You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1013 lines
31KB

  1. /*
  2. * Copyright (c) 2003 The FFmpeg Project.
  3. *
  4. * This library is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU Lesser General Public
  6. * License as published by the Free Software Foundation; either
  7. * version 2 of the License, or (at your option) any later version.
  8. *
  9. * This library is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * Lesser General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU Lesser General Public
  15. * License along with this library; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. *
  18. *
  19. * How to use this decoder:
  20. * SVQ3 data is transported within Apple Quicktime files. Quicktime files
  21. * have stsd atoms to describe media trak properties. A stsd atom for a
  22. * video trak contains 1 or more ImageDescription atoms. These atoms begin
  23. * with the 4-byte length of the atom followed by the codec fourcc. Some
  24. * decoders need information in this atom to operate correctly. Such
  25. * is the case with SVQ3. In order to get the best use out of this decoder,
  26. * the calling app must make the SVQ3 ImageDescription atom available
  27. * via the AVCodecContext's extradata[_size] field:
  28. *
  29. * AVCodecContext.extradata = pointer to ImageDescription, first characters
  30. * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
  31. * AVCodecContext.extradata_size = size of ImageDescription atom memory
  32. * buffer (which will be the same as the ImageDescription atom size field
  33. * from the QT file, minus 4 bytes since the length is missing)
  34. *
  35. * You will know you have these parameters passed correctly when the decoder
  36. * correctly decodes this file:
  37. * ftp://ftp.mplayerhq.hu/MPlayer/samples/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
  38. *
  39. */
  40. /**
  41. * @file svq3.c
  42. * svq3 decoder.
  43. */
  44. #define FULLPEL_MODE 1
  45. #define HALFPEL_MODE 2
  46. #define THIRDPEL_MODE 3
  47. #define PREDICT_MODE 4
  48. /* dual scan (from some older h264 draft)
  49. o-->o-->o o
  50. | /|
  51. o o o / o
  52. | / | |/ |
  53. o o o o
  54. /
  55. o-->o-->o-->o
  56. */
  57. static const uint8_t svq3_scan[16]={
  58. 0+0*4, 1+0*4, 2+0*4, 2+1*4,
  59. 2+2*4, 3+0*4, 3+1*4, 3+2*4,
  60. 0+1*4, 0+2*4, 1+1*4, 1+2*4,
  61. 0+3*4, 1+3*4, 2+3*4, 3+3*4,
  62. };
  63. static const uint8_t svq3_pred_0[25][2] = {
  64. { 0, 0 },
  65. { 1, 0 }, { 0, 1 },
  66. { 0, 2 }, { 1, 1 }, { 2, 0 },
  67. { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
  68. { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
  69. { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
  70. { 2, 4 }, { 3, 3 }, { 4, 2 },
  71. { 4, 3 }, { 3, 4 },
  72. { 4, 4 }
  73. };
  74. static const int8_t svq3_pred_1[6][6][5] = {
  75. { { 2,-1,-1,-1,-1 }, { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 },
  76. { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 }, { 1, 2,-1,-1,-1 } },
  77. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
  78. { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
  79. { { 2, 0,-1,-1,-1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
  80. { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
  81. { { 2, 0,-1,-1,-1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
  82. { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
  83. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
  84. { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
  85. { { 0, 2,-1,-1,-1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
  86. { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
  87. };
  88. static const struct { uint8_t run; uint8_t level; } svq3_dct_tables[2][16] = {
  89. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
  90. { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
  91. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
  92. { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
  93. };
  94. static const uint32_t svq3_dequant_coeff[32] = {
  95. 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
  96. 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
  97. 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
  98. 61694, 68745, 77615, 89113,100253,109366,126635,141533
  99. };
  100. static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp){
  101. const int qmul= svq3_dequant_coeff[qp];
  102. #define stride 16
  103. int i;
  104. int temp[16];
  105. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  106. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  107. for(i=0; i<4; i++){
  108. const int offset= y_offset[i];
  109. const int z0= 13*(block[offset+stride*0] + block[offset+stride*4]);
  110. const int z1= 13*(block[offset+stride*0] - block[offset+stride*4]);
  111. const int z2= 7* block[offset+stride*1] - 17*block[offset+stride*5];
  112. const int z3= 17* block[offset+stride*1] + 7*block[offset+stride*5];
  113. temp[4*i+0]= z0+z3;
  114. temp[4*i+1]= z1+z2;
  115. temp[4*i+2]= z1-z2;
  116. temp[4*i+3]= z0-z3;
  117. }
  118. for(i=0; i<4; i++){
  119. const int offset= x_offset[i];
  120. const int z0= 13*(temp[4*0+i] + temp[4*2+i]);
  121. const int z1= 13*(temp[4*0+i] - temp[4*2+i]);
  122. const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
  123. const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
  124. block[stride*0 +offset]= ((z0 + z3)*qmul + 0x80000)>>20;
  125. block[stride*2 +offset]= ((z1 + z2)*qmul + 0x80000)>>20;
  126. block[stride*8 +offset]= ((z1 - z2)*qmul + 0x80000)>>20;
  127. block[stride*10+offset]= ((z0 - z3)*qmul + 0x80000)>>20;
  128. }
  129. }
  130. #undef stride
  131. static void svq3_add_idct_c (uint8_t *dst, DCTELEM *block, int stride, int qp, int dc){
  132. const int qmul= svq3_dequant_coeff[qp];
  133. int i;
  134. uint8_t *cm = cropTbl + MAX_NEG_CROP;
  135. if (dc) {
  136. dc = 13*13*((dc == 1) ? 1538*block[0] : ((qmul*(block[0] >> 3)) / 2));
  137. block[0] = 0;
  138. }
  139. for (i=0; i < 4; i++) {
  140. const int z0= 13*(block[0 + 4*i] + block[2 + 4*i]);
  141. const int z1= 13*(block[0 + 4*i] - block[2 + 4*i]);
  142. const int z2= 7* block[1 + 4*i] - 17*block[3 + 4*i];
  143. const int z3= 17* block[1 + 4*i] + 7*block[3 + 4*i];
  144. block[0 + 4*i]= z0 + z3;
  145. block[1 + 4*i]= z1 + z2;
  146. block[2 + 4*i]= z1 - z2;
  147. block[3 + 4*i]= z0 - z3;
  148. }
  149. for (i=0; i < 4; i++) {
  150. const int z0= 13*(block[i + 4*0] + block[i + 4*2]);
  151. const int z1= 13*(block[i + 4*0] - block[i + 4*2]);
  152. const int z2= 7* block[i + 4*1] - 17*block[i + 4*3];
  153. const int z3= 17* block[i + 4*1] + 7*block[i + 4*3];
  154. const int rr= (dc + 0x80000);
  155. dst[i + stride*0]= cm[ dst[i + stride*0] + (((z0 + z3)*qmul + rr) >> 20) ];
  156. dst[i + stride*1]= cm[ dst[i + stride*1] + (((z1 + z2)*qmul + rr) >> 20) ];
  157. dst[i + stride*2]= cm[ dst[i + stride*2] + (((z1 - z2)*qmul + rr) >> 20) ];
  158. dst[i + stride*3]= cm[ dst[i + stride*3] + (((z0 - z3)*qmul + rr) >> 20) ];
  159. }
  160. }
  161. static void pred4x4_down_left_svq3_c(uint8_t *src, uint8_t *topright, int stride){
  162. LOAD_TOP_EDGE
  163. LOAD_LEFT_EDGE
  164. const __attribute__((unused)) int unu0= t0;
  165. const __attribute__((unused)) int unu1= l0;
  166. src[0+0*stride]=(l1 + t1)>>1;
  167. src[1+0*stride]=
  168. src[0+1*stride]=(l2 + t2)>>1;
  169. src[2+0*stride]=
  170. src[1+1*stride]=
  171. src[0+2*stride]=
  172. src[3+0*stride]=
  173. src[2+1*stride]=
  174. src[1+2*stride]=
  175. src[0+3*stride]=
  176. src[3+1*stride]=
  177. src[2+2*stride]=
  178. src[1+3*stride]=
  179. src[3+2*stride]=
  180. src[2+3*stride]=
  181. src[3+3*stride]=(l3 + t3)>>1;
  182. }
  183. static void pred16x16_plane_svq3_c(uint8_t *src, int stride){
  184. pred16x16_plane_compat_c(src, stride, 1);
  185. }
  186. static inline int svq3_decode_block (GetBitContext *gb, DCTELEM *block,
  187. int index, const int type) {
  188. static const uint8_t *const scan_patterns[4] =
  189. { luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };
  190. int run, level, sign, vlc, limit;
  191. const int intra = (3 * type) >> 2;
  192. const uint8_t *const scan = scan_patterns[type];
  193. for (limit=(16 >> intra); index < 16; index=limit, limit+=8) {
  194. for (; (vlc = svq3_get_ue_golomb (gb)) != 0; index++) {
  195. if (vlc == INVALID_VLC)
  196. return -1;
  197. sign = (vlc & 0x1) - 1;
  198. vlc = (vlc + 1) >> 1;
  199. if (type == 3) {
  200. if (vlc < 3) {
  201. run = 0;
  202. level = vlc;
  203. } else if (vlc < 4) {
  204. run = 1;
  205. level = 1;
  206. } else {
  207. run = (vlc & 0x3);
  208. level = ((vlc + 9) >> 2) - run;
  209. }
  210. } else {
  211. if (vlc < 16) {
  212. run = svq3_dct_tables[intra][vlc].run;
  213. level = svq3_dct_tables[intra][vlc].level;
  214. } else if (intra) {
  215. run = (vlc & 0x7);
  216. level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
  217. } else {
  218. run = (vlc & 0xF);
  219. level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
  220. }
  221. }
  222. if ((index += run) >= limit)
  223. return -1;
  224. block[scan[index]] = (level ^ sign) - sign;
  225. }
  226. if (type != 2) {
  227. break;
  228. }
  229. }
  230. return 0;
  231. }
  232. static inline void svq3_mc_dir_part (MpegEncContext *s,
  233. int x, int y, int width, int height,
  234. int mx, int my, int dxy,
  235. int thirdpel, int dir, int avg) {
  236. const Picture *pic = (dir == 0) ? &s->last_picture : &s->next_picture;
  237. uint8_t *src, *dest;
  238. int i, emu = 0;
  239. int blocksize= 2 - (width>>3); //16->0, 8->1, 4->2
  240. mx += x;
  241. my += y;
  242. if (mx < 0 || mx >= (s->h_edge_pos - width - 1) ||
  243. my < 0 || my >= (s->v_edge_pos - height - 1)) {
  244. if ((s->flags & CODEC_FLAG_EMU_EDGE)) {
  245. emu = 1;
  246. }
  247. mx = clip (mx, -16, (s->h_edge_pos - width + 15));
  248. my = clip (my, -16, (s->v_edge_pos - height + 15));
  249. }
  250. /* form component predictions */
  251. dest = s->current_picture.data[0] + x + y*s->linesize;
  252. src = pic->data[0] + mx + my*s->linesize;
  253. if (emu) {
  254. ff_emulated_edge_mc (s->edge_emu_buffer, src, s->linesize, (width + 1), (height + 1),
  255. mx, my, s->h_edge_pos, s->v_edge_pos);
  256. src = s->edge_emu_buffer;
  257. }
  258. if(thirdpel)
  259. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->linesize, width, height);
  260. else
  261. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->linesize, height);
  262. if (!(s->flags & CODEC_FLAG_GRAY)) {
  263. mx = (mx + (mx < (int) x)) >> 1;
  264. my = (my + (my < (int) y)) >> 1;
  265. width = (width >> 1);
  266. height = (height >> 1);
  267. blocksize++;
  268. for (i=1; i < 3; i++) {
  269. dest = s->current_picture.data[i] + (x >> 1) + (y >> 1)*s->uvlinesize;
  270. src = pic->data[i] + mx + my*s->uvlinesize;
  271. if (emu) {
  272. ff_emulated_edge_mc (s->edge_emu_buffer, src, s->uvlinesize, (width + 1), (height + 1),
  273. mx, my, (s->h_edge_pos >> 1), (s->v_edge_pos >> 1));
  274. src = s->edge_emu_buffer;
  275. }
  276. if(thirdpel)
  277. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->uvlinesize, width, height);
  278. else
  279. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->uvlinesize, height);
  280. }
  281. }
  282. }
  283. static inline int svq3_mc_dir (H264Context *h, int size, int mode, int dir, int avg) {
  284. int i, j, k, mx, my, dx, dy, x, y;
  285. MpegEncContext *const s = (MpegEncContext *) h;
  286. const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1);
  287. const int part_height = 16 >> ((unsigned) (size + 1) / 3);
  288. const int extra_width = (mode == PREDICT_MODE) ? -16*6 : 0;
  289. const int h_edge_pos = 6*(s->h_edge_pos - part_width ) - extra_width;
  290. const int v_edge_pos = 6*(s->v_edge_pos - part_height) - extra_width;
  291. for (i=0; i < 16; i+=part_height) {
  292. for (j=0; j < 16; j+=part_width) {
  293. const int b_xy = (4*s->mb_x+(j>>2)) + (4*s->mb_y+(i>>2))*h->b_stride;
  294. int dxy;
  295. x = 16*s->mb_x + j;
  296. y = 16*s->mb_y + i;
  297. k = ((j>>2)&1) + ((i>>1)&2) + ((j>>1)&4) + (i&8);
  298. if (mode != PREDICT_MODE) {
  299. pred_motion (h, k, (part_width >> 2), dir, 1, &mx, &my);
  300. } else {
  301. mx = s->next_picture.motion_val[0][b_xy][0]<<1;
  302. my = s->next_picture.motion_val[0][b_xy][1]<<1;
  303. if (dir == 0) {
  304. mx = ((mx * h->frame_num_offset) / h->prev_frame_num_offset + 1)>>1;
  305. my = ((my * h->frame_num_offset) / h->prev_frame_num_offset + 1)>>1;
  306. } else {
  307. mx = ((mx * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1)>>1;
  308. my = ((my * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1)>>1;
  309. }
  310. }
  311. /* clip motion vector prediction to frame border */
  312. mx = clip (mx, extra_width - 6*x, h_edge_pos - 6*x);
  313. my = clip (my, extra_width - 6*y, v_edge_pos - 6*y);
  314. /* get (optional) motion vector differential */
  315. if (mode == PREDICT_MODE) {
  316. dx = dy = 0;
  317. } else {
  318. dy = svq3_get_se_golomb (&s->gb);
  319. dx = svq3_get_se_golomb (&s->gb);
  320. if (dx == INVALID_VLC || dy == INVALID_VLC) {
  321. av_log(h->s.avctx, AV_LOG_ERROR, "invalid MV vlc\n");
  322. return -1;
  323. }
  324. }
  325. /* compute motion vector */
  326. if (mode == THIRDPEL_MODE) {
  327. int fx, fy;
  328. mx = ((mx + 1)>>1) + dx;
  329. my = ((my + 1)>>1) + dy;
  330. fx= ((unsigned)(mx + 0x3000))/3 - 0x1000;
  331. fy= ((unsigned)(my + 0x3000))/3 - 0x1000;
  332. dxy= (mx - 3*fx) + 4*(my - 3*fy);
  333. svq3_mc_dir_part (s, x, y, part_width, part_height, fx, fy, dxy, 1, dir, avg);
  334. mx += mx;
  335. my += my;
  336. } else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {
  337. mx = ((unsigned)(mx + 1 + 0x3000))/3 + dx - 0x1000;
  338. my = ((unsigned)(my + 1 + 0x3000))/3 + dy - 0x1000;
  339. dxy= (mx&1) + 2*(my&1);
  340. svq3_mc_dir_part (s, x, y, part_width, part_height, mx>>1, my>>1, dxy, 0, dir, avg);
  341. mx *= 3;
  342. my *= 3;
  343. } else {
  344. mx = ((unsigned)(mx + 3 + 0x6000))/6 + dx - 0x1000;
  345. my = ((unsigned)(my + 3 + 0x6000))/6 + dy - 0x1000;
  346. svq3_mc_dir_part (s, x, y, part_width, part_height, mx, my, 0, 0, dir, avg);
  347. mx *= 6;
  348. my *= 6;
  349. }
  350. /* update mv_cache */
  351. if (mode != PREDICT_MODE) {
  352. int32_t mv = pack16to32(mx,my);
  353. if (part_height == 8 && i < 8) {
  354. *(int32_t *) h->mv_cache[dir][scan8[k] + 1*8] = mv;
  355. if (part_width == 8 && j < 8) {
  356. *(int32_t *) h->mv_cache[dir][scan8[k] + 1 + 1*8] = mv;
  357. }
  358. }
  359. if (part_width == 8 && j < 8) {
  360. *(int32_t *) h->mv_cache[dir][scan8[k] + 1] = mv;
  361. }
  362. if (part_width == 4 || part_height == 4) {
  363. *(int32_t *) h->mv_cache[dir][scan8[k]] = mv;
  364. }
  365. }
  366. /* write back motion vectors */
  367. fill_rectangle(s->current_picture.motion_val[dir][b_xy], part_width>>2, part_height>>2, h->b_stride, pack16to32(mx,my), 4);
  368. }
  369. }
  370. return 0;
  371. }
  372. static int svq3_decode_mb (H264Context *h, unsigned int mb_type) {
  373. int i, j, k, m, dir, mode;
  374. int cbp = 0;
  375. uint32_t vlc;
  376. int8_t *top, *left;
  377. MpegEncContext *const s = (MpegEncContext *) h;
  378. const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  379. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  380. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  381. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  382. h->topright_samples_available = 0xFFFF;
  383. if (mb_type == 0) { /* SKIP */
  384. if (s->pict_type == P_TYPE || s->next_picture.mb_type[mb_xy] == -1) {
  385. svq3_mc_dir_part (s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 0, 0);
  386. if (s->pict_type == B_TYPE) {
  387. svq3_mc_dir_part (s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 1, 1);
  388. }
  389. mb_type = MB_TYPE_SKIP;
  390. } else {
  391. mb_type= FFMIN(s->next_picture.mb_type[mb_xy], 6);
  392. if(svq3_mc_dir (h, mb_type, PREDICT_MODE, 0, 0) < 0)
  393. return -1;
  394. if(svq3_mc_dir (h, mb_type, PREDICT_MODE, 1, 1) < 0)
  395. return -1;
  396. mb_type = MB_TYPE_16x16;
  397. }
  398. } else if (mb_type < 8) { /* INTER */
  399. if (h->thirdpel_flag && h->halfpel_flag == !get_bits (&s->gb, 1)) {
  400. mode = THIRDPEL_MODE;
  401. } else if (h->halfpel_flag && h->thirdpel_flag == !get_bits (&s->gb, 1)) {
  402. mode = HALFPEL_MODE;
  403. } else {
  404. mode = FULLPEL_MODE;
  405. }
  406. /* fill caches */
  407. /* note ref_cache should contain here:
  408. ????????
  409. ???11111
  410. N??11111
  411. N??11111
  412. N??11111
  413. N
  414. */
  415. for (m=0; m < 2; m++) {
  416. if (s->mb_x > 0 && h->intra4x4_pred_mode[mb_xy - 1][0] != -1) {
  417. for (i=0; i < 4; i++) {
  418. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - 1 + i*h->b_stride];
  419. }
  420. } else {
  421. for (i=0; i < 4; i++) {
  422. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = 0;
  423. }
  424. }
  425. if (s->mb_y > 0) {
  426. memcpy (h->mv_cache[m][scan8[0] - 1*8], s->current_picture.motion_val[m][b_xy - h->b_stride], 4*2*sizeof(int16_t));
  427. memset (&h->ref_cache[m][scan8[0] - 1*8], (h->intra4x4_pred_mode[mb_xy - s->mb_stride][4] == -1) ? PART_NOT_AVAILABLE : 1, 4);
  428. if (s->mb_x < (s->mb_width - 1)) {
  429. *(uint32_t *) h->mv_cache[m][scan8[0] + 4 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride + 4];
  430. h->ref_cache[m][scan8[0] + 4 - 1*8] =
  431. (h->intra4x4_pred_mode[mb_xy - s->mb_stride + 1][0] == -1 ||
  432. h->intra4x4_pred_mode[mb_xy - s->mb_stride][4] == -1) ? PART_NOT_AVAILABLE : 1;
  433. }else
  434. h->ref_cache[m][scan8[0] + 4 - 1*8] = PART_NOT_AVAILABLE;
  435. if (s->mb_x > 0) {
  436. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride - 1];
  437. h->ref_cache[m][scan8[0] - 1 - 1*8] = (h->intra4x4_pred_mode[mb_xy - s->mb_stride - 1][3] == -1) ? PART_NOT_AVAILABLE : 1;
  438. }else
  439. h->ref_cache[m][scan8[0] - 1 - 1*8] = PART_NOT_AVAILABLE;
  440. }else
  441. memset (&h->ref_cache[m][scan8[0] - 1*8 - 1], PART_NOT_AVAILABLE, 8);
  442. if (s->pict_type != B_TYPE)
  443. break;
  444. }
  445. /* decode motion vector(s) and form prediction(s) */
  446. if (s->pict_type == P_TYPE) {
  447. if(svq3_mc_dir (h, (mb_type - 1), mode, 0, 0) < 0)
  448. return -1;
  449. } else { /* B_TYPE */
  450. if (mb_type != 2) {
  451. if(svq3_mc_dir (h, 0, mode, 0, 0) < 0)
  452. return -1;
  453. } else {
  454. for (i=0; i < 4; i++) {
  455. memset (s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  456. }
  457. }
  458. if (mb_type != 1) {
  459. if(svq3_mc_dir (h, 0, mode, 1, (mb_type == 3)) < 0)
  460. return -1;
  461. } else {
  462. for (i=0; i < 4; i++) {
  463. memset (s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  464. }
  465. }
  466. }
  467. mb_type = MB_TYPE_16x16;
  468. } else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
  469. memset (h->intra4x4_pred_mode_cache, -1, 8*5*sizeof(int8_t));
  470. if (mb_type == 8) {
  471. if (s->mb_x > 0) {
  472. for (i=0; i < 4; i++) {
  473. h->intra4x4_pred_mode_cache[scan8[0] - 1 + i*8] = h->intra4x4_pred_mode[mb_xy - 1][i];
  474. }
  475. if (h->intra4x4_pred_mode_cache[scan8[0] - 1] == -1) {
  476. h->left_samples_available = 0x5F5F;
  477. }
  478. }
  479. if (s->mb_y > 0) {
  480. h->intra4x4_pred_mode_cache[4+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][4];
  481. h->intra4x4_pred_mode_cache[5+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][5];
  482. h->intra4x4_pred_mode_cache[6+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][6];
  483. h->intra4x4_pred_mode_cache[7+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][3];
  484. if (h->intra4x4_pred_mode_cache[4+8*0] == -1) {
  485. h->top_samples_available = 0x33FF;
  486. }
  487. }
  488. /* decode prediction codes for luma blocks */
  489. for (i=0; i < 16; i+=2) {
  490. vlc = svq3_get_ue_golomb (&s->gb);
  491. if (vlc >= 25){
  492. av_log(h->s.avctx, AV_LOG_ERROR, "luma prediction:%d\n", vlc);
  493. return -1;
  494. }
  495. left = &h->intra4x4_pred_mode_cache[scan8[i] - 1];
  496. top = &h->intra4x4_pred_mode_cache[scan8[i] - 8];
  497. left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
  498. left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
  499. if (left[1] == -1 || left[2] == -1){
  500. av_log(h->s.avctx, AV_LOG_ERROR, "weird prediction\n");
  501. return -1;
  502. }
  503. }
  504. } else { /* mb_type == 33, DC_128_PRED block type */
  505. for (i=0; i < 4; i++) {
  506. memset (&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_PRED, 4);
  507. }
  508. }
  509. write_back_intra_pred_mode (h);
  510. if (mb_type == 8) {
  511. check_intra4x4_pred_mode (h);
  512. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  513. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  514. } else {
  515. for (i=0; i < 4; i++) {
  516. memset (&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_128_PRED, 4);
  517. }
  518. h->top_samples_available = 0x33FF;
  519. h->left_samples_available = 0x5F5F;
  520. }
  521. mb_type = MB_TYPE_INTRA4x4;
  522. } else { /* INTRA16x16 */
  523. dir = i_mb_type_info[mb_type - 8].pred_mode;
  524. dir = (dir >> 1) ^ 3*(dir & 1) ^ 1;
  525. if ((h->intra16x16_pred_mode = check_intra_pred_mode (h, dir)) == -1){
  526. av_log(h->s.avctx, AV_LOG_ERROR, "check_intra_pred_mode = -1\n");
  527. return -1;
  528. }
  529. cbp = i_mb_type_info[mb_type - 8].cbp;
  530. mb_type = MB_TYPE_INTRA16x16;
  531. }
  532. if (!IS_INTER(mb_type) && s->pict_type != I_TYPE) {
  533. for (i=0; i < 4; i++) {
  534. memset (s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  535. }
  536. if (s->pict_type == B_TYPE) {
  537. for (i=0; i < 4; i++) {
  538. memset (s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  539. }
  540. }
  541. }
  542. if (!IS_INTRA4x4(mb_type)) {
  543. memset (h->intra4x4_pred_mode[mb_xy], DC_PRED, 8);
  544. }
  545. if (!IS_SKIP(mb_type) || s->pict_type == B_TYPE) {
  546. memset (h->non_zero_count_cache + 8, 0, 4*9*sizeof(uint8_t));
  547. s->dsp.clear_blocks(h->mb);
  548. }
  549. if (!IS_INTRA16x16(mb_type) && (!IS_SKIP(mb_type) || s->pict_type == B_TYPE)) {
  550. if ((vlc = svq3_get_ue_golomb (&s->gb)) >= 48){
  551. av_log(h->s.avctx, AV_LOG_ERROR, "cbp_vlc=%d\n", vlc);
  552. return -1;
  553. }
  554. cbp = IS_INTRA(mb_type) ? golomb_to_intra4x4_cbp[vlc] : golomb_to_inter_cbp[vlc];
  555. }
  556. if (IS_INTRA16x16(mb_type) || (s->pict_type != I_TYPE && s->adaptive_quant && cbp)) {
  557. s->qscale += svq3_get_se_golomb (&s->gb);
  558. if (s->qscale > 31){
  559. av_log(h->s.avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale);
  560. return -1;
  561. }
  562. }
  563. if (IS_INTRA16x16(mb_type)) {
  564. if (svq3_decode_block (&s->gb, h->mb, 0, 0)){
  565. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding intra luma dc\n");
  566. return -1;
  567. }
  568. }
  569. if (cbp) {
  570. const int index = IS_INTRA16x16(mb_type) ? 1 : 0;
  571. const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
  572. for (i=0; i < 4; i++) {
  573. if ((cbp & (1 << i))) {
  574. for (j=0; j < 4; j++) {
  575. k = index ? ((j&1) + 2*(i&1) + 2*(j&2) + 4*(i&2)) : (4*i + j);
  576. h->non_zero_count_cache[ scan8[k] ] = 1;
  577. if (svq3_decode_block (&s->gb, &h->mb[16*k], index, type)){
  578. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding block\n");
  579. return -1;
  580. }
  581. }
  582. }
  583. }
  584. if ((cbp & 0x30)) {
  585. for (i=0; i < 2; ++i) {
  586. if (svq3_decode_block (&s->gb, &h->mb[16*(16 + 4*i)], 0, 3)){
  587. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma dc block\n");
  588. return -1;
  589. }
  590. }
  591. if ((cbp & 0x20)) {
  592. for (i=0; i < 8; i++) {
  593. h->non_zero_count_cache[ scan8[16+i] ] = 1;
  594. if (svq3_decode_block (&s->gb, &h->mb[16*(16 + i)], 1, 1)){
  595. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma ac block\n");
  596. return -1;
  597. }
  598. }
  599. }
  600. }
  601. }
  602. s->current_picture.mb_type[mb_xy] = mb_type;
  603. if (IS_INTRA(mb_type)) {
  604. h->chroma_pred_mode = check_intra_pred_mode (h, DC_PRED8x8);
  605. }
  606. return 0;
  607. }
  608. static int svq3_decode_slice_header (H264Context *h) {
  609. MpegEncContext *const s = (MpegEncContext *) h;
  610. const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  611. int i, header;
  612. header = get_bits (&s->gb, 8);
  613. if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
  614. /* TODO: what? */
  615. av_log(h->s.avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header);
  616. return -1;
  617. } else {
  618. int length = (header >> 5) & 3;
  619. h->next_slice_index = get_bits_count(&s->gb) + 8*show_bits (&s->gb, 8*length) + 8*length;
  620. if (h->next_slice_index > s->gb.size_in_bits){
  621. av_log(h->s.avctx, AV_LOG_ERROR, "slice after bitstream end\n");
  622. return -1;
  623. }
  624. s->gb.size_in_bits = h->next_slice_index - 8*(length - 1);
  625. skip_bits(&s->gb, 8);
  626. if (length > 0) {
  627. memcpy ((uint8_t *) &s->gb.buffer[get_bits_count(&s->gb) >> 3],
  628. &s->gb.buffer[s->gb.size_in_bits >> 3], (length - 1));
  629. }
  630. }
  631. if ((i = svq3_get_ue_golomb (&s->gb)) == INVALID_VLC || i >= 3){
  632. av_log(h->s.avctx, AV_LOG_ERROR, "illegal slice type %d \n", i);
  633. return -1;
  634. }
  635. h->slice_type = golomb_to_pict_type[i];
  636. if ((header & 0x9F) == 2) {
  637. i = (s->mb_num < 64) ? 6 : (1 + av_log2 (s->mb_num - 1));
  638. s->mb_skip_run = get_bits (&s->gb, i) - (s->mb_x + (s->mb_y * s->mb_width));
  639. } else {
  640. get_bits1 (&s->gb);
  641. s->mb_skip_run = 0;
  642. }
  643. h->slice_num = get_bits (&s->gb, 8);
  644. s->qscale = get_bits (&s->gb, 5);
  645. s->adaptive_quant = get_bits1 (&s->gb);
  646. /* unknown fields */
  647. get_bits1 (&s->gb);
  648. if (h->unknown_svq3_flag) {
  649. get_bits1 (&s->gb);
  650. }
  651. get_bits1 (&s->gb);
  652. get_bits (&s->gb, 2);
  653. while (get_bits1 (&s->gb)) {
  654. get_bits (&s->gb, 8);
  655. }
  656. /* reset intra predictors and invalidate motion vector references */
  657. if (s->mb_x > 0) {
  658. memset (h->intra4x4_pred_mode[mb_xy - 1], -1, 4*sizeof(int8_t));
  659. memset (h->intra4x4_pred_mode[mb_xy - s->mb_x], -1, 8*sizeof(int8_t)*s->mb_x);
  660. }
  661. if (s->mb_y > 0) {
  662. memset (h->intra4x4_pred_mode[mb_xy - s->mb_stride], -1, 8*sizeof(int8_t)*(s->mb_width - s->mb_x));
  663. if (s->mb_x > 0) {
  664. h->intra4x4_pred_mode[mb_xy - s->mb_stride - 1][3] = -1;
  665. }
  666. }
  667. return 0;
  668. }
  669. static int svq3_decode_frame (AVCodecContext *avctx,
  670. void *data, int *data_size,
  671. uint8_t *buf, int buf_size) {
  672. MpegEncContext *const s = avctx->priv_data;
  673. H264Context *const h = avctx->priv_data;
  674. int m, mb_type;
  675. unsigned char *extradata;
  676. unsigned int size;
  677. s->flags = avctx->flags;
  678. s->flags2 = avctx->flags2;
  679. s->unrestricted_mv = 1;
  680. if (!s->context_initialized) {
  681. s->width = avctx->width;
  682. s->height = avctx->height;
  683. h->pred4x4[DIAG_DOWN_LEFT_PRED] = pred4x4_down_left_svq3_c;
  684. h->pred16x16[PLANE_PRED8x8] = pred16x16_plane_svq3_c;
  685. h->halfpel_flag = 1;
  686. h->thirdpel_flag = 1;
  687. h->unknown_svq3_flag = 0;
  688. h->chroma_qp = 4;
  689. if (MPV_common_init (s) < 0)
  690. return -1;
  691. h->b_stride = 4*s->mb_width;
  692. alloc_tables (h);
  693. /* prowl for the "SEQH" marker in the extradata */
  694. extradata = (unsigned char *)avctx->extradata;
  695. for (m = 0; m < avctx->extradata_size; m++) {
  696. if (!memcmp (extradata, "SEQH", 4))
  697. break;
  698. extradata++;
  699. }
  700. /* if a match was found, parse the extra data */
  701. if (!memcmp (extradata, "SEQH", 4)) {
  702. GetBitContext gb;
  703. size = BE_32(&extradata[4]);
  704. init_get_bits (&gb, extradata + 8, size);
  705. /* 'frame size code' and optional 'width, height' */
  706. if (get_bits (&gb, 3) == 7) {
  707. get_bits (&gb, 12);
  708. get_bits (&gb, 12);
  709. }
  710. h->halfpel_flag = get_bits1 (&gb);
  711. h->thirdpel_flag = get_bits1 (&gb);
  712. /* unknown fields */
  713. get_bits1 (&gb);
  714. get_bits1 (&gb);
  715. get_bits1 (&gb);
  716. get_bits1 (&gb);
  717. s->low_delay = get_bits1 (&gb);
  718. /* unknown field */
  719. get_bits1 (&gb);
  720. while (get_bits1 (&gb)) {
  721. get_bits (&gb, 8);
  722. }
  723. h->unknown_svq3_flag = get_bits1 (&gb);
  724. avctx->has_b_frames = !s->low_delay;
  725. }
  726. }
  727. /* special case for last picture */
  728. if (buf_size == 0) {
  729. if (s->next_picture_ptr && !s->low_delay) {
  730. *(AVFrame *) data = *(AVFrame *) &s->next_picture;
  731. *data_size = sizeof(AVFrame);
  732. }
  733. return 0;
  734. }
  735. init_get_bits (&s->gb, buf, 8*buf_size);
  736. s->mb_x = s->mb_y = 0;
  737. if (svq3_decode_slice_header (h))
  738. return -1;
  739. s->pict_type = h->slice_type;
  740. s->picture_number = h->slice_num;
  741. if(avctx->debug&FF_DEBUG_PICT_INFO){
  742. av_log(h->s.avctx, AV_LOG_DEBUG, "%c hpel:%d, tpel:%d aqp:%d qp:%d\n",
  743. av_get_pict_type_char(s->pict_type), h->halfpel_flag, h->thirdpel_flag,
  744. s->adaptive_quant, s->qscale
  745. );
  746. }
  747. /* for hurry_up==5 */
  748. s->current_picture.pict_type = s->pict_type;
  749. s->current_picture.key_frame = (s->pict_type == I_TYPE);
  750. /* skip b frames if we dont have reference frames */
  751. if (s->last_picture_ptr == NULL && s->pict_type == B_TYPE) return 0;
  752. /* skip b frames if we are in a hurry */
  753. if (avctx->hurry_up && s->pict_type == B_TYPE) return 0;
  754. /* skip everything if we are in a hurry >= 5 */
  755. if (avctx->hurry_up >= 5) return 0;
  756. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  757. ||(avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  758. || avctx->skip_frame >= AVDISCARD_ALL)
  759. return 0;
  760. if (s->next_p_frame_damaged) {
  761. if (s->pict_type == B_TYPE)
  762. return 0;
  763. else
  764. s->next_p_frame_damaged = 0;
  765. }
  766. frame_start (h);
  767. if (s->pict_type == B_TYPE) {
  768. h->frame_num_offset = (h->slice_num - h->prev_frame_num);
  769. if (h->frame_num_offset < 0) {
  770. h->frame_num_offset += 256;
  771. }
  772. if (h->frame_num_offset == 0 || h->frame_num_offset >= h->prev_frame_num_offset) {
  773. av_log(h->s.avctx, AV_LOG_ERROR, "error in B-frame picture id\n");
  774. return -1;
  775. }
  776. } else {
  777. h->prev_frame_num = h->frame_num;
  778. h->frame_num = h->slice_num;
  779. h->prev_frame_num_offset = (h->frame_num - h->prev_frame_num);
  780. if (h->prev_frame_num_offset < 0) {
  781. h->prev_frame_num_offset += 256;
  782. }
  783. }
  784. for(m=0; m<2; m++){
  785. int i;
  786. for(i=0; i<4; i++){
  787. int j;
  788. for(j=-1; j<4; j++)
  789. h->ref_cache[m][scan8[0] + 8*i + j]= 1;
  790. h->ref_cache[m][scan8[0] + 8*i + j]= PART_NOT_AVAILABLE;
  791. }
  792. }
  793. for (s->mb_y=0; s->mb_y < s->mb_height; s->mb_y++) {
  794. for (s->mb_x=0; s->mb_x < s->mb_width; s->mb_x++) {
  795. if ( (get_bits_count(&s->gb) + 7) >= s->gb.size_in_bits &&
  796. ((get_bits_count(&s->gb) & 7) == 0 || show_bits (&s->gb, (-get_bits_count(&s->gb) & 7)) == 0)) {
  797. skip_bits(&s->gb, h->next_slice_index - get_bits_count(&s->gb));
  798. s->gb.size_in_bits = 8*buf_size;
  799. if (svq3_decode_slice_header (h))
  800. return -1;
  801. /* TODO: support s->mb_skip_run */
  802. }
  803. mb_type = svq3_get_ue_golomb (&s->gb);
  804. if (s->pict_type == I_TYPE) {
  805. mb_type += 8;
  806. } else if (s->pict_type == B_TYPE && mb_type >= 4) {
  807. mb_type += 4;
  808. }
  809. if (mb_type > 33 || svq3_decode_mb (h, mb_type)) {
  810. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  811. return -1;
  812. }
  813. if (mb_type != 0) {
  814. hl_decode_mb (h);
  815. }
  816. if (s->pict_type != B_TYPE && !s->low_delay) {
  817. s->current_picture.mb_type[s->mb_x + s->mb_y*s->mb_stride] =
  818. (s->pict_type == P_TYPE && mb_type < 8) ? (mb_type - 1) : -1;
  819. }
  820. }
  821. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  822. }
  823. MPV_frame_end(s);
  824. if (s->pict_type == B_TYPE || s->low_delay) {
  825. *(AVFrame *) data = *(AVFrame *) &s->current_picture;
  826. } else {
  827. *(AVFrame *) data = *(AVFrame *) &s->last_picture;
  828. }
  829. avctx->frame_number = s->picture_number - 1;
  830. /* dont output the last pic after seeking */
  831. if (s->last_picture_ptr || s->low_delay) {
  832. *data_size = sizeof(AVFrame);
  833. }
  834. return buf_size;
  835. }
  836. AVCodec svq3_decoder = {
  837. "svq3",
  838. CODEC_TYPE_VIDEO,
  839. CODEC_ID_SVQ3,
  840. sizeof(H264Context),
  841. decode_init,
  842. NULL,
  843. decode_end,
  844. svq3_decode_frame,
  845. CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  846. };