You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

650 lines
25KB

  1. /*
  2. * Copyright (c) 2002 Dieter Shirley
  3. *
  4. * dct_unquantize_h263_altivec:
  5. * Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>
  6. *
  7. * This library is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2 of the License, or (at your option) any later version.
  11. *
  12. * This library is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with this library; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <stdlib.h>
  22. #include <stdio.h>
  23. #include "../dsputil.h"
  24. #include "../mpegvideo.h"
  25. #include "gcc_fixes.h"
  26. #include "dsputil_altivec.h"
  27. // Swaps two variables (used for altivec registers)
  28. #define SWAP(a,b) \
  29. do { \
  30. __typeof__(a) swap_temp=a; \
  31. a=b; \
  32. b=swap_temp; \
  33. } while (0)
  34. // transposes a matrix consisting of four vectors with four elements each
  35. #define TRANSPOSE4(a,b,c,d) \
  36. do { \
  37. __typeof__(a) _trans_ach = vec_mergeh(a, c); \
  38. __typeof__(a) _trans_acl = vec_mergel(a, c); \
  39. __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
  40. __typeof__(a) _trans_bdl = vec_mergel(b, d); \
  41. \
  42. a = vec_mergeh(_trans_ach, _trans_bdh); \
  43. b = vec_mergel(_trans_ach, _trans_bdh); \
  44. c = vec_mergeh(_trans_acl, _trans_bdl); \
  45. d = vec_mergel(_trans_acl, _trans_bdl); \
  46. } while (0)
  47. #define TRANSPOSE8(a,b,c,d,e,f,g,h) \
  48. do { \
  49. __typeof__(a) _A1, _B1, _C1, _D1, _E1, _F1, _G1, _H1; \
  50. __typeof__(a) _A2, _B2, _C2, _D2, _E2, _F2, _G2, _H2; \
  51. \
  52. _A1 = vec_mergeh (a, e); \
  53. _B1 = vec_mergel (a, e); \
  54. _C1 = vec_mergeh (b, f); \
  55. _D1 = vec_mergel (b, f); \
  56. _E1 = vec_mergeh (c, g); \
  57. _F1 = vec_mergel (c, g); \
  58. _G1 = vec_mergeh (d, h); \
  59. _H1 = vec_mergel (d, h); \
  60. \
  61. _A2 = vec_mergeh (_A1, _E1); \
  62. _B2 = vec_mergel (_A1, _E1); \
  63. _C2 = vec_mergeh (_B1, _F1); \
  64. _D2 = vec_mergel (_B1, _F1); \
  65. _E2 = vec_mergeh (_C1, _G1); \
  66. _F2 = vec_mergel (_C1, _G1); \
  67. _G2 = vec_mergeh (_D1, _H1); \
  68. _H2 = vec_mergel (_D1, _H1); \
  69. \
  70. a = vec_mergeh (_A2, _E2); \
  71. b = vec_mergel (_A2, _E2); \
  72. c = vec_mergeh (_B2, _F2); \
  73. d = vec_mergel (_B2, _F2); \
  74. e = vec_mergeh (_C2, _G2); \
  75. f = vec_mergel (_C2, _G2); \
  76. g = vec_mergeh (_D2, _H2); \
  77. h = vec_mergel (_D2, _H2); \
  78. } while (0)
  79. // Loads a four-byte value (int or float) from the target address
  80. // into every element in the target vector. Only works if the
  81. // target address is four-byte aligned (which should be always).
  82. #define LOAD4(vec, address) \
  83. { \
  84. __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
  85. vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
  86. vec = vec_ld(0, _load_addr); \
  87. vec = vec_perm(vec, vec, _perm_vec); \
  88. vec = vec_splat(vec, 0); \
  89. }
  90. #ifdef CONFIG_DARWIN
  91. #define FOUROF(a) (a)
  92. #else
  93. // slower, for dumb non-apple GCC
  94. #define FOUROF(a) {a,a,a,a}
  95. #endif
  96. int dct_quantize_altivec(MpegEncContext* s,
  97. DCTELEM* data, int n,
  98. int qscale, int* overflow)
  99. {
  100. int lastNonZero;
  101. vector float row0, row1, row2, row3, row4, row5, row6, row7;
  102. vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
  103. const_vector float zero = (const_vector float)FOUROF(0.);
  104. // used after quantise step
  105. int oldBaseValue = 0;
  106. // Load the data into the row/alt vectors
  107. {
  108. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  109. data0 = vec_ld(0, data);
  110. data1 = vec_ld(16, data);
  111. data2 = vec_ld(32, data);
  112. data3 = vec_ld(48, data);
  113. data4 = vec_ld(64, data);
  114. data5 = vec_ld(80, data);
  115. data6 = vec_ld(96, data);
  116. data7 = vec_ld(112, data);
  117. // Transpose the data before we start
  118. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  119. // load the data into floating point vectors. We load
  120. // the high half of each row into the main row vectors
  121. // and the low half into the alt vectors.
  122. row0 = vec_ctf(vec_unpackh(data0), 0);
  123. alt0 = vec_ctf(vec_unpackl(data0), 0);
  124. row1 = vec_ctf(vec_unpackh(data1), 0);
  125. alt1 = vec_ctf(vec_unpackl(data1), 0);
  126. row2 = vec_ctf(vec_unpackh(data2), 0);
  127. alt2 = vec_ctf(vec_unpackl(data2), 0);
  128. row3 = vec_ctf(vec_unpackh(data3), 0);
  129. alt3 = vec_ctf(vec_unpackl(data3), 0);
  130. row4 = vec_ctf(vec_unpackh(data4), 0);
  131. alt4 = vec_ctf(vec_unpackl(data4), 0);
  132. row5 = vec_ctf(vec_unpackh(data5), 0);
  133. alt5 = vec_ctf(vec_unpackl(data5), 0);
  134. row6 = vec_ctf(vec_unpackh(data6), 0);
  135. alt6 = vec_ctf(vec_unpackl(data6), 0);
  136. row7 = vec_ctf(vec_unpackh(data7), 0);
  137. alt7 = vec_ctf(vec_unpackl(data7), 0);
  138. }
  139. // The following block could exist as a separate an altivec dct
  140. // function. However, if we put it inline, the DCT data can remain
  141. // in the vector local variables, as floats, which we'll use during the
  142. // quantize step...
  143. {
  144. const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
  145. const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
  146. const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
  147. const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
  148. const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
  149. const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
  150. const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
  151. const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
  152. const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
  153. const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
  154. const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
  155. const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);
  156. int whichPass, whichHalf;
  157. for(whichPass = 1; whichPass<=2; whichPass++)
  158. {
  159. for(whichHalf = 1; whichHalf<=2; whichHalf++)
  160. {
  161. vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  162. vector float tmp10, tmp11, tmp12, tmp13;
  163. vector float z1, z2, z3, z4, z5;
  164. tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
  165. tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
  166. tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
  167. tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
  168. tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
  169. tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
  170. tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
  171. tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
  172. tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
  173. tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
  174. tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
  175. tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
  176. // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
  177. row0 = vec_add(tmp10, tmp11);
  178. // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
  179. row4 = vec_sub(tmp10, tmp11);
  180. // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
  181. z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
  182. // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
  183. // CONST_BITS-PASS1_BITS);
  184. row2 = vec_madd(tmp13, vec_0_765366865, z1);
  185. // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
  186. // CONST_BITS-PASS1_BITS);
  187. row6 = vec_madd(tmp12, vec_1_847759065, z1);
  188. z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
  189. z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
  190. z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
  191. z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
  192. // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  193. z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
  194. // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  195. z3 = vec_madd(z3, vec_1_961570560, z5);
  196. // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  197. z4 = vec_madd(z4, vec_0_390180644, z5);
  198. // The following adds are rolled into the multiplies above
  199. // z3 = vec_add(z3, z5); // z3 += z5;
  200. // z4 = vec_add(z4, z5); // z4 += z5;
  201. // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  202. // Wow! It's actually more effecient to roll this multiply
  203. // into the adds below, even thought the multiply gets done twice!
  204. // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
  205. // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  206. // Same with this one...
  207. // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
  208. // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  209. // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
  210. row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));
  211. // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  212. // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
  213. row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));
  214. // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  215. // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
  216. row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));
  217. // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  218. // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
  219. row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));
  220. // Swap the row values with the alts. If this is the first half,
  221. // this sets up the low values to be acted on in the second half.
  222. // If this is the second half, it puts the high values back in
  223. // the row values where they are expected to be when we're done.
  224. SWAP(row0, alt0);
  225. SWAP(row1, alt1);
  226. SWAP(row2, alt2);
  227. SWAP(row3, alt3);
  228. SWAP(row4, alt4);
  229. SWAP(row5, alt5);
  230. SWAP(row6, alt6);
  231. SWAP(row7, alt7);
  232. }
  233. if (whichPass == 1)
  234. {
  235. // transpose the data for the second pass
  236. // First, block transpose the upper right with lower left.
  237. SWAP(row4, alt0);
  238. SWAP(row5, alt1);
  239. SWAP(row6, alt2);
  240. SWAP(row7, alt3);
  241. // Now, transpose each block of four
  242. TRANSPOSE4(row0, row1, row2, row3);
  243. TRANSPOSE4(row4, row5, row6, row7);
  244. TRANSPOSE4(alt0, alt1, alt2, alt3);
  245. TRANSPOSE4(alt4, alt5, alt6, alt7);
  246. }
  247. }
  248. }
  249. // perform the quantise step, using the floating point data
  250. // still in the row/alt registers
  251. {
  252. const int* biasAddr;
  253. const vector signed int* qmat;
  254. vector float bias, negBias;
  255. if (s->mb_intra)
  256. {
  257. vector signed int baseVector;
  258. // We must cache element 0 in the intra case
  259. // (it needs special handling).
  260. baseVector = vec_cts(vec_splat(row0, 0), 0);
  261. vec_ste(baseVector, 0, &oldBaseValue);
  262. qmat = (vector signed int*)s->q_intra_matrix[qscale];
  263. biasAddr = &(s->intra_quant_bias);
  264. }
  265. else
  266. {
  267. qmat = (vector signed int*)s->q_inter_matrix[qscale];
  268. biasAddr = &(s->inter_quant_bias);
  269. }
  270. // Load the bias vector (We add 0.5 to the bias so that we're
  271. // rounding when we convert to int, instead of flooring.)
  272. {
  273. vector signed int biasInt;
  274. const vector float negOneFloat = (vector float)FOUROF(-1.0f);
  275. LOAD4(biasInt, biasAddr);
  276. bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
  277. negBias = vec_madd(bias, negOneFloat, zero);
  278. }
  279. {
  280. vector float q0, q1, q2, q3, q4, q5, q6, q7;
  281. q0 = vec_ctf(qmat[0], QMAT_SHIFT);
  282. q1 = vec_ctf(qmat[2], QMAT_SHIFT);
  283. q2 = vec_ctf(qmat[4], QMAT_SHIFT);
  284. q3 = vec_ctf(qmat[6], QMAT_SHIFT);
  285. q4 = vec_ctf(qmat[8], QMAT_SHIFT);
  286. q5 = vec_ctf(qmat[10], QMAT_SHIFT);
  287. q6 = vec_ctf(qmat[12], QMAT_SHIFT);
  288. q7 = vec_ctf(qmat[14], QMAT_SHIFT);
  289. row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
  290. vec_cmpgt(row0, zero));
  291. row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
  292. vec_cmpgt(row1, zero));
  293. row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
  294. vec_cmpgt(row2, zero));
  295. row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
  296. vec_cmpgt(row3, zero));
  297. row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
  298. vec_cmpgt(row4, zero));
  299. row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
  300. vec_cmpgt(row5, zero));
  301. row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
  302. vec_cmpgt(row6, zero));
  303. row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
  304. vec_cmpgt(row7, zero));
  305. q0 = vec_ctf(qmat[1], QMAT_SHIFT);
  306. q1 = vec_ctf(qmat[3], QMAT_SHIFT);
  307. q2 = vec_ctf(qmat[5], QMAT_SHIFT);
  308. q3 = vec_ctf(qmat[7], QMAT_SHIFT);
  309. q4 = vec_ctf(qmat[9], QMAT_SHIFT);
  310. q5 = vec_ctf(qmat[11], QMAT_SHIFT);
  311. q6 = vec_ctf(qmat[13], QMAT_SHIFT);
  312. q7 = vec_ctf(qmat[15], QMAT_SHIFT);
  313. alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
  314. vec_cmpgt(alt0, zero));
  315. alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
  316. vec_cmpgt(alt1, zero));
  317. alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
  318. vec_cmpgt(alt2, zero));
  319. alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
  320. vec_cmpgt(alt3, zero));
  321. alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
  322. vec_cmpgt(alt4, zero));
  323. alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
  324. vec_cmpgt(alt5, zero));
  325. alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
  326. vec_cmpgt(alt6, zero));
  327. alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
  328. vec_cmpgt(alt7, zero));
  329. }
  330. }
  331. // Store the data back into the original block
  332. {
  333. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  334. data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
  335. data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
  336. data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
  337. data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
  338. data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
  339. data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
  340. data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
  341. data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));
  342. {
  343. // Clamp for overflow
  344. vector signed int max_q_int, min_q_int;
  345. vector signed short max_q, min_q;
  346. LOAD4(max_q_int, &(s->max_qcoeff));
  347. LOAD4(min_q_int, &(s->min_qcoeff));
  348. max_q = vec_pack(max_q_int, max_q_int);
  349. min_q = vec_pack(min_q_int, min_q_int);
  350. data0 = vec_max(vec_min(data0, max_q), min_q);
  351. data1 = vec_max(vec_min(data1, max_q), min_q);
  352. data2 = vec_max(vec_min(data2, max_q), min_q);
  353. data4 = vec_max(vec_min(data4, max_q), min_q);
  354. data5 = vec_max(vec_min(data5, max_q), min_q);
  355. data6 = vec_max(vec_min(data6, max_q), min_q);
  356. data7 = vec_max(vec_min(data7, max_q), min_q);
  357. }
  358. {
  359. vector bool char zero_01, zero_23, zero_45, zero_67;
  360. vector signed char scanIndices_01, scanIndices_23, scanIndices_45, scanIndices_67;
  361. vector signed char negOne = vec_splat_s8(-1);
  362. vector signed char* scanPtr =
  363. (vector signed char*)(s->intra_scantable.inverse);
  364. signed char lastNonZeroChar;
  365. // Determine the largest non-zero index.
  366. zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero),
  367. vec_cmpeq(data1, (vector signed short)zero));
  368. zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero),
  369. vec_cmpeq(data3, (vector signed short)zero));
  370. zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero),
  371. vec_cmpeq(data5, (vector signed short)zero));
  372. zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero),
  373. vec_cmpeq(data7, (vector signed short)zero));
  374. // 64 biggest values
  375. scanIndices_01 = vec_sel(scanPtr[0], negOne, zero_01);
  376. scanIndices_23 = vec_sel(scanPtr[1], negOne, zero_23);
  377. scanIndices_45 = vec_sel(scanPtr[2], negOne, zero_45);
  378. scanIndices_67 = vec_sel(scanPtr[3], negOne, zero_67);
  379. // 32 largest values
  380. scanIndices_01 = vec_max(scanIndices_01, scanIndices_23);
  381. scanIndices_45 = vec_max(scanIndices_45, scanIndices_67);
  382. // 16 largest values
  383. scanIndices_01 = vec_max(scanIndices_01, scanIndices_45);
  384. // 8 largest values
  385. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  386. vec_mergel(scanIndices_01, negOne));
  387. // 4 largest values
  388. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  389. vec_mergel(scanIndices_01, negOne));
  390. // 2 largest values
  391. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  392. vec_mergel(scanIndices_01, negOne));
  393. // largest value
  394. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  395. vec_mergel(scanIndices_01, negOne));
  396. scanIndices_01 = vec_splat(scanIndices_01, 0);
  397. vec_ste(scanIndices_01, 0, &lastNonZeroChar);
  398. lastNonZero = lastNonZeroChar;
  399. // While the data is still in vectors we check for the transpose IDCT permute
  400. // and handle it using the vector unit if we can. This is the permute used
  401. // by the altivec idct, so it is common when using the altivec dct.
  402. if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM))
  403. {
  404. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  405. }
  406. vec_st(data0, 0, data);
  407. vec_st(data1, 16, data);
  408. vec_st(data2, 32, data);
  409. vec_st(data3, 48, data);
  410. vec_st(data4, 64, data);
  411. vec_st(data5, 80, data);
  412. vec_st(data6, 96, data);
  413. vec_st(data7, 112, data);
  414. }
  415. }
  416. // special handling of block[0]
  417. if (s->mb_intra)
  418. {
  419. if (!s->h263_aic)
  420. {
  421. if (n < 4)
  422. oldBaseValue /= s->y_dc_scale;
  423. else
  424. oldBaseValue /= s->c_dc_scale;
  425. }
  426. // Divide by 8, rounding the result
  427. data[0] = (oldBaseValue + 4) >> 3;
  428. }
  429. // We handled the tranpose permutation above and we don't
  430. // need to permute the "no" permutation case.
  431. if ((lastNonZero > 0) &&
  432. (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
  433. (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM))
  434. {
  435. ff_block_permute(data, s->dsp.idct_permutation,
  436. s->intra_scantable.scantable, lastNonZero);
  437. }
  438. return lastNonZero;
  439. }
  440. #undef FOUROF
  441. /*
  442. AltiVec version of dct_unquantize_h263
  443. this code assumes `block' is 16 bytes-aligned
  444. */
  445. void dct_unquantize_h263_altivec(MpegEncContext *s,
  446. DCTELEM *block, int n, int qscale)
  447. {
  448. POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);
  449. int i, level, qmul, qadd;
  450. int nCoeffs;
  451. assert(s->block_last_index[n]>=0);
  452. POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);
  453. qadd = (qscale - 1) | 1;
  454. qmul = qscale << 1;
  455. if (s->mb_intra) {
  456. if (!s->h263_aic) {
  457. if (n < 4)
  458. block[0] = block[0] * s->y_dc_scale;
  459. else
  460. block[0] = block[0] * s->c_dc_scale;
  461. }else
  462. qadd = 0;
  463. i = 1;
  464. nCoeffs= 63; //does not allways use zigzag table
  465. } else {
  466. i = 0;
  467. nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
  468. }
  469. #ifdef ALTIVEC_USE_REFERENCE_C_CODE
  470. for(;i<=nCoeffs;i++) {
  471. level = block[i];
  472. if (level) {
  473. if (level < 0) {
  474. level = level * qmul - qadd;
  475. } else {
  476. level = level * qmul + qadd;
  477. }
  478. block[i] = level;
  479. }
  480. }
  481. #else /* ALTIVEC_USE_REFERENCE_C_CODE */
  482. {
  483. register const_vector signed short vczero = (const_vector signed short)vec_splat_s16(0);
  484. short __attribute__ ((aligned(16))) qmul8[] =
  485. {
  486. qmul, qmul, qmul, qmul,
  487. qmul, qmul, qmul, qmul
  488. };
  489. short __attribute__ ((aligned(16))) qadd8[] =
  490. {
  491. qadd, qadd, qadd, qadd,
  492. qadd, qadd, qadd, qadd
  493. };
  494. short __attribute__ ((aligned(16))) nqadd8[] =
  495. {
  496. -qadd, -qadd, -qadd, -qadd,
  497. -qadd, -qadd, -qadd, -qadd
  498. };
  499. register vector signed short blockv, qmulv, qaddv, nqaddv, temp1;
  500. register vector bool short blockv_null, blockv_neg;
  501. register short backup_0 = block[0];
  502. register int j = 0;
  503. qmulv = vec_ld(0, qmul8);
  504. qaddv = vec_ld(0, qadd8);
  505. nqaddv = vec_ld(0, nqadd8);
  506. #if 0 // block *is* 16 bytes-aligned, it seems.
  507. // first make sure block[j] is 16 bytes-aligned
  508. for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {
  509. level = block[j];
  510. if (level) {
  511. if (level < 0) {
  512. level = level * qmul - qadd;
  513. } else {
  514. level = level * qmul + qadd;
  515. }
  516. block[j] = level;
  517. }
  518. }
  519. #endif
  520. // vectorize all the 16 bytes-aligned blocks
  521. // of 8 elements
  522. for(; (j + 7) <= nCoeffs ; j+=8)
  523. {
  524. blockv = vec_ld(j << 1, block);
  525. blockv_neg = vec_cmplt(blockv, vczero);
  526. blockv_null = vec_cmpeq(blockv, vczero);
  527. // choose between +qadd or -qadd as the third operand
  528. temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
  529. // multiply & add (block{i,i+7} * qmul [+-] qadd)
  530. temp1 = vec_mladd(blockv, qmulv, temp1);
  531. // put 0 where block[{i,i+7} used to have 0
  532. blockv = vec_sel(temp1, blockv, blockv_null);
  533. vec_st(blockv, j << 1, block);
  534. }
  535. // if nCoeffs isn't a multiple of 8, finish the job
  536. // using good old scalar units.
  537. // (we could do it using a truncated vector,
  538. // but I'm not sure it's worth the hassle)
  539. for(; j <= nCoeffs ; j++) {
  540. level = block[j];
  541. if (level) {
  542. if (level < 0) {
  543. level = level * qmul - qadd;
  544. } else {
  545. level = level * qmul + qadd;
  546. }
  547. block[j] = level;
  548. }
  549. }
  550. if (i == 1)
  551. { // cheat. this avoid special-casing the first iteration
  552. block[0] = backup_0;
  553. }
  554. }
  555. #endif /* ALTIVEC_USE_REFERENCE_C_CODE */
  556. POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);
  557. }