_bits(&gb, c->bits_left);
  340. out:
  341. *data_size = (uint8_t*)samples - (uint8_t*)data;
  342. return buf_size;
  343. }
  344. #ifdef CONFIG_ENCODERS
  345. AVCodec adpcm_g726_encoder = {
  346. "g726",
  347. CODEC_TYPE_AUDIO,
  348. CODEC_ID_ADPCM_G726,
  349. sizeof(AVG726Context),
  350. g726_init,
  351. g726_encode_frame,
  352. g726_close,
  353. NULL,
  354. };
  355. #endif //CONFIG_ENCODERS
  356. AVCodec adpcm_g726_decoder = {
  357. "g726",
  358. CODEC_TYPE_AUDIO,
  359. CODEC_ID_ADPCM_G726,
  360. sizeof(AVG726Context),
  361. g726_init,
  362. NULL,
  363. g726_close,
  364. g726_decode_frame,
  365. };