You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

887 lines
30KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. */
  20. /**
  21. * @file ratecontrol.c
  22. * Rate control for video encoders.
  23. */
  24. #include "avcodec.h"
  25. #include "dsputil.h"
  26. #include "mpegvideo.h"
  27. #undef NDEBUG // allways check asserts, the speed effect is far too small to disable them
  28. #include <assert.h>
  29. #ifndef M_E
  30. #define M_E 2.718281828
  31. #endif
  32. static int init_pass2(MpegEncContext *s);
  33. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
  34. void ff_write_pass1_stats(MpegEncContext *s){
  35. snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d;\n",
  36. s->current_picture_ptr->display_picture_number, s->current_picture_ptr->coded_picture_number, s->pict_type,
  37. s->current_picture.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
  38. s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count);
  39. }
  40. int ff_rate_control_init(MpegEncContext *s)
  41. {
  42. RateControlContext *rcc= &s->rc_context;
  43. int i;
  44. emms_c();
  45. for(i=0; i<5; i++){
  46. rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0;
  47. rcc->pred[i].count= 1.0;
  48. rcc->pred[i].decay= 0.4;
  49. rcc->i_cplx_sum [i]=
  50. rcc->p_cplx_sum [i]=
  51. rcc->mv_bits_sum[i]=
  52. rcc->qscale_sum [i]=
  53. rcc->frame_count[i]= 1; // 1 is better cuz of 1/0 and such
  54. rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
  55. }
  56. rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy;
  57. if(s->flags&CODEC_FLAG_PASS2){
  58. int i;
  59. char *p;
  60. /* find number of pics */
  61. p= s->avctx->stats_in;
  62. for(i=-1; p; i++){
  63. p= strchr(p+1, ';');
  64. }
  65. i+= s->max_b_frames;
  66. if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry))
  67. return -1;
  68. rcc->entry = (RateControlEntry*)av_mallocz(i*sizeof(RateControlEntry));
  69. rcc->num_entries= i;
  70. /* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */
  71. for(i=0; i<rcc->num_entries; i++){
  72. RateControlEntry *rce= &rcc->entry[i];
  73. rce->pict_type= rce->new_pict_type=P_TYPE;
  74. rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
  75. rce->misc_bits= s->mb_num + 10;
  76. rce->mb_var_sum= s->mb_num*100;
  77. }
  78. /* read stats */
  79. p= s->avctx->stats_in;
  80. for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
  81. RateControlEntry *rce;
  82. int picture_number;
  83. int e;
  84. char *next;
  85. next= strchr(p, ';');
  86. if(next){
  87. (*next)=0; //sscanf in unbelieavle slow on looong strings //FIXME copy / dont write
  88. next++;
  89. }
  90. e= sscanf(p, " in:%d ", &picture_number);
  91. assert(picture_number >= 0);
  92. assert(picture_number < rcc->num_entries);
  93. rce= &rcc->entry[picture_number];
  94. e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d",
  95. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
  96. &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count);
  97. if(e!=12){
  98. av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
  99. return -1;
  100. }
  101. p= next;
  102. }
  103. if(init_pass2(s) < 0) return -1;
  104. }
  105. if(!(s->flags&CODEC_FLAG_PASS2)){
  106. rcc->short_term_qsum=0.001;
  107. rcc->short_term_qcount=0.001;
  108. rcc->pass1_rc_eq_output_sum= 0.001;
  109. rcc->pass1_wanted_bits=0.001;
  110. /* init stuff with the user specified complexity */
  111. if(s->avctx->rc_initial_cplx){
  112. for(i=0; i<60*30; i++){
  113. double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
  114. RateControlEntry rce;
  115. double q;
  116. if (i%((s->gop_size+3)/4)==0) rce.pict_type= I_TYPE;
  117. else if(i%(s->max_b_frames+1)) rce.pict_type= B_TYPE;
  118. else rce.pict_type= P_TYPE;
  119. rce.new_pict_type= rce.pict_type;
  120. rce.mc_mb_var_sum= bits*s->mb_num/100000;
  121. rce.mb_var_sum = s->mb_num;
  122. rce.qscale = FF_QP2LAMBDA * 2;
  123. rce.f_code = 2;
  124. rce.b_code = 1;
  125. rce.misc_bits= 1;
  126. if(s->pict_type== I_TYPE){
  127. rce.i_count = s->mb_num;
  128. rce.i_tex_bits= bits;
  129. rce.p_tex_bits= 0;
  130. rce.mv_bits= 0;
  131. }else{
  132. rce.i_count = 0; //FIXME we do know this approx
  133. rce.i_tex_bits= 0;
  134. rce.p_tex_bits= bits*0.9;
  135. rce.mv_bits= bits*0.1;
  136. }
  137. rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
  138. rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
  139. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  140. rcc->frame_count[rce.pict_type] ++;
  141. bits= rce.i_tex_bits + rce.p_tex_bits;
  142. q= get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
  143. rcc->pass1_wanted_bits+= s->bit_rate/(1/av_q2d(s->avctx->time_base)); //FIXME missbehaves a little for variable fps
  144. }
  145. }
  146. }
  147. return 0;
  148. }
  149. void ff_rate_control_uninit(MpegEncContext *s)
  150. {
  151. RateControlContext *rcc= &s->rc_context;
  152. emms_c();
  153. av_freep(&rcc->entry);
  154. }
  155. static inline double qp2bits(RateControlEntry *rce, double qp){
  156. if(qp<=0.0){
  157. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  158. }
  159. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
  160. }
  161. static inline double bits2qp(RateControlEntry *rce, double bits){
  162. if(bits<0.9){
  163. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  164. }
  165. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
  166. }
  167. int ff_vbv_update(MpegEncContext *s, int frame_size){
  168. RateControlContext *rcc= &s->rc_context;
  169. const double fps= 1/av_q2d(s->avctx->time_base);
  170. const int buffer_size= s->avctx->rc_buffer_size;
  171. const double min_rate= s->avctx->rc_min_rate/fps;
  172. const double max_rate= s->avctx->rc_max_rate/fps;
  173. //printf("%d %f %d %f %f\n", buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  174. if(buffer_size){
  175. int left;
  176. rcc->buffer_index-= frame_size;
  177. if(rcc->buffer_index < 0){
  178. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  179. rcc->buffer_index= 0;
  180. }
  181. left= buffer_size - rcc->buffer_index - 1;
  182. rcc->buffer_index += clip(left, min_rate, max_rate);
  183. if(rcc->buffer_index > buffer_size){
  184. int stuffing= ceil((rcc->buffer_index - buffer_size)/8);
  185. if(stuffing < 4 && s->codec_id == CODEC_ID_MPEG4)
  186. stuffing=4;
  187. rcc->buffer_index -= 8*stuffing;
  188. if(s->avctx->debug & FF_DEBUG_RC)
  189. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  190. return stuffing;
  191. }
  192. }
  193. return 0;
  194. }
  195. /**
  196. * modifies the bitrate curve from pass1 for one frame
  197. */
  198. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
  199. RateControlContext *rcc= &s->rc_context;
  200. AVCodecContext *a= s->avctx;
  201. double q, bits;
  202. const int pict_type= rce->new_pict_type;
  203. const double mb_num= s->mb_num;
  204. int i;
  205. double const_values[]={
  206. M_PI,
  207. M_E,
  208. rce->i_tex_bits*rce->qscale,
  209. rce->p_tex_bits*rce->qscale,
  210. (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
  211. rce->mv_bits/mb_num,
  212. rce->pict_type == B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
  213. rce->i_count/mb_num,
  214. rce->mc_mb_var_sum/mb_num,
  215. rce->mb_var_sum/mb_num,
  216. rce->pict_type == I_TYPE,
  217. rce->pict_type == P_TYPE,
  218. rce->pict_type == B_TYPE,
  219. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  220. a->qcompress,
  221. /* rcc->last_qscale_for[I_TYPE],
  222. rcc->last_qscale_for[P_TYPE],
  223. rcc->last_qscale_for[B_TYPE],
  224. rcc->next_non_b_qscale,*/
  225. rcc->i_cplx_sum[I_TYPE] / (double)rcc->frame_count[I_TYPE],
  226. rcc->i_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  227. rcc->p_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  228. rcc->p_cplx_sum[B_TYPE] / (double)rcc->frame_count[B_TYPE],
  229. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  230. 0
  231. };
  232. static const char *const_names[]={
  233. "PI",
  234. "E",
  235. "iTex",
  236. "pTex",
  237. "tex",
  238. "mv",
  239. "fCode",
  240. "iCount",
  241. "mcVar",
  242. "var",
  243. "isI",
  244. "isP",
  245. "isB",
  246. "avgQP",
  247. "qComp",
  248. /* "lastIQP",
  249. "lastPQP",
  250. "lastBQP",
  251. "nextNonBQP",*/
  252. "avgIITex",
  253. "avgPITex",
  254. "avgPPTex",
  255. "avgBPTex",
  256. "avgTex",
  257. NULL
  258. };
  259. static double (*func1[])(void *, double)={
  260. (void *)bits2qp,
  261. (void *)qp2bits,
  262. NULL
  263. };
  264. static const char *func1_names[]={
  265. "bits2qp",
  266. "qp2bits",
  267. NULL
  268. };
  269. bits= ff_eval(s->avctx->rc_eq, const_values, const_names, func1, func1_names, NULL, NULL, rce);
  270. rcc->pass1_rc_eq_output_sum+= bits;
  271. bits*=rate_factor;
  272. if(bits<0.0) bits=0.0;
  273. bits+= 1.0; //avoid 1/0 issues
  274. /* user override */
  275. for(i=0; i<s->avctx->rc_override_count; i++){
  276. RcOverride *rco= s->avctx->rc_override;
  277. if(rco[i].start_frame > frame_num) continue;
  278. if(rco[i].end_frame < frame_num) continue;
  279. if(rco[i].qscale)
  280. bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
  281. else
  282. bits*= rco[i].quality_factor;
  283. }
  284. q= bits2qp(rce, bits);
  285. /* I/B difference */
  286. if (pict_type==I_TYPE && s->avctx->i_quant_factor<0.0)
  287. q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  288. else if(pict_type==B_TYPE && s->avctx->b_quant_factor<0.0)
  289. q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  290. return q;
  291. }
  292. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
  293. RateControlContext *rcc= &s->rc_context;
  294. AVCodecContext *a= s->avctx;
  295. const int pict_type= rce->new_pict_type;
  296. const double last_p_q = rcc->last_qscale_for[P_TYPE];
  297. const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
  298. if (pict_type==I_TYPE && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==P_TYPE))
  299. q= last_p_q *ABS(a->i_quant_factor) + a->i_quant_offset;
  300. else if(pict_type==B_TYPE && a->b_quant_factor>0.0)
  301. q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
  302. /* last qscale / qdiff stuff */
  303. if(rcc->last_non_b_pict_type==pict_type || pict_type!=I_TYPE){
  304. double last_q= rcc->last_qscale_for[pict_type];
  305. const int maxdiff= FF_QP2LAMBDA * a->max_qdiff;
  306. if (q > last_q + maxdiff) q= last_q + maxdiff;
  307. else if(q < last_q - maxdiff) q= last_q - maxdiff;
  308. }
  309. rcc->last_qscale_for[pict_type]= q; //Note we cant do that after blurring
  310. if(pict_type!=B_TYPE)
  311. rcc->last_non_b_pict_type= pict_type;
  312. return q;
  313. }
  314. /**
  315. * gets the qmin & qmax for pict_type
  316. */
  317. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
  318. int qmin= s->avctx->lmin;
  319. int qmax= s->avctx->lmax;
  320. assert(qmin <= qmax);
  321. if(pict_type==B_TYPE){
  322. qmin= (int)(qmin*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  323. qmax= (int)(qmax*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  324. }else if(pict_type==I_TYPE){
  325. qmin= (int)(qmin*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  326. qmax= (int)(qmax*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  327. }
  328. qmin= clip(qmin, 1, FF_LAMBDA_MAX);
  329. qmax= clip(qmax, 1, FF_LAMBDA_MAX);
  330. if(qmax<qmin) qmax= qmin;
  331. *qmin_ret= qmin;
  332. *qmax_ret= qmax;
  333. }
  334. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
  335. RateControlContext *rcc= &s->rc_context;
  336. int qmin, qmax;
  337. double bits;
  338. const int pict_type= rce->new_pict_type;
  339. const double buffer_size= s->avctx->rc_buffer_size;
  340. const double fps= 1/av_q2d(s->avctx->time_base);
  341. const double min_rate= s->avctx->rc_min_rate / fps;
  342. const double max_rate= s->avctx->rc_max_rate / fps;
  343. get_qminmax(&qmin, &qmax, s, pict_type);
  344. /* modulation */
  345. if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==P_TYPE)
  346. q*= s->avctx->rc_qmod_amp;
  347. bits= qp2bits(rce, q);
  348. //printf("q:%f\n", q);
  349. /* buffer overflow/underflow protection */
  350. if(buffer_size){
  351. double expected_size= rcc->buffer_index;
  352. double q_limit;
  353. if(min_rate){
  354. double d= 2*(buffer_size - expected_size)/buffer_size;
  355. if(d>1.0) d=1.0;
  356. else if(d<0.0001) d=0.0001;
  357. q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  358. q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index)*3, 1));
  359. if(q > q_limit){
  360. if(s->avctx->debug&FF_DEBUG_RC){
  361. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  362. }
  363. q= q_limit;
  364. }
  365. }
  366. if(max_rate){
  367. double d= 2*expected_size/buffer_size;
  368. if(d>1.0) d=1.0;
  369. else if(d<0.0001) d=0.0001;
  370. q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  371. q_limit= bits2qp(rce, FFMAX(rcc->buffer_index/3, 1));
  372. if(q < q_limit){
  373. if(s->avctx->debug&FF_DEBUG_RC){
  374. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  375. }
  376. q= q_limit;
  377. }
  378. }
  379. }
  380. //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
  381. if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
  382. if (q<qmin) q=qmin;
  383. else if(q>qmax) q=qmax;
  384. }else{
  385. double min2= log(qmin);
  386. double max2= log(qmax);
  387. q= log(q);
  388. q= (q - min2)/(max2-min2) - 0.5;
  389. q*= -4.0;
  390. q= 1.0/(1.0 + exp(q));
  391. q= q*(max2-min2) + min2;
  392. q= exp(q);
  393. }
  394. return q;
  395. }
  396. //----------------------------------
  397. // 1 Pass Code
  398. static double predict_size(Predictor *p, double q, double var)
  399. {
  400. return p->coeff*var / (q*p->count);
  401. }
  402. /*
  403. static double predict_qp(Predictor *p, double size, double var)
  404. {
  405. //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
  406. return p->coeff*var / (size*p->count);
  407. }
  408. */
  409. static void update_predictor(Predictor *p, double q, double var, double size)
  410. {
  411. double new_coeff= size*q / (var + 1);
  412. if(var<10) return;
  413. p->count*= p->decay;
  414. p->coeff*= p->decay;
  415. p->count++;
  416. p->coeff+= new_coeff;
  417. }
  418. static void adaptive_quantization(MpegEncContext *s, double q){
  419. int i;
  420. const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
  421. const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
  422. const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
  423. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  424. const float p_masking = s->avctx->p_masking;
  425. const float border_masking = s->avctx->border_masking;
  426. float bits_sum= 0.0;
  427. float cplx_sum= 0.0;
  428. float cplx_tab[s->mb_num];
  429. float bits_tab[s->mb_num];
  430. const int qmin= s->avctx->mb_lmin;
  431. const int qmax= s->avctx->mb_lmax;
  432. Picture * const pic= &s->current_picture;
  433. const int mb_width = s->mb_width;
  434. const int mb_height = s->mb_height;
  435. for(i=0; i<s->mb_num; i++){
  436. const int mb_xy= s->mb_index2xy[i];
  437. float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow()
  438. float spat_cplx= sqrt(pic->mb_var[mb_xy]);
  439. const int lumi= pic->mb_mean[mb_xy];
  440. float bits, cplx, factor;
  441. int mb_x = mb_xy % s->mb_stride;
  442. int mb_y = mb_xy / s->mb_stride;
  443. int mb_distance;
  444. float mb_factor = 0.0;
  445. #if 0
  446. if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune
  447. if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune
  448. #endif
  449. if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune
  450. if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune
  451. if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode
  452. cplx= spat_cplx;
  453. factor= 1.0 + p_masking;
  454. }else{
  455. cplx= temp_cplx;
  456. factor= pow(temp_cplx, - temp_cplx_masking);
  457. }
  458. factor*=pow(spat_cplx, - spatial_cplx_masking);
  459. if(lumi>127)
  460. factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
  461. else
  462. factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
  463. if(mb_x < mb_width/5){
  464. mb_distance = mb_width/5 - mb_x;
  465. mb_factor = (float)mb_distance / (float)(mb_width/5);
  466. }else if(mb_x > 4*mb_width/5){
  467. mb_distance = mb_x - 4*mb_width/5;
  468. mb_factor = (float)mb_distance / (float)(mb_width/5);
  469. }
  470. if(mb_y < mb_height/5){
  471. mb_distance = mb_height/5 - mb_y;
  472. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  473. }else if(mb_y > 4*mb_height/5){
  474. mb_distance = mb_y - 4*mb_height/5;
  475. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  476. }
  477. factor*= 1.0 - border_masking*mb_factor;
  478. if(factor<0.00001) factor= 0.00001;
  479. bits= cplx*factor;
  480. cplx_sum+= cplx;
  481. bits_sum+= bits;
  482. cplx_tab[i]= cplx;
  483. bits_tab[i]= bits;
  484. }
  485. /* handle qmin/qmax cliping */
  486. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  487. float factor= bits_sum/cplx_sum;
  488. for(i=0; i<s->mb_num; i++){
  489. float newq= q*cplx_tab[i]/bits_tab[i];
  490. newq*= factor;
  491. if (newq > qmax){
  492. bits_sum -= bits_tab[i];
  493. cplx_sum -= cplx_tab[i]*q/qmax;
  494. }
  495. else if(newq < qmin){
  496. bits_sum -= bits_tab[i];
  497. cplx_sum -= cplx_tab[i]*q/qmin;
  498. }
  499. }
  500. if(bits_sum < 0.001) bits_sum= 0.001;
  501. if(cplx_sum < 0.001) cplx_sum= 0.001;
  502. }
  503. for(i=0; i<s->mb_num; i++){
  504. const int mb_xy= s->mb_index2xy[i];
  505. float newq= q*cplx_tab[i]/bits_tab[i];
  506. int intq;
  507. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  508. newq*= bits_sum/cplx_sum;
  509. }
  510. intq= (int)(newq + 0.5);
  511. if (intq > qmax) intq= qmax;
  512. else if(intq < qmin) intq= qmin;
  513. //if(i%s->mb_width==0) printf("\n");
  514. //printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i]));
  515. s->lambda_table[mb_xy]= intq;
  516. }
  517. }
  518. //FIXME rd or at least approx for dquant
  519. float ff_rate_estimate_qscale(MpegEncContext *s)
  520. {
  521. float q;
  522. int qmin, qmax;
  523. float br_compensation;
  524. double diff;
  525. double short_term_q;
  526. double fps;
  527. int picture_number= s->picture_number;
  528. int64_t wanted_bits;
  529. RateControlContext *rcc= &s->rc_context;
  530. AVCodecContext *a= s->avctx;
  531. RateControlEntry local_rce, *rce;
  532. double bits;
  533. double rate_factor;
  534. int var;
  535. const int pict_type= s->pict_type;
  536. Picture * const pic= &s->current_picture;
  537. emms_c();
  538. get_qminmax(&qmin, &qmax, s, pict_type);
  539. fps= 1/av_q2d(s->avctx->time_base);
  540. //printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate);
  541. /* update predictors */
  542. if(picture_number>2){
  543. const int last_var= s->last_pict_type == I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
  544. update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
  545. }
  546. if(s->flags&CODEC_FLAG_PASS2){
  547. assert(picture_number>=0);
  548. assert(picture_number<rcc->num_entries);
  549. rce= &rcc->entry[picture_number];
  550. wanted_bits= rce->expected_bits;
  551. }else{
  552. rce= &local_rce;
  553. wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
  554. }
  555. diff= s->total_bits - wanted_bits;
  556. br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance;
  557. if(br_compensation<=0.0) br_compensation=0.001;
  558. var= pict_type == I_TYPE ? pic->mb_var_sum : pic->mc_mb_var_sum;
  559. short_term_q = 0; /* avoid warning */
  560. if(s->flags&CODEC_FLAG_PASS2){
  561. if(pict_type!=I_TYPE)
  562. assert(pict_type == rce->new_pict_type);
  563. q= rce->new_qscale / br_compensation;
  564. //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
  565. }else{
  566. rce->pict_type=
  567. rce->new_pict_type= pict_type;
  568. rce->mc_mb_var_sum= pic->mc_mb_var_sum;
  569. rce->mb_var_sum = pic-> mb_var_sum;
  570. rce->qscale = FF_QP2LAMBDA * 2;
  571. rce->f_code = s->f_code;
  572. rce->b_code = s->b_code;
  573. rce->misc_bits= 1;
  574. bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  575. if(pict_type== I_TYPE){
  576. rce->i_count = s->mb_num;
  577. rce->i_tex_bits= bits;
  578. rce->p_tex_bits= 0;
  579. rce->mv_bits= 0;
  580. }else{
  581. rce->i_count = 0; //FIXME we do know this approx
  582. rce->i_tex_bits= 0;
  583. rce->p_tex_bits= bits*0.9;
  584. rce->mv_bits= bits*0.1;
  585. }
  586. rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
  587. rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
  588. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  589. rcc->frame_count[pict_type] ++;
  590. bits= rce->i_tex_bits + rce->p_tex_bits;
  591. rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
  592. q= get_qscale(s, rce, rate_factor, picture_number);
  593. assert(q>0.0);
  594. //printf("%f ", q);
  595. q= get_diff_limited_q(s, rce, q);
  596. //printf("%f ", q);
  597. assert(q>0.0);
  598. if(pict_type==P_TYPE || s->intra_only){ //FIXME type dependant blur like in 2-pass
  599. rcc->short_term_qsum*=a->qblur;
  600. rcc->short_term_qcount*=a->qblur;
  601. rcc->short_term_qsum+= q;
  602. rcc->short_term_qcount++;
  603. //printf("%f ", q);
  604. q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
  605. //printf("%f ", q);
  606. }
  607. assert(q>0.0);
  608. q= modify_qscale(s, rce, q, picture_number);
  609. rcc->pass1_wanted_bits+= s->bit_rate/fps;
  610. assert(q>0.0);
  611. }
  612. if(s->avctx->debug&FF_DEBUG_RC){
  613. av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
  614. av_get_pict_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
  615. br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
  616. );
  617. }
  618. if (q<qmin) q=qmin;
  619. else if(q>qmax) q=qmax;
  620. if(s->adaptive_quant)
  621. adaptive_quantization(s, q);
  622. else
  623. q= (int)(q + 0.5);
  624. rcc->last_qscale= q;
  625. rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
  626. rcc->last_mb_var_sum= pic->mb_var_sum;
  627. #if 0
  628. {
  629. static int mvsum=0, texsum=0;
  630. mvsum += s->mv_bits;
  631. texsum += s->i_tex_bits + s->p_tex_bits;
  632. printf("%d %d//\n\n", mvsum, texsum);
  633. }
  634. #endif
  635. return q;
  636. }
  637. //----------------------------------------------
  638. // 2-Pass code
  639. static int init_pass2(MpegEncContext *s)
  640. {
  641. RateControlContext *rcc= &s->rc_context;
  642. AVCodecContext *a= s->avctx;
  643. int i;
  644. double fps= 1/av_q2d(s->avctx->time_base);
  645. double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
  646. double avg_quantizer[5];
  647. uint64_t const_bits[5]={0,0,0,0,0}; // quantizer idependant bits
  648. uint64_t available_bits[5];
  649. uint64_t all_const_bits;
  650. uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
  651. double rate_factor=0;
  652. double step;
  653. //int last_i_frame=-10000000;
  654. const int filter_size= (int)(a->qblur*4) | 1;
  655. double expected_bits;
  656. double *qscale, *blured_qscale;
  657. /* find complexity & const_bits & decide the pict_types */
  658. for(i=0; i<rcc->num_entries; i++){
  659. RateControlEntry *rce= &rcc->entry[i];
  660. rce->new_pict_type= rce->pict_type;
  661. rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
  662. rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
  663. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  664. rcc->frame_count[rce->pict_type] ++;
  665. complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
  666. const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
  667. }
  668. all_const_bits= const_bits[I_TYPE] + const_bits[P_TYPE] + const_bits[B_TYPE];
  669. if(all_available_bits < all_const_bits){
  670. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is to low\n");
  671. return -1;
  672. }
  673. /* find average quantizers */
  674. avg_quantizer[P_TYPE]=0;
  675. for(step=256*256; step>0.0000001; step*=0.5){
  676. double expected_bits=0;
  677. avg_quantizer[P_TYPE]+= step;
  678. avg_quantizer[I_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset;
  679. avg_quantizer[B_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset;
  680. expected_bits=
  681. + all_const_bits
  682. + complexity[I_TYPE]/avg_quantizer[I_TYPE]
  683. + complexity[P_TYPE]/avg_quantizer[P_TYPE]
  684. + complexity[B_TYPE]/avg_quantizer[B_TYPE];
  685. if(expected_bits < all_available_bits) avg_quantizer[P_TYPE]-= step;
  686. //printf("%f %lld %f\n", expected_bits, all_available_bits, avg_quantizer[P_TYPE]);
  687. }
  688. //printf("qp_i:%f, qp_p:%f, qp_b:%f\n", avg_quantizer[I_TYPE],avg_quantizer[P_TYPE],avg_quantizer[B_TYPE]);
  689. for(i=0; i<5; i++){
  690. available_bits[i]= const_bits[i] + complexity[i]/avg_quantizer[i];
  691. }
  692. //printf("%lld %lld %lld %lld\n", available_bits[I_TYPE], available_bits[P_TYPE], available_bits[B_TYPE], all_available_bits);
  693. qscale= av_malloc(sizeof(double)*rcc->num_entries);
  694. blured_qscale= av_malloc(sizeof(double)*rcc->num_entries);
  695. for(step=256*256; step>0.0000001; step*=0.5){
  696. expected_bits=0;
  697. rate_factor+= step;
  698. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  699. /* find qscale */
  700. for(i=0; i<rcc->num_entries; i++){
  701. qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
  702. }
  703. assert(filter_size%2==1);
  704. /* fixed I/B QP relative to P mode */
  705. for(i=rcc->num_entries-1; i>=0; i--){
  706. RateControlEntry *rce= &rcc->entry[i];
  707. qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
  708. }
  709. /* smooth curve */
  710. for(i=0; i<rcc->num_entries; i++){
  711. RateControlEntry *rce= &rcc->entry[i];
  712. const int pict_type= rce->new_pict_type;
  713. int j;
  714. double q=0.0, sum=0.0;
  715. for(j=0; j<filter_size; j++){
  716. int index= i+j-filter_size/2;
  717. double d= index-i;
  718. double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur));
  719. if(index < 0 || index >= rcc->num_entries) continue;
  720. if(pict_type != rcc->entry[index].new_pict_type) continue;
  721. q+= qscale[index] * coeff;
  722. sum+= coeff;
  723. }
  724. blured_qscale[i]= q/sum;
  725. }
  726. /* find expected bits */
  727. for(i=0; i<rcc->num_entries; i++){
  728. RateControlEntry *rce= &rcc->entry[i];
  729. double bits;
  730. rce->new_qscale= modify_qscale(s, rce, blured_qscale[i], i);
  731. bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  732. //printf("%d %f\n", rce->new_bits, blured_qscale[i]);
  733. bits += 8*ff_vbv_update(s, bits);
  734. rce->expected_bits= expected_bits;
  735. expected_bits += bits;
  736. }
  737. // printf("%f %d %f\n", expected_bits, (int)all_available_bits, rate_factor);
  738. if(expected_bits > all_available_bits) rate_factor-= step;
  739. }
  740. av_free(qscale);
  741. av_free(blured_qscale);
  742. if(abs(expected_bits/all_available_bits - 1.0) > 0.01 ){
  743. av_log(s->avctx, AV_LOG_ERROR, "Error: 2pass curve failed to converge\n");
  744. return -1;
  745. }
  746. return 0;
  747. }