You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

5271 lines
149KB

  1. @chapter Filtering Introduction
  2. @c man begin FILTERING INTRODUCTION
  3. Filtering in FFmpeg is enabled through the libavfilter library.
  4. Libavfilter is the filtering API of FFmpeg. It is the substitute of
  5. the now deprecated 'vhooks' and started as a Google Summer of Code
  6. project.
  7. Audio filtering integration into the main FFmpeg repository is a work in
  8. progress, so audio API and ABI should not be considered stable yet.
  9. In libavfilter, it is possible for filters to have multiple inputs and
  10. multiple outputs.
  11. To illustrate the sorts of things that are possible, we can
  12. use a complex filter graph. For example, the following one:
  13. @example
  14. input --> split --> fifo -----------------------> overlay --> output
  15. | ^
  16. | |
  17. +------> fifo --> crop --> vflip --------+
  18. @end example
  19. splits the stream in two streams, sends one stream through the crop filter
  20. and the vflip filter before merging it back with the other stream by
  21. overlaying it on top. You can use the following command to achieve this:
  22. @example
  23. ffmpeg -i input -vf "[in] split [T1], fifo, [T2] overlay=0:H/2 [out]; [T1] fifo, crop=iw:ih/2:0:ih/2, vflip [T2]" output
  24. @end example
  25. The result will be that in output the top half of the video is mirrored
  26. onto the bottom half.
  27. Filters are loaded using the @var{-vf} or @var{-af} option passed to
  28. @command{ffmpeg} or to @command{ffplay}. Filters in the same linear
  29. chain are separated by commas. In our example, @var{split, fifo,
  30. overlay} are in one linear chain, and @var{fifo, crop, vflip} are in
  31. another. The points where the linear chains join are labeled by names
  32. enclosed in square brackets. In our example, that is @var{[T1]} and
  33. @var{[T2]}. The special labels @var{[in]} and @var{[out]} are the points
  34. where video is input and output.
  35. Some filters take in input a list of parameters: they are specified
  36. after the filter name and an equal sign, and are separated from each other
  37. by a colon.
  38. There exist so-called @var{source filters} that do not have an
  39. audio/video input, and @var{sink filters} that will not have audio/video
  40. output.
  41. @c man end FILTERING INTRODUCTION
  42. @chapter graph2dot
  43. @c man begin GRAPH2DOT
  44. The @file{graph2dot} program included in the FFmpeg @file{tools}
  45. directory can be used to parse a filter graph description and issue a
  46. corresponding textual representation in the dot language.
  47. Invoke the command:
  48. @example
  49. graph2dot -h
  50. @end example
  51. to see how to use @file{graph2dot}.
  52. You can then pass the dot description to the @file{dot} program (from
  53. the graphviz suite of programs) and obtain a graphical representation
  54. of the filter graph.
  55. For example the sequence of commands:
  56. @example
  57. echo @var{GRAPH_DESCRIPTION} | \
  58. tools/graph2dot -o graph.tmp && \
  59. dot -Tpng graph.tmp -o graph.png && \
  60. display graph.png
  61. @end example
  62. can be used to create and display an image representing the graph
  63. described by the @var{GRAPH_DESCRIPTION} string. Note that this string must be
  64. a complete self-contained graph, with its inputs and outputs explicitly defined.
  65. For example if your command line is of the form:
  66. @example
  67. ffmpeg -i infile -vf scale=640:360 outfile
  68. @end example
  69. your @var{GRAPH_DESCRIPTION} string will need to be of the form:
  70. @example
  71. nullsrc,scale=640:360,nullsink
  72. @end example
  73. you may also need to set the @var{nullsrc} parameters and add a @var{format}
  74. filter in order to simulate a specific input file.
  75. @c man end GRAPH2DOT
  76. @chapter Filtergraph description
  77. @c man begin FILTERGRAPH DESCRIPTION
  78. A filtergraph is a directed graph of connected filters. It can contain
  79. cycles, and there can be multiple links between a pair of
  80. filters. Each link has one input pad on one side connecting it to one
  81. filter from which it takes its input, and one output pad on the other
  82. side connecting it to the one filter accepting its output.
  83. Each filter in a filtergraph is an instance of a filter class
  84. registered in the application, which defines the features and the
  85. number of input and output pads of the filter.
  86. A filter with no input pads is called a "source", a filter with no
  87. output pads is called a "sink".
  88. @anchor{Filtergraph syntax}
  89. @section Filtergraph syntax
  90. A filtergraph can be represented using a textual representation, which is
  91. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  92. options in @command{ffmpeg} and @option{-vf} in @command{ffplay}, and by the
  93. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  94. @file{libavfilter/avfiltergraph.h}.
  95. A filterchain consists of a sequence of connected filters, each one
  96. connected to the previous one in the sequence. A filterchain is
  97. represented by a list of ","-separated filter descriptions.
  98. A filtergraph consists of a sequence of filterchains. A sequence of
  99. filterchains is represented by a list of ";"-separated filterchain
  100. descriptions.
  101. A filter is represented by a string of the form:
  102. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  103. @var{filter_name} is the name of the filter class of which the
  104. described filter is an instance of, and has to be the name of one of
  105. the filter classes registered in the program.
  106. The name of the filter class is optionally followed by a string
  107. "=@var{arguments}".
  108. @var{arguments} is a string which contains the parameters used to
  109. initialize the filter instance, and are described in the filter
  110. descriptions below.
  111. The list of arguments can be quoted using the character "'" as initial
  112. and ending mark, and the character '\' for escaping the characters
  113. within the quoted text; otherwise the argument string is considered
  114. terminated when the next special character (belonging to the set
  115. "[]=;,") is encountered.
  116. The name and arguments of the filter are optionally preceded and
  117. followed by a list of link labels.
  118. A link label allows to name a link and associate it to a filter output
  119. or input pad. The preceding labels @var{in_link_1}
  120. ... @var{in_link_N}, are associated to the filter input pads,
  121. the following labels @var{out_link_1} ... @var{out_link_M}, are
  122. associated to the output pads.
  123. When two link labels with the same name are found in the
  124. filtergraph, a link between the corresponding input and output pad is
  125. created.
  126. If an output pad is not labelled, it is linked by default to the first
  127. unlabelled input pad of the next filter in the filterchain.
  128. For example in the filterchain:
  129. @example
  130. nullsrc, split[L1], [L2]overlay, nullsink
  131. @end example
  132. the split filter instance has two output pads, and the overlay filter
  133. instance two input pads. The first output pad of split is labelled
  134. "L1", the first input pad of overlay is labelled "L2", and the second
  135. output pad of split is linked to the second input pad of overlay,
  136. which are both unlabelled.
  137. In a complete filterchain all the unlabelled filter input and output
  138. pads must be connected. A filtergraph is considered valid if all the
  139. filter input and output pads of all the filterchains are connected.
  140. Libavfilter will automatically insert scale filters where format
  141. conversion is required. It is possible to specify swscale flags
  142. for those automatically inserted scalers by prepending
  143. @code{sws_flags=@var{flags};}
  144. to the filtergraph description.
  145. Follows a BNF description for the filtergraph syntax:
  146. @example
  147. @var{NAME} ::= sequence of alphanumeric characters and '_'
  148. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  149. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  150. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  151. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  152. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  153. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  154. @end example
  155. @section Notes on filtergraph escaping
  156. Some filter arguments require the use of special characters, typically
  157. @code{:} to separate key=value pairs in a named options list. In this
  158. case the user should perform a first level escaping when specifying
  159. the filter arguments. For example, consider the following literal
  160. string to be embedded in the @ref{drawtext} filter arguments:
  161. @example
  162. this is a 'string': may contain one, or more, special characters
  163. @end example
  164. Since @code{:} is special for the filter arguments syntax, it needs to
  165. be escaped, so you get:
  166. @example
  167. text=this is a \'string\'\: may contain one, or more, special characters
  168. @end example
  169. A second level of escaping is required when embedding the filter
  170. arguments in a filtergraph description, in order to escape all the
  171. filtergraph special characters. Thus the example above becomes:
  172. @example
  173. drawtext=text=this is a \\\'string\\\'\\: may contain one\, or more\, special characters
  174. @end example
  175. Finally an additional level of escaping may be needed when writing the
  176. filtergraph description in a shell command, which depends on the
  177. escaping rules of the adopted shell. For example, assuming that
  178. @code{\} is special and needs to be escaped with another @code{\}, the
  179. previous string will finally result in:
  180. @example
  181. -vf "drawtext=text=this is a \\\\\\'string\\\\\\'\\\\: may contain one\\, or more\\, special characters"
  182. @end example
  183. Sometimes, it might be more convenient to employ quoting in place of
  184. escaping. For example the string:
  185. @example
  186. Caesar: tu quoque, Brute, fili mi
  187. @end example
  188. Can be quoted in the filter arguments as:
  189. @example
  190. text='Caesar: tu quoque, Brute, fili mi'
  191. @end example
  192. And finally inserted in a filtergraph like:
  193. @example
  194. drawtext=text=\'Caesar: tu quoque\, Brute\, fili mi\'
  195. @end example
  196. See the @ref{quoting_and_escaping, Quoting and escaping} section for
  197. more information about the escaping and quoting rules adopted by
  198. FFmpeg.
  199. @c man end FILTERGRAPH DESCRIPTION
  200. @chapter Audio Filters
  201. @c man begin AUDIO FILTERS
  202. When you configure your FFmpeg build, you can disable any of the
  203. existing filters using @code{--disable-filters}.
  204. The configure output will show the audio filters included in your
  205. build.
  206. Below is a description of the currently available audio filters.
  207. @section aconvert
  208. Convert the input audio format to the specified formats.
  209. The filter accepts a string of the form:
  210. "@var{sample_format}:@var{channel_layout}".
  211. @var{sample_format} specifies the sample format, and can be a string or the
  212. corresponding numeric value defined in @file{libavutil/samplefmt.h}. Use 'p'
  213. suffix for a planar sample format.
  214. @var{channel_layout} specifies the channel layout, and can be a string
  215. or the corresponding number value defined in @file{libavutil/channel_layout.h}.
  216. The special parameter "auto", signifies that the filter will
  217. automatically select the output format depending on the output filter.
  218. Some examples follow.
  219. @itemize
  220. @item
  221. Convert input to float, planar, stereo:
  222. @example
  223. aconvert=fltp:stereo
  224. @end example
  225. @item
  226. Convert input to unsigned 8-bit, automatically select out channel layout:
  227. @example
  228. aconvert=u8:auto
  229. @end example
  230. @end itemize
  231. @section aformat
  232. Convert the input audio to one of the specified formats. The framework will
  233. negotiate the most appropriate format to minimize conversions.
  234. The filter accepts the following named parameters:
  235. @table @option
  236. @item sample_fmts
  237. A comma-separated list of requested sample formats.
  238. @item sample_rates
  239. A comma-separated list of requested sample rates.
  240. @item channel_layouts
  241. A comma-separated list of requested channel layouts.
  242. @end table
  243. If a parameter is omitted, all values are allowed.
  244. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  245. @example
  246. aformat=sample_fmts\=u8\,s16:channel_layouts\=stereo
  247. @end example
  248. @section amerge
  249. Merge two or more audio streams into a single multi-channel stream.
  250. The filter accepts the following named options:
  251. @table @option
  252. @item inputs
  253. Set the number of inputs. Default is 2.
  254. @end table
  255. If the channel layouts of the inputs are disjoint, and therefore compatible,
  256. the channel layout of the output will be set accordingly and the channels
  257. will be reordered as necessary. If the channel layouts of the inputs are not
  258. disjoint, the output will have all the channels of the first input then all
  259. the channels of the second input, in that order, and the channel layout of
  260. the output will be the default value corresponding to the total number of
  261. channels.
  262. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  263. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  264. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  265. first input, b1 is the first channel of the second input).
  266. On the other hand, if both input are in stereo, the output channels will be
  267. in the default order: a1, a2, b1, b2, and the channel layout will be
  268. arbitrarily set to 4.0, which may or may not be the expected value.
  269. All inputs must have the same sample rate, and format.
  270. If inputs do not have the same duration, the output will stop with the
  271. shortest.
  272. Example: merge two mono files into a stereo stream:
  273. @example
  274. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  275. @end example
  276. Example: multiple merges:
  277. @example
  278. ffmpeg -f lavfi -i "
  279. amovie=input.mkv:si=0 [a0];
  280. amovie=input.mkv:si=1 [a1];
  281. amovie=input.mkv:si=2 [a2];
  282. amovie=input.mkv:si=3 [a3];
  283. amovie=input.mkv:si=4 [a4];
  284. amovie=input.mkv:si=5 [a5];
  285. [a0][a1][a2][a3][a4][a5] amerge=inputs=6" -c:a pcm_s16le output.mkv
  286. @end example
  287. @section amix
  288. Mixes multiple audio inputs into a single output.
  289. For example
  290. @example
  291. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  292. @end example
  293. will mix 3 input audio streams to a single output with the same duration as the
  294. first input and a dropout transition time of 3 seconds.
  295. The filter accepts the following named parameters:
  296. @table @option
  297. @item inputs
  298. Number of inputs. If unspecified, it defaults to 2.
  299. @item duration
  300. How to determine the end-of-stream.
  301. @table @option
  302. @item longest
  303. Duration of longest input. (default)
  304. @item shortest
  305. Duration of shortest input.
  306. @item first
  307. Duration of first input.
  308. @end table
  309. @item dropout_transition
  310. Transition time, in seconds, for volume renormalization when an input
  311. stream ends. The default value is 2 seconds.
  312. @end table
  313. @section anull
  314. Pass the audio source unchanged to the output.
  315. @section aresample
  316. Resample the input audio to the specified sample rate.
  317. The filter accepts exactly one parameter, the output sample rate. If not
  318. specified then the filter will automatically convert between its input
  319. and output sample rates.
  320. For example, to resample the input audio to 44100Hz:
  321. @example
  322. aresample=44100
  323. @end example
  324. @section asetnsamples
  325. Set the number of samples per each output audio frame.
  326. The last output packet may contain a different number of samples, as
  327. the filter will flush all the remaining samples when the input audio
  328. signal its end.
  329. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  330. separated by ":".
  331. @table @option
  332. @item nb_out_samples, n
  333. Set the number of frames per each output audio frame. The number is
  334. intended as the number of samples @emph{per each channel}.
  335. Default value is 1024.
  336. @item pad, p
  337. If set to 1, the filter will pad the last audio frame with zeroes, so
  338. that the last frame will contain the same number of samples as the
  339. previous ones. Default value is 1.
  340. @end table
  341. For example, to set the number of per-frame samples to 1234 and
  342. disable padding for the last frame, use:
  343. @example
  344. asetnsamples=n=1234:p=0
  345. @end example
  346. @section ashowinfo
  347. Show a line containing various information for each input audio frame.
  348. The input audio is not modified.
  349. The shown line contains a sequence of key/value pairs of the form
  350. @var{key}:@var{value}.
  351. A description of each shown parameter follows:
  352. @table @option
  353. @item n
  354. sequential number of the input frame, starting from 0
  355. @item pts
  356. Presentation timestamp of the input frame, in time base units; the time base
  357. depends on the filter input pad, and is usually 1/@var{sample_rate}.
  358. @item pts_time
  359. presentation timestamp of the input frame in seconds
  360. @item pos
  361. position of the frame in the input stream, -1 if this information in
  362. unavailable and/or meaningless (for example in case of synthetic audio)
  363. @item fmt
  364. sample format
  365. @item chlayout
  366. channel layout
  367. @item rate
  368. sample rate for the audio frame
  369. @item nb_samples
  370. number of samples (per channel) in the frame
  371. @item checksum
  372. Adler-32 checksum (printed in hexadecimal) of the audio data. For planar audio
  373. the data is treated as if all the planes were concatenated.
  374. @item plane_checksums
  375. A list of Adler-32 checksums for each data plane.
  376. @end table
  377. @section asplit
  378. Split input audio into several identical outputs.
  379. The filter accepts a single parameter which specifies the number of outputs. If
  380. unspecified, it defaults to 2.
  381. For example:
  382. @example
  383. [in] asplit [out0][out1]
  384. @end example
  385. will create two separate outputs from the same input.
  386. To create 3 or more outputs, you need to specify the number of
  387. outputs, like in:
  388. @example
  389. [in] asplit=3 [out0][out1][out2]
  390. @end example
  391. @example
  392. ffmpeg -i INPUT -filter_complex asplit=5 OUTPUT
  393. @end example
  394. will create 5 copies of the input audio.
  395. @section astreamsync
  396. Forward two audio streams and control the order the buffers are forwarded.
  397. The argument to the filter is an expression deciding which stream should be
  398. forwarded next: if the result is negative, the first stream is forwarded; if
  399. the result is positive or zero, the second stream is forwarded. It can use
  400. the following variables:
  401. @table @var
  402. @item b1 b2
  403. number of buffers forwarded so far on each stream
  404. @item s1 s2
  405. number of samples forwarded so far on each stream
  406. @item t1 t2
  407. current timestamp of each stream
  408. @end table
  409. The default value is @code{t1-t2}, which means to always forward the stream
  410. that has a smaller timestamp.
  411. Example: stress-test @code{amerge} by randomly sending buffers on the wrong
  412. input, while avoiding too much of a desynchronization:
  413. @example
  414. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  415. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  416. [a2] [b2] amerge
  417. @end example
  418. @section atempo
  419. Adjust audio tempo.
  420. The filter accepts exactly one parameter, the audio tempo. If not
  421. specified then the filter will assume nominal 1.0 tempo. Tempo must
  422. be in the [0.5, 2.0] range.
  423. For example, to slow down audio to 80% tempo:
  424. @example
  425. atempo=0.8
  426. @end example
  427. For example, to speed up audio to 125% tempo:
  428. @example
  429. atempo=1.25
  430. @end example
  431. @section earwax
  432. Make audio easier to listen to on headphones.
  433. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  434. so that when listened to on headphones the stereo image is moved from
  435. inside your head (standard for headphones) to outside and in front of
  436. the listener (standard for speakers).
  437. Ported from SoX.
  438. @section pan
  439. Mix channels with specific gain levels. The filter accepts the output
  440. channel layout followed by a set of channels definitions.
  441. This filter is also designed to remap efficiently the channels of an audio
  442. stream.
  443. The filter accepts parameters of the form:
  444. "@var{l}:@var{outdef}:@var{outdef}:..."
  445. @table @option
  446. @item l
  447. output channel layout or number of channels
  448. @item outdef
  449. output channel specification, of the form:
  450. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  451. @item out_name
  452. output channel to define, either a channel name (FL, FR, etc.) or a channel
  453. number (c0, c1, etc.)
  454. @item gain
  455. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  456. @item in_name
  457. input channel to use, see out_name for details; it is not possible to mix
  458. named and numbered input channels
  459. @end table
  460. If the `=' in a channel specification is replaced by `<', then the gains for
  461. that specification will be renormalized so that the total is 1, thus
  462. avoiding clipping noise.
  463. @subsection Mixing examples
  464. For example, if you want to down-mix from stereo to mono, but with a bigger
  465. factor for the left channel:
  466. @example
  467. pan=1:c0=0.9*c0+0.1*c1
  468. @end example
  469. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  470. 7-channels surround:
  471. @example
  472. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  473. @end example
  474. Note that @command{ffmpeg} integrates a default down-mix (and up-mix) system
  475. that should be preferred (see "-ac" option) unless you have very specific
  476. needs.
  477. @subsection Remapping examples
  478. The channel remapping will be effective if, and only if:
  479. @itemize
  480. @item gain coefficients are zeroes or ones,
  481. @item only one input per channel output,
  482. @end itemize
  483. If all these conditions are satisfied, the filter will notify the user ("Pure
  484. channel mapping detected"), and use an optimized and lossless method to do the
  485. remapping.
  486. For example, if you have a 5.1 source and want a stereo audio stream by
  487. dropping the extra channels:
  488. @example
  489. pan="stereo: c0=FL : c1=FR"
  490. @end example
  491. Given the same source, you can also switch front left and front right channels
  492. and keep the input channel layout:
  493. @example
  494. pan="5.1: c0=c1 : c1=c0 : c2=c2 : c3=c3 : c4=c4 : c5=c5"
  495. @end example
  496. If the input is a stereo audio stream, you can mute the front left channel (and
  497. still keep the stereo channel layout) with:
  498. @example
  499. pan="stereo:c1=c1"
  500. @end example
  501. Still with a stereo audio stream input, you can copy the right channel in both
  502. front left and right:
  503. @example
  504. pan="stereo: c0=FR : c1=FR"
  505. @end example
  506. @section silencedetect
  507. Detect silence in an audio stream.
  508. This filter logs a message when it detects that the input audio volume is less
  509. or equal to a noise tolerance value for a duration greater or equal to the
  510. minimum detected noise duration.
  511. The printed times and duration are expressed in seconds.
  512. @table @option
  513. @item duration, d
  514. Set silence duration until notification (default is 2 seconds).
  515. @item noise, n
  516. Set noise tolerance. Can be specified in dB (in case "dB" is appended to the
  517. specified value) or amplitude ratio. Default is -60dB, or 0.001.
  518. @end table
  519. Detect 5 seconds of silence with -50dB noise tolerance:
  520. @example
  521. silencedetect=n=-50dB:d=5
  522. @end example
  523. Complete example with @command{ffmpeg} to detect silence with 0.0001 noise
  524. tolerance in @file{silence.mp3}:
  525. @example
  526. ffmpeg -f lavfi -i amovie=silence.mp3,silencedetect=noise=0.0001 -f null -
  527. @end example
  528. @section asyncts
  529. Synchronize audio data with timestamps by squeezing/stretching it and/or
  530. dropping samples/adding silence when needed.
  531. The filter accepts the following named parameters:
  532. @table @option
  533. @item compensate
  534. Enable stretching/squeezing the data to make it match the timestamps. Disabled
  535. by default. When disabled, time gaps are covered with silence.
  536. @item min_delta
  537. Minimum difference between timestamps and audio data (in seconds) to trigger
  538. adding/dropping samples. Default value is 0.1. If you get non-perfect sync with
  539. this filter, try setting this parameter to 0.
  540. @item max_comp
  541. Maximum compensation in samples per second. Relevant only with compensate=1.
  542. Default value 500.
  543. @item first_pts
  544. Assume the first pts should be this value.
  545. This allows for padding/trimming at the start of stream. By default, no
  546. assumption is made about the first frame's expected pts, so no padding or
  547. trimming is done. For example, this could be set to 0 to pad the beginning with
  548. silence if an audio stream starts after the video stream.
  549. @end table
  550. @section channelsplit
  551. Split each channel in input audio stream into a separate output stream.
  552. This filter accepts the following named parameters:
  553. @table @option
  554. @item channel_layout
  555. Channel layout of the input stream. Default is "stereo".
  556. @end table
  557. For example, assuming a stereo input MP3 file
  558. @example
  559. ffmpeg -i in.mp3 -filter_complex channelsplit out.mkv
  560. @end example
  561. will create an output Matroska file with two audio streams, one containing only
  562. the left channel and the other the right channel.
  563. To split a 5.1 WAV file into per-channel files
  564. @example
  565. ffmpeg -i in.wav -filter_complex
  566. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  567. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  568. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  569. side_right.wav
  570. @end example
  571. @section channelmap
  572. Remap input channels to new locations.
  573. This filter accepts the following named parameters:
  574. @table @option
  575. @item channel_layout
  576. Channel layout of the output stream.
  577. @item map
  578. Map channels from input to output. The argument is a comma-separated list of
  579. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  580. @var{in_channel} form. @var{in_channel} can be either the name of the input
  581. channel (e.g. FL for front left) or its index in the input channel layout.
  582. @var{out_channel} is the name of the output channel or its index in the output
  583. channel layout. If @var{out_channel} is not given then it is implicitly an
  584. index, starting with zero and increasing by one for each mapping.
  585. @end table
  586. If no mapping is present, the filter will implicitly map input channels to
  587. output channels preserving index.
  588. For example, assuming a 5.1+downmix input MOV file
  589. @example
  590. ffmpeg -i in.mov -filter 'channelmap=map=DL-FL\,DR-FR' out.wav
  591. @end example
  592. will create an output WAV file tagged as stereo from the downmix channels of
  593. the input.
  594. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  595. @example
  596. ffmpeg -i in.wav -filter 'channelmap=1\,2\,0\,5\,3\,4:channel_layout=5.1' out.wav
  597. @end example
  598. @section join
  599. Join multiple input streams into one multi-channel stream.
  600. The filter accepts the following named parameters:
  601. @table @option
  602. @item inputs
  603. Number of input streams. Defaults to 2.
  604. @item channel_layout
  605. Desired output channel layout. Defaults to stereo.
  606. @item map
  607. Map channels from inputs to output. The argument is a comma-separated list of
  608. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  609. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  610. can be either the name of the input channel (e.g. FL for front left) or its
  611. index in the specified input stream. @var{out_channel} is the name of the output
  612. channel.
  613. @end table
  614. The filter will attempt to guess the mappings when those are not specified
  615. explicitly. It does so by first trying to find an unused matching input channel
  616. and if that fails it picks the first unused input channel.
  617. E.g. to join 3 inputs (with properly set channel layouts)
  618. @example
  619. ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  620. @end example
  621. To build a 5.1 output from 6 single-channel streams:
  622. @example
  623. ffmpeg -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  624. 'join=inputs=6:channel_layout=5.1:map=0.0-FL\,1.0-FR\,2.0-FC\,3.0-SL\,4.0-SR\,5.0-LFE'
  625. out
  626. @end example
  627. @section resample
  628. Convert the audio sample format, sample rate and channel layout. This filter is
  629. not meant to be used directly.
  630. @section volume
  631. Adjust the input audio volume.
  632. The filter accepts exactly one parameter @var{vol}, which expresses
  633. how the audio volume will be increased or decreased.
  634. Output values are clipped to the maximum value.
  635. If @var{vol} is expressed as a decimal number, the output audio
  636. volume is given by the relation:
  637. @example
  638. @var{output_volume} = @var{vol} * @var{input_volume}
  639. @end example
  640. If @var{vol} is expressed as a decimal number followed by the string
  641. "dB", the value represents the requested change in decibels of the
  642. input audio power, and the output audio volume is given by the
  643. relation:
  644. @example
  645. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  646. @end example
  647. Otherwise @var{vol} is considered an expression and its evaluated
  648. value is used for computing the output audio volume according to the
  649. first relation.
  650. Default value for @var{vol} is 1.0.
  651. @subsection Examples
  652. @itemize
  653. @item
  654. Half the input audio volume:
  655. @example
  656. volume=0.5
  657. @end example
  658. The above example is equivalent to:
  659. @example
  660. volume=1/2
  661. @end example
  662. @item
  663. Decrease input audio power by 12 decibels:
  664. @example
  665. volume=-12dB
  666. @end example
  667. @end itemize
  668. @section volumedetect
  669. Detect the volume of the input video.
  670. The filter has no parameters. The input is not modified. Statistics about
  671. the volume will be printed in the log when the input stream end is reached.
  672. In particular it will show the mean volume (root mean square), maximum
  673. volume (on a per-sample basis), and the beginning of an histogram of the
  674. registered volume values (from the maximum value to a cumulated 1/1000 of
  675. the samples).
  676. All volumes are in decibels relative to the maximum PCM value.
  677. Here is an excerpt of the output:
  678. @example
  679. [Parsed_volumedetect_0 @ 0xa23120] mean_volume: -27 dB
  680. [Parsed_volumedetect_0 @ 0xa23120] max_volume: -4 dB
  681. [Parsed_volumedetect_0 @ 0xa23120] histogram_4db: 6
  682. [Parsed_volumedetect_0 @ 0xa23120] histogram_5db: 62
  683. [Parsed_volumedetect_0 @ 0xa23120] histogram_6db: 286
  684. [Parsed_volumedetect_0 @ 0xa23120] histogram_7db: 1042
  685. [Parsed_volumedetect_0 @ 0xa23120] histogram_8db: 2551
  686. [Parsed_volumedetect_0 @ 0xa23120] histogram_9db: 4609
  687. [Parsed_volumedetect_0 @ 0xa23120] histogram_10db: 8409
  688. @end example
  689. It means that:
  690. @itemize
  691. @item
  692. The mean square energy is approximately -27 dB, or 10^-2.7.
  693. @item
  694. The largest sample is at -4 dB, or more precisely between -4 dB and -5 dB.
  695. @item
  696. There are 6 samples at -4 dB, 62 at -5 dB, 286 at -6 dB, etc.
  697. @end itemize
  698. In other words, raising the volume by +4 dB does not cause any clipping,
  699. raising it by +5 dB causes clipping for 6 samples, etc.
  700. @section volume_justin
  701. Adjust the input audio volume.
  702. The filter accepts the following named parameters:
  703. @table @option
  704. @item volume
  705. Expresses how the audio volume will be increased or decreased.
  706. Output values are clipped to the maximum value.
  707. The output audio volume is given by the relation:
  708. @example
  709. @var{output_volume} = @var{volume} * @var{input_volume}
  710. @end example
  711. Default value for @var{volume} is 1.0.
  712. @item precision
  713. Mathematical precision.
  714. This determines which input sample formats will be allowed, which affects the
  715. precision of the volume scaling.
  716. @table @option
  717. @item fixed
  718. 8-bit fixed-point; limits input sample format to U8, S16, and S32.
  719. @item float
  720. 32-bit floating-point; limits input sample format to FLT. (default)
  721. @item double
  722. 64-bit floating-point; limits input sample format to DBL.
  723. @end table
  724. @end table
  725. @subsection Examples
  726. @itemize
  727. @item
  728. Halve the input audio volume:
  729. @example
  730. volume_justin=volume=0.5
  731. volume_justin=volume=1/2
  732. volume_justin=volume=-6.0206dB
  733. @end example
  734. @item
  735. Increase input audio power by 6 decibels using fixed-point precision:
  736. @example
  737. volume_justin=volume=6dB:precision=fixed
  738. @end example
  739. @end itemize
  740. @c man end AUDIO FILTERS
  741. @chapter Audio Sources
  742. @c man begin AUDIO SOURCES
  743. Below is a description of the currently available audio sources.
  744. @section abuffer
  745. Buffer audio frames, and make them available to the filter chain.
  746. This source is mainly intended for a programmatic use, in particular
  747. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  748. It accepts the following mandatory parameters:
  749. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}
  750. @table @option
  751. @item sample_rate
  752. The sample rate of the incoming audio buffers.
  753. @item sample_fmt
  754. The sample format of the incoming audio buffers.
  755. Either a sample format name or its corresponging integer representation from
  756. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  757. @item channel_layout
  758. The channel layout of the incoming audio buffers.
  759. Either a channel layout name from channel_layout_map in
  760. @file{libavutil/channel_layout.c} or its corresponding integer representation
  761. from the AV_CH_LAYOUT_* macros in @file{libavutil/channel_layout.h}
  762. @end table
  763. For example:
  764. @example
  765. abuffer=44100:s16p:stereo
  766. @end example
  767. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  768. Since the sample format with name "s16p" corresponds to the number
  769. 6 and the "stereo" channel layout corresponds to the value 0x3, this is
  770. equivalent to:
  771. @example
  772. abuffer=44100:6:0x3
  773. @end example
  774. @section aevalsrc
  775. Generate an audio signal specified by an expression.
  776. This source accepts in input one or more expressions (one for each
  777. channel), which are evaluated and used to generate a corresponding
  778. audio signal.
  779. It accepts the syntax: @var{exprs}[::@var{options}].
  780. @var{exprs} is a list of expressions separated by ":", one for each
  781. separate channel. In case the @var{channel_layout} is not
  782. specified, the selected channel layout depends on the number of
  783. provided expressions.
  784. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  785. separated by ":".
  786. The description of the accepted options follows.
  787. @table @option
  788. @item channel_layout, c
  789. Set the channel layout. The number of channels in the specified layout
  790. must be equal to the number of specified expressions.
  791. @item duration, d
  792. Set the minimum duration of the sourced audio. See the function
  793. @code{av_parse_time()} for the accepted format.
  794. Note that the resulting duration may be greater than the specified
  795. duration, as the generated audio is always cut at the end of a
  796. complete frame.
  797. If not specified, or the expressed duration is negative, the audio is
  798. supposed to be generated forever.
  799. @item nb_samples, n
  800. Set the number of samples per channel per each output frame,
  801. default to 1024.
  802. @item sample_rate, s
  803. Specify the sample rate, default to 44100.
  804. @end table
  805. Each expression in @var{exprs} can contain the following constants:
  806. @table @option
  807. @item n
  808. number of the evaluated sample, starting from 0
  809. @item t
  810. time of the evaluated sample expressed in seconds, starting from 0
  811. @item s
  812. sample rate
  813. @end table
  814. @subsection Examples
  815. @itemize
  816. @item
  817. Generate silence:
  818. @example
  819. aevalsrc=0
  820. @end example
  821. @item
  822. Generate a sin signal with frequency of 440 Hz, set sample rate to
  823. 8000 Hz:
  824. @example
  825. aevalsrc="sin(440*2*PI*t)::s=8000"
  826. @end example
  827. @item
  828. Generate a two channels signal, specify the channel layout (Front
  829. Center + Back Center) explicitly:
  830. @example
  831. aevalsrc="sin(420*2*PI*t):cos(430*2*PI*t)::c=FC|BC"
  832. @end example
  833. @item
  834. Generate white noise:
  835. @example
  836. aevalsrc="-2+random(0)"
  837. @end example
  838. @item
  839. Generate an amplitude modulated signal:
  840. @example
  841. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  842. @end example
  843. @item
  844. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  845. @example
  846. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  847. @end example
  848. @end itemize
  849. @section anullsrc
  850. Null audio source, return unprocessed audio frames. It is mainly useful
  851. as a template and to be employed in analysis / debugging tools, or as
  852. the source for filters which ignore the input data (for example the sox
  853. synth filter).
  854. It accepts an optional sequence of @var{key}=@var{value} pairs,
  855. separated by ":".
  856. The description of the accepted options follows.
  857. @table @option
  858. @item sample_rate, s
  859. Specify the sample rate, and defaults to 44100.
  860. @item channel_layout, cl
  861. Specify the channel layout, and can be either an integer or a string
  862. representing a channel layout. The default value of @var{channel_layout}
  863. is "stereo".
  864. Check the channel_layout_map definition in
  865. @file{libavutil/channel_layout.c} for the mapping between strings and
  866. channel layout values.
  867. @item nb_samples, n
  868. Set the number of samples per requested frames.
  869. @end table
  870. Follow some examples:
  871. @example
  872. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  873. anullsrc=r=48000:cl=4
  874. # same as
  875. anullsrc=r=48000:cl=mono
  876. @end example
  877. @section abuffer
  878. Buffer audio frames, and make them available to the filter chain.
  879. This source is not intended to be part of user-supplied graph descriptions but
  880. for insertion by calling programs through the interface defined in
  881. @file{libavfilter/buffersrc.h}.
  882. It accepts the following named parameters:
  883. @table @option
  884. @item time_base
  885. Timebase which will be used for timestamps of submitted frames. It must be
  886. either a floating-point number or in @var{numerator}/@var{denominator} form.
  887. @item sample_rate
  888. Audio sample rate.
  889. @item sample_fmt
  890. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  891. @item channel_layout
  892. Channel layout of the audio data, in the form that can be accepted by
  893. @code{av_get_channel_layout()}.
  894. @end table
  895. All the parameters need to be explicitly defined.
  896. @section flite
  897. Synthesize a voice utterance using the libflite library.
  898. To enable compilation of this filter you need to configure FFmpeg with
  899. @code{--enable-libflite}.
  900. Note that the flite library is not thread-safe.
  901. The source accepts parameters as a list of @var{key}=@var{value} pairs,
  902. separated by ":".
  903. The description of the accepted parameters follows.
  904. @table @option
  905. @item list_voices
  906. If set to 1, list the names of the available voices and exit
  907. immediately. Default value is 0.
  908. @item nb_samples, n
  909. Set the maximum number of samples per frame. Default value is 512.
  910. @item textfile
  911. Set the filename containing the text to speak.
  912. @item text
  913. Set the text to speak.
  914. @item voice, v
  915. Set the voice to use for the speech synthesis. Default value is
  916. @code{kal}. See also the @var{list_voices} option.
  917. @end table
  918. @subsection Examples
  919. @itemize
  920. @item
  921. Read from file @file{speech.txt}, and synthetize the text using the
  922. standard flite voice:
  923. @example
  924. flite=textfile=speech.txt
  925. @end example
  926. @item
  927. Read the specified text selecting the @code{slt} voice:
  928. @example
  929. flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt
  930. @end example
  931. @item
  932. Input text to ffmpeg:
  933. @example
  934. ffmpeg -f lavfi -i flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt
  935. @end example
  936. @item
  937. Make @file{ffplay} speak the specified text, using @code{flite} and
  938. the @code{lavfi} device:
  939. @example
  940. ffplay -f lavfi flite=text='No more be grieved for which that thou hast done.'
  941. @end example
  942. @end itemize
  943. For more information about libflite, check:
  944. @url{http://www.speech.cs.cmu.edu/flite/}
  945. @c man end AUDIO SOURCES
  946. @chapter Audio Sinks
  947. @c man begin AUDIO SINKS
  948. Below is a description of the currently available audio sinks.
  949. @section abuffersink
  950. Buffer audio frames, and make them available to the end of filter chain.
  951. This sink is mainly intended for programmatic use, in particular
  952. through the interface defined in @file{libavfilter/buffersink.h}.
  953. It requires a pointer to an AVABufferSinkContext structure, which
  954. defines the incoming buffers' formats, to be passed as the opaque
  955. parameter to @code{avfilter_init_filter} for initialization.
  956. @section anullsink
  957. Null audio sink, do absolutely nothing with the input audio. It is
  958. mainly useful as a template and to be employed in analysis / debugging
  959. tools.
  960. @section abuffersink
  961. This sink is intended for programmatic use. Frames that arrive on this sink can
  962. be retrieved by the calling program using the interface defined in
  963. @file{libavfilter/buffersink.h}.
  964. This filter accepts no parameters.
  965. @c man end AUDIO SINKS
  966. @chapter Video Filters
  967. @c man begin VIDEO FILTERS
  968. When you configure your FFmpeg build, you can disable any of the
  969. existing filters using @code{--disable-filters}.
  970. The configure output will show the video filters included in your
  971. build.
  972. Below is a description of the currently available video filters.
  973. @section alphaextract
  974. Extract the alpha component from the input as a grayscale video. This
  975. is especially useful with the @var{alphamerge} filter.
  976. @section alphamerge
  977. Add or replace the alpha component of the primary input with the
  978. grayscale value of a second input. This is intended for use with
  979. @var{alphaextract} to allow the transmission or storage of frame
  980. sequences that have alpha in a format that doesn't support an alpha
  981. channel.
  982. For example, to reconstruct full frames from a normal YUV-encoded video
  983. and a separate video created with @var{alphaextract}, you might use:
  984. @example
  985. movie=in_alpha.mkv [alpha]; [in][alpha] alphamerge [out]
  986. @end example
  987. Since this filter is designed for reconstruction, it operates on frame
  988. sequences without considering timestamps, and terminates when either
  989. input reaches end of stream. This will cause problems if your encoding
  990. pipeline drops frames. If you're trying to apply an image as an
  991. overlay to a video stream, consider the @var{overlay} filter instead.
  992. @section ass
  993. Same as the @ref{subtitles} filter, except that it doesn't require libavcodec
  994. and libavformat to work. On the other hand, it is limited to ASS (Advanced
  995. Substation Alpha) subtitles files.
  996. @section bbox
  997. Compute the bounding box for the non-black pixels in the input frame
  998. luminance plane.
  999. This filter computes the bounding box containing all the pixels with a
  1000. luminance value greater than the minimum allowed value.
  1001. The parameters describing the bounding box are printed on the filter
  1002. log.
  1003. @section blackdetect
  1004. Detect video intervals that are (almost) completely black. Can be
  1005. useful to detect chapter transitions, commercials, or invalid
  1006. recordings. Output lines contains the time for the start, end and
  1007. duration of the detected black interval expressed in seconds.
  1008. In order to display the output lines, you need to set the loglevel at
  1009. least to the AV_LOG_INFO value.
  1010. This filter accepts a list of options in the form of
  1011. @var{key}=@var{value} pairs separated by ":". A description of the
  1012. accepted options follows.
  1013. @table @option
  1014. @item black_min_duration, d
  1015. Set the minimum detected black duration expressed in seconds. It must
  1016. be a non-negative floating point number.
  1017. Default value is 2.0.
  1018. @item picture_black_ratio_th, pic_th
  1019. Set the threshold for considering a picture "black".
  1020. Express the minimum value for the ratio:
  1021. @example
  1022. @var{nb_black_pixels} / @var{nb_pixels}
  1023. @end example
  1024. for which a picture is considered black.
  1025. Default value is 0.98.
  1026. @item pixel_black_th, pix_th
  1027. Set the threshold for considering a pixel "black".
  1028. The threshold expresses the maximum pixel luminance value for which a
  1029. pixel is considered "black". The provided value is scaled according to
  1030. the following equation:
  1031. @example
  1032. @var{absolute_threshold} = @var{luminance_minimum_value} + @var{pixel_black_th} * @var{luminance_range_size}
  1033. @end example
  1034. @var{luminance_range_size} and @var{luminance_minimum_value} depend on
  1035. the input video format, the range is [0-255] for YUV full-range
  1036. formats and [16-235] for YUV non full-range formats.
  1037. Default value is 0.10.
  1038. @end table
  1039. The following example sets the maximum pixel threshold to the minimum
  1040. value, and detects only black intervals of 2 or more seconds:
  1041. @example
  1042. blackdetect=d=2:pix_th=0.00
  1043. @end example
  1044. @section blackframe
  1045. Detect frames that are (almost) completely black. Can be useful to
  1046. detect chapter transitions or commercials. Output lines consist of
  1047. the frame number of the detected frame, the percentage of blackness,
  1048. the position in the file if known or -1 and the timestamp in seconds.
  1049. In order to display the output lines, you need to set the loglevel at
  1050. least to the AV_LOG_INFO value.
  1051. The filter accepts the syntax:
  1052. @example
  1053. blackframe[=@var{amount}:[@var{threshold}]]
  1054. @end example
  1055. @var{amount} is the percentage of the pixels that have to be below the
  1056. threshold, and defaults to 98.
  1057. @var{threshold} is the threshold below which a pixel value is
  1058. considered black, and defaults to 32.
  1059. @section boxblur
  1060. Apply boxblur algorithm to the input video.
  1061. This filter accepts the parameters:
  1062. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  1063. Chroma and alpha parameters are optional, if not specified they default
  1064. to the corresponding values set for @var{luma_radius} and
  1065. @var{luma_power}.
  1066. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  1067. the radius in pixels of the box used for blurring the corresponding
  1068. input plane. They are expressions, and can contain the following
  1069. constants:
  1070. @table @option
  1071. @item w, h
  1072. the input width and height in pixels
  1073. @item cw, ch
  1074. the input chroma image width and height in pixels
  1075. @item hsub, vsub
  1076. horizontal and vertical chroma subsample values. For example for the
  1077. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1078. @end table
  1079. The radius must be a non-negative number, and must not be greater than
  1080. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  1081. and of @code{min(cw,ch)/2} for the chroma planes.
  1082. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  1083. how many times the boxblur filter is applied to the corresponding
  1084. plane.
  1085. Some examples follow:
  1086. @itemize
  1087. @item
  1088. Apply a boxblur filter with luma, chroma, and alpha radius
  1089. set to 2:
  1090. @example
  1091. boxblur=2:1
  1092. @end example
  1093. @item
  1094. Set luma radius to 2, alpha and chroma radius to 0
  1095. @example
  1096. boxblur=2:1:0:0:0:0
  1097. @end example
  1098. @item
  1099. Set luma and chroma radius to a fraction of the video dimension
  1100. @example
  1101. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  1102. @end example
  1103. @end itemize
  1104. @section colormatrix
  1105. The colormatrix filter allows conversion between any of the following color
  1106. space: BT.709 (@var{bt709}), BT.601 (@var{bt601}), SMPTE-240M (@var{smpte240m})
  1107. and FCC (@var{fcc}).
  1108. The syntax of the parameters is @var{source}:@var{destination}:
  1109. @example
  1110. colormatrix=bt601:smpte240m
  1111. @end example
  1112. @section copy
  1113. Copy the input source unchanged to the output. Mainly useful for
  1114. testing purposes.
  1115. @section crop
  1116. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}:@var{keep_aspect}
  1117. The @var{keep_aspect} parameter is optional, if specified and set to a
  1118. non-zero value will force the output display aspect ratio to be the
  1119. same of the input, by changing the output sample aspect ratio.
  1120. The @var{out_w}, @var{out_h}, @var{x}, @var{y} parameters are
  1121. expressions containing the following constants:
  1122. @table @option
  1123. @item x, y
  1124. the computed values for @var{x} and @var{y}. They are evaluated for
  1125. each new frame.
  1126. @item in_w, in_h
  1127. the input width and height
  1128. @item iw, ih
  1129. same as @var{in_w} and @var{in_h}
  1130. @item out_w, out_h
  1131. the output (cropped) width and height
  1132. @item ow, oh
  1133. same as @var{out_w} and @var{out_h}
  1134. @item a
  1135. same as @var{iw} / @var{ih}
  1136. @item sar
  1137. input sample aspect ratio
  1138. @item dar
  1139. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1140. @item hsub, vsub
  1141. horizontal and vertical chroma subsample values. For example for the
  1142. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1143. @item n
  1144. the number of input frame, starting from 0
  1145. @item pos
  1146. the position in the file of the input frame, NAN if unknown
  1147. @item t
  1148. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1149. @end table
  1150. The @var{out_w} and @var{out_h} parameters specify the expressions for
  1151. the width and height of the output (cropped) video. They are
  1152. evaluated just at the configuration of the filter.
  1153. The default value of @var{out_w} is "in_w", and the default value of
  1154. @var{out_h} is "in_h".
  1155. The expression for @var{out_w} may depend on the value of @var{out_h},
  1156. and the expression for @var{out_h} may depend on @var{out_w}, but they
  1157. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  1158. evaluated after @var{out_w} and @var{out_h}.
  1159. The @var{x} and @var{y} parameters specify the expressions for the
  1160. position of the top-left corner of the output (non-cropped) area. They
  1161. are evaluated for each frame. If the evaluated value is not valid, it
  1162. is approximated to the nearest valid value.
  1163. The default value of @var{x} is "(in_w-out_w)/2", and the default
  1164. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  1165. the center of the input image.
  1166. The expression for @var{x} may depend on @var{y}, and the expression
  1167. for @var{y} may depend on @var{x}.
  1168. Follow some examples:
  1169. @example
  1170. # crop the central input area with size 100x100
  1171. crop=100:100
  1172. # crop the central input area with size 2/3 of the input video
  1173. "crop=2/3*in_w:2/3*in_h"
  1174. # crop the input video central square
  1175. crop=in_h
  1176. # delimit the rectangle with the top-left corner placed at position
  1177. # 100:100 and the right-bottom corner corresponding to the right-bottom
  1178. # corner of the input image.
  1179. crop=in_w-100:in_h-100:100:100
  1180. # crop 10 pixels from the left and right borders, and 20 pixels from
  1181. # the top and bottom borders
  1182. "crop=in_w-2*10:in_h-2*20"
  1183. # keep only the bottom right quarter of the input image
  1184. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  1185. # crop height for getting Greek harmony
  1186. "crop=in_w:1/PHI*in_w"
  1187. # trembling effect
  1188. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  1189. # erratic camera effect depending on timestamp
  1190. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  1191. # set x depending on the value of y
  1192. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  1193. @end example
  1194. @section cropdetect
  1195. Auto-detect crop size.
  1196. Calculate necessary cropping parameters and prints the recommended
  1197. parameters through the logging system. The detected dimensions
  1198. correspond to the non-black area of the input video.
  1199. It accepts the syntax:
  1200. @example
  1201. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  1202. @end example
  1203. @table @option
  1204. @item limit
  1205. Threshold, which can be optionally specified from nothing (0) to
  1206. everything (255), defaults to 24.
  1207. @item round
  1208. Value which the width/height should be divisible by, defaults to
  1209. 16. The offset is automatically adjusted to center the video. Use 2 to
  1210. get only even dimensions (needed for 4:2:2 video). 16 is best when
  1211. encoding to most video codecs.
  1212. @item reset
  1213. Counter that determines after how many frames cropdetect will reset
  1214. the previously detected largest video area and start over to detect
  1215. the current optimal crop area. Defaults to 0.
  1216. This can be useful when channel logos distort the video area. 0
  1217. indicates never reset and return the largest area encountered during
  1218. playback.
  1219. @end table
  1220. @section decimate
  1221. This filter drops frames that do not differ greatly from the previous
  1222. frame in order to reduce framerate. The main use of this filter is
  1223. for very-low-bitrate encoding (e.g. streaming over dialup modem), but
  1224. it could in theory be used for fixing movies that were
  1225. inverse-telecined incorrectly.
  1226. It accepts the following parameters:
  1227. @var{max}:@var{hi}:@var{lo}:@var{frac}.
  1228. @table @option
  1229. @item max
  1230. Set the maximum number of consecutive frames which can be dropped (if
  1231. positive), or the minimum interval between dropped frames (if
  1232. negative). If the value is 0, the frame is dropped unregarding the
  1233. number of previous sequentially dropped frames.
  1234. Default value is 0.
  1235. @item hi, lo, frac
  1236. Set the dropping threshold values.
  1237. Values for @var{hi} and @var{lo} are for 8x8 pixel blocks and
  1238. represent actual pixel value differences, so a threshold of 64
  1239. corresponds to 1 unit of difference for each pixel, or the same spread
  1240. out differently over the block.
  1241. A frame is a candidate for dropping if no 8x8 blocks differ by more
  1242. than a threshold of @var{hi}, and if no more than @var{frac} blocks (1
  1243. meaning the whole image) differ by more than a threshold of @var{lo}.
  1244. Default value for @var{hi} is 64*12, default value for @var{lo} is
  1245. 64*5, and default value for @var{frac} is 0.33.
  1246. @end table
  1247. @section delogo
  1248. Suppress a TV station logo by a simple interpolation of the surrounding
  1249. pixels. Just set a rectangle covering the logo and watch it disappear
  1250. (and sometimes something even uglier appear - your mileage may vary).
  1251. The filter accepts parameters as a string of the form
  1252. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  1253. @var{key}=@var{value} pairs, separated by ":".
  1254. The description of the accepted parameters follows.
  1255. @table @option
  1256. @item x, y
  1257. Specify the top left corner coordinates of the logo. They must be
  1258. specified.
  1259. @item w, h
  1260. Specify the width and height of the logo to clear. They must be
  1261. specified.
  1262. @item band, t
  1263. Specify the thickness of the fuzzy edge of the rectangle (added to
  1264. @var{w} and @var{h}). The default value is 4.
  1265. @item show
  1266. When set to 1, a green rectangle is drawn on the screen to simplify
  1267. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  1268. @var{band} is set to 4. The default value is 0.
  1269. @end table
  1270. Some examples follow.
  1271. @itemize
  1272. @item
  1273. Set a rectangle covering the area with top left corner coordinates 0,0
  1274. and size 100x77, setting a band of size 10:
  1275. @example
  1276. delogo=0:0:100:77:10
  1277. @end example
  1278. @item
  1279. As the previous example, but use named options:
  1280. @example
  1281. delogo=x=0:y=0:w=100:h=77:band=10
  1282. @end example
  1283. @end itemize
  1284. @section deshake
  1285. Attempt to fix small changes in horizontal and/or vertical shift. This
  1286. filter helps remove camera shake from hand-holding a camera, bumping a
  1287. tripod, moving on a vehicle, etc.
  1288. The filter accepts parameters as a string of the form
  1289. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  1290. A description of the accepted parameters follows.
  1291. @table @option
  1292. @item x, y, w, h
  1293. Specify a rectangular area where to limit the search for motion
  1294. vectors.
  1295. If desired the search for motion vectors can be limited to a
  1296. rectangular area of the frame defined by its top left corner, width
  1297. and height. These parameters have the same meaning as the drawbox
  1298. filter which can be used to visualise the position of the bounding
  1299. box.
  1300. This is useful when simultaneous movement of subjects within the frame
  1301. might be confused for camera motion by the motion vector search.
  1302. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  1303. then the full frame is used. This allows later options to be set
  1304. without specifying the bounding box for the motion vector search.
  1305. Default - search the whole frame.
  1306. @item rx, ry
  1307. Specify the maximum extent of movement in x and y directions in the
  1308. range 0-64 pixels. Default 16.
  1309. @item edge
  1310. Specify how to generate pixels to fill blanks at the edge of the
  1311. frame. An integer from 0 to 3 as follows:
  1312. @table @option
  1313. @item 0
  1314. Fill zeroes at blank locations
  1315. @item 1
  1316. Original image at blank locations
  1317. @item 2
  1318. Extruded edge value at blank locations
  1319. @item 3
  1320. Mirrored edge at blank locations
  1321. @end table
  1322. The default setting is mirror edge at blank locations.
  1323. @item blocksize
  1324. Specify the blocksize to use for motion search. Range 4-128 pixels,
  1325. default 8.
  1326. @item contrast
  1327. Specify the contrast threshold for blocks. Only blocks with more than
  1328. the specified contrast (difference between darkest and lightest
  1329. pixels) will be considered. Range 1-255, default 125.
  1330. @item search
  1331. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  1332. search. Default - exhaustive search.
  1333. @item filename
  1334. If set then a detailed log of the motion search is written to the
  1335. specified file.
  1336. @end table
  1337. @section drawbox
  1338. Draw a colored box on the input image.
  1339. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  1340. separated by ":".
  1341. The description of the accepted parameters follows.
  1342. @table @option
  1343. @item x, y
  1344. Specify the top left corner coordinates of the box. Default to 0.
  1345. @item width, w
  1346. @item height, h
  1347. Specify the width and height of the box, if 0 they are interpreted as
  1348. the input width and height. Default to 0.
  1349. @item color, c
  1350. Specify the color of the box to write, it can be the name of a color
  1351. (case insensitive match) or a 0xRRGGBB[AA] sequence. If the special
  1352. value @code{invert} is used, the box edge color is the same as the
  1353. video with inverted luma.
  1354. @item thickness, t
  1355. Set the thickness of the box edge. Default value is @code{4}.
  1356. @end table
  1357. If the key of the first options is omitted, the arguments are
  1358. interpreted according to the following syntax:
  1359. @example
  1360. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}:@var{thickness}
  1361. @end example
  1362. Some examples follow:
  1363. @itemize
  1364. @item
  1365. Draw a black box around the edge of the input image:
  1366. @example
  1367. drawbox
  1368. @end example
  1369. @item
  1370. Draw a box with color red and an opacity of 50%:
  1371. @example
  1372. drawbox=10:20:200:60:red@@0.5
  1373. @end example
  1374. The previous example can be specified as:
  1375. @example
  1376. drawbox=x=10:y=20:w=200:h=60:color=red@@0.5
  1377. @end example
  1378. @item
  1379. Fill the box with pink color:
  1380. @example
  1381. drawbox=x=10:y=10:w=100:h=100:color=pink@@0.5:t=max
  1382. @end example
  1383. @end itemize
  1384. @anchor{drawtext}
  1385. @section drawtext
  1386. Draw text string or text from specified file on top of video using the
  1387. libfreetype library.
  1388. To enable compilation of this filter you need to configure FFmpeg with
  1389. @code{--enable-libfreetype}.
  1390. @subsection Syntax
  1391. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  1392. separated by ":".
  1393. The description of the accepted parameters follows.
  1394. @table @option
  1395. @item box
  1396. Used to draw a box around text using background color.
  1397. Value should be either 1 (enable) or 0 (disable).
  1398. The default value of @var{box} is 0.
  1399. @item boxcolor
  1400. The color to be used for drawing box around text.
  1401. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  1402. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1403. The default value of @var{boxcolor} is "white".
  1404. @item draw
  1405. Set an expression which specifies if the text should be drawn. If the
  1406. expression evaluates to 0, the text is not drawn. This is useful for
  1407. specifying that the text should be drawn only when specific conditions
  1408. are met.
  1409. Default value is "1".
  1410. See below for the list of accepted constants and functions.
  1411. @item expansion
  1412. Select how the @var{text} is expanded. Can be either @code{none},
  1413. @code{strftime} (default for compatibity reasons but deprecated) or
  1414. @code{normal}. See the @ref{drawtext_expansion, Text expansion} section
  1415. below for details.
  1416. @item fix_bounds
  1417. If true, check and fix text coords to avoid clipping.
  1418. @item fontcolor
  1419. The color to be used for drawing fonts.
  1420. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  1421. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  1422. The default value of @var{fontcolor} is "black".
  1423. @item fontfile
  1424. The font file to be used for drawing text. Path must be included.
  1425. This parameter is mandatory.
  1426. @item fontsize
  1427. The font size to be used for drawing text.
  1428. The default value of @var{fontsize} is 16.
  1429. @item ft_load_flags
  1430. Flags to be used for loading the fonts.
  1431. The flags map the corresponding flags supported by libfreetype, and are
  1432. a combination of the following values:
  1433. @table @var
  1434. @item default
  1435. @item no_scale
  1436. @item no_hinting
  1437. @item render
  1438. @item no_bitmap
  1439. @item vertical_layout
  1440. @item force_autohint
  1441. @item crop_bitmap
  1442. @item pedantic
  1443. @item ignore_global_advance_width
  1444. @item no_recurse
  1445. @item ignore_transform
  1446. @item monochrome
  1447. @item linear_design
  1448. @item no_autohint
  1449. @item end table
  1450. @end table
  1451. Default value is "render".
  1452. For more information consult the documentation for the FT_LOAD_*
  1453. libfreetype flags.
  1454. @item shadowcolor
  1455. The color to be used for drawing a shadow behind the drawn text. It
  1456. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  1457. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1458. The default value of @var{shadowcolor} is "black".
  1459. @item shadowx, shadowy
  1460. The x and y offsets for the text shadow position with respect to the
  1461. position of the text. They can be either positive or negative
  1462. values. Default value for both is "0".
  1463. @item tabsize
  1464. The size in number of spaces to use for rendering the tab.
  1465. Default value is 4.
  1466. @item timecode
  1467. Set the initial timecode representation in "hh:mm:ss[:;.]ff"
  1468. format. It can be used with or without text parameter. @var{timecode_rate}
  1469. option must be specified.
  1470. @item timecode_rate, rate, r
  1471. Set the timecode frame rate (timecode only).
  1472. @item text
  1473. The text string to be drawn. The text must be a sequence of UTF-8
  1474. encoded characters.
  1475. This parameter is mandatory if no file is specified with the parameter
  1476. @var{textfile}.
  1477. @item textfile
  1478. A text file containing text to be drawn. The text must be a sequence
  1479. of UTF-8 encoded characters.
  1480. This parameter is mandatory if no text string is specified with the
  1481. parameter @var{text}.
  1482. If both @var{text} and @var{textfile} are specified, an error is thrown.
  1483. @item reload
  1484. If set to 1, the @var{textfile} will be reloaded before each frame.
  1485. Be sure to update it atomically, or it may be read partially, or even fail.
  1486. @item x, y
  1487. The expressions which specify the offsets where text will be drawn
  1488. within the video frame. They are relative to the top/left border of the
  1489. output image.
  1490. The default value of @var{x} and @var{y} is "0".
  1491. See below for the list of accepted constants and functions.
  1492. @end table
  1493. The parameters for @var{x} and @var{y} are expressions containing the
  1494. following constants and functions:
  1495. @table @option
  1496. @item dar
  1497. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  1498. @item hsub, vsub
  1499. horizontal and vertical chroma subsample values. For example for the
  1500. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1501. @item line_h, lh
  1502. the height of each text line
  1503. @item main_h, h, H
  1504. the input height
  1505. @item main_w, w, W
  1506. the input width
  1507. @item max_glyph_a, ascent
  1508. the maximum distance from the baseline to the highest/upper grid
  1509. coordinate used to place a glyph outline point, for all the rendered
  1510. glyphs.
  1511. It is a positive value, due to the grid's orientation with the Y axis
  1512. upwards.
  1513. @item max_glyph_d, descent
  1514. the maximum distance from the baseline to the lowest grid coordinate
  1515. used to place a glyph outline point, for all the rendered glyphs.
  1516. This is a negative value, due to the grid's orientation, with the Y axis
  1517. upwards.
  1518. @item max_glyph_h
  1519. maximum glyph height, that is the maximum height for all the glyphs
  1520. contained in the rendered text, it is equivalent to @var{ascent} -
  1521. @var{descent}.
  1522. @item max_glyph_w
  1523. maximum glyph width, that is the maximum width for all the glyphs
  1524. contained in the rendered text
  1525. @item n
  1526. the number of input frame, starting from 0
  1527. @item rand(min, max)
  1528. return a random number included between @var{min} and @var{max}
  1529. @item sar
  1530. input sample aspect ratio
  1531. @item t
  1532. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1533. @item text_h, th
  1534. the height of the rendered text
  1535. @item text_w, tw
  1536. the width of the rendered text
  1537. @item x, y
  1538. the x and y offset coordinates where the text is drawn.
  1539. These parameters allow the @var{x} and @var{y} expressions to refer
  1540. each other, so you can for example specify @code{y=x/dar}.
  1541. @end table
  1542. If libavfilter was built with @code{--enable-fontconfig}, then
  1543. @option{fontfile} can be a fontconfig pattern or omitted.
  1544. @anchor{drawtext_expansion}
  1545. @subsection Text expansion
  1546. If @option{expansion} is set to @code{strftime} (which is the default for
  1547. now), the filter recognizes strftime() sequences in the provided text and
  1548. expands them accordingly. Check the documentation of strftime(). This
  1549. feature is deprecated.
  1550. If @option{expansion} is set to @code{none}, the text is printed verbatim.
  1551. If @option{expansion} is set to @code{normal} (which will be the default),
  1552. the following expansion mechanism is used.
  1553. The backslash character '\', followed by any character, always expands to
  1554. the second character.
  1555. Sequence of the form @code{%@{...@}} are expanded. The text between the
  1556. braces is a function name, possibly followed by arguments separated by ':'.
  1557. If the arguments contain special characters or delimiters (':' or '@}'),
  1558. they should be escaped.
  1559. Note that they probably must also be escaped as the value for the
  1560. @option{text} option in the filter argument string and as the filter
  1561. argument in the filter graph description, and possibly also for the shell,
  1562. that makes up to four levels of escaping; using a text file avoids these
  1563. problems.
  1564. The following functions are available:
  1565. @table @command
  1566. @item expr, e
  1567. The expression evaluation result.
  1568. It must take one argument specifying the expression to be evaluated,
  1569. which accepts the same constants and functions as the @var{x} and
  1570. @var{y} values. Note that not all constants should be used, for
  1571. example the text size is not known when evaluating the expression, so
  1572. the constants @var{text_w} and @var{text_h} will have an undefined
  1573. value.
  1574. @item gmtime
  1575. The time at which the filter is running, expressed in UTC.
  1576. It can accept an argument: a strftime() format string.
  1577. @item localtime
  1578. The time at which the filter is running, expressed in the local time zone.
  1579. It can accept an argument: a strftime() format string.
  1580. @item n, frame_num
  1581. The frame number, starting from 0.
  1582. @item pts
  1583. The timestamp of the current frame, in seconds, with microsecond accuracy.
  1584. @end table
  1585. @subsection Examples
  1586. Some examples follow.
  1587. @itemize
  1588. @item
  1589. Draw "Test Text" with font FreeSerif, using the default values for the
  1590. optional parameters.
  1591. @example
  1592. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  1593. @end example
  1594. @item
  1595. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  1596. and y=50 (counting from the top-left corner of the screen), text is
  1597. yellow with a red box around it. Both the text and the box have an
  1598. opacity of 20%.
  1599. @example
  1600. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  1601. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  1602. @end example
  1603. Note that the double quotes are not necessary if spaces are not used
  1604. within the parameter list.
  1605. @item
  1606. Show the text at the center of the video frame:
  1607. @example
  1608. drawtext="fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  1609. @end example
  1610. @item
  1611. Show a text line sliding from right to left in the last row of the video
  1612. frame. The file @file{LONG_LINE} is assumed to contain a single line
  1613. with no newlines.
  1614. @example
  1615. drawtext="fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t"
  1616. @end example
  1617. @item
  1618. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  1619. @example
  1620. drawtext="fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  1621. @end example
  1622. @item
  1623. Draw a single green letter "g", at the center of the input video.
  1624. The glyph baseline is placed at half screen height.
  1625. @example
  1626. drawtext="fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent"
  1627. @end example
  1628. @item
  1629. Show text for 1 second every 3 seconds:
  1630. @example
  1631. drawtext="fontfile=FreeSerif.ttf:fontcolor=white:x=100:y=x/dar:draw=lt(mod(t\,3)\,1):text='blink'"
  1632. @end example
  1633. @item
  1634. Use fontconfig to set the font. Note that the colons need to be escaped.
  1635. @example
  1636. drawtext='fontfile=Linux Libertine O-40\:style=Semibold:text=FFmpeg'
  1637. @end example
  1638. @item
  1639. Print the date of a real-time encoding (see strftime(3)):
  1640. @example
  1641. drawtext='fontfile=FreeSans.ttf:expansion=normal:text=%@{localtime:%a %b %d %Y@}'
  1642. @end example
  1643. @end itemize
  1644. For more information about libfreetype, check:
  1645. @url{http://www.freetype.org/}.
  1646. For more information about fontconfig, check:
  1647. @url{http://freedesktop.org/software/fontconfig/fontconfig-user.html}.
  1648. @section edgedetect
  1649. Detect and draw edges. The filter uses the Canny Edge Detection algorithm.
  1650. This filter accepts the following optional named parameters:
  1651. @table @option
  1652. @item low, high
  1653. Set low and high threshold values used by the Canny thresholding
  1654. algorithm.
  1655. The high threshold selects the "strong" edge pixels, which are then
  1656. connected through 8-connectivity with the "weak" edge pixels selected
  1657. by the low threshold.
  1658. @var{low} and @var{high} threshold values must be choosen in the range
  1659. [0,1], and @var{low} should be lesser or equal to @var{high}.
  1660. Default value for @var{low} is @code{20/255}, and default value for @var{high}
  1661. is @code{50/255}.
  1662. @end table
  1663. Example:
  1664. @example
  1665. edgedetect=low=0.1:high=0.4
  1666. @end example
  1667. @section fade
  1668. Apply fade-in/out effect to input video.
  1669. It accepts the parameters:
  1670. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  1671. @var{type} specifies if the effect type, can be either "in" for
  1672. fade-in, or "out" for a fade-out effect.
  1673. @var{start_frame} specifies the number of the start frame for starting
  1674. to apply the fade effect.
  1675. @var{nb_frames} specifies the number of frames for which the fade
  1676. effect has to last. At the end of the fade-in effect the output video
  1677. will have the same intensity as the input video, at the end of the
  1678. fade-out transition the output video will be completely black.
  1679. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  1680. separated by ":". The description of the accepted options follows.
  1681. @table @option
  1682. @item type, t
  1683. See @var{type}.
  1684. @item start_frame, s
  1685. See @var{start_frame}.
  1686. @item nb_frames, n
  1687. See @var{nb_frames}.
  1688. @item alpha
  1689. If set to 1, fade only alpha channel, if one exists on the input.
  1690. Default value is 0.
  1691. @end table
  1692. A few usage examples follow, usable too as test scenarios.
  1693. @example
  1694. # fade in first 30 frames of video
  1695. fade=in:0:30
  1696. # fade out last 45 frames of a 200-frame video
  1697. fade=out:155:45
  1698. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  1699. fade=in:0:25, fade=out:975:25
  1700. # make first 5 frames black, then fade in from frame 5-24
  1701. fade=in:5:20
  1702. # fade in alpha over first 25 frames of video
  1703. fade=in:0:25:alpha=1
  1704. @end example
  1705. @section field
  1706. Extract a single field from an interlaced image using stride
  1707. arithmetic to avoid wasting CPU time. The output frames are marked as
  1708. non-interlaced.
  1709. This filter accepts the following named options:
  1710. @table @option
  1711. @item type
  1712. Specify whether to extract the top (if the value is @code{0} or
  1713. @code{top}) or the bottom field (if the value is @code{1} or
  1714. @code{bottom}).
  1715. @end table
  1716. If the option key is not specified, the first value sets the @var{type}
  1717. option. For example:
  1718. @example
  1719. field=bottom
  1720. @end example
  1721. is equivalent to:
  1722. @example
  1723. field=type=bottom
  1724. @end example
  1725. @section fieldorder
  1726. Transform the field order of the input video.
  1727. It accepts one parameter which specifies the required field order that
  1728. the input interlaced video will be transformed to. The parameter can
  1729. assume one of the following values:
  1730. @table @option
  1731. @item 0 or bff
  1732. output bottom field first
  1733. @item 1 or tff
  1734. output top field first
  1735. @end table
  1736. Default value is "tff".
  1737. Transformation is achieved by shifting the picture content up or down
  1738. by one line, and filling the remaining line with appropriate picture content.
  1739. This method is consistent with most broadcast field order converters.
  1740. If the input video is not flagged as being interlaced, or it is already
  1741. flagged as being of the required output field order then this filter does
  1742. not alter the incoming video.
  1743. This filter is very useful when converting to or from PAL DV material,
  1744. which is bottom field first.
  1745. For example:
  1746. @example
  1747. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  1748. @end example
  1749. @section fifo
  1750. Buffer input images and send them when they are requested.
  1751. This filter is mainly useful when auto-inserted by the libavfilter
  1752. framework.
  1753. The filter does not take parameters.
  1754. @section format
  1755. Convert the input video to one of the specified pixel formats.
  1756. Libavfilter will try to pick one that is supported for the input to
  1757. the next filter.
  1758. The filter accepts a list of pixel format names, separated by ":",
  1759. for example "yuv420p:monow:rgb24".
  1760. Some examples follow:
  1761. @example
  1762. # convert the input video to the format "yuv420p"
  1763. format=yuv420p
  1764. # convert the input video to any of the formats in the list
  1765. format=yuv420p:yuv444p:yuv410p
  1766. @end example
  1767. @section fps
  1768. Convert the video to specified constant framerate by duplicating or dropping
  1769. frames as necessary.
  1770. This filter accepts the following named parameters:
  1771. @table @option
  1772. @item fps
  1773. Desired output framerate.
  1774. @item round
  1775. Rounding method. The default is @code{near}.
  1776. @end table
  1777. @section framestep
  1778. Select one frame every N.
  1779. This filter accepts in input a string representing a positive
  1780. integer. Default argument is @code{1}.
  1781. @anchor{frei0r}
  1782. @section frei0r
  1783. Apply a frei0r effect to the input video.
  1784. To enable compilation of this filter you need to install the frei0r
  1785. header and configure FFmpeg with @code{--enable-frei0r}.
  1786. The filter supports the syntax:
  1787. @example
  1788. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  1789. @end example
  1790. @var{filter_name} is the name of the frei0r effect to load. If the
  1791. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  1792. is searched in each one of the directories specified by the colon (or
  1793. semicolon on Windows platforms) separated list in @env{FREIOR_PATH},
  1794. otherwise in the standard frei0r paths, which are in this order:
  1795. @file{HOME/.frei0r-1/lib/}, @file{/usr/local/lib/frei0r-1/},
  1796. @file{/usr/lib/frei0r-1/}.
  1797. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  1798. for the frei0r effect.
  1799. A frei0r effect parameter can be a boolean (whose values are specified
  1800. with "y" and "n"), a double, a color (specified by the syntax
  1801. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1802. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1803. description), a position (specified by the syntax @var{X}/@var{Y},
  1804. @var{X} and @var{Y} being float numbers) and a string.
  1805. The number and kind of parameters depend on the loaded effect. If an
  1806. effect parameter is not specified the default value is set.
  1807. Some examples follow:
  1808. @itemize
  1809. @item
  1810. Apply the distort0r effect, set the first two double parameters:
  1811. @example
  1812. frei0r=distort0r:0.5:0.01
  1813. @end example
  1814. @item
  1815. Apply the colordistance effect, take a color as first parameter:
  1816. @example
  1817. frei0r=colordistance:0.2/0.3/0.4
  1818. frei0r=colordistance:violet
  1819. frei0r=colordistance:0x112233
  1820. @end example
  1821. @item
  1822. Apply the perspective effect, specify the top left and top right image
  1823. positions:
  1824. @example
  1825. frei0r=perspective:0.2/0.2:0.8/0.2
  1826. @end example
  1827. @end itemize
  1828. For more information see:
  1829. @url{http://frei0r.dyne.org}
  1830. @section geq
  1831. The filter takes one, two or three equations as parameter, separated by ':'.
  1832. The first equation is mandatory and applies to the luma plane. The two
  1833. following are respectively for chroma blue and chroma red planes.
  1834. The filter syntax allows named parameters:
  1835. @table @option
  1836. @item lum_expr
  1837. the luminance expression
  1838. @item cb_expr
  1839. the chrominance blue expression
  1840. @item cr_expr
  1841. the chrominance red expression
  1842. @end table
  1843. If one of the chrominance expression is not defined, it falls back on the other
  1844. one. If none of them are specified, they will evaluate the luminance
  1845. expression.
  1846. The expressions can use the following variables and functions:
  1847. @table @option
  1848. @item N
  1849. The sequential number of the filtered frame, starting from @code{0}.
  1850. @item X, Y
  1851. The coordinates of the current sample.
  1852. @item W, H
  1853. The width and height of the image.
  1854. @item SW, SH
  1855. Width and height scale depending on the currently filtered plane. It is the
  1856. ratio between the corresponding luma plane number of pixels and the current
  1857. plane ones. E.g. for YUV4:2:0 the values are @code{1,1} for the luma plane, and
  1858. @code{0.5,0.5} for chroma planes.
  1859. @item T
  1860. Time of the current frame, expressed in seconds.
  1861. @item p(x, y)
  1862. Return the value of the pixel at location (@var{x},@var{y}) of the current
  1863. plane.
  1864. @item lum(x, y)
  1865. Return the value of the pixel at location (@var{x},@var{y}) of the luminance
  1866. plane.
  1867. @item cb(x, y)
  1868. Return the value of the pixel at location (@var{x},@var{y}) of the
  1869. blue-difference chroma plane.
  1870. @item cr(x, y)
  1871. Return the value of the pixel at location (@var{x},@var{y}) of the
  1872. red-difference chroma plane.
  1873. @end table
  1874. For functions, if @var{x} and @var{y} are outside the area, the value will be
  1875. automatically clipped to the closer edge.
  1876. Some examples follow:
  1877. @itemize
  1878. @item
  1879. Flip the image horizontally:
  1880. @example
  1881. geq=p(W-X\,Y)
  1882. @end example
  1883. @item
  1884. Generate a bidimensional sine wave, with angle @code{PI/3} and a
  1885. wavelength of 100 pixels:
  1886. @example
  1887. geq=128 + 100*sin(2*(PI/100)*(cos(PI/3)*(X-50*T) + sin(PI/3)*Y)):128:128
  1888. @end example
  1889. @item
  1890. Generate a fancy enigmatic moving light:
  1891. @example
  1892. nullsrc=s=256x256,geq=random(1)/hypot(X-cos(N*0.07)*W/2-W/2\,Y-sin(N*0.09)*H/2-H/2)^2*1000000*sin(N*0.02):128:128
  1893. @end example
  1894. @end itemize
  1895. @section gradfun
  1896. Fix the banding artifacts that are sometimes introduced into nearly flat
  1897. regions by truncation to 8bit color depth.
  1898. Interpolate the gradients that should go where the bands are, and
  1899. dither them.
  1900. This filter is designed for playback only. Do not use it prior to
  1901. lossy compression, because compression tends to lose the dither and
  1902. bring back the bands.
  1903. The filter takes two optional parameters, separated by ':':
  1904. @var{strength}:@var{radius}
  1905. @var{strength} is the maximum amount by which the filter will change
  1906. any one pixel. Also the threshold for detecting nearly flat
  1907. regions. Acceptable values range from .51 to 255, default value is
  1908. 1.2, out-of-range values will be clipped to the valid range.
  1909. @var{radius} is the neighborhood to fit the gradient to. A larger
  1910. radius makes for smoother gradients, but also prevents the filter from
  1911. modifying the pixels near detailed regions. Acceptable values are
  1912. 8-32, default value is 16, out-of-range values will be clipped to the
  1913. valid range.
  1914. @example
  1915. # default parameters
  1916. gradfun=1.2:16
  1917. # omitting radius
  1918. gradfun=1.2
  1919. @end example
  1920. @section hflip
  1921. Flip the input video horizontally.
  1922. For example to horizontally flip the input video with @command{ffmpeg}:
  1923. @example
  1924. ffmpeg -i in.avi -vf "hflip" out.avi
  1925. @end example
  1926. @section hqdn3d
  1927. High precision/quality 3d denoise filter. This filter aims to reduce
  1928. image noise producing smooth images and making still images really
  1929. still. It should enhance compressibility.
  1930. It accepts the following optional parameters:
  1931. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1932. @table @option
  1933. @item luma_spatial
  1934. a non-negative float number which specifies spatial luma strength,
  1935. defaults to 4.0
  1936. @item chroma_spatial
  1937. a non-negative float number which specifies spatial chroma strength,
  1938. defaults to 3.0*@var{luma_spatial}/4.0
  1939. @item luma_tmp
  1940. a float number which specifies luma temporal strength, defaults to
  1941. 6.0*@var{luma_spatial}/4.0
  1942. @item chroma_tmp
  1943. a float number which specifies chroma temporal strength, defaults to
  1944. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1945. @end table
  1946. @section hue
  1947. Modify the hue and/or the saturation of the input.
  1948. This filter accepts the following optional named options:
  1949. @table @option
  1950. @item h
  1951. Specify the hue angle as a number of degrees. It accepts a float
  1952. number or an expression, and defaults to 0.0.
  1953. @item H
  1954. Specify the hue angle as a number of degrees. It accepts a float
  1955. number or an expression, and defaults to 0.0.
  1956. @item s
  1957. Specify the saturation in the [-10,10] range. It accepts a float number and
  1958. defaults to 1.0.
  1959. @end table
  1960. The @var{h}, @var{H} and @var{s} parameters are expressions containing the
  1961. following constants:
  1962. @table @option
  1963. @item n
  1964. frame count of the input frame starting from 0
  1965. @item pts
  1966. presentation timestamp of the input frame expressed in time base units
  1967. @item r
  1968. frame rate of the input video, NAN if the input frame rate is unknown
  1969. @item t
  1970. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1971. @item tb
  1972. time base of the input video
  1973. @end table
  1974. The options can also be set using the syntax: @var{hue}:@var{saturation}
  1975. In this case @var{hue} is expressed in degrees.
  1976. Some examples follow:
  1977. @itemize
  1978. @item
  1979. Set the hue to 90 degrees and the saturation to 1.0:
  1980. @example
  1981. hue=h=90:s=1
  1982. @end example
  1983. @item
  1984. Same command but expressing the hue in radians:
  1985. @example
  1986. hue=H=PI/2:s=1
  1987. @end example
  1988. @item
  1989. Same command without named options, hue must be expressed in degrees:
  1990. @example
  1991. hue=90:1
  1992. @end example
  1993. @item
  1994. Note that "h:s" syntax does not support expressions for the values of
  1995. h and s, so the following example will issue an error:
  1996. @example
  1997. hue=PI/2:1
  1998. @end example
  1999. @item
  2000. Rotate hue and make the saturation swing between 0
  2001. and 2 over a period of 1 second:
  2002. @example
  2003. hue="H=2*PI*t: s=sin(2*PI*t)+1"
  2004. @end example
  2005. @item
  2006. Apply a 3 seconds saturation fade-in effect starting at 0:
  2007. @example
  2008. hue="s=min(t/3\,1)"
  2009. @end example
  2010. The general fade-in expression can be written as:
  2011. @example
  2012. hue="s=min(0\, max((t-START)/DURATION\, 1))"
  2013. @end example
  2014. @item
  2015. Apply a 3 seconds saturation fade-out effect starting at 5 seconds:
  2016. @example
  2017. hue="s=max(0\, min(1\, (8-t)/3))"
  2018. @end example
  2019. The general fade-out expression can be written as:
  2020. @example
  2021. hue="s=max(0\, min(1\, (START+DURATION-t)/DURATION))"
  2022. @end example
  2023. @end itemize
  2024. @subsection Commands
  2025. This filter supports the following command:
  2026. @table @option
  2027. @item reinit
  2028. Modify the hue and/or the saturation of the input video.
  2029. The command accepts the same named options and syntax than when calling the
  2030. filter from the command-line.
  2031. If a parameter is omitted, it is kept at its current value.
  2032. @end table
  2033. @section idet
  2034. Interlaceing detect filter. This filter tries to detect if the input is
  2035. interlaced or progressive. Top or bottom field first.
  2036. @section lut, lutrgb, lutyuv
  2037. Compute a look-up table for binding each pixel component input value
  2038. to an output value, and apply it to input video.
  2039. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  2040. to an RGB input video.
  2041. These filters accept in input a ":"-separated list of options, which
  2042. specify the expressions used for computing the lookup table for the
  2043. corresponding pixel component values.
  2044. The @var{lut} filter requires either YUV or RGB pixel formats in
  2045. input, and accepts the options:
  2046. @table @option
  2047. @item @var{c0} (first pixel component)
  2048. @item @var{c1} (second pixel component)
  2049. @item @var{c2} (third pixel component)
  2050. @item @var{c3} (fourth pixel component, corresponds to the alpha component)
  2051. @end table
  2052. The exact component associated to each option depends on the format in
  2053. input.
  2054. The @var{lutrgb} filter requires RGB pixel formats in input, and
  2055. accepts the options:
  2056. @table @option
  2057. @item @var{r} (red component)
  2058. @item @var{g} (green component)
  2059. @item @var{b} (blue component)
  2060. @item @var{a} (alpha component)
  2061. @end table
  2062. The @var{lutyuv} filter requires YUV pixel formats in input, and
  2063. accepts the options:
  2064. @table @option
  2065. @item @var{y} (Y/luminance component)
  2066. @item @var{u} (U/Cb component)
  2067. @item @var{v} (V/Cr component)
  2068. @item @var{a} (alpha component)
  2069. @end table
  2070. The expressions can contain the following constants and functions:
  2071. @table @option
  2072. @item w, h
  2073. the input width and height
  2074. @item val
  2075. input value for the pixel component
  2076. @item clipval
  2077. the input value clipped in the @var{minval}-@var{maxval} range
  2078. @item maxval
  2079. maximum value for the pixel component
  2080. @item minval
  2081. minimum value for the pixel component
  2082. @item negval
  2083. the negated value for the pixel component value clipped in the
  2084. @var{minval}-@var{maxval} range , it corresponds to the expression
  2085. "maxval-clipval+minval"
  2086. @item clip(val)
  2087. the computed value in @var{val} clipped in the
  2088. @var{minval}-@var{maxval} range
  2089. @item gammaval(gamma)
  2090. the computed gamma correction value of the pixel component value
  2091. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  2092. expression
  2093. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  2094. @end table
  2095. All expressions default to "val".
  2096. Some examples follow:
  2097. @example
  2098. # negate input video
  2099. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  2100. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  2101. # the above is the same as
  2102. lutrgb="r=negval:g=negval:b=negval"
  2103. lutyuv="y=negval:u=negval:v=negval"
  2104. # negate luminance
  2105. lutyuv=y=negval
  2106. # remove chroma components, turns the video into a graytone image
  2107. lutyuv="u=128:v=128"
  2108. # apply a luma burning effect
  2109. lutyuv="y=2*val"
  2110. # remove green and blue components
  2111. lutrgb="g=0:b=0"
  2112. # set a constant alpha channel value on input
  2113. format=rgba,lutrgb=a="maxval-minval/2"
  2114. # correct luminance gamma by a 0.5 factor
  2115. lutyuv=y=gammaval(0.5)
  2116. @end example
  2117. @section mp
  2118. Apply an MPlayer filter to the input video.
  2119. This filter provides a wrapper around most of the filters of
  2120. MPlayer/MEncoder.
  2121. This wrapper is considered experimental. Some of the wrapped filters
  2122. may not work properly and we may drop support for them, as they will
  2123. be implemented natively into FFmpeg. Thus you should avoid
  2124. depending on them when writing portable scripts.
  2125. The filters accepts the parameters:
  2126. @var{filter_name}[:=]@var{filter_params}
  2127. @var{filter_name} is the name of a supported MPlayer filter,
  2128. @var{filter_params} is a string containing the parameters accepted by
  2129. the named filter.
  2130. The list of the currently supported filters follows:
  2131. @table @var
  2132. @item denoise3d
  2133. @item detc
  2134. @item dint
  2135. @item divtc
  2136. @item down3dright
  2137. @item dsize
  2138. @item eq2
  2139. @item eq
  2140. @item fil
  2141. @item fspp
  2142. @item harddup
  2143. @item il
  2144. @item ilpack
  2145. @item ivtc
  2146. @item kerndeint
  2147. @item mcdeint
  2148. @item noise
  2149. @item ow
  2150. @item perspective
  2151. @item phase
  2152. @item pp7
  2153. @item pullup
  2154. @item qp
  2155. @item sab
  2156. @item softpulldown
  2157. @item softskip
  2158. @item spp
  2159. @item telecine
  2160. @item tinterlace
  2161. @item unsharp
  2162. @item uspp
  2163. @end table
  2164. The parameter syntax and behavior for the listed filters are the same
  2165. of the corresponding MPlayer filters. For detailed instructions check
  2166. the "VIDEO FILTERS" section in the MPlayer manual.
  2167. Some examples follow:
  2168. @itemize
  2169. @item
  2170. Adjust gamma, brightness, contrast:
  2171. @example
  2172. mp=eq2=1.0:2:0.5
  2173. @end example
  2174. @item
  2175. Add temporal noise to input video:
  2176. @example
  2177. mp=noise=20t
  2178. @end example
  2179. @end itemize
  2180. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  2181. @section negate
  2182. Negate input video.
  2183. This filter accepts an integer in input, if non-zero it negates the
  2184. alpha component (if available). The default value in input is 0.
  2185. @section noformat
  2186. Force libavfilter not to use any of the specified pixel formats for the
  2187. input to the next filter.
  2188. The filter accepts a list of pixel format names, separated by ":",
  2189. for example "yuv420p:monow:rgb24".
  2190. Some examples follow:
  2191. @example
  2192. # force libavfilter to use a format different from "yuv420p" for the
  2193. # input to the vflip filter
  2194. noformat=yuv420p,vflip
  2195. # convert the input video to any of the formats not contained in the list
  2196. noformat=yuv420p:yuv444p:yuv410p
  2197. @end example
  2198. @section null
  2199. Pass the video source unchanged to the output.
  2200. @section ocv
  2201. Apply video transform using libopencv.
  2202. To enable this filter install libopencv library and headers and
  2203. configure FFmpeg with @code{--enable-libopencv}.
  2204. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  2205. @var{filter_name} is the name of the libopencv filter to apply.
  2206. @var{filter_params} specifies the parameters to pass to the libopencv
  2207. filter. If not specified the default values are assumed.
  2208. Refer to the official libopencv documentation for more precise
  2209. information:
  2210. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  2211. Follows the list of supported libopencv filters.
  2212. @anchor{dilate}
  2213. @subsection dilate
  2214. Dilate an image by using a specific structuring element.
  2215. This filter corresponds to the libopencv function @code{cvDilate}.
  2216. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  2217. @var{struct_el} represents a structuring element, and has the syntax:
  2218. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  2219. @var{cols} and @var{rows} represent the number of columns and rows of
  2220. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  2221. point, and @var{shape} the shape for the structuring element, and
  2222. can be one of the values "rect", "cross", "ellipse", "custom".
  2223. If the value for @var{shape} is "custom", it must be followed by a
  2224. string of the form "=@var{filename}". The file with name
  2225. @var{filename} is assumed to represent a binary image, with each
  2226. printable character corresponding to a bright pixel. When a custom
  2227. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  2228. or columns and rows of the read file are assumed instead.
  2229. The default value for @var{struct_el} is "3x3+0x0/rect".
  2230. @var{nb_iterations} specifies the number of times the transform is
  2231. applied to the image, and defaults to 1.
  2232. Follow some example:
  2233. @example
  2234. # use the default values
  2235. ocv=dilate
  2236. # dilate using a structuring element with a 5x5 cross, iterate two times
  2237. ocv=dilate=5x5+2x2/cross:2
  2238. # read the shape from the file diamond.shape, iterate two times
  2239. # the file diamond.shape may contain a pattern of characters like this:
  2240. # *
  2241. # ***
  2242. # *****
  2243. # ***
  2244. # *
  2245. # the specified cols and rows are ignored (but not the anchor point coordinates)
  2246. ocv=0x0+2x2/custom=diamond.shape:2
  2247. @end example
  2248. @subsection erode
  2249. Erode an image by using a specific structuring element.
  2250. This filter corresponds to the libopencv function @code{cvErode}.
  2251. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  2252. with the same syntax and semantics as the @ref{dilate} filter.
  2253. @subsection smooth
  2254. Smooth the input video.
  2255. The filter takes the following parameters:
  2256. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  2257. @var{type} is the type of smooth filter to apply, and can be one of
  2258. the following values: "blur", "blur_no_scale", "median", "gaussian",
  2259. "bilateral". The default value is "gaussian".
  2260. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  2261. parameters whose meanings depend on smooth type. @var{param1} and
  2262. @var{param2} accept integer positive values or 0, @var{param3} and
  2263. @var{param4} accept float values.
  2264. The default value for @var{param1} is 3, the default value for the
  2265. other parameters is 0.
  2266. These parameters correspond to the parameters assigned to the
  2267. libopencv function @code{cvSmooth}.
  2268. @anchor{overlay}
  2269. @section overlay
  2270. Overlay one video on top of another.
  2271. It takes two inputs and one output, the first input is the "main"
  2272. video on which the second input is overlayed.
  2273. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  2274. @var{x} is the x coordinate of the overlayed video on the main video,
  2275. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  2276. the following parameters:
  2277. @table @option
  2278. @item main_w, main_h
  2279. main input width and height
  2280. @item W, H
  2281. same as @var{main_w} and @var{main_h}
  2282. @item overlay_w, overlay_h
  2283. overlay input width and height
  2284. @item w, h
  2285. same as @var{overlay_w} and @var{overlay_h}
  2286. @end table
  2287. @var{options} is an optional list of @var{key}=@var{value} pairs,
  2288. separated by ":".
  2289. The description of the accepted options follows.
  2290. @table @option
  2291. @item rgb
  2292. If set to 1, force the filter to accept inputs in the RGB
  2293. color space. Default value is 0.
  2294. @end table
  2295. Be aware that frames are taken from each input video in timestamp
  2296. order, hence, if their initial timestamps differ, it is a a good idea
  2297. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  2298. have them begin in the same zero timestamp, as it does the example for
  2299. the @var{movie} filter.
  2300. Follow some examples:
  2301. @example
  2302. # draw the overlay at 10 pixels from the bottom right
  2303. # corner of the main video.
  2304. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  2305. # insert a transparent PNG logo in the bottom left corner of the input
  2306. ffmpeg -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output
  2307. # insert 2 different transparent PNG logos (second logo on bottom
  2308. # right corner):
  2309. ffmpeg -i input -i logo1 -i logo2 -filter_complex
  2310. 'overlay=10:H-h-10,overlay=W-w-10:H-h-10' output
  2311. # add a transparent color layer on top of the main video,
  2312. # WxH specifies the size of the main input to the overlay filter
  2313. color=red@@.3:WxH [over]; [in][over] overlay [out]
  2314. # play an original video and a filtered version (here with the deshake filter)
  2315. # side by side
  2316. ffplay input.avi -vf 'split[a][b]; [a]pad=iw*2:ih[src]; [b]deshake[filt]; [src][filt]overlay=w'
  2317. # the previous example is the same as:
  2318. ffplay input.avi -vf 'split[b], pad=iw*2[src], [b]deshake, [src]overlay=w'
  2319. @end example
  2320. You can chain together more overlays but the efficiency of such
  2321. approach is yet to be tested.
  2322. @section pad
  2323. Add paddings to the input image, and places the original input at the
  2324. given coordinates @var{x}, @var{y}.
  2325. It accepts the following parameters:
  2326. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  2327. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  2328. expressions containing the following constants:
  2329. @table @option
  2330. @item in_w, in_h
  2331. the input video width and height
  2332. @item iw, ih
  2333. same as @var{in_w} and @var{in_h}
  2334. @item out_w, out_h
  2335. the output width and height, that is the size of the padded area as
  2336. specified by the @var{width} and @var{height} expressions
  2337. @item ow, oh
  2338. same as @var{out_w} and @var{out_h}
  2339. @item x, y
  2340. x and y offsets as specified by the @var{x} and @var{y}
  2341. expressions, or NAN if not yet specified
  2342. @item a
  2343. same as @var{iw} / @var{ih}
  2344. @item sar
  2345. input sample aspect ratio
  2346. @item dar
  2347. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2348. @item hsub, vsub
  2349. horizontal and vertical chroma subsample values. For example for the
  2350. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2351. @end table
  2352. Follows the description of the accepted parameters.
  2353. @table @option
  2354. @item width, height
  2355. Specify the size of the output image with the paddings added. If the
  2356. value for @var{width} or @var{height} is 0, the corresponding input size
  2357. is used for the output.
  2358. The @var{width} expression can reference the value set by the
  2359. @var{height} expression, and vice versa.
  2360. The default value of @var{width} and @var{height} is 0.
  2361. @item x, y
  2362. Specify the offsets where to place the input image in the padded area
  2363. with respect to the top/left border of the output image.
  2364. The @var{x} expression can reference the value set by the @var{y}
  2365. expression, and vice versa.
  2366. The default value of @var{x} and @var{y} is 0.
  2367. @item color
  2368. Specify the color of the padded area, it can be the name of a color
  2369. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  2370. The default value of @var{color} is "black".
  2371. @end table
  2372. @subsection Examples
  2373. @itemize
  2374. @item
  2375. Add paddings with color "violet" to the input video. Output video
  2376. size is 640x480, the top-left corner of the input video is placed at
  2377. column 0, row 40:
  2378. @example
  2379. pad=640:480:0:40:violet
  2380. @end example
  2381. @item
  2382. Pad the input to get an output with dimensions increased by 3/2,
  2383. and put the input video at the center of the padded area:
  2384. @example
  2385. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  2386. @end example
  2387. @item
  2388. Pad the input to get a squared output with size equal to the maximum
  2389. value between the input width and height, and put the input video at
  2390. the center of the padded area:
  2391. @example
  2392. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  2393. @end example
  2394. @item
  2395. Pad the input to get a final w/h ratio of 16:9:
  2396. @example
  2397. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  2398. @end example
  2399. @item
  2400. In case of anamorphic video, in order to set the output display aspect
  2401. correctly, it is necessary to use @var{sar} in the expression,
  2402. according to the relation:
  2403. @example
  2404. (ih * X / ih) * sar = output_dar
  2405. X = output_dar / sar
  2406. @end example
  2407. Thus the previous example needs to be modified to:
  2408. @example
  2409. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  2410. @end example
  2411. @item
  2412. Double output size and put the input video in the bottom-right
  2413. corner of the output padded area:
  2414. @example
  2415. pad="2*iw:2*ih:ow-iw:oh-ih"
  2416. @end example
  2417. @end itemize
  2418. @section pixdesctest
  2419. Pixel format descriptor test filter, mainly useful for internal
  2420. testing. The output video should be equal to the input video.
  2421. For example:
  2422. @example
  2423. format=monow, pixdesctest
  2424. @end example
  2425. can be used to test the monowhite pixel format descriptor definition.
  2426. @section removelogo
  2427. Suppress a TV station logo, using an image file to determine which
  2428. pixels comprise the logo. It works by filling in the pixels that
  2429. comprise the logo with neighboring pixels.
  2430. This filter requires one argument which specifies the filter bitmap
  2431. file, which can be any image format supported by libavformat. The
  2432. width and height of the image file must match those of the video
  2433. stream being processed.
  2434. Pixels in the provided bitmap image with a value of zero are not
  2435. considered part of the logo, non-zero pixels are considered part of
  2436. the logo. If you use white (255) for the logo and black (0) for the
  2437. rest, you will be safe. For making the filter bitmap, it is
  2438. recommended to take a screen capture of a black frame with the logo
  2439. visible, and then using a threshold filter followed by the erode
  2440. filter once or twice.
  2441. If needed, little splotches can be fixed manually. Remember that if
  2442. logo pixels are not covered, the filter quality will be much
  2443. reduced. Marking too many pixels as part of the logo does not hurt as
  2444. much, but it will increase the amount of blurring needed to cover over
  2445. the image and will destroy more information than necessary, and extra
  2446. pixels will slow things down on a large logo.
  2447. @section scale
  2448. Scale (resize) the input video, using the libswscale library.
  2449. The scale filter forces the output display aspect ratio to be the same
  2450. of the input, by changing the output sample aspect ratio.
  2451. This filter accepts a list of named options in the form of
  2452. @var{key}=@var{value} pairs separated by ":". If the key for the first
  2453. two options is not specified, the assumed keys for the first two
  2454. values are @code{w} and @code{h}. If the first option has no key and
  2455. can be interpreted like a video size specification, it will be used
  2456. to set the video size.
  2457. A description of the accepted options follows.
  2458. @table @option
  2459. @item width, w
  2460. Set the video width expression, default value is @code{iw}. See below
  2461. for the list of accepted constants.
  2462. @item height, h
  2463. Set the video heiht expression, default value is @code{ih}.
  2464. See below for the list of accepted constants.
  2465. @item interl
  2466. Set the interlacing. It accepts the following values:
  2467. @table @option
  2468. @item 1
  2469. force interlaced aware scaling
  2470. @item 0
  2471. do not apply interlaced scaling
  2472. @item -1
  2473. select interlaced aware scaling depending on whether the source frames
  2474. are flagged as interlaced or not
  2475. @end table
  2476. Default value is @code{0}.
  2477. @item flags
  2478. Set libswscale scaling flags. If not explictly specified the filter
  2479. applies a bilinear scaling algorithm.
  2480. @item size, s
  2481. Set the video size, the value must be a valid abbreviation or in the
  2482. form @var{width}x@var{height}.
  2483. @end table
  2484. The values of the @var{w} and @var{h} options are expressions
  2485. containing the following constants:
  2486. @table @option
  2487. @item in_w, in_h
  2488. the input width and height
  2489. @item iw, ih
  2490. same as @var{in_w} and @var{in_h}
  2491. @item out_w, out_h
  2492. the output (cropped) width and height
  2493. @item ow, oh
  2494. same as @var{out_w} and @var{out_h}
  2495. @item a
  2496. same as @var{iw} / @var{ih}
  2497. @item sar
  2498. input sample aspect ratio
  2499. @item dar
  2500. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  2501. @item hsub, vsub
  2502. horizontal and vertical chroma subsample values. For example for the
  2503. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  2504. @end table
  2505. If the input image format is different from the format requested by
  2506. the next filter, the scale filter will convert the input to the
  2507. requested format.
  2508. If the value for @var{width} or @var{height} is 0, the respective input
  2509. size is used for the output.
  2510. If the value for @var{width} or @var{height} is -1, the scale filter will
  2511. use, for the respective output size, a value that maintains the aspect
  2512. ratio of the input image.
  2513. @subsection Examples
  2514. @itemize
  2515. @item
  2516. Scale the input video to a size of 200x100:
  2517. @example
  2518. scale=200:100
  2519. @end example
  2520. This is equivalent to:
  2521. @example
  2522. scale=w=200:h=100
  2523. @end example
  2524. or:
  2525. @example
  2526. scale=200x100
  2527. @end example
  2528. @item
  2529. Specify a size abbreviation for the output size:
  2530. @example
  2531. scale=qcif
  2532. @end example
  2533. which can also be written as:
  2534. @example
  2535. scale=size=qcif
  2536. @end example
  2537. @item
  2538. Scale the input to 2x:
  2539. @example
  2540. scale=2*iw:2*ih
  2541. @end example
  2542. @item
  2543. The above is the same as:
  2544. @example
  2545. scale=2*in_w:2*in_h
  2546. @end example
  2547. @item
  2548. Scale the input to 2x with forced interlaced scaling:
  2549. @example
  2550. scale=2*iw:2*ih:interl=1
  2551. @end example
  2552. @item
  2553. Scale the input to half size:
  2554. @example
  2555. scale=iw/2:ih/2
  2556. @end example
  2557. @item
  2558. Increase the width, and set the height to the same size:
  2559. @example
  2560. scale=3/2*iw:ow
  2561. @end example
  2562. @item
  2563. Seek for Greek harmony:
  2564. @example
  2565. scale=iw:1/PHI*iw
  2566. scale=ih*PHI:ih
  2567. @end example
  2568. @item
  2569. Increase the height, and set the width to 3/2 of the height:
  2570. @example
  2571. scale=3/2*oh:3/5*ih
  2572. @end example
  2573. @item
  2574. Increase the size, but make the size a multiple of the chroma:
  2575. @example
  2576. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  2577. @end example
  2578. @item
  2579. Increase the width to a maximum of 500 pixels, keep the same input
  2580. aspect ratio:
  2581. @example
  2582. scale='min(500\, iw*3/2):-1'
  2583. @end example
  2584. @end itemize
  2585. @section select
  2586. Select frames to pass in output.
  2587. It accepts in input an expression, which is evaluated for each input
  2588. frame. If the expression is evaluated to a non-zero value, the frame
  2589. is selected and passed to the output, otherwise it is discarded.
  2590. The expression can contain the following constants:
  2591. @table @option
  2592. @item n
  2593. the sequential number of the filtered frame, starting from 0
  2594. @item selected_n
  2595. the sequential number of the selected frame, starting from 0
  2596. @item prev_selected_n
  2597. the sequential number of the last selected frame, NAN if undefined
  2598. @item TB
  2599. timebase of the input timestamps
  2600. @item pts
  2601. the PTS (Presentation TimeStamp) of the filtered video frame,
  2602. expressed in @var{TB} units, NAN if undefined
  2603. @item t
  2604. the PTS (Presentation TimeStamp) of the filtered video frame,
  2605. expressed in seconds, NAN if undefined
  2606. @item prev_pts
  2607. the PTS of the previously filtered video frame, NAN if undefined
  2608. @item prev_selected_pts
  2609. the PTS of the last previously filtered video frame, NAN if undefined
  2610. @item prev_selected_t
  2611. the PTS of the last previously selected video frame, NAN if undefined
  2612. @item start_pts
  2613. the PTS of the first video frame in the video, NAN if undefined
  2614. @item start_t
  2615. the time of the first video frame in the video, NAN if undefined
  2616. @item pict_type
  2617. the type of the filtered frame, can assume one of the following
  2618. values:
  2619. @table @option
  2620. @item I
  2621. @item P
  2622. @item B
  2623. @item S
  2624. @item SI
  2625. @item SP
  2626. @item BI
  2627. @end table
  2628. @item interlace_type
  2629. the frame interlace type, can assume one of the following values:
  2630. @table @option
  2631. @item PROGRESSIVE
  2632. the frame is progressive (not interlaced)
  2633. @item TOPFIRST
  2634. the frame is top-field-first
  2635. @item BOTTOMFIRST
  2636. the frame is bottom-field-first
  2637. @end table
  2638. @item key
  2639. 1 if the filtered frame is a key-frame, 0 otherwise
  2640. @item pos
  2641. the position in the file of the filtered frame, -1 if the information
  2642. is not available (e.g. for synthetic video)
  2643. @item scene
  2644. value between 0 and 1 to indicate a new scene; a low value reflects a low
  2645. probability for the current frame to introduce a new scene, while a higher
  2646. value means the current frame is more likely to be one (see the example below)
  2647. @end table
  2648. The default value of the select expression is "1".
  2649. Some examples follow:
  2650. @example
  2651. # select all frames in input
  2652. select
  2653. # the above is the same as:
  2654. select=1
  2655. # skip all frames:
  2656. select=0
  2657. # select only I-frames
  2658. select='eq(pict_type\,I)'
  2659. # select one frame every 100
  2660. select='not(mod(n\,100))'
  2661. # select only frames contained in the 10-20 time interval
  2662. select='gte(t\,10)*lte(t\,20)'
  2663. # select only I frames contained in the 10-20 time interval
  2664. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  2665. # select frames with a minimum distance of 10 seconds
  2666. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  2667. @end example
  2668. Complete example to create a mosaic of the first scenes:
  2669. @example
  2670. ffmpeg -i video.avi -vf select='gt(scene\,0.4)',scale=160:120,tile -frames:v 1 preview.png
  2671. @end example
  2672. Comparing @var{scene} against a value between 0.3 and 0.5 is generally a sane
  2673. choice.
  2674. @section setdar, setsar
  2675. The @code{setdar} filter sets the Display Aspect Ratio for the filter
  2676. output video.
  2677. This is done by changing the specified Sample (aka Pixel) Aspect
  2678. Ratio, according to the following equation:
  2679. @example
  2680. @var{DAR} = @var{HORIZONTAL_RESOLUTION} / @var{VERTICAL_RESOLUTION} * @var{SAR}
  2681. @end example
  2682. Keep in mind that the @code{setdar} filter does not modify the pixel
  2683. dimensions of the video frame. Also the display aspect ratio set by
  2684. this filter may be changed by later filters in the filterchain,
  2685. e.g. in case of scaling or if another "setdar" or a "setsar" filter is
  2686. applied.
  2687. The @code{setsar} filter sets the Sample (aka Pixel) Aspect Ratio for
  2688. the filter output video.
  2689. Note that as a consequence of the application of this filter, the
  2690. output display aspect ratio will change according to the equation
  2691. above.
  2692. Keep in mind that the sample aspect ratio set by the @code{setsar}
  2693. filter may be changed by later filters in the filterchain, e.g. if
  2694. another "setsar" or a "setdar" filter is applied.
  2695. The @code{setdar} and @code{setsar} filters accept a string in the
  2696. form @var{num}:@var{den} expressing an aspect ratio, or the following
  2697. named options, expressed as a sequence of @var{key}=@var{value} pairs,
  2698. separated by ":".
  2699. @table @option
  2700. @item max
  2701. Set the maximum integer value to use for expressing numerator and
  2702. denominator when reducing the expressed aspect ratio to a rational.
  2703. Default value is @code{100}.
  2704. @item r, ratio:
  2705. Set the aspect ratio used by the filter.
  2706. The parameter can be a floating point number string, an expression, or
  2707. a string of the form @var{num}:@var{den}, where @var{num} and
  2708. @var{den} are the numerator and denominator of the aspect ratio. If
  2709. the parameter is not specified, it is assumed the value "0".
  2710. In case the form "@var{num}:@var{den}" the @code{:} character should
  2711. be escaped.
  2712. @end table
  2713. If the keys are omitted in the named options list, the specifed values
  2714. are assumed to be @var{ratio} and @var{max} in that order.
  2715. For example to change the display aspect ratio to 16:9, specify:
  2716. @example
  2717. setdar='16:9'
  2718. @end example
  2719. The example above is equivalent to:
  2720. @example
  2721. setdar=1.77777
  2722. @end example
  2723. To change the sample aspect ratio to 10:11, specify:
  2724. @example
  2725. setsar='10:11'
  2726. @end example
  2727. To set a display aspect ratio of 16:9, and specify a maximum integer value of
  2728. 1000 in the aspect ratio reduction, use the command:
  2729. @example
  2730. setdar=ratio='16:9':max=1000
  2731. @end example
  2732. @section setfield
  2733. Force field for the output video frame.
  2734. The @code{setfield} filter marks the interlace type field for the
  2735. output frames. It does not change the input frame, but only sets the
  2736. corresponding property, which affects how the frame is treated by
  2737. following filters (e.g. @code{fieldorder} or @code{yadif}).
  2738. It accepts a string parameter, which can assume the following values:
  2739. @table @samp
  2740. @item auto
  2741. Keep the same field property.
  2742. @item bff
  2743. Mark the frame as bottom-field-first.
  2744. @item tff
  2745. Mark the frame as top-field-first.
  2746. @item prog
  2747. Mark the frame as progressive.
  2748. @end table
  2749. @section showinfo
  2750. Show a line containing various information for each input video frame.
  2751. The input video is not modified.
  2752. The shown line contains a sequence of key/value pairs of the form
  2753. @var{key}:@var{value}.
  2754. A description of each shown parameter follows:
  2755. @table @option
  2756. @item n
  2757. sequential number of the input frame, starting from 0
  2758. @item pts
  2759. Presentation TimeStamp of the input frame, expressed as a number of
  2760. time base units. The time base unit depends on the filter input pad.
  2761. @item pts_time
  2762. Presentation TimeStamp of the input frame, expressed as a number of
  2763. seconds
  2764. @item pos
  2765. position of the frame in the input stream, -1 if this information in
  2766. unavailable and/or meaningless (for example in case of synthetic video)
  2767. @item fmt
  2768. pixel format name
  2769. @item sar
  2770. sample aspect ratio of the input frame, expressed in the form
  2771. @var{num}/@var{den}
  2772. @item s
  2773. size of the input frame, expressed in the form
  2774. @var{width}x@var{height}
  2775. @item i
  2776. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  2777. for bottom field first)
  2778. @item iskey
  2779. 1 if the frame is a key frame, 0 otherwise
  2780. @item type
  2781. picture type of the input frame ("I" for an I-frame, "P" for a
  2782. P-frame, "B" for a B-frame, "?" for unknown type).
  2783. Check also the documentation of the @code{AVPictureType} enum and of
  2784. the @code{av_get_picture_type_char} function defined in
  2785. @file{libavutil/avutil.h}.
  2786. @item checksum
  2787. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  2788. @item plane_checksum
  2789. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  2790. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  2791. @end table
  2792. @section smartblur
  2793. Blur the input video without impacting the outlines.
  2794. The filter accepts the following parameters:
  2795. @var{luma_radius}:@var{luma_strength}:@var{luma_threshold}[:@var{chroma_radius}:@var{chroma_strength}:@var{chroma_threshold}]
  2796. Parameters prefixed by @var{luma} indicate that they work on the
  2797. luminance of the pixels whereas parameters prefixed by @var{chroma}
  2798. refer to the chrominance of the pixels.
  2799. If the chroma parameters are not set, the luma parameters are used for
  2800. either the luminance and the chrominance of the pixels.
  2801. @var{luma_radius} or @var{chroma_radius} must be a float number in the
  2802. range [0.1,5.0] that specifies the variance of the gaussian filter
  2803. used to blur the image (slower if larger).
  2804. @var{luma_strength} or @var{chroma_strength} must be a float number in
  2805. the range [-1.0,1.0] that configures the blurring. A value included in
  2806. [0.0,1.0] will blur the image whereas a value included in [-1.0,0.0]
  2807. will sharpen the image.
  2808. @var{luma_threshold} or @var{chroma_threshold} must be an integer in
  2809. the range [-30,30] that is used as a coefficient to determine whether
  2810. a pixel should be blurred or not. A value of 0 will filter all the
  2811. image, a value included in [0,30] will filter flat areas and a value
  2812. included in [-30,0] will filter edges.
  2813. @anchor{subtitles}
  2814. @section subtitles
  2815. Draw subtitles on top of input video using the libass library.
  2816. To enable compilation of this filter you need to configure FFmpeg with
  2817. @code{--enable-libass}. This filter also requires a build with libavcodec and
  2818. libavformat to convert the passed subtitles file to ASS (Advanced Substation
  2819. Alpha) subtitles format.
  2820. This filter accepts the following named options, expressed as a
  2821. sequence of @var{key}=@var{value} pairs, separated by ":".
  2822. @table @option
  2823. @item filename, f
  2824. Set the filename of the subtitle file to read. It must be specified.
  2825. @item original_size
  2826. Specify the size of the original video, the video for which the ASS file
  2827. was composed. Due to a misdesign in ASS aspect ratio arithmetic, this is
  2828. necessary to correctly scale the fonts if the aspect ratio has been changed.
  2829. @end table
  2830. If the first key is not specified, it is assumed that the first value
  2831. specifies the @option{filename}.
  2832. For example, to render the file @file{sub.srt} on top of the input
  2833. video, use the command:
  2834. @example
  2835. subtitles=sub.srt
  2836. @end example
  2837. which is equivalent to:
  2838. @example
  2839. subtitles=filename=sub.srt
  2840. @end example
  2841. @section split
  2842. Split input video into several identical outputs.
  2843. The filter accepts a single parameter which specifies the number of outputs. If
  2844. unspecified, it defaults to 2.
  2845. For example
  2846. @example
  2847. ffmpeg -i INPUT -filter_complex split=5 OUTPUT
  2848. @end example
  2849. will create 5 copies of the input video.
  2850. For example:
  2851. @example
  2852. [in] split [splitout1][splitout2];
  2853. [splitout1] crop=100:100:0:0 [cropout];
  2854. [splitout2] pad=200:200:100:100 [padout];
  2855. @end example
  2856. will create two separate outputs from the same input, one cropped and
  2857. one padded.
  2858. @section super2xsai
  2859. Scale the input by 2x and smooth using the Super2xSaI (Scale and
  2860. Interpolate) pixel art scaling algorithm.
  2861. Useful for enlarging pixel art images without reducing sharpness.
  2862. @section swapuv
  2863. Swap U & V plane.
  2864. @section thumbnail
  2865. Select the most representative frame in a given sequence of consecutive frames.
  2866. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  2867. in a set of @var{N} frames, the filter will pick one of them, and then handle
  2868. the next batch of @var{N} frames until the end.
  2869. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  2870. value will result in a higher memory usage, so a high value is not recommended.
  2871. The following example extract one picture each 50 frames:
  2872. @example
  2873. thumbnail=50
  2874. @end example
  2875. Complete example of a thumbnail creation with @command{ffmpeg}:
  2876. @example
  2877. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  2878. @end example
  2879. @section tile
  2880. Tile several successive frames together.
  2881. It accepts a list of options in the form of @var{key}=@var{value} pairs
  2882. separated by ":". A description of the accepted options follows.
  2883. @table @option
  2884. @item layout
  2885. Set the grid size (i.e. the number of lines and columns) in the form
  2886. "@var{w}x@var{h}".
  2887. @item margin
  2888. Set the outer border margin in pixels.
  2889. @item padding
  2890. Set the inner border thickness (i.e. the number of pixels between frames). For
  2891. more advanced padding options (such as having different values for the edges),
  2892. refer to the pad video filter.
  2893. @item nb_frames
  2894. Set the maximum number of frames to render in the given area. It must be less
  2895. than or equal to @var{w}x@var{h}. The default value is @code{0}, meaning all
  2896. the area will be used.
  2897. @end table
  2898. Alternatively, the options can be specified as a flat string:
  2899. @var{layout}[:@var{nb_frames}[:@var{margin}[:@var{padding}]]]
  2900. For example, produce 8×8 PNG tiles of all keyframes (@option{-skip_frame
  2901. nokey}) in a movie:
  2902. @example
  2903. ffmpeg -skip_frame nokey -i file.avi -vf 'scale=128:72,tile=8x8' -an -vsync 0 keyframes%03d.png
  2904. @end example
  2905. The @option{-vsync 0} is necessary to prevent @command{ffmpeg} from
  2906. duplicating each output frame to accomodate the originally detected frame
  2907. rate.
  2908. Another example to display @code{5} pictures in an area of @code{3x2} frames,
  2909. with @code{7} pixels between them, and @code{2} pixels of initial margin, using
  2910. mixed flat and named options:
  2911. @example
  2912. tile=3x2:nb_frames=5:padding=7:margin=2
  2913. @end example
  2914. @section tinterlace
  2915. Perform various types of temporal field interlacing.
  2916. Frames are counted starting from 1, so the first input frame is
  2917. considered odd.
  2918. This filter accepts a single parameter specifying the mode. Available
  2919. modes are:
  2920. @table @samp
  2921. @item merge, 0
  2922. Move odd frames into the upper field, even into the lower field,
  2923. generating a double height frame at half framerate.
  2924. @item drop_odd, 1
  2925. Only output even frames, odd frames are dropped, generating a frame with
  2926. unchanged height at half framerate.
  2927. @item drop_even, 2
  2928. Only output odd frames, even frames are dropped, generating a frame with
  2929. unchanged height at half framerate.
  2930. @item pad, 3
  2931. Expand each frame to full height, but pad alternate lines with black,
  2932. generating a frame with double height at the same input framerate.
  2933. @item interleave_top, 4
  2934. Interleave the upper field from odd frames with the lower field from
  2935. even frames, generating a frame with unchanged height at half framerate.
  2936. @item interleave_bottom, 5
  2937. Interleave the lower field from odd frames with the upper field from
  2938. even frames, generating a frame with unchanged height at half framerate.
  2939. @item interlacex2, 6
  2940. Double frame rate with unchanged height. Frames are inserted each
  2941. containing the second temporal field from the previous input frame and
  2942. the first temporal field from the next input frame. This mode relies on
  2943. the top_field_first flag. Useful for interlaced video displays with no
  2944. field synchronisation.
  2945. @end table
  2946. Numeric values are deprecated but are accepted for backward
  2947. compatibility reasons.
  2948. Default mode is @code{merge}.
  2949. @section transpose
  2950. Transpose rows with columns in the input video and optionally flip it.
  2951. This filter accepts the following named parameters:
  2952. @table @option
  2953. @item dir
  2954. Specify the transposition direction. Can assume the following values:
  2955. @table @samp
  2956. @item 0, 4
  2957. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  2958. @example
  2959. L.R L.l
  2960. . . -> . .
  2961. l.r R.r
  2962. @end example
  2963. @item 1, 5
  2964. Rotate by 90 degrees clockwise, that is:
  2965. @example
  2966. L.R l.L
  2967. . . -> . .
  2968. l.r r.R
  2969. @end example
  2970. @item 2, 6
  2971. Rotate by 90 degrees counterclockwise, that is:
  2972. @example
  2973. L.R R.r
  2974. . . -> . .
  2975. l.r L.l
  2976. @end example
  2977. @item 3, 7
  2978. Rotate by 90 degrees clockwise and vertically flip, that is:
  2979. @example
  2980. L.R r.R
  2981. . . -> . .
  2982. l.r l.L
  2983. @end example
  2984. @end table
  2985. For values between 4-7, the transposition is only done if the input
  2986. video geometry is portrait and not landscape. These values are
  2987. deprecated, the @code{passthrough} option should be used instead.
  2988. @item passthrough
  2989. Do not apply the transposition if the input geometry matches the one
  2990. specified by the specified value. It accepts the following values:
  2991. @table @samp
  2992. @item none
  2993. Always apply transposition.
  2994. @item portrait
  2995. Preserve portrait geometry (when @var{height} >= @var{width}).
  2996. @item landscape
  2997. Preserve landscape geometry (when @var{width} >= @var{height}).
  2998. @end table
  2999. Default value is @code{none}.
  3000. @end table
  3001. @section unsharp
  3002. Sharpen or blur the input video.
  3003. It accepts the following parameters:
  3004. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  3005. Negative values for the amount will blur the input video, while positive
  3006. values will sharpen. All parameters are optional and default to the
  3007. equivalent of the string '5:5:1.0:5:5:0.0'.
  3008. @table @option
  3009. @item luma_msize_x
  3010. Set the luma matrix horizontal size. It can be an integer between 3
  3011. and 13, default value is 5.
  3012. @item luma_msize_y
  3013. Set the luma matrix vertical size. It can be an integer between 3
  3014. and 13, default value is 5.
  3015. @item luma_amount
  3016. Set the luma effect strength. It can be a float number between -2.0
  3017. and 5.0, default value is 1.0.
  3018. @item chroma_msize_x
  3019. Set the chroma matrix horizontal size. It can be an integer between 3
  3020. and 13, default value is 5.
  3021. @item chroma_msize_y
  3022. Set the chroma matrix vertical size. It can be an integer between 3
  3023. and 13, default value is 5.
  3024. @item chroma_amount
  3025. Set the chroma effect strength. It can be a float number between -2.0
  3026. and 5.0, default value is 0.0.
  3027. @end table
  3028. @example
  3029. # Strong luma sharpen effect parameters
  3030. unsharp=7:7:2.5
  3031. # Strong blur of both luma and chroma parameters
  3032. unsharp=7:7:-2:7:7:-2
  3033. # Use the default values with @command{ffmpeg}
  3034. ffmpeg -i in.avi -vf "unsharp" out.mp4
  3035. @end example
  3036. @section vflip
  3037. Flip the input video vertically.
  3038. @example
  3039. ffmpeg -i in.avi -vf "vflip" out.avi
  3040. @end example
  3041. @section yadif
  3042. Deinterlace the input video ("yadif" means "yet another deinterlacing
  3043. filter").
  3044. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  3045. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  3046. following values:
  3047. @table @option
  3048. @item 0
  3049. output 1 frame for each frame
  3050. @item 1
  3051. output 1 frame for each field
  3052. @item 2
  3053. like 0 but skips spatial interlacing check
  3054. @item 3
  3055. like 1 but skips spatial interlacing check
  3056. @end table
  3057. Default value is 0.
  3058. @var{parity} specifies the picture field parity assumed for the input
  3059. interlaced video, accepts one of the following values:
  3060. @table @option
  3061. @item 0
  3062. assume top field first
  3063. @item 1
  3064. assume bottom field first
  3065. @item -1
  3066. enable automatic detection
  3067. @end table
  3068. Default value is -1.
  3069. If interlacing is unknown or decoder does not export this information,
  3070. top field first will be assumed.
  3071. @var{auto} specifies if deinterlacer should trust the interlaced flag
  3072. and only deinterlace frames marked as interlaced
  3073. @table @option
  3074. @item 0
  3075. deinterlace all frames
  3076. @item 1
  3077. only deinterlace frames marked as interlaced
  3078. @end table
  3079. Default value is 0.
  3080. @c man end VIDEO FILTERS
  3081. @chapter Video Sources
  3082. @c man begin VIDEO SOURCES
  3083. Below is a description of the currently available video sources.
  3084. @section buffer
  3085. Buffer video frames, and make them available to the filter chain.
  3086. This source is mainly intended for a programmatic use, in particular
  3087. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  3088. It accepts a list of options in the form of @var{key}=@var{value} pairs
  3089. separated by ":". A description of the accepted options follows.
  3090. @table @option
  3091. @item video_size
  3092. Specify the size (width and height) of the buffered video frames.
  3093. @item pix_fmt
  3094. A string representing the pixel format of the buffered video frames.
  3095. It may be a number corresponding to a pixel format, or a pixel format
  3096. name.
  3097. @item time_base
  3098. Specify the timebase assumed by the timestamps of the buffered frames.
  3099. @item time_base
  3100. Specify the frame rate expected for the video stream.
  3101. @item pixel_aspect
  3102. Specify the sample aspect ratio assumed by the video frames.
  3103. @item sws_param
  3104. Specify the optional parameters to be used for the scale filter which
  3105. is automatically inserted when an input change is detected in the
  3106. input size or format.
  3107. @end table
  3108. For example:
  3109. @example
  3110. buffer=size=320x240:pix_fmt=yuv410p:time_base=1/24:pixel_aspect=1/1
  3111. @end example
  3112. will instruct the source to accept video frames with size 320x240 and
  3113. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  3114. square pixels (1:1 sample aspect ratio).
  3115. Since the pixel format with name "yuv410p" corresponds to the number 6
  3116. (check the enum AVPixelFormat definition in @file{libavutil/pixfmt.h}),
  3117. this example corresponds to:
  3118. @example
  3119. buffer=size=320x240:pixfmt=6:time_base=1/24:pixel_aspect=1/1
  3120. @end example
  3121. Alternatively, the options can be specified as a flat string, but this
  3122. syntax is deprecated:
  3123. @var{width}:@var{height}:@var{pix_fmt}:@var{time_base.num}:@var{time_base.den}:@var{pixel_aspect.num}:@var{pixel_aspect.den}[:@var{sws_param}]
  3124. @section cellauto
  3125. Create a pattern generated by an elementary cellular automaton.
  3126. The initial state of the cellular automaton can be defined through the
  3127. @option{filename}, and @option{pattern} options. If such options are
  3128. not specified an initial state is created randomly.
  3129. At each new frame a new row in the video is filled with the result of
  3130. the cellular automaton next generation. The behavior when the whole
  3131. frame is filled is defined by the @option{scroll} option.
  3132. This source accepts a list of options in the form of
  3133. @var{key}=@var{value} pairs separated by ":". A description of the
  3134. accepted options follows.
  3135. @table @option
  3136. @item filename, f
  3137. Read the initial cellular automaton state, i.e. the starting row, from
  3138. the specified file.
  3139. In the file, each non-whitespace character is considered an alive
  3140. cell, a newline will terminate the row, and further characters in the
  3141. file will be ignored.
  3142. @item pattern, p
  3143. Read the initial cellular automaton state, i.e. the starting row, from
  3144. the specified string.
  3145. Each non-whitespace character in the string is considered an alive
  3146. cell, a newline will terminate the row, and further characters in the
  3147. string will be ignored.
  3148. @item rate, r
  3149. Set the video rate, that is the number of frames generated per second.
  3150. Default is 25.
  3151. @item random_fill_ratio, ratio
  3152. Set the random fill ratio for the initial cellular automaton row. It
  3153. is a floating point number value ranging from 0 to 1, defaults to
  3154. 1/PHI.
  3155. This option is ignored when a file or a pattern is specified.
  3156. @item random_seed, seed
  3157. Set the seed for filling randomly the initial row, must be an integer
  3158. included between 0 and UINT32_MAX. If not specified, or if explicitly
  3159. set to -1, the filter will try to use a good random seed on a best
  3160. effort basis.
  3161. @item rule
  3162. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  3163. Default value is 110.
  3164. @item size, s
  3165. Set the size of the output video.
  3166. If @option{filename} or @option{pattern} is specified, the size is set
  3167. by default to the width of the specified initial state row, and the
  3168. height is set to @var{width} * PHI.
  3169. If @option{size} is set, it must contain the width of the specified
  3170. pattern string, and the specified pattern will be centered in the
  3171. larger row.
  3172. If a filename or a pattern string is not specified, the size value
  3173. defaults to "320x518" (used for a randomly generated initial state).
  3174. @item scroll
  3175. If set to 1, scroll the output upward when all the rows in the output
  3176. have been already filled. If set to 0, the new generated row will be
  3177. written over the top row just after the bottom row is filled.
  3178. Defaults to 1.
  3179. @item start_full, full
  3180. If set to 1, completely fill the output with generated rows before
  3181. outputting the first frame.
  3182. This is the default behavior, for disabling set the value to 0.
  3183. @item stitch
  3184. If set to 1, stitch the left and right row edges together.
  3185. This is the default behavior, for disabling set the value to 0.
  3186. @end table
  3187. @subsection Examples
  3188. @itemize
  3189. @item
  3190. Read the initial state from @file{pattern}, and specify an output of
  3191. size 200x400.
  3192. @example
  3193. cellauto=f=pattern:s=200x400
  3194. @end example
  3195. @item
  3196. Generate a random initial row with a width of 200 cells, with a fill
  3197. ratio of 2/3:
  3198. @example
  3199. cellauto=ratio=2/3:s=200x200
  3200. @end example
  3201. @item
  3202. Create a pattern generated by rule 18 starting by a single alive cell
  3203. centered on an initial row with width 100:
  3204. @example
  3205. cellauto=p=@@:s=100x400:full=0:rule=18
  3206. @end example
  3207. @item
  3208. Specify a more elaborated initial pattern:
  3209. @example
  3210. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  3211. @end example
  3212. @end itemize
  3213. @section mandelbrot
  3214. Generate a Mandelbrot set fractal, and progressively zoom towards the
  3215. point specified with @var{start_x} and @var{start_y}.
  3216. This source accepts a list of options in the form of
  3217. @var{key}=@var{value} pairs separated by ":". A description of the
  3218. accepted options follows.
  3219. @table @option
  3220. @item end_pts
  3221. Set the terminal pts value. Default value is 400.
  3222. @item end_scale
  3223. Set the terminal scale value.
  3224. Must be a floating point value. Default value is 0.3.
  3225. @item inner
  3226. Set the inner coloring mode, that is the algorithm used to draw the
  3227. Mandelbrot fractal internal region.
  3228. It shall assume one of the following values:
  3229. @table @option
  3230. @item black
  3231. Set black mode.
  3232. @item convergence
  3233. Show time until convergence.
  3234. @item mincol
  3235. Set color based on point closest to the origin of the iterations.
  3236. @item period
  3237. Set period mode.
  3238. @end table
  3239. Default value is @var{mincol}.
  3240. @item bailout
  3241. Set the bailout value. Default value is 10.0.
  3242. @item maxiter
  3243. Set the maximum of iterations performed by the rendering
  3244. algorithm. Default value is 7189.
  3245. @item outer
  3246. Set outer coloring mode.
  3247. It shall assume one of following values:
  3248. @table @option
  3249. @item iteration_count
  3250. Set iteration cound mode.
  3251. @item normalized_iteration_count
  3252. set normalized iteration count mode.
  3253. @end table
  3254. Default value is @var{normalized_iteration_count}.
  3255. @item rate, r
  3256. Set frame rate, expressed as number of frames per second. Default
  3257. value is "25".
  3258. @item size, s
  3259. Set frame size. Default value is "640x480".
  3260. @item start_scale
  3261. Set the initial scale value. Default value is 3.0.
  3262. @item start_x
  3263. Set the initial x position. Must be a floating point value between
  3264. -100 and 100. Default value is -0.743643887037158704752191506114774.
  3265. @item start_y
  3266. Set the initial y position. Must be a floating point value between
  3267. -100 and 100. Default value is -0.131825904205311970493132056385139.
  3268. @end table
  3269. @section mptestsrc
  3270. Generate various test patterns, as generated by the MPlayer test filter.
  3271. The size of the generated video is fixed, and is 256x256.
  3272. This source is useful in particular for testing encoding features.
  3273. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  3274. separated by ":". The description of the accepted options follows.
  3275. @table @option
  3276. @item rate, r
  3277. Specify the frame rate of the sourced video, as the number of frames
  3278. generated per second. It has to be a string in the format
  3279. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  3280. number or a valid video frame rate abbreviation. The default value is
  3281. "25".
  3282. @item duration, d
  3283. Set the video duration of the sourced video. The accepted syntax is:
  3284. @example
  3285. [-]HH:MM:SS[.m...]
  3286. [-]S+[.m...]
  3287. @end example
  3288. See also the function @code{av_parse_time()}.
  3289. If not specified, or the expressed duration is negative, the video is
  3290. supposed to be generated forever.
  3291. @item test, t
  3292. Set the number or the name of the test to perform. Supported tests are:
  3293. @table @option
  3294. @item dc_luma
  3295. @item dc_chroma
  3296. @item freq_luma
  3297. @item freq_chroma
  3298. @item amp_luma
  3299. @item amp_chroma
  3300. @item cbp
  3301. @item mv
  3302. @item ring1
  3303. @item ring2
  3304. @item all
  3305. @end table
  3306. Default value is "all", which will cycle through the list of all tests.
  3307. @end table
  3308. For example the following:
  3309. @example
  3310. testsrc=t=dc_luma
  3311. @end example
  3312. will generate a "dc_luma" test pattern.
  3313. @section frei0r_src
  3314. Provide a frei0r source.
  3315. To enable compilation of this filter you need to install the frei0r
  3316. header and configure FFmpeg with @code{--enable-frei0r}.
  3317. The source supports the syntax:
  3318. @example
  3319. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  3320. @end example
  3321. @var{size} is the size of the video to generate, may be a string of the
  3322. form @var{width}x@var{height} or a frame size abbreviation.
  3323. @var{rate} is the rate of the video to generate, may be a string of
  3324. the form @var{num}/@var{den} or a frame rate abbreviation.
  3325. @var{src_name} is the name to the frei0r source to load. For more
  3326. information regarding frei0r and how to set the parameters read the
  3327. section @ref{frei0r} in the description of the video filters.
  3328. For example, to generate a frei0r partik0l source with size 200x200
  3329. and frame rate 10 which is overlayed on the overlay filter main input:
  3330. @example
  3331. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  3332. @end example
  3333. @section life
  3334. Generate a life pattern.
  3335. This source is based on a generalization of John Conway's life game.
  3336. The sourced input represents a life grid, each pixel represents a cell
  3337. which can be in one of two possible states, alive or dead. Every cell
  3338. interacts with its eight neighbours, which are the cells that are
  3339. horizontally, vertically, or diagonally adjacent.
  3340. At each interaction the grid evolves according to the adopted rule,
  3341. which specifies the number of neighbor alive cells which will make a
  3342. cell stay alive or born. The @option{rule} option allows to specify
  3343. the rule to adopt.
  3344. This source accepts a list of options in the form of
  3345. @var{key}=@var{value} pairs separated by ":". A description of the
  3346. accepted options follows.
  3347. @table @option
  3348. @item filename, f
  3349. Set the file from which to read the initial grid state. In the file,
  3350. each non-whitespace character is considered an alive cell, and newline
  3351. is used to delimit the end of each row.
  3352. If this option is not specified, the initial grid is generated
  3353. randomly.
  3354. @item rate, r
  3355. Set the video rate, that is the number of frames generated per second.
  3356. Default is 25.
  3357. @item random_fill_ratio, ratio
  3358. Set the random fill ratio for the initial random grid. It is a
  3359. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  3360. It is ignored when a file is specified.
  3361. @item random_seed, seed
  3362. Set the seed for filling the initial random grid, must be an integer
  3363. included between 0 and UINT32_MAX. If not specified, or if explicitly
  3364. set to -1, the filter will try to use a good random seed on a best
  3365. effort basis.
  3366. @item rule
  3367. Set the life rule.
  3368. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  3369. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  3370. @var{NS} specifies the number of alive neighbor cells which make a
  3371. live cell stay alive, and @var{NB} the number of alive neighbor cells
  3372. which make a dead cell to become alive (i.e. to "born").
  3373. "s" and "b" can be used in place of "S" and "B", respectively.
  3374. Alternatively a rule can be specified by an 18-bits integer. The 9
  3375. high order bits are used to encode the next cell state if it is alive
  3376. for each number of neighbor alive cells, the low order bits specify
  3377. the rule for "borning" new cells. Higher order bits encode for an
  3378. higher number of neighbor cells.
  3379. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  3380. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  3381. Default value is "S23/B3", which is the original Conway's game of life
  3382. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  3383. cells, and will born a new cell if there are three alive cells around
  3384. a dead cell.
  3385. @item size, s
  3386. Set the size of the output video.
  3387. If @option{filename} is specified, the size is set by default to the
  3388. same size of the input file. If @option{size} is set, it must contain
  3389. the size specified in the input file, and the initial grid defined in
  3390. that file is centered in the larger resulting area.
  3391. If a filename is not specified, the size value defaults to "320x240"
  3392. (used for a randomly generated initial grid).
  3393. @item stitch
  3394. If set to 1, stitch the left and right grid edges together, and the
  3395. top and bottom edges also. Defaults to 1.
  3396. @item mold
  3397. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  3398. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  3399. value from 0 to 255.
  3400. @item life_color
  3401. Set the color of living (or new born) cells.
  3402. @item death_color
  3403. Set the color of dead cells. If @option{mold} is set, this is the first color
  3404. used to represent a dead cell.
  3405. @item mold_color
  3406. Set mold color, for definitely dead and moldy cells.
  3407. @end table
  3408. @subsection Examples
  3409. @itemize
  3410. @item
  3411. Read a grid from @file{pattern}, and center it on a grid of size
  3412. 300x300 pixels:
  3413. @example
  3414. life=f=pattern:s=300x300
  3415. @end example
  3416. @item
  3417. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  3418. @example
  3419. life=ratio=2/3:s=200x200
  3420. @end example
  3421. @item
  3422. Specify a custom rule for evolving a randomly generated grid:
  3423. @example
  3424. life=rule=S14/B34
  3425. @end example
  3426. @item
  3427. Full example with slow death effect (mold) using @command{ffplay}:
  3428. @example
  3429. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  3430. @end example
  3431. @end itemize
  3432. @section color, nullsrc, rgbtestsrc, smptebars, testsrc
  3433. The @code{color} source provides an uniformly colored input.
  3434. The @code{nullsrc} source returns unprocessed video frames. It is
  3435. mainly useful to be employed in analysis / debugging tools, or as the
  3436. source for filters which ignore the input data.
  3437. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  3438. detecting RGB vs BGR issues. You should see a red, green and blue
  3439. stripe from top to bottom.
  3440. The @code{smptebars} source generates a color bars pattern, based on
  3441. the SMPTE Engineering Guideline EG 1-1990.
  3442. The @code{testsrc} source generates a test video pattern, showing a
  3443. color pattern, a scrolling gradient and a timestamp. This is mainly
  3444. intended for testing purposes.
  3445. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  3446. separated by ":". The description of the accepted options follows.
  3447. @table @option
  3448. @item color, c
  3449. Specify the color of the source, only used in the @code{color}
  3450. source. It can be the name of a color (case insensitive match) or a
  3451. 0xRRGGBB[AA] sequence, possibly followed by an alpha specifier. The
  3452. default value is "black".
  3453. @item size, s
  3454. Specify the size of the sourced video, it may be a string of the form
  3455. @var{width}x@var{height}, or the name of a size abbreviation. The
  3456. default value is "320x240".
  3457. @item rate, r
  3458. Specify the frame rate of the sourced video, as the number of frames
  3459. generated per second. It has to be a string in the format
  3460. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  3461. number or a valid video frame rate abbreviation. The default value is
  3462. "25".
  3463. @item sar
  3464. Set the sample aspect ratio of the sourced video.
  3465. @item duration, d
  3466. Set the video duration of the sourced video. The accepted syntax is:
  3467. @example
  3468. [-]HH[:MM[:SS[.m...]]]
  3469. [-]S+[.m...]
  3470. @end example
  3471. See also the function @code{av_parse_time()}.
  3472. If not specified, or the expressed duration is negative, the video is
  3473. supposed to be generated forever.
  3474. @item decimals, n
  3475. Set the number of decimals to show in the timestamp, only used in the
  3476. @code{testsrc} source.
  3477. The displayed timestamp value will correspond to the original
  3478. timestamp value multiplied by the power of 10 of the specified
  3479. value. Default value is 0.
  3480. @end table
  3481. For example the following:
  3482. @example
  3483. testsrc=duration=5.3:size=qcif:rate=10
  3484. @end example
  3485. will generate a video with a duration of 5.3 seconds, with size
  3486. 176x144 and a frame rate of 10 frames per second.
  3487. The following graph description will generate a red source
  3488. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  3489. frames per second.
  3490. @example
  3491. color=c=red@@0.2:s=qcif:r=10
  3492. @end example
  3493. If the input content is to be ignored, @code{nullsrc} can be used. The
  3494. following command generates noise in the luminance plane by employing
  3495. the @code{geq} filter:
  3496. @example
  3497. nullsrc=s=256x256, geq=random(1)*255:128:128
  3498. @end example
  3499. @c man end VIDEO SOURCES
  3500. @chapter Video Sinks
  3501. @c man begin VIDEO SINKS
  3502. Below is a description of the currently available video sinks.
  3503. @section buffersink
  3504. Buffer video frames, and make them available to the end of the filter
  3505. graph.
  3506. This sink is mainly intended for a programmatic use, in particular
  3507. through the interface defined in @file{libavfilter/buffersink.h}.
  3508. It does not require a string parameter in input, but you need to
  3509. specify a pointer to a list of supported pixel formats terminated by
  3510. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  3511. when initializing this sink.
  3512. @section nullsink
  3513. Null video sink, do absolutely nothing with the input video. It is
  3514. mainly useful as a template and to be employed in analysis / debugging
  3515. tools.
  3516. @c man end VIDEO SINKS
  3517. @chapter Multimedia Filters
  3518. @c man begin MULTIMEDIA FILTERS
  3519. Below is a description of the currently available multimedia filters.
  3520. @section asendcmd, sendcmd
  3521. Send commands to filters in the filtergraph.
  3522. These filters read commands to be sent to other filters in the
  3523. filtergraph.
  3524. @code{asendcmd} must be inserted between two audio filters,
  3525. @code{sendcmd} must be inserted between two video filters, but apart
  3526. from that they act the same way.
  3527. The specification of commands can be provided in the filter arguments
  3528. with the @var{commands} option, or in a file specified by the
  3529. @var{filename} option.
  3530. These filters accept the following options:
  3531. @table @option
  3532. @item commands, c
  3533. Set the commands to be read and sent to the other filters.
  3534. @item filename, f
  3535. Set the filename of the commands to be read and sent to the other
  3536. filters.
  3537. @end table
  3538. @subsection Commands syntax
  3539. A commands description consists of a sequence of interval
  3540. specifications, comprising a list of commands to be executed when a
  3541. particular event related to that interval occurs. The occurring event
  3542. is typically the current frame time entering or leaving a given time
  3543. interval.
  3544. An interval is specified by the following syntax:
  3545. @example
  3546. @var{START}[-@var{END}] @var{COMMANDS};
  3547. @end example
  3548. The time interval is specified by the @var{START} and @var{END} times.
  3549. @var{END} is optional and defaults to the maximum time.
  3550. The current frame time is considered within the specified interval if
  3551. it is included in the interval [@var{START}, @var{END}), that is when
  3552. the time is greater or equal to @var{START} and is lesser than
  3553. @var{END}.
  3554. @var{COMMANDS} consists of a sequence of one or more command
  3555. specifications, separated by ",", relating to that interval. The
  3556. syntax of a command specification is given by:
  3557. @example
  3558. [@var{FLAGS}] @var{TARGET} @var{COMMAND} @var{ARG}
  3559. @end example
  3560. @var{FLAGS} is optional and specifies the type of events relating to
  3561. the time interval which enable sending the specified command, and must
  3562. be a non-null sequence of identifier flags separated by "+" or "|" and
  3563. enclosed between "[" and "]".
  3564. The following flags are recognized:
  3565. @table @option
  3566. @item enter
  3567. The command is sent when the current frame timestamp enters the
  3568. specified interval. In other words, the command is sent when the
  3569. previous frame timestamp was not in the given interval, and the
  3570. current is.
  3571. @item leave
  3572. The command is sent when the current frame timestamp leaves the
  3573. specified interval. In other words, the command is sent when the
  3574. previous frame timestamp was in the given interval, and the
  3575. current is not.
  3576. @end table
  3577. If @var{FLAGS} is not specified, a default value of @code{[enter]} is
  3578. assumed.
  3579. @var{TARGET} specifies the target of the command, usually the name of
  3580. the filter class or a specific filter instance name.
  3581. @var{COMMAND} specifies the name of the command for the target filter.
  3582. @var{ARG} is optional and specifies the optional list of argument for
  3583. the given @var{COMMAND}.
  3584. Between one interval specification and another, whitespaces, or
  3585. sequences of characters starting with @code{#} until the end of line,
  3586. are ignored and can be used to annotate comments.
  3587. A simplified BNF description of the commands specification syntax
  3588. follows:
  3589. @example
  3590. @var{COMMAND_FLAG} ::= "enter" | "leave"
  3591. @var{COMMAND_FLAGS} ::= @var{COMMAND_FLAG} [(+|"|")@var{COMMAND_FLAG}]
  3592. @var{COMMAND} ::= ["[" @var{COMMAND_FLAGS} "]"] @var{TARGET} @var{COMMAND} [@var{ARG}]
  3593. @var{COMMANDS} ::= @var{COMMAND} [,@var{COMMANDS}]
  3594. @var{INTERVAL} ::= @var{START}[-@var{END}] @var{COMMANDS}
  3595. @var{INTERVALS} ::= @var{INTERVAL}[;@var{INTERVALS}]
  3596. @end example
  3597. @subsection Examples
  3598. @itemize
  3599. @item
  3600. Specify audio tempo change at second 4:
  3601. @example
  3602. asendcmd=c='4.0 atempo tempo 1.5',atempo
  3603. @end example
  3604. @item
  3605. Specify a list of drawtext and hue commands in a file.
  3606. @example
  3607. # show text in the interval 5-10
  3608. 5.0-10.0 [enter] drawtext reinit 'fontfile=FreeSerif.ttf:text=hello world',
  3609. [leave] drawtext reinit 'fontfile=FreeSerif.ttf:text=';
  3610. # desaturate the image in the interval 15-20
  3611. 15.0-20.0 [enter] hue reinit s=0,
  3612. [enter] drawtext reinit 'fontfile=FreeSerif.ttf:text=nocolor',
  3613. [leave] hue reinit s=1,
  3614. [leave] drawtext reinit 'fontfile=FreeSerif.ttf:text=color';
  3615. # apply an exponential saturation fade-out effect, starting from time 25
  3616. 25 [enter] hue s=exp(t-25)
  3617. @end example
  3618. A filtergraph allowing to read and process the above command list
  3619. stored in a file @file{test.cmd}, can be specified with:
  3620. @example
  3621. sendcmd=f=test.cmd,drawtext=fontfile=FreeSerif.ttf:text='',hue
  3622. @end example
  3623. @end itemize
  3624. @section asetpts, setpts
  3625. Change the PTS (presentation timestamp) of the input frames.
  3626. @code{asetpts} works on audio frames, @code{setpts} on video frames.
  3627. Accept in input an expression evaluated through the eval API, which
  3628. can contain the following constants:
  3629. @table @option
  3630. @item FRAME_RATE
  3631. frame rate, only defined for constant frame-rate video
  3632. @item PTS
  3633. the presentation timestamp in input
  3634. @item N
  3635. the count of the input frame, starting from 0.
  3636. @item NB_CONSUMED_SAMPLES
  3637. the number of consumed samples, not including the current frame (only
  3638. audio)
  3639. @item NB_SAMPLES
  3640. the number of samples in the current frame (only audio)
  3641. @item SAMPLE_RATE
  3642. audio sample rate
  3643. @item STARTPTS
  3644. the PTS of the first frame
  3645. @item STARTT
  3646. the time in seconds of the first frame
  3647. @item INTERLACED
  3648. tell if the current frame is interlaced
  3649. @item T
  3650. the time in seconds of the current frame
  3651. @item TB
  3652. the time base
  3653. @item POS
  3654. original position in the file of the frame, or undefined if undefined
  3655. for the current frame
  3656. @item PREV_INPTS
  3657. previous input PTS
  3658. @item PREV_INT
  3659. previous input time in seconds
  3660. @item PREV_OUTPTS
  3661. previous output PTS
  3662. @item PREV_OUTT
  3663. previous output time in seconds
  3664. @end table
  3665. @subsection Examples
  3666. @itemize
  3667. @item
  3668. Start counting PTS from zero
  3669. @example
  3670. setpts=PTS-STARTPTS
  3671. @end example
  3672. @item
  3673. Apply fast motion effect:
  3674. @example
  3675. setpts=0.5*PTS
  3676. @end example
  3677. @item
  3678. Apply slow motion effect:
  3679. @example
  3680. setpts=2.0*PTS
  3681. @end example
  3682. @item
  3683. Set fixed rate of 25 frames per second:
  3684. @example
  3685. setpts=N/(25*TB)
  3686. @end example
  3687. @item
  3688. Set fixed rate 25 fps with some jitter:
  3689. @example
  3690. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  3691. @end example
  3692. @item
  3693. Apply an offset of 10 seconds to the input PTS:
  3694. @example
  3695. setpts=PTS+10/TB
  3696. @end example
  3697. @end itemize
  3698. @section ebur128
  3699. EBU R128 scanner filter. This filter takes an audio stream as input and outputs
  3700. it unchanged. By default, it logs a message at a frequency of 10Hz with the
  3701. Momentary loudness (identified by @code{M}), Short-term loudness (@code{S}),
  3702. Integrated loudness (@code{I}) and Loudness Range (@code{LRA}).
  3703. The filter also has a video output (see the @var{video} option) with a real
  3704. time graph to observe the loudness evolution. The graphic contains the logged
  3705. message mentioned above, so it is not printed anymore when this option is set,
  3706. unless the verbose logging is set. The main graphing area contains the
  3707. short-term loudness (3 seconds of analysis), and the gauge on the right is for
  3708. the momentary loudness (400 milliseconds).
  3709. More information about the Loudness Recommendation EBU R128 on
  3710. @url{http://tech.ebu.ch/loudness}.
  3711. The filter accepts the following named parameters:
  3712. @table @option
  3713. @item video
  3714. Activate the video output. The audio stream is passed unchanged whether this
  3715. option is set or no. The video stream will be the first output stream if
  3716. activated. Default is @code{0}.
  3717. @item size
  3718. Set the video size. This option is for video only. Default and minimum
  3719. resolution is @code{640x480}.
  3720. @item meter
  3721. Set the EBU scale meter. Default is @code{9}. Common values are @code{9} and
  3722. @code{18}, respectively for EBU scale meter +9 and EBU scale meter +18. Any
  3723. other integer value between this range is allowed.
  3724. @end table
  3725. Example of real-time graph using @command{ffplay}, with a EBU scale meter +18:
  3726. @example
  3727. ffplay -f lavfi -i "amovie=input.mp3,ebur128=video=1:meter=18 [out0][out1]"
  3728. @end example
  3729. Run an analysis with @command{ffmpeg}:
  3730. @example
  3731. ffmpeg -nostats -i input.mp3 -filter_complex ebur128 -f null -
  3732. @end example
  3733. @section settb, asettb
  3734. Set the timebase to use for the output frames timestamps.
  3735. It is mainly useful for testing timebase configuration.
  3736. It accepts in input an arithmetic expression representing a rational.
  3737. The expression can contain the constants "AVTB" (the
  3738. default timebase), "intb" (the input timebase) and "sr" (the sample rate,
  3739. audio only).
  3740. The default value for the input is "intb".
  3741. @subsection Examples
  3742. @itemize
  3743. @item
  3744. Set the timebase to 1/25:
  3745. @example
  3746. settb=1/25
  3747. @end example
  3748. @item
  3749. Set the timebase to 1/10:
  3750. @example
  3751. settb=0.1
  3752. @end example
  3753. @item
  3754. Set the timebase to 1001/1000:
  3755. @example
  3756. settb=1+0.001
  3757. @end example
  3758. @item
  3759. Set the timebase to 2*intb:
  3760. @example
  3761. settb=2*intb
  3762. @end example
  3763. @item
  3764. Set the default timebase value:
  3765. @example
  3766. settb=AVTB
  3767. @end example
  3768. @end itemize
  3769. @section concat
  3770. Concatenate audio and video streams, joining them together one after the
  3771. other.
  3772. The filter works on segments of synchronized video and audio streams. All
  3773. segments must have the same number of streams of each type, and that will
  3774. also be the number of streams at output.
  3775. The filter accepts the following named parameters:
  3776. @table @option
  3777. @item n
  3778. Set the number of segments. Default is 2.
  3779. @item v
  3780. Set the number of output video streams, that is also the number of video
  3781. streams in each segment. Default is 1.
  3782. @item a
  3783. Set the number of output audio streams, that is also the number of video
  3784. streams in each segment. Default is 0.
  3785. @item unsafe
  3786. Activate unsafe mode: do not fail if segments have a different format.
  3787. @end table
  3788. The filter has @var{v}+@var{a} outputs: first @var{v} video outputs, then
  3789. @var{a} audio outputs.
  3790. There are @var{n}×(@var{v}+@var{a}) inputs: first the inputs for the first
  3791. segment, in the same order as the outputs, then the inputs for the second
  3792. segment, etc.
  3793. Related streams do not always have exactly the same duration, for various
  3794. reasons including codec frame size or sloppy authoring. For that reason,
  3795. related synchronized streams (e.g. a video and its audio track) should be
  3796. concatenated at once. The concat filter will use the duration of the longest
  3797. stream in each segment (except the last one), and if necessary pad shorter
  3798. audio streams with silence.
  3799. For this filter to work correctly, all segments must start at timestamp 0.
  3800. All corresponding streams must have the same parameters in all segments; the
  3801. filtering system will automatically select a common pixel format for video
  3802. streams, and a common sample format, sample rate and channel layout for
  3803. audio streams, but other settings, such as resolution, must be converted
  3804. explicitly by the user.
  3805. Different frame rates are acceptable but will result in variable frame rate
  3806. at output; be sure to configure the output file to handle it.
  3807. Examples:
  3808. @itemize
  3809. @item
  3810. Concatenate an opening, an episode and an ending, all in bilingual version
  3811. (video in stream 0, audio in streams 1 and 2):
  3812. @example
  3813. ffmpeg -i opening.mkv -i episode.mkv -i ending.mkv -filter_complex \
  3814. '[0:0] [0:1] [0:2] [1:0] [1:1] [1:2] [2:0] [2:1] [2:2]
  3815. concat=n=3:v=1:a=2 [v] [a1] [a2]' \
  3816. -map '[v]' -map '[a1]' -map '[a2]' output.mkv
  3817. @end example
  3818. @item
  3819. Concatenate two parts, handling audio and video separately, using the
  3820. (a)movie sources, and adjusting the resolution:
  3821. @example
  3822. movie=part1.mp4, scale=512:288 [v1] ; amovie=part1.mp4 [a1] ;
  3823. movie=part2.mp4, scale=512:288 [v2] ; amovie=part2.mp4 [a2] ;
  3824. [v1] [v2] concat [outv] ; [a1] [a2] concat=v=0:a=1 [outa]
  3825. @end example
  3826. Note that a desync will happen at the stitch if the audio and video streams
  3827. do not have exactly the same duration in the first file.
  3828. @end itemize
  3829. @section showspectrum
  3830. Convert input audio to a video output, representing the audio frequency
  3831. spectrum.
  3832. The filter accepts the following named parameters:
  3833. @table @option
  3834. @item size, s
  3835. Specify the video size for the output. Default value is @code{640x480}.
  3836. @item slide
  3837. Specify if the spectrum should slide along the window. Default value is
  3838. @code{0}.
  3839. @end table
  3840. The usage is very similar to the showwaves filter; see the examples in that
  3841. section.
  3842. @section showwaves
  3843. Convert input audio to a video output, representing the samples waves.
  3844. The filter accepts the following named parameters:
  3845. @table @option
  3846. @item n
  3847. Set the number of samples which are printed on the same column. A
  3848. larger value will decrease the frame rate. Must be a positive
  3849. integer. This option can be set only if the value for @var{rate}
  3850. is not explicitly specified.
  3851. @item rate, r
  3852. Set the (approximate) output frame rate. This is done by setting the
  3853. option @var{n}. Default value is "25".
  3854. @item size, s
  3855. Specify the video size for the output. Default value is "600x240".
  3856. @end table
  3857. Some examples follow.
  3858. @itemize
  3859. @item
  3860. Output the input file audio and the corresponding video representation
  3861. at the same time:
  3862. @example
  3863. amovie=a.mp3,asplit[out0],showwaves[out1]
  3864. @end example
  3865. @item
  3866. Create a synthetic signal and show it with showwaves, forcing a
  3867. framerate of 30 frames per second:
  3868. @example
  3869. aevalsrc=sin(1*2*PI*t)*sin(880*2*PI*t):cos(2*PI*200*t),asplit[out0],showwaves=r=30[out1]
  3870. @end example
  3871. @end itemize
  3872. @c man end MULTIMEDIA FILTERS
  3873. @chapter Multimedia Sources
  3874. @c man begin MULTIMEDIA SOURCES
  3875. Below is a description of the currently available multimedia sources.
  3876. @section amovie
  3877. This is the same as @ref{src_movie} source, except it selects an audio
  3878. stream by default.
  3879. @anchor{src_movie}
  3880. @section movie
  3881. Read audio and/or video stream(s) from a movie container.
  3882. It accepts the syntax: @var{movie_name}[:@var{options}] where
  3883. @var{movie_name} is the name of the resource to read (not necessarily
  3884. a file but also a device or a stream accessed through some protocol),
  3885. and @var{options} is an optional sequence of @var{key}=@var{value}
  3886. pairs, separated by ":".
  3887. The description of the accepted options follows.
  3888. @table @option
  3889. @item format_name, f
  3890. Specifies the format assumed for the movie to read, and can be either
  3891. the name of a container or an input device. If not specified the
  3892. format is guessed from @var{movie_name} or by probing.
  3893. @item seek_point, sp
  3894. Specifies the seek point in seconds, the frames will be output
  3895. starting from this seek point, the parameter is evaluated with
  3896. @code{av_strtod} so the numerical value may be suffixed by an IS
  3897. postfix. Default value is "0".
  3898. @item streams, s
  3899. Specifies the streams to read. Several streams can be specified, separated
  3900. by "+". The source will then have as many outputs, in the same order. The
  3901. syntax is explained in the @ref{Stream specifiers} chapter. Two special
  3902. names, "dv" and "da" specify respectively the default (best suited) video
  3903. and audio stream. Default is "dv", or "da" if the filter is called as
  3904. "amovie".
  3905. @item stream_index, si
  3906. Specifies the index of the video stream to read. If the value is -1,
  3907. the best suited video stream will be automatically selected. Default
  3908. value is "-1". Deprecated. If the filter is called "amovie", it will select
  3909. audio instead of video.
  3910. @item loop
  3911. Specifies how many times to read the stream in sequence.
  3912. If the value is less than 1, the stream will be read again and again.
  3913. Default value is "1".
  3914. Note that when the movie is looped the source timestamps are not
  3915. changed, so it will generate non monotonically increasing timestamps.
  3916. @end table
  3917. This filter allows to overlay a second video on top of main input of
  3918. a filtergraph as shown in this graph:
  3919. @example
  3920. input -----------> deltapts0 --> overlay --> output
  3921. ^
  3922. |
  3923. movie --> scale--> deltapts1 -------+
  3924. @end example
  3925. Some examples follow.
  3926. @itemize
  3927. @item
  3928. Skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  3929. on top of the input labelled as "in":
  3930. @example
  3931. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  3932. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  3933. @end example
  3934. @item
  3935. Read from a video4linux2 device, and overlay it on top of the input
  3936. labelled as "in":
  3937. @example
  3938. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  3939. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  3940. @end example
  3941. @item
  3942. Read the first video stream and the audio stream with id 0x81 from
  3943. dvd.vob; the video is connected to the pad named "video" and the audio is
  3944. connected to the pad named "audio":
  3945. @example
  3946. movie=dvd.vob:s=v:0+#0x81 [video] [audio]
  3947. @end example
  3948. @end itemize
  3949. @c man end MULTIMEDIA SOURCES