You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

652 lines
25KB

  1. /*
  2. * Copyright (c) 2002 Dieter Shirley
  3. *
  4. * dct_unquantize_h263_altivec:
  5. * Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include <stdlib.h>
  24. #include <stdio.h>
  25. #include "../dsputil.h"
  26. #include "../mpegvideo.h"
  27. #include "gcc_fixes.h"
  28. #include "dsputil_altivec.h"
  29. // Swaps two variables (used for altivec registers)
  30. #define SWAP(a,b) \
  31. do { \
  32. __typeof__(a) swap_temp=a; \
  33. a=b; \
  34. b=swap_temp; \
  35. } while (0)
  36. // transposes a matrix consisting of four vectors with four elements each
  37. #define TRANSPOSE4(a,b,c,d) \
  38. do { \
  39. __typeof__(a) _trans_ach = vec_mergeh(a, c); \
  40. __typeof__(a) _trans_acl = vec_mergel(a, c); \
  41. __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
  42. __typeof__(a) _trans_bdl = vec_mergel(b, d); \
  43. \
  44. a = vec_mergeh(_trans_ach, _trans_bdh); \
  45. b = vec_mergel(_trans_ach, _trans_bdh); \
  46. c = vec_mergeh(_trans_acl, _trans_bdl); \
  47. d = vec_mergel(_trans_acl, _trans_bdl); \
  48. } while (0)
  49. #define TRANSPOSE8(a,b,c,d,e,f,g,h) \
  50. do { \
  51. __typeof__(a) _A1, _B1, _C1, _D1, _E1, _F1, _G1, _H1; \
  52. __typeof__(a) _A2, _B2, _C2, _D2, _E2, _F2, _G2, _H2; \
  53. \
  54. _A1 = vec_mergeh (a, e); \
  55. _B1 = vec_mergel (a, e); \
  56. _C1 = vec_mergeh (b, f); \
  57. _D1 = vec_mergel (b, f); \
  58. _E1 = vec_mergeh (c, g); \
  59. _F1 = vec_mergel (c, g); \
  60. _G1 = vec_mergeh (d, h); \
  61. _H1 = vec_mergel (d, h); \
  62. \
  63. _A2 = vec_mergeh (_A1, _E1); \
  64. _B2 = vec_mergel (_A1, _E1); \
  65. _C2 = vec_mergeh (_B1, _F1); \
  66. _D2 = vec_mergel (_B1, _F1); \
  67. _E2 = vec_mergeh (_C1, _G1); \
  68. _F2 = vec_mergel (_C1, _G1); \
  69. _G2 = vec_mergeh (_D1, _H1); \
  70. _H2 = vec_mergel (_D1, _H1); \
  71. \
  72. a = vec_mergeh (_A2, _E2); \
  73. b = vec_mergel (_A2, _E2); \
  74. c = vec_mergeh (_B2, _F2); \
  75. d = vec_mergel (_B2, _F2); \
  76. e = vec_mergeh (_C2, _G2); \
  77. f = vec_mergel (_C2, _G2); \
  78. g = vec_mergeh (_D2, _H2); \
  79. h = vec_mergel (_D2, _H2); \
  80. } while (0)
  81. // Loads a four-byte value (int or float) from the target address
  82. // into every element in the target vector. Only works if the
  83. // target address is four-byte aligned (which should be always).
  84. #define LOAD4(vec, address) \
  85. { \
  86. __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
  87. vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
  88. vec = vec_ld(0, _load_addr); \
  89. vec = vec_perm(vec, vec, _perm_vec); \
  90. vec = vec_splat(vec, 0); \
  91. }
  92. #ifdef CONFIG_DARWIN
  93. #define FOUROF(a) (a)
  94. #else
  95. // slower, for dumb non-apple GCC
  96. #define FOUROF(a) {a,a,a,a}
  97. #endif
  98. int dct_quantize_altivec(MpegEncContext* s,
  99. DCTELEM* data, int n,
  100. int qscale, int* overflow)
  101. {
  102. int lastNonZero;
  103. vector float row0, row1, row2, row3, row4, row5, row6, row7;
  104. vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
  105. const_vector float zero = (const_vector float)FOUROF(0.);
  106. // used after quantise step
  107. int oldBaseValue = 0;
  108. // Load the data into the row/alt vectors
  109. {
  110. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  111. data0 = vec_ld(0, data);
  112. data1 = vec_ld(16, data);
  113. data2 = vec_ld(32, data);
  114. data3 = vec_ld(48, data);
  115. data4 = vec_ld(64, data);
  116. data5 = vec_ld(80, data);
  117. data6 = vec_ld(96, data);
  118. data7 = vec_ld(112, data);
  119. // Transpose the data before we start
  120. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  121. // load the data into floating point vectors. We load
  122. // the high half of each row into the main row vectors
  123. // and the low half into the alt vectors.
  124. row0 = vec_ctf(vec_unpackh(data0), 0);
  125. alt0 = vec_ctf(vec_unpackl(data0), 0);
  126. row1 = vec_ctf(vec_unpackh(data1), 0);
  127. alt1 = vec_ctf(vec_unpackl(data1), 0);
  128. row2 = vec_ctf(vec_unpackh(data2), 0);
  129. alt2 = vec_ctf(vec_unpackl(data2), 0);
  130. row3 = vec_ctf(vec_unpackh(data3), 0);
  131. alt3 = vec_ctf(vec_unpackl(data3), 0);
  132. row4 = vec_ctf(vec_unpackh(data4), 0);
  133. alt4 = vec_ctf(vec_unpackl(data4), 0);
  134. row5 = vec_ctf(vec_unpackh(data5), 0);
  135. alt5 = vec_ctf(vec_unpackl(data5), 0);
  136. row6 = vec_ctf(vec_unpackh(data6), 0);
  137. alt6 = vec_ctf(vec_unpackl(data6), 0);
  138. row7 = vec_ctf(vec_unpackh(data7), 0);
  139. alt7 = vec_ctf(vec_unpackl(data7), 0);
  140. }
  141. // The following block could exist as a separate an altivec dct
  142. // function. However, if we put it inline, the DCT data can remain
  143. // in the vector local variables, as floats, which we'll use during the
  144. // quantize step...
  145. {
  146. const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
  147. const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
  148. const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
  149. const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
  150. const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
  151. const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
  152. const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
  153. const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
  154. const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
  155. const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
  156. const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
  157. const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);
  158. int whichPass, whichHalf;
  159. for(whichPass = 1; whichPass<=2; whichPass++)
  160. {
  161. for(whichHalf = 1; whichHalf<=2; whichHalf++)
  162. {
  163. vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  164. vector float tmp10, tmp11, tmp12, tmp13;
  165. vector float z1, z2, z3, z4, z5;
  166. tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
  167. tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
  168. tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
  169. tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
  170. tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
  171. tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
  172. tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
  173. tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
  174. tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
  175. tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
  176. tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
  177. tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
  178. // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
  179. row0 = vec_add(tmp10, tmp11);
  180. // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
  181. row4 = vec_sub(tmp10, tmp11);
  182. // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
  183. z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
  184. // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
  185. // CONST_BITS-PASS1_BITS);
  186. row2 = vec_madd(tmp13, vec_0_765366865, z1);
  187. // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
  188. // CONST_BITS-PASS1_BITS);
  189. row6 = vec_madd(tmp12, vec_1_847759065, z1);
  190. z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
  191. z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
  192. z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
  193. z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
  194. // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  195. z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
  196. // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  197. z3 = vec_madd(z3, vec_1_961570560, z5);
  198. // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  199. z4 = vec_madd(z4, vec_0_390180644, z5);
  200. // The following adds are rolled into the multiplies above
  201. // z3 = vec_add(z3, z5); // z3 += z5;
  202. // z4 = vec_add(z4, z5); // z4 += z5;
  203. // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  204. // Wow! It's actually more effecient to roll this multiply
  205. // into the adds below, even thought the multiply gets done twice!
  206. // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
  207. // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  208. // Same with this one...
  209. // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
  210. // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  211. // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
  212. row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));
  213. // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  214. // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
  215. row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));
  216. // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  217. // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
  218. row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));
  219. // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  220. // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
  221. row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));
  222. // Swap the row values with the alts. If this is the first half,
  223. // this sets up the low values to be acted on in the second half.
  224. // If this is the second half, it puts the high values back in
  225. // the row values where they are expected to be when we're done.
  226. SWAP(row0, alt0);
  227. SWAP(row1, alt1);
  228. SWAP(row2, alt2);
  229. SWAP(row3, alt3);
  230. SWAP(row4, alt4);
  231. SWAP(row5, alt5);
  232. SWAP(row6, alt6);
  233. SWAP(row7, alt7);
  234. }
  235. if (whichPass == 1)
  236. {
  237. // transpose the data for the second pass
  238. // First, block transpose the upper right with lower left.
  239. SWAP(row4, alt0);
  240. SWAP(row5, alt1);
  241. SWAP(row6, alt2);
  242. SWAP(row7, alt3);
  243. // Now, transpose each block of four
  244. TRANSPOSE4(row0, row1, row2, row3);
  245. TRANSPOSE4(row4, row5, row6, row7);
  246. TRANSPOSE4(alt0, alt1, alt2, alt3);
  247. TRANSPOSE4(alt4, alt5, alt6, alt7);
  248. }
  249. }
  250. }
  251. // perform the quantise step, using the floating point data
  252. // still in the row/alt registers
  253. {
  254. const int* biasAddr;
  255. const vector signed int* qmat;
  256. vector float bias, negBias;
  257. if (s->mb_intra)
  258. {
  259. vector signed int baseVector;
  260. // We must cache element 0 in the intra case
  261. // (it needs special handling).
  262. baseVector = vec_cts(vec_splat(row0, 0), 0);
  263. vec_ste(baseVector, 0, &oldBaseValue);
  264. qmat = (vector signed int*)s->q_intra_matrix[qscale];
  265. biasAddr = &(s->intra_quant_bias);
  266. }
  267. else
  268. {
  269. qmat = (vector signed int*)s->q_inter_matrix[qscale];
  270. biasAddr = &(s->inter_quant_bias);
  271. }
  272. // Load the bias vector (We add 0.5 to the bias so that we're
  273. // rounding when we convert to int, instead of flooring.)
  274. {
  275. vector signed int biasInt;
  276. const vector float negOneFloat = (vector float)FOUROF(-1.0f);
  277. LOAD4(biasInt, biasAddr);
  278. bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
  279. negBias = vec_madd(bias, negOneFloat, zero);
  280. }
  281. {
  282. vector float q0, q1, q2, q3, q4, q5, q6, q7;
  283. q0 = vec_ctf(qmat[0], QMAT_SHIFT);
  284. q1 = vec_ctf(qmat[2], QMAT_SHIFT);
  285. q2 = vec_ctf(qmat[4], QMAT_SHIFT);
  286. q3 = vec_ctf(qmat[6], QMAT_SHIFT);
  287. q4 = vec_ctf(qmat[8], QMAT_SHIFT);
  288. q5 = vec_ctf(qmat[10], QMAT_SHIFT);
  289. q6 = vec_ctf(qmat[12], QMAT_SHIFT);
  290. q7 = vec_ctf(qmat[14], QMAT_SHIFT);
  291. row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
  292. vec_cmpgt(row0, zero));
  293. row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
  294. vec_cmpgt(row1, zero));
  295. row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
  296. vec_cmpgt(row2, zero));
  297. row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
  298. vec_cmpgt(row3, zero));
  299. row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
  300. vec_cmpgt(row4, zero));
  301. row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
  302. vec_cmpgt(row5, zero));
  303. row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
  304. vec_cmpgt(row6, zero));
  305. row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
  306. vec_cmpgt(row7, zero));
  307. q0 = vec_ctf(qmat[1], QMAT_SHIFT);
  308. q1 = vec_ctf(qmat[3], QMAT_SHIFT);
  309. q2 = vec_ctf(qmat[5], QMAT_SHIFT);
  310. q3 = vec_ctf(qmat[7], QMAT_SHIFT);
  311. q4 = vec_ctf(qmat[9], QMAT_SHIFT);
  312. q5 = vec_ctf(qmat[11], QMAT_SHIFT);
  313. q6 = vec_ctf(qmat[13], QMAT_SHIFT);
  314. q7 = vec_ctf(qmat[15], QMAT_SHIFT);
  315. alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
  316. vec_cmpgt(alt0, zero));
  317. alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
  318. vec_cmpgt(alt1, zero));
  319. alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
  320. vec_cmpgt(alt2, zero));
  321. alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
  322. vec_cmpgt(alt3, zero));
  323. alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
  324. vec_cmpgt(alt4, zero));
  325. alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
  326. vec_cmpgt(alt5, zero));
  327. alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
  328. vec_cmpgt(alt6, zero));
  329. alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
  330. vec_cmpgt(alt7, zero));
  331. }
  332. }
  333. // Store the data back into the original block
  334. {
  335. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  336. data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
  337. data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
  338. data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
  339. data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
  340. data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
  341. data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
  342. data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
  343. data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));
  344. {
  345. // Clamp for overflow
  346. vector signed int max_q_int, min_q_int;
  347. vector signed short max_q, min_q;
  348. LOAD4(max_q_int, &(s->max_qcoeff));
  349. LOAD4(min_q_int, &(s->min_qcoeff));
  350. max_q = vec_pack(max_q_int, max_q_int);
  351. min_q = vec_pack(min_q_int, min_q_int);
  352. data0 = vec_max(vec_min(data0, max_q), min_q);
  353. data1 = vec_max(vec_min(data1, max_q), min_q);
  354. data2 = vec_max(vec_min(data2, max_q), min_q);
  355. data4 = vec_max(vec_min(data4, max_q), min_q);
  356. data5 = vec_max(vec_min(data5, max_q), min_q);
  357. data6 = vec_max(vec_min(data6, max_q), min_q);
  358. data7 = vec_max(vec_min(data7, max_q), min_q);
  359. }
  360. {
  361. vector bool char zero_01, zero_23, zero_45, zero_67;
  362. vector signed char scanIndices_01, scanIndices_23, scanIndices_45, scanIndices_67;
  363. vector signed char negOne = vec_splat_s8(-1);
  364. vector signed char* scanPtr =
  365. (vector signed char*)(s->intra_scantable.inverse);
  366. signed char lastNonZeroChar;
  367. // Determine the largest non-zero index.
  368. zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero),
  369. vec_cmpeq(data1, (vector signed short)zero));
  370. zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero),
  371. vec_cmpeq(data3, (vector signed short)zero));
  372. zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero),
  373. vec_cmpeq(data5, (vector signed short)zero));
  374. zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero),
  375. vec_cmpeq(data7, (vector signed short)zero));
  376. // 64 biggest values
  377. scanIndices_01 = vec_sel(scanPtr[0], negOne, zero_01);
  378. scanIndices_23 = vec_sel(scanPtr[1], negOne, zero_23);
  379. scanIndices_45 = vec_sel(scanPtr[2], negOne, zero_45);
  380. scanIndices_67 = vec_sel(scanPtr[3], negOne, zero_67);
  381. // 32 largest values
  382. scanIndices_01 = vec_max(scanIndices_01, scanIndices_23);
  383. scanIndices_45 = vec_max(scanIndices_45, scanIndices_67);
  384. // 16 largest values
  385. scanIndices_01 = vec_max(scanIndices_01, scanIndices_45);
  386. // 8 largest values
  387. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  388. vec_mergel(scanIndices_01, negOne));
  389. // 4 largest values
  390. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  391. vec_mergel(scanIndices_01, negOne));
  392. // 2 largest values
  393. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  394. vec_mergel(scanIndices_01, negOne));
  395. // largest value
  396. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  397. vec_mergel(scanIndices_01, negOne));
  398. scanIndices_01 = vec_splat(scanIndices_01, 0);
  399. vec_ste(scanIndices_01, 0, &lastNonZeroChar);
  400. lastNonZero = lastNonZeroChar;
  401. // While the data is still in vectors we check for the transpose IDCT permute
  402. // and handle it using the vector unit if we can. This is the permute used
  403. // by the altivec idct, so it is common when using the altivec dct.
  404. if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM))
  405. {
  406. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  407. }
  408. vec_st(data0, 0, data);
  409. vec_st(data1, 16, data);
  410. vec_st(data2, 32, data);
  411. vec_st(data3, 48, data);
  412. vec_st(data4, 64, data);
  413. vec_st(data5, 80, data);
  414. vec_st(data6, 96, data);
  415. vec_st(data7, 112, data);
  416. }
  417. }
  418. // special handling of block[0]
  419. if (s->mb_intra)
  420. {
  421. if (!s->h263_aic)
  422. {
  423. if (n < 4)
  424. oldBaseValue /= s->y_dc_scale;
  425. else
  426. oldBaseValue /= s->c_dc_scale;
  427. }
  428. // Divide by 8, rounding the result
  429. data[0] = (oldBaseValue + 4) >> 3;
  430. }
  431. // We handled the tranpose permutation above and we don't
  432. // need to permute the "no" permutation case.
  433. if ((lastNonZero > 0) &&
  434. (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
  435. (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM))
  436. {
  437. ff_block_permute(data, s->dsp.idct_permutation,
  438. s->intra_scantable.scantable, lastNonZero);
  439. }
  440. return lastNonZero;
  441. }
  442. #undef FOUROF
  443. /*
  444. AltiVec version of dct_unquantize_h263
  445. this code assumes `block' is 16 bytes-aligned
  446. */
  447. void dct_unquantize_h263_altivec(MpegEncContext *s,
  448. DCTELEM *block, int n, int qscale)
  449. {
  450. POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);
  451. int i, level, qmul, qadd;
  452. int nCoeffs;
  453. assert(s->block_last_index[n]>=0);
  454. POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);
  455. qadd = (qscale - 1) | 1;
  456. qmul = qscale << 1;
  457. if (s->mb_intra) {
  458. if (!s->h263_aic) {
  459. if (n < 4)
  460. block[0] = block[0] * s->y_dc_scale;
  461. else
  462. block[0] = block[0] * s->c_dc_scale;
  463. }else
  464. qadd = 0;
  465. i = 1;
  466. nCoeffs= 63; //does not allways use zigzag table
  467. } else {
  468. i = 0;
  469. nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
  470. }
  471. #ifdef ALTIVEC_USE_REFERENCE_C_CODE
  472. for(;i<=nCoeffs;i++) {
  473. level = block[i];
  474. if (level) {
  475. if (level < 0) {
  476. level = level * qmul - qadd;
  477. } else {
  478. level = level * qmul + qadd;
  479. }
  480. block[i] = level;
  481. }
  482. }
  483. #else /* ALTIVEC_USE_REFERENCE_C_CODE */
  484. {
  485. register const_vector signed short vczero = (const_vector signed short)vec_splat_s16(0);
  486. short __attribute__ ((aligned(16))) qmul8[] =
  487. {
  488. qmul, qmul, qmul, qmul,
  489. qmul, qmul, qmul, qmul
  490. };
  491. short __attribute__ ((aligned(16))) qadd8[] =
  492. {
  493. qadd, qadd, qadd, qadd,
  494. qadd, qadd, qadd, qadd
  495. };
  496. short __attribute__ ((aligned(16))) nqadd8[] =
  497. {
  498. -qadd, -qadd, -qadd, -qadd,
  499. -qadd, -qadd, -qadd, -qadd
  500. };
  501. register vector signed short blockv, qmulv, qaddv, nqaddv, temp1;
  502. register vector bool short blockv_null, blockv_neg;
  503. register short backup_0 = block[0];
  504. register int j = 0;
  505. qmulv = vec_ld(0, qmul8);
  506. qaddv = vec_ld(0, qadd8);
  507. nqaddv = vec_ld(0, nqadd8);
  508. #if 0 // block *is* 16 bytes-aligned, it seems.
  509. // first make sure block[j] is 16 bytes-aligned
  510. for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {
  511. level = block[j];
  512. if (level) {
  513. if (level < 0) {
  514. level = level * qmul - qadd;
  515. } else {
  516. level = level * qmul + qadd;
  517. }
  518. block[j] = level;
  519. }
  520. }
  521. #endif
  522. // vectorize all the 16 bytes-aligned blocks
  523. // of 8 elements
  524. for(; (j + 7) <= nCoeffs ; j+=8)
  525. {
  526. blockv = vec_ld(j << 1, block);
  527. blockv_neg = vec_cmplt(blockv, vczero);
  528. blockv_null = vec_cmpeq(blockv, vczero);
  529. // choose between +qadd or -qadd as the third operand
  530. temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
  531. // multiply & add (block{i,i+7} * qmul [+-] qadd)
  532. temp1 = vec_mladd(blockv, qmulv, temp1);
  533. // put 0 where block[{i,i+7} used to have 0
  534. blockv = vec_sel(temp1, blockv, blockv_null);
  535. vec_st(blockv, j << 1, block);
  536. }
  537. // if nCoeffs isn't a multiple of 8, finish the job
  538. // using good old scalar units.
  539. // (we could do it using a truncated vector,
  540. // but I'm not sure it's worth the hassle)
  541. for(; j <= nCoeffs ; j++) {
  542. level = block[j];
  543. if (level) {
  544. if (level < 0) {
  545. level = level * qmul - qadd;
  546. } else {
  547. level = level * qmul + qadd;
  548. }
  549. block[j] = level;
  550. }
  551. }
  552. if (i == 1)
  553. { // cheat. this avoid special-casing the first iteration
  554. block[0] = backup_0;
  555. }
  556. }
  557. #endif /* ALTIVEC_USE_REFERENCE_C_CODE */
  558. POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);
  559. }