You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2912 lines
86KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. /**
  20. * @file mpegaudiodec.c
  21. * MPEG Audio decoder.
  22. */
  23. //#define DEBUG
  24. #include "avcodec.h"
  25. #include "bitstream.h"
  26. #include "mpegaudio.h"
  27. #include "dsputil.h"
  28. /*
  29. * TODO:
  30. * - in low precision mode, use more 16 bit multiplies in synth filter
  31. * - test lsf / mpeg25 extensively.
  32. */
  33. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  34. audio decoder */
  35. #ifdef CONFIG_MPEGAUDIO_HP
  36. #define USE_HIGHPRECISION
  37. #endif
  38. #ifdef USE_HIGHPRECISION
  39. #define FRAC_BITS 23 /* fractional bits for sb_samples and dct */
  40. #define WFRAC_BITS 16 /* fractional bits for window */
  41. #else
  42. #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
  43. #define WFRAC_BITS 14 /* fractional bits for window */
  44. #endif
  45. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  46. typedef int32_t OUT_INT;
  47. #define OUT_MAX INT32_MAX
  48. #define OUT_MIN INT32_MIN
  49. #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 31)
  50. #else
  51. typedef int16_t OUT_INT;
  52. #define OUT_MAX INT16_MAX
  53. #define OUT_MIN INT16_MIN
  54. #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
  55. #endif
  56. #define FRAC_ONE (1 << FRAC_BITS)
  57. #define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  58. #define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  59. #define FIX(a) ((int)((a) * FRAC_ONE))
  60. /* WARNING: only correct for posititive numbers */
  61. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  62. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  63. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  64. //#define MULH(a,b) (((int64_t)(a) * (int64_t)(b))>>32) //gcc 3.4 creates an incredibly bloated mess out of this
  65. static always_inline int MULH(int a, int b){
  66. return ((int64_t)(a) * (int64_t)(b))>>32;
  67. }
  68. #if FRAC_BITS <= 15
  69. typedef int16_t MPA_INT;
  70. #else
  71. typedef int32_t MPA_INT;
  72. #endif
  73. /****************/
  74. #define HEADER_SIZE 4
  75. #define BACKSTEP_SIZE 512
  76. struct GranuleDef;
  77. typedef struct MPADecodeContext {
  78. uint8_t inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */
  79. int inbuf_index;
  80. uint8_t *inbuf_ptr, *inbuf;
  81. int frame_size;
  82. int free_format_frame_size; /* frame size in case of free format
  83. (zero if currently unknown) */
  84. /* next header (used in free format parsing) */
  85. uint32_t free_format_next_header;
  86. int error_protection;
  87. int layer;
  88. int sample_rate;
  89. int sample_rate_index; /* between 0 and 8 */
  90. int bit_rate;
  91. int old_frame_size;
  92. GetBitContext gb;
  93. int nb_channels;
  94. int mode;
  95. int mode_ext;
  96. int lsf;
  97. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
  98. int synth_buf_offset[MPA_MAX_CHANNELS];
  99. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
  100. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  101. #ifdef DEBUG
  102. int frame_count;
  103. #endif
  104. void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
  105. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  106. unsigned int dither_state;
  107. } MPADecodeContext;
  108. /**
  109. * Context for MP3On4 decoder
  110. */
  111. typedef struct MP3On4DecodeContext {
  112. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  113. int chan_cfg; ///< channel config number
  114. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  115. } MP3On4DecodeContext;
  116. /* layer 3 "granule" */
  117. typedef struct GranuleDef {
  118. uint8_t scfsi;
  119. int part2_3_length;
  120. int big_values;
  121. int global_gain;
  122. int scalefac_compress;
  123. uint8_t block_type;
  124. uint8_t switch_point;
  125. int table_select[3];
  126. int subblock_gain[3];
  127. uint8_t scalefac_scale;
  128. uint8_t count1table_select;
  129. int region_size[3]; /* number of huffman codes in each region */
  130. int preflag;
  131. int short_start, long_end; /* long/short band indexes */
  132. uint8_t scale_factors[40];
  133. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  134. } GranuleDef;
  135. #define MODE_EXT_MS_STEREO 2
  136. #define MODE_EXT_I_STEREO 1
  137. /* layer 3 huffman tables */
  138. typedef struct HuffTable {
  139. int xsize;
  140. const uint8_t *bits;
  141. const uint16_t *codes;
  142. } HuffTable;
  143. #include "mpegaudiodectab.h"
  144. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  145. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  146. /* vlc structure for decoding layer 3 huffman tables */
  147. static VLC huff_vlc[16];
  148. static uint8_t *huff_code_table[16];
  149. static VLC huff_quad_vlc[2];
  150. /* computed from band_size_long */
  151. static uint16_t band_index_long[9][23];
  152. /* XXX: free when all decoders are closed */
  153. #define TABLE_4_3_SIZE (8191 + 16)*4
  154. static int8_t *table_4_3_exp;
  155. static uint32_t *table_4_3_value;
  156. /* intensity stereo coef table */
  157. static int32_t is_table[2][16];
  158. static int32_t is_table_lsf[2][2][16];
  159. static int32_t csa_table[8][4];
  160. static float csa_table_float[8][4];
  161. static int32_t mdct_win[8][36];
  162. /* lower 2 bits: modulo 3, higher bits: shift */
  163. static uint16_t scale_factor_modshift[64];
  164. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  165. static int32_t scale_factor_mult[15][3];
  166. /* mult table for layer 2 group quantization */
  167. #define SCALE_GEN(v) \
  168. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  169. static const int32_t scale_factor_mult2[3][3] = {
  170. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  171. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  172. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  173. };
  174. void ff_mpa_synth_init(MPA_INT *window);
  175. static MPA_INT window[512] __attribute__((aligned(16)));
  176. /* layer 1 unscaling */
  177. /* n = number of bits of the mantissa minus 1 */
  178. static inline int l1_unscale(int n, int mant, int scale_factor)
  179. {
  180. int shift, mod;
  181. int64_t val;
  182. shift = scale_factor_modshift[scale_factor];
  183. mod = shift & 3;
  184. shift >>= 2;
  185. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  186. shift += n;
  187. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  188. return (int)((val + (1LL << (shift - 1))) >> shift);
  189. }
  190. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  191. {
  192. int shift, mod, val;
  193. shift = scale_factor_modshift[scale_factor];
  194. mod = shift & 3;
  195. shift >>= 2;
  196. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  197. /* NOTE: at this point, 0 <= shift <= 21 */
  198. if (shift > 0)
  199. val = (val + (1 << (shift - 1))) >> shift;
  200. return val;
  201. }
  202. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  203. static inline int l3_unscale(int value, int exponent)
  204. {
  205. unsigned int m;
  206. int e;
  207. e = table_4_3_exp [4*value + (exponent&3)];
  208. m = table_4_3_value[4*value + (exponent&3)];
  209. e -= (exponent >> 2);
  210. assert(e>=1);
  211. if (e > 31)
  212. return 0;
  213. m = (m + (1 << (e-1))) >> e;
  214. return m;
  215. }
  216. /* all integer n^(4/3) computation code */
  217. #define DEV_ORDER 13
  218. #define POW_FRAC_BITS 24
  219. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  220. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  221. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  222. static int dev_4_3_coefs[DEV_ORDER];
  223. #if 0 /* unused */
  224. static int pow_mult3[3] = {
  225. POW_FIX(1.0),
  226. POW_FIX(1.25992104989487316476),
  227. POW_FIX(1.58740105196819947474),
  228. };
  229. #endif
  230. static void int_pow_init(void)
  231. {
  232. int i, a;
  233. a = POW_FIX(1.0);
  234. for(i=0;i<DEV_ORDER;i++) {
  235. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  236. dev_4_3_coefs[i] = a;
  237. }
  238. }
  239. #if 0 /* unused, remove? */
  240. /* return the mantissa and the binary exponent */
  241. static int int_pow(int i, int *exp_ptr)
  242. {
  243. int e, er, eq, j;
  244. int a, a1;
  245. /* renormalize */
  246. a = i;
  247. e = POW_FRAC_BITS;
  248. while (a < (1 << (POW_FRAC_BITS - 1))) {
  249. a = a << 1;
  250. e--;
  251. }
  252. a -= (1 << POW_FRAC_BITS);
  253. a1 = 0;
  254. for(j = DEV_ORDER - 1; j >= 0; j--)
  255. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  256. a = (1 << POW_FRAC_BITS) + a1;
  257. /* exponent compute (exact) */
  258. e = e * 4;
  259. er = e % 3;
  260. eq = e / 3;
  261. a = POW_MULL(a, pow_mult3[er]);
  262. while (a >= 2 * POW_FRAC_ONE) {
  263. a = a >> 1;
  264. eq++;
  265. }
  266. /* convert to float */
  267. while (a < POW_FRAC_ONE) {
  268. a = a << 1;
  269. eq--;
  270. }
  271. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  272. #if POW_FRAC_BITS > FRAC_BITS
  273. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  274. /* correct overflow */
  275. if (a >= 2 * (1 << FRAC_BITS)) {
  276. a = a >> 1;
  277. eq++;
  278. }
  279. #endif
  280. *exp_ptr = eq;
  281. return a;
  282. }
  283. #endif
  284. static int decode_init(AVCodecContext * avctx)
  285. {
  286. MPADecodeContext *s = avctx->priv_data;
  287. static int init=0;
  288. int i, j, k;
  289. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  290. avctx->sample_fmt= SAMPLE_FMT_S32;
  291. #else
  292. avctx->sample_fmt= SAMPLE_FMT_S16;
  293. #endif
  294. if(avctx->antialias_algo != FF_AA_FLOAT)
  295. s->compute_antialias= compute_antialias_integer;
  296. else
  297. s->compute_antialias= compute_antialias_float;
  298. if (!init && !avctx->parse_only) {
  299. /* scale factors table for layer 1/2 */
  300. for(i=0;i<64;i++) {
  301. int shift, mod;
  302. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  303. shift = (i / 3);
  304. mod = i % 3;
  305. scale_factor_modshift[i] = mod | (shift << 2);
  306. }
  307. /* scale factor multiply for layer 1 */
  308. for(i=0;i<15;i++) {
  309. int n, norm;
  310. n = i + 2;
  311. norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  312. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  313. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  314. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  315. dprintf("%d: norm=%x s=%x %x %x\n",
  316. i, norm,
  317. scale_factor_mult[i][0],
  318. scale_factor_mult[i][1],
  319. scale_factor_mult[i][2]);
  320. }
  321. ff_mpa_synth_init(window);
  322. /* huffman decode tables */
  323. huff_code_table[0] = NULL;
  324. for(i=1;i<16;i++) {
  325. const HuffTable *h = &mpa_huff_tables[i];
  326. int xsize, x, y;
  327. unsigned int n;
  328. uint8_t *code_table;
  329. xsize = h->xsize;
  330. n = xsize * xsize;
  331. /* XXX: fail test */
  332. init_vlc(&huff_vlc[i], 8, n,
  333. h->bits, 1, 1, h->codes, 2, 2, 1);
  334. code_table = av_mallocz(n);
  335. j = 0;
  336. for(x=0;x<xsize;x++) {
  337. for(y=0;y<xsize;y++)
  338. code_table[j++] = (x << 4) | y;
  339. }
  340. huff_code_table[i] = code_table;
  341. }
  342. for(i=0;i<2;i++) {
  343. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  344. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  345. }
  346. for(i=0;i<9;i++) {
  347. k = 0;
  348. for(j=0;j<22;j++) {
  349. band_index_long[i][j] = k;
  350. k += band_size_long[i][j];
  351. }
  352. band_index_long[i][22] = k;
  353. }
  354. /* compute n ^ (4/3) and store it in mantissa/exp format */
  355. table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
  356. if(!table_4_3_exp)
  357. return -1;
  358. table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
  359. if(!table_4_3_value)
  360. return -1;
  361. int_pow_init();
  362. for(i=1;i<TABLE_4_3_SIZE;i++) {
  363. double f, fm;
  364. int e, m;
  365. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  366. fm = frexp(f, &e);
  367. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  368. e+= FRAC_BITS - 31 + 5;
  369. /* normalized to FRAC_BITS */
  370. table_4_3_value[i] = m;
  371. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  372. table_4_3_exp[i] = -e;
  373. }
  374. for(i=0;i<7;i++) {
  375. float f;
  376. int v;
  377. if (i != 6) {
  378. f = tan((double)i * M_PI / 12.0);
  379. v = FIXR(f / (1.0 + f));
  380. } else {
  381. v = FIXR(1.0);
  382. }
  383. is_table[0][i] = v;
  384. is_table[1][6 - i] = v;
  385. }
  386. /* invalid values */
  387. for(i=7;i<16;i++)
  388. is_table[0][i] = is_table[1][i] = 0.0;
  389. for(i=0;i<16;i++) {
  390. double f;
  391. int e, k;
  392. for(j=0;j<2;j++) {
  393. e = -(j + 1) * ((i + 1) >> 1);
  394. f = pow(2.0, e / 4.0);
  395. k = i & 1;
  396. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  397. is_table_lsf[j][k][i] = FIXR(1.0);
  398. dprintf("is_table_lsf %d %d: %x %x\n",
  399. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  400. }
  401. }
  402. for(i=0;i<8;i++) {
  403. float ci, cs, ca;
  404. ci = ci_table[i];
  405. cs = 1.0 / sqrt(1.0 + ci * ci);
  406. ca = cs * ci;
  407. csa_table[i][0] = FIXHR(cs/4);
  408. csa_table[i][1] = FIXHR(ca/4);
  409. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  410. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  411. csa_table_float[i][0] = cs;
  412. csa_table_float[i][1] = ca;
  413. csa_table_float[i][2] = ca + cs;
  414. csa_table_float[i][3] = ca - cs;
  415. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  416. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  417. }
  418. /* compute mdct windows */
  419. for(i=0;i<36;i++) {
  420. for(j=0; j<4; j++){
  421. double d;
  422. if(j==2 && i%3 != 1)
  423. continue;
  424. d= sin(M_PI * (i + 0.5) / 36.0);
  425. if(j==1){
  426. if (i>=30) d= 0;
  427. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  428. else if(i>=18) d= 1;
  429. }else if(j==3){
  430. if (i< 6) d= 0;
  431. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  432. else if(i< 18) d= 1;
  433. }
  434. //merge last stage of imdct into the window coefficients
  435. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  436. if(j==2)
  437. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  438. else
  439. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  440. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  441. }
  442. }
  443. /* NOTE: we do frequency inversion adter the MDCT by changing
  444. the sign of the right window coefs */
  445. for(j=0;j<4;j++) {
  446. for(i=0;i<36;i+=2) {
  447. mdct_win[j + 4][i] = mdct_win[j][i];
  448. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  449. }
  450. }
  451. #if defined(DEBUG)
  452. for(j=0;j<8;j++) {
  453. printf("win%d=\n", j);
  454. for(i=0;i<36;i++)
  455. printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  456. printf("\n");
  457. }
  458. #endif
  459. init = 1;
  460. }
  461. s->inbuf_index = 0;
  462. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  463. s->inbuf_ptr = s->inbuf;
  464. #ifdef DEBUG
  465. s->frame_count = 0;
  466. #endif
  467. if (avctx->codec_id == CODEC_ID_MP3ADU)
  468. s->adu_mode = 1;
  469. return 0;
  470. }
  471. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  472. /* cos(i*pi/64) */
  473. #define COS0_0 FIXR(0.50060299823519630134)
  474. #define COS0_1 FIXR(0.50547095989754365998)
  475. #define COS0_2 FIXR(0.51544730992262454697)
  476. #define COS0_3 FIXR(0.53104259108978417447)
  477. #define COS0_4 FIXR(0.55310389603444452782)
  478. #define COS0_5 FIXR(0.58293496820613387367)
  479. #define COS0_6 FIXR(0.62250412303566481615)
  480. #define COS0_7 FIXR(0.67480834145500574602)
  481. #define COS0_8 FIXR(0.74453627100229844977)
  482. #define COS0_9 FIXR(0.83934964541552703873)
  483. #define COS0_10 FIXR(0.97256823786196069369)
  484. #define COS0_11 FIXR(1.16943993343288495515)
  485. #define COS0_12 FIXR(1.48416461631416627724)
  486. #define COS0_13 FIXR(2.05778100995341155085)
  487. #define COS0_14 FIXR(3.40760841846871878570)
  488. #define COS0_15 FIXR(10.19000812354805681150)
  489. #define COS1_0 FIXR(0.50241928618815570551)
  490. #define COS1_1 FIXR(0.52249861493968888062)
  491. #define COS1_2 FIXR(0.56694403481635770368)
  492. #define COS1_3 FIXR(0.64682178335999012954)
  493. #define COS1_4 FIXR(0.78815462345125022473)
  494. #define COS1_5 FIXR(1.06067768599034747134)
  495. #define COS1_6 FIXR(1.72244709823833392782)
  496. #define COS1_7 FIXR(5.10114861868916385802)
  497. #define COS2_0 FIXR(0.50979557910415916894)
  498. #define COS2_1 FIXR(0.60134488693504528054)
  499. #define COS2_2 FIXR(0.89997622313641570463)
  500. #define COS2_3 FIXR(2.56291544774150617881)
  501. #define COS3_0 FIXR(0.54119610014619698439)
  502. #define COS3_1 FIXR(1.30656296487637652785)
  503. #define COS4_0 FIXR(0.70710678118654752439)
  504. /* butterfly operator */
  505. #define BF(a, b, c)\
  506. {\
  507. tmp0 = tab[a] + tab[b];\
  508. tmp1 = tab[a] - tab[b];\
  509. tab[a] = tmp0;\
  510. tab[b] = MULL(tmp1, c);\
  511. }
  512. #define BF1(a, b, c, d)\
  513. {\
  514. BF(a, b, COS4_0);\
  515. BF(c, d, -COS4_0);\
  516. tab[c] += tab[d];\
  517. }
  518. #define BF2(a, b, c, d)\
  519. {\
  520. BF(a, b, COS4_0);\
  521. BF(c, d, -COS4_0);\
  522. tab[c] += tab[d];\
  523. tab[a] += tab[c];\
  524. tab[c] += tab[b];\
  525. tab[b] += tab[d];\
  526. }
  527. #define ADD(a, b) tab[a] += tab[b]
  528. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  529. static void dct32(int32_t *out, int32_t *tab)
  530. {
  531. int tmp0, tmp1;
  532. /* pass 1 */
  533. BF(0, 31, COS0_0);
  534. BF(1, 30, COS0_1);
  535. BF(2, 29, COS0_2);
  536. BF(3, 28, COS0_3);
  537. BF(4, 27, COS0_4);
  538. BF(5, 26, COS0_5);
  539. BF(6, 25, COS0_6);
  540. BF(7, 24, COS0_7);
  541. BF(8, 23, COS0_8);
  542. BF(9, 22, COS0_9);
  543. BF(10, 21, COS0_10);
  544. BF(11, 20, COS0_11);
  545. BF(12, 19, COS0_12);
  546. BF(13, 18, COS0_13);
  547. BF(14, 17, COS0_14);
  548. BF(15, 16, COS0_15);
  549. /* pass 2 */
  550. BF(0, 15, COS1_0);
  551. BF(1, 14, COS1_1);
  552. BF(2, 13, COS1_2);
  553. BF(3, 12, COS1_3);
  554. BF(4, 11, COS1_4);
  555. BF(5, 10, COS1_5);
  556. BF(6, 9, COS1_6);
  557. BF(7, 8, COS1_7);
  558. BF(16, 31, -COS1_0);
  559. BF(17, 30, -COS1_1);
  560. BF(18, 29, -COS1_2);
  561. BF(19, 28, -COS1_3);
  562. BF(20, 27, -COS1_4);
  563. BF(21, 26, -COS1_5);
  564. BF(22, 25, -COS1_6);
  565. BF(23, 24, -COS1_7);
  566. /* pass 3 */
  567. BF(0, 7, COS2_0);
  568. BF(1, 6, COS2_1);
  569. BF(2, 5, COS2_2);
  570. BF(3, 4, COS2_3);
  571. BF(8, 15, -COS2_0);
  572. BF(9, 14, -COS2_1);
  573. BF(10, 13, -COS2_2);
  574. BF(11, 12, -COS2_3);
  575. BF(16, 23, COS2_0);
  576. BF(17, 22, COS2_1);
  577. BF(18, 21, COS2_2);
  578. BF(19, 20, COS2_3);
  579. BF(24, 31, -COS2_0);
  580. BF(25, 30, -COS2_1);
  581. BF(26, 29, -COS2_2);
  582. BF(27, 28, -COS2_3);
  583. /* pass 4 */
  584. BF(0, 3, COS3_0);
  585. BF(1, 2, COS3_1);
  586. BF(4, 7, -COS3_0);
  587. BF(5, 6, -COS3_1);
  588. BF(8, 11, COS3_0);
  589. BF(9, 10, COS3_1);
  590. BF(12, 15, -COS3_0);
  591. BF(13, 14, -COS3_1);
  592. BF(16, 19, COS3_0);
  593. BF(17, 18, COS3_1);
  594. BF(20, 23, -COS3_0);
  595. BF(21, 22, -COS3_1);
  596. BF(24, 27, COS3_0);
  597. BF(25, 26, COS3_1);
  598. BF(28, 31, -COS3_0);
  599. BF(29, 30, -COS3_1);
  600. /* pass 5 */
  601. BF1(0, 1, 2, 3);
  602. BF2(4, 5, 6, 7);
  603. BF1(8, 9, 10, 11);
  604. BF2(12, 13, 14, 15);
  605. BF1(16, 17, 18, 19);
  606. BF2(20, 21, 22, 23);
  607. BF1(24, 25, 26, 27);
  608. BF2(28, 29, 30, 31);
  609. /* pass 6 */
  610. ADD( 8, 12);
  611. ADD(12, 10);
  612. ADD(10, 14);
  613. ADD(14, 9);
  614. ADD( 9, 13);
  615. ADD(13, 11);
  616. ADD(11, 15);
  617. out[ 0] = tab[0];
  618. out[16] = tab[1];
  619. out[ 8] = tab[2];
  620. out[24] = tab[3];
  621. out[ 4] = tab[4];
  622. out[20] = tab[5];
  623. out[12] = tab[6];
  624. out[28] = tab[7];
  625. out[ 2] = tab[8];
  626. out[18] = tab[9];
  627. out[10] = tab[10];
  628. out[26] = tab[11];
  629. out[ 6] = tab[12];
  630. out[22] = tab[13];
  631. out[14] = tab[14];
  632. out[30] = tab[15];
  633. ADD(24, 28);
  634. ADD(28, 26);
  635. ADD(26, 30);
  636. ADD(30, 25);
  637. ADD(25, 29);
  638. ADD(29, 27);
  639. ADD(27, 31);
  640. out[ 1] = tab[16] + tab[24];
  641. out[17] = tab[17] + tab[25];
  642. out[ 9] = tab[18] + tab[26];
  643. out[25] = tab[19] + tab[27];
  644. out[ 5] = tab[20] + tab[28];
  645. out[21] = tab[21] + tab[29];
  646. out[13] = tab[22] + tab[30];
  647. out[29] = tab[23] + tab[31];
  648. out[ 3] = tab[24] + tab[20];
  649. out[19] = tab[25] + tab[21];
  650. out[11] = tab[26] + tab[22];
  651. out[27] = tab[27] + tab[23];
  652. out[ 7] = tab[28] + tab[18];
  653. out[23] = tab[29] + tab[19];
  654. out[15] = tab[30] + tab[17];
  655. out[31] = tab[31];
  656. }
  657. #if FRAC_BITS <= 15
  658. static inline int round_sample(int *sum)
  659. {
  660. int sum1;
  661. sum1 = (*sum) >> OUT_SHIFT;
  662. *sum &= (1<<OUT_SHIFT)-1;
  663. if (sum1 < OUT_MIN)
  664. sum1 = OUT_MIN;
  665. else if (sum1 > OUT_MAX)
  666. sum1 = OUT_MAX;
  667. return sum1;
  668. }
  669. #if defined(ARCH_POWERPC_405)
  670. /* signed 16x16 -> 32 multiply add accumulate */
  671. #define MACS(rt, ra, rb) \
  672. asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
  673. /* signed 16x16 -> 32 multiply */
  674. #define MULS(ra, rb) \
  675. ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
  676. #else
  677. /* signed 16x16 -> 32 multiply add accumulate */
  678. #define MACS(rt, ra, rb) rt += (ra) * (rb)
  679. /* signed 16x16 -> 32 multiply */
  680. #define MULS(ra, rb) ((ra) * (rb))
  681. #endif
  682. #else
  683. static inline int round_sample(int64_t *sum)
  684. {
  685. int sum1;
  686. sum1 = (int)((*sum) >> OUT_SHIFT);
  687. *sum &= (1<<OUT_SHIFT)-1;
  688. if (sum1 < OUT_MIN)
  689. sum1 = OUT_MIN;
  690. else if (sum1 > OUT_MAX)
  691. sum1 = OUT_MAX;
  692. return sum1;
  693. }
  694. #define MULS(ra, rb) MUL64(ra, rb)
  695. #endif
  696. #define SUM8(sum, op, w, p) \
  697. { \
  698. sum op MULS((w)[0 * 64], p[0 * 64]);\
  699. sum op MULS((w)[1 * 64], p[1 * 64]);\
  700. sum op MULS((w)[2 * 64], p[2 * 64]);\
  701. sum op MULS((w)[3 * 64], p[3 * 64]);\
  702. sum op MULS((w)[4 * 64], p[4 * 64]);\
  703. sum op MULS((w)[5 * 64], p[5 * 64]);\
  704. sum op MULS((w)[6 * 64], p[6 * 64]);\
  705. sum op MULS((w)[7 * 64], p[7 * 64]);\
  706. }
  707. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  708. { \
  709. int tmp;\
  710. tmp = p[0 * 64];\
  711. sum1 op1 MULS((w1)[0 * 64], tmp);\
  712. sum2 op2 MULS((w2)[0 * 64], tmp);\
  713. tmp = p[1 * 64];\
  714. sum1 op1 MULS((w1)[1 * 64], tmp);\
  715. sum2 op2 MULS((w2)[1 * 64], tmp);\
  716. tmp = p[2 * 64];\
  717. sum1 op1 MULS((w1)[2 * 64], tmp);\
  718. sum2 op2 MULS((w2)[2 * 64], tmp);\
  719. tmp = p[3 * 64];\
  720. sum1 op1 MULS((w1)[3 * 64], tmp);\
  721. sum2 op2 MULS((w2)[3 * 64], tmp);\
  722. tmp = p[4 * 64];\
  723. sum1 op1 MULS((w1)[4 * 64], tmp);\
  724. sum2 op2 MULS((w2)[4 * 64], tmp);\
  725. tmp = p[5 * 64];\
  726. sum1 op1 MULS((w1)[5 * 64], tmp);\
  727. sum2 op2 MULS((w2)[5 * 64], tmp);\
  728. tmp = p[6 * 64];\
  729. sum1 op1 MULS((w1)[6 * 64], tmp);\
  730. sum2 op2 MULS((w2)[6 * 64], tmp);\
  731. tmp = p[7 * 64];\
  732. sum1 op1 MULS((w1)[7 * 64], tmp);\
  733. sum2 op2 MULS((w2)[7 * 64], tmp);\
  734. }
  735. void ff_mpa_synth_init(MPA_INT *window)
  736. {
  737. int i;
  738. /* max = 18760, max sum over all 16 coefs : 44736 */
  739. for(i=0;i<257;i++) {
  740. int v;
  741. v = mpa_enwindow[i];
  742. #if WFRAC_BITS < 16
  743. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  744. #endif
  745. window[i] = v;
  746. if ((i & 63) != 0)
  747. v = -v;
  748. if (i != 0)
  749. window[512 - i] = v;
  750. }
  751. }
  752. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  753. 32 samples. */
  754. /* XXX: optimize by avoiding ring buffer usage */
  755. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  756. MPA_INT *window, int *dither_state,
  757. OUT_INT *samples, int incr,
  758. int32_t sb_samples[SBLIMIT])
  759. {
  760. int32_t tmp[32];
  761. register MPA_INT *synth_buf;
  762. register const MPA_INT *w, *w2, *p;
  763. int j, offset, v;
  764. OUT_INT *samples2;
  765. #if FRAC_BITS <= 15
  766. int sum, sum2;
  767. #else
  768. int64_t sum, sum2;
  769. #endif
  770. dct32(tmp, sb_samples);
  771. offset = *synth_buf_offset;
  772. synth_buf = synth_buf_ptr + offset;
  773. for(j=0;j<32;j++) {
  774. v = tmp[j];
  775. #if FRAC_BITS <= 15
  776. /* NOTE: can cause a loss in precision if very high amplitude
  777. sound */
  778. if (v > 32767)
  779. v = 32767;
  780. else if (v < -32768)
  781. v = -32768;
  782. #endif
  783. synth_buf[j] = v;
  784. }
  785. /* copy to avoid wrap */
  786. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  787. samples2 = samples + 31 * incr;
  788. w = window;
  789. w2 = window + 31;
  790. sum = *dither_state;
  791. p = synth_buf + 16;
  792. SUM8(sum, +=, w, p);
  793. p = synth_buf + 48;
  794. SUM8(sum, -=, w + 32, p);
  795. *samples = round_sample(&sum);
  796. samples += incr;
  797. w++;
  798. /* we calculate two samples at the same time to avoid one memory
  799. access per two sample */
  800. for(j=1;j<16;j++) {
  801. sum2 = 0;
  802. p = synth_buf + 16 + j;
  803. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  804. p = synth_buf + 48 - j;
  805. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  806. *samples = round_sample(&sum);
  807. samples += incr;
  808. sum += sum2;
  809. *samples2 = round_sample(&sum);
  810. samples2 -= incr;
  811. w++;
  812. w2--;
  813. }
  814. p = synth_buf + 32;
  815. SUM8(sum, -=, w + 32, p);
  816. *samples = round_sample(&sum);
  817. *dither_state= sum;
  818. offset = (offset - 32) & 511;
  819. *synth_buf_offset = offset;
  820. }
  821. #define C3 FIXHR(0.86602540378443864676/2)
  822. /* 0.5 / cos(pi*(2*i+1)/36) */
  823. static const int icos36[9] = {
  824. FIXR(0.50190991877167369479),
  825. FIXR(0.51763809020504152469), //0
  826. FIXR(0.55168895948124587824),
  827. FIXR(0.61038729438072803416),
  828. FIXR(0.70710678118654752439), //1
  829. FIXR(0.87172339781054900991),
  830. FIXR(1.18310079157624925896),
  831. FIXR(1.93185165257813657349), //2
  832. FIXR(5.73685662283492756461),
  833. };
  834. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  835. cases. */
  836. static void imdct12(int *out, int *in)
  837. {
  838. int in0, in1, in2, in3, in4, in5, t1, t2;
  839. in0= in[0*3];
  840. in1= in[1*3] + in[0*3];
  841. in2= in[2*3] + in[1*3];
  842. in3= in[3*3] + in[2*3];
  843. in4= in[4*3] + in[3*3];
  844. in5= in[5*3] + in[4*3];
  845. in5 += in3;
  846. in3 += in1;
  847. in2= MULH(2*in2, C3);
  848. in3= MULH(2*in3, C3);
  849. t1 = in0 - in4;
  850. t2 = MULL(in1 - in5, icos36[4]);
  851. out[ 7]=
  852. out[10]= t1 + t2;
  853. out[ 1]=
  854. out[ 4]= t1 - t2;
  855. in0 += in4>>1;
  856. in4 = in0 + in2;
  857. in1 += in5>>1;
  858. in5 = MULL(in1 + in3, icos36[1]);
  859. out[ 8]=
  860. out[ 9]= in4 + in5;
  861. out[ 2]=
  862. out[ 3]= in4 - in5;
  863. in0 -= in2;
  864. in1 = MULL(in1 - in3, icos36[7]);
  865. out[ 0]=
  866. out[ 5]= in0 - in1;
  867. out[ 6]=
  868. out[11]= in0 + in1;
  869. }
  870. /* cos(pi*i/18) */
  871. #define C1 FIXHR(0.98480775301220805936/2)
  872. #define C2 FIXHR(0.93969262078590838405/2)
  873. #define C3 FIXHR(0.86602540378443864676/2)
  874. #define C4 FIXHR(0.76604444311897803520/2)
  875. #define C5 FIXHR(0.64278760968653932632/2)
  876. #define C6 FIXHR(0.5/2)
  877. #define C7 FIXHR(0.34202014332566873304/2)
  878. #define C8 FIXHR(0.17364817766693034885/2)
  879. /* using Lee like decomposition followed by hand coded 9 points DCT */
  880. static void imdct36(int *out, int *buf, int *in, int *win)
  881. {
  882. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  883. int tmp[18], *tmp1, *in1;
  884. for(i=17;i>=1;i--)
  885. in[i] += in[i-1];
  886. for(i=17;i>=3;i-=2)
  887. in[i] += in[i-2];
  888. for(j=0;j<2;j++) {
  889. tmp1 = tmp + j;
  890. in1 = in + j;
  891. #if 0
  892. //more accurate but slower
  893. int64_t t0, t1, t2, t3;
  894. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  895. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  896. t1 = in1[2*0] - in1[2*6];
  897. tmp1[ 6] = t1 - (t2>>1);
  898. tmp1[16] = t1 + t2;
  899. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  900. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  901. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  902. tmp1[10] = (t3 - t0 - t2) >> 32;
  903. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  904. tmp1[14] = (t3 + t2 - t1) >> 32;
  905. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  906. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  907. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  908. t0 = MUL64(2*in1[2*3], C3);
  909. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  910. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  911. tmp1[12] = (t2 + t1 - t0) >> 32;
  912. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  913. #else
  914. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  915. t3 = in1[2*0] + (in1[2*6]>>1);
  916. t1 = in1[2*0] - in1[2*6];
  917. tmp1[ 6] = t1 - (t2>>1);
  918. tmp1[16] = t1 + t2;
  919. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  920. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  921. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  922. tmp1[10] = t3 - t0 - t2;
  923. tmp1[ 2] = t3 + t0 + t1;
  924. tmp1[14] = t3 + t2 - t1;
  925. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  926. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  927. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  928. t0 = MULH(2*in1[2*3], C3);
  929. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  930. tmp1[ 0] = t2 + t3 + t0;
  931. tmp1[12] = t2 + t1 - t0;
  932. tmp1[ 8] = t3 - t1 - t0;
  933. #endif
  934. }
  935. i = 0;
  936. for(j=0;j<4;j++) {
  937. t0 = tmp[i];
  938. t1 = tmp[i + 2];
  939. s0 = t1 + t0;
  940. s2 = t1 - t0;
  941. t2 = tmp[i + 1];
  942. t3 = tmp[i + 3];
  943. s1 = MULL(t3 + t2, icos36[j]);
  944. s3 = MULL(t3 - t2, icos36[8 - j]);
  945. t0 = s0 + s1;
  946. t1 = s0 - s1;
  947. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  948. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  949. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  950. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  951. t0 = s2 + s3;
  952. t1 = s2 - s3;
  953. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  954. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  955. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  956. buf[ + j] = MULH(t0, win[18 + j]);
  957. i += 4;
  958. }
  959. s0 = tmp[16];
  960. s1 = MULL(tmp[17], icos36[4]);
  961. t0 = s0 + s1;
  962. t1 = s0 - s1;
  963. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  964. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  965. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  966. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  967. }
  968. /* header decoding. MUST check the header before because no
  969. consistency check is done there. Return 1 if free format found and
  970. that the frame size must be computed externally */
  971. static int decode_header(MPADecodeContext *s, uint32_t header)
  972. {
  973. int sample_rate, frame_size, mpeg25, padding;
  974. int sample_rate_index, bitrate_index;
  975. if (header & (1<<20)) {
  976. s->lsf = (header & (1<<19)) ? 0 : 1;
  977. mpeg25 = 0;
  978. } else {
  979. s->lsf = 1;
  980. mpeg25 = 1;
  981. }
  982. s->layer = 4 - ((header >> 17) & 3);
  983. /* extract frequency */
  984. sample_rate_index = (header >> 10) & 3;
  985. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  986. sample_rate_index += 3 * (s->lsf + mpeg25);
  987. s->sample_rate_index = sample_rate_index;
  988. s->error_protection = ((header >> 16) & 1) ^ 1;
  989. s->sample_rate = sample_rate;
  990. bitrate_index = (header >> 12) & 0xf;
  991. padding = (header >> 9) & 1;
  992. //extension = (header >> 8) & 1;
  993. s->mode = (header >> 6) & 3;
  994. s->mode_ext = (header >> 4) & 3;
  995. //copyright = (header >> 3) & 1;
  996. //original = (header >> 2) & 1;
  997. //emphasis = header & 3;
  998. if (s->mode == MPA_MONO)
  999. s->nb_channels = 1;
  1000. else
  1001. s->nb_channels = 2;
  1002. if (bitrate_index != 0) {
  1003. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  1004. s->bit_rate = frame_size * 1000;
  1005. switch(s->layer) {
  1006. case 1:
  1007. frame_size = (frame_size * 12000) / sample_rate;
  1008. frame_size = (frame_size + padding) * 4;
  1009. break;
  1010. case 2:
  1011. frame_size = (frame_size * 144000) / sample_rate;
  1012. frame_size += padding;
  1013. break;
  1014. default:
  1015. case 3:
  1016. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  1017. frame_size += padding;
  1018. break;
  1019. }
  1020. s->frame_size = frame_size;
  1021. } else {
  1022. /* if no frame size computed, signal it */
  1023. if (!s->free_format_frame_size)
  1024. return 1;
  1025. /* free format: compute bitrate and real frame size from the
  1026. frame size we extracted by reading the bitstream */
  1027. s->frame_size = s->free_format_frame_size;
  1028. switch(s->layer) {
  1029. case 1:
  1030. s->frame_size += padding * 4;
  1031. s->bit_rate = (s->frame_size * sample_rate) / 48000;
  1032. break;
  1033. case 2:
  1034. s->frame_size += padding;
  1035. s->bit_rate = (s->frame_size * sample_rate) / 144000;
  1036. break;
  1037. default:
  1038. case 3:
  1039. s->frame_size += padding;
  1040. s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
  1041. break;
  1042. }
  1043. }
  1044. #if defined(DEBUG)
  1045. printf("layer%d, %d Hz, %d kbits/s, ",
  1046. s->layer, s->sample_rate, s->bit_rate);
  1047. if (s->nb_channels == 2) {
  1048. if (s->layer == 3) {
  1049. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1050. printf("ms-");
  1051. if (s->mode_ext & MODE_EXT_I_STEREO)
  1052. printf("i-");
  1053. }
  1054. printf("stereo");
  1055. } else {
  1056. printf("mono");
  1057. }
  1058. printf("\n");
  1059. #endif
  1060. return 0;
  1061. }
  1062. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1063. header, otherwise the coded frame size in bytes */
  1064. int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
  1065. {
  1066. MPADecodeContext s1, *s = &s1;
  1067. memset( s, 0, sizeof(MPADecodeContext) );
  1068. if (ff_mpa_check_header(head) != 0)
  1069. return -1;
  1070. if (decode_header(s, head) != 0) {
  1071. return -1;
  1072. }
  1073. switch(s->layer) {
  1074. case 1:
  1075. avctx->frame_size = 384;
  1076. break;
  1077. case 2:
  1078. avctx->frame_size = 1152;
  1079. break;
  1080. default:
  1081. case 3:
  1082. if (s->lsf)
  1083. avctx->frame_size = 576;
  1084. else
  1085. avctx->frame_size = 1152;
  1086. break;
  1087. }
  1088. avctx->sample_rate = s->sample_rate;
  1089. avctx->channels = s->nb_channels;
  1090. avctx->bit_rate = s->bit_rate;
  1091. avctx->sub_id = s->layer;
  1092. return s->frame_size;
  1093. }
  1094. /* return the number of decoded frames */
  1095. static int mp_decode_layer1(MPADecodeContext *s)
  1096. {
  1097. int bound, i, v, n, ch, j, mant;
  1098. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1099. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1100. if (s->mode == MPA_JSTEREO)
  1101. bound = (s->mode_ext + 1) * 4;
  1102. else
  1103. bound = SBLIMIT;
  1104. /* allocation bits */
  1105. for(i=0;i<bound;i++) {
  1106. for(ch=0;ch<s->nb_channels;ch++) {
  1107. allocation[ch][i] = get_bits(&s->gb, 4);
  1108. }
  1109. }
  1110. for(i=bound;i<SBLIMIT;i++) {
  1111. allocation[0][i] = get_bits(&s->gb, 4);
  1112. }
  1113. /* scale factors */
  1114. for(i=0;i<bound;i++) {
  1115. for(ch=0;ch<s->nb_channels;ch++) {
  1116. if (allocation[ch][i])
  1117. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1118. }
  1119. }
  1120. for(i=bound;i<SBLIMIT;i++) {
  1121. if (allocation[0][i]) {
  1122. scale_factors[0][i] = get_bits(&s->gb, 6);
  1123. scale_factors[1][i] = get_bits(&s->gb, 6);
  1124. }
  1125. }
  1126. /* compute samples */
  1127. for(j=0;j<12;j++) {
  1128. for(i=0;i<bound;i++) {
  1129. for(ch=0;ch<s->nb_channels;ch++) {
  1130. n = allocation[ch][i];
  1131. if (n) {
  1132. mant = get_bits(&s->gb, n + 1);
  1133. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1134. } else {
  1135. v = 0;
  1136. }
  1137. s->sb_samples[ch][j][i] = v;
  1138. }
  1139. }
  1140. for(i=bound;i<SBLIMIT;i++) {
  1141. n = allocation[0][i];
  1142. if (n) {
  1143. mant = get_bits(&s->gb, n + 1);
  1144. v = l1_unscale(n, mant, scale_factors[0][i]);
  1145. s->sb_samples[0][j][i] = v;
  1146. v = l1_unscale(n, mant, scale_factors[1][i]);
  1147. s->sb_samples[1][j][i] = v;
  1148. } else {
  1149. s->sb_samples[0][j][i] = 0;
  1150. s->sb_samples[1][j][i] = 0;
  1151. }
  1152. }
  1153. }
  1154. return 12;
  1155. }
  1156. /* bitrate is in kb/s */
  1157. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1158. {
  1159. int ch_bitrate, table;
  1160. ch_bitrate = bitrate / nb_channels;
  1161. if (!lsf) {
  1162. if ((freq == 48000 && ch_bitrate >= 56) ||
  1163. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1164. table = 0;
  1165. else if (freq != 48000 && ch_bitrate >= 96)
  1166. table = 1;
  1167. else if (freq != 32000 && ch_bitrate <= 48)
  1168. table = 2;
  1169. else
  1170. table = 3;
  1171. } else {
  1172. table = 4;
  1173. }
  1174. return table;
  1175. }
  1176. static int mp_decode_layer2(MPADecodeContext *s)
  1177. {
  1178. int sblimit; /* number of used subbands */
  1179. const unsigned char *alloc_table;
  1180. int table, bit_alloc_bits, i, j, ch, bound, v;
  1181. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1182. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1183. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1184. int scale, qindex, bits, steps, k, l, m, b;
  1185. /* select decoding table */
  1186. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1187. s->sample_rate, s->lsf);
  1188. sblimit = sblimit_table[table];
  1189. alloc_table = alloc_tables[table];
  1190. if (s->mode == MPA_JSTEREO)
  1191. bound = (s->mode_ext + 1) * 4;
  1192. else
  1193. bound = sblimit;
  1194. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1195. /* sanity check */
  1196. if( bound > sblimit ) bound = sblimit;
  1197. /* parse bit allocation */
  1198. j = 0;
  1199. for(i=0;i<bound;i++) {
  1200. bit_alloc_bits = alloc_table[j];
  1201. for(ch=0;ch<s->nb_channels;ch++) {
  1202. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1203. }
  1204. j += 1 << bit_alloc_bits;
  1205. }
  1206. for(i=bound;i<sblimit;i++) {
  1207. bit_alloc_bits = alloc_table[j];
  1208. v = get_bits(&s->gb, bit_alloc_bits);
  1209. bit_alloc[0][i] = v;
  1210. bit_alloc[1][i] = v;
  1211. j += 1 << bit_alloc_bits;
  1212. }
  1213. #ifdef DEBUG
  1214. {
  1215. for(ch=0;ch<s->nb_channels;ch++) {
  1216. for(i=0;i<sblimit;i++)
  1217. printf(" %d", bit_alloc[ch][i]);
  1218. printf("\n");
  1219. }
  1220. }
  1221. #endif
  1222. /* scale codes */
  1223. for(i=0;i<sblimit;i++) {
  1224. for(ch=0;ch<s->nb_channels;ch++) {
  1225. if (bit_alloc[ch][i])
  1226. scale_code[ch][i] = get_bits(&s->gb, 2);
  1227. }
  1228. }
  1229. /* scale factors */
  1230. for(i=0;i<sblimit;i++) {
  1231. for(ch=0;ch<s->nb_channels;ch++) {
  1232. if (bit_alloc[ch][i]) {
  1233. sf = scale_factors[ch][i];
  1234. switch(scale_code[ch][i]) {
  1235. default:
  1236. case 0:
  1237. sf[0] = get_bits(&s->gb, 6);
  1238. sf[1] = get_bits(&s->gb, 6);
  1239. sf[2] = get_bits(&s->gb, 6);
  1240. break;
  1241. case 2:
  1242. sf[0] = get_bits(&s->gb, 6);
  1243. sf[1] = sf[0];
  1244. sf[2] = sf[0];
  1245. break;
  1246. case 1:
  1247. sf[0] = get_bits(&s->gb, 6);
  1248. sf[2] = get_bits(&s->gb, 6);
  1249. sf[1] = sf[0];
  1250. break;
  1251. case 3:
  1252. sf[0] = get_bits(&s->gb, 6);
  1253. sf[2] = get_bits(&s->gb, 6);
  1254. sf[1] = sf[2];
  1255. break;
  1256. }
  1257. }
  1258. }
  1259. }
  1260. #ifdef DEBUG
  1261. for(ch=0;ch<s->nb_channels;ch++) {
  1262. for(i=0;i<sblimit;i++) {
  1263. if (bit_alloc[ch][i]) {
  1264. sf = scale_factors[ch][i];
  1265. printf(" %d %d %d", sf[0], sf[1], sf[2]);
  1266. } else {
  1267. printf(" -");
  1268. }
  1269. }
  1270. printf("\n");
  1271. }
  1272. #endif
  1273. /* samples */
  1274. for(k=0;k<3;k++) {
  1275. for(l=0;l<12;l+=3) {
  1276. j = 0;
  1277. for(i=0;i<bound;i++) {
  1278. bit_alloc_bits = alloc_table[j];
  1279. for(ch=0;ch<s->nb_channels;ch++) {
  1280. b = bit_alloc[ch][i];
  1281. if (b) {
  1282. scale = scale_factors[ch][i][k];
  1283. qindex = alloc_table[j+b];
  1284. bits = quant_bits[qindex];
  1285. if (bits < 0) {
  1286. /* 3 values at the same time */
  1287. v = get_bits(&s->gb, -bits);
  1288. steps = quant_steps[qindex];
  1289. s->sb_samples[ch][k * 12 + l + 0][i] =
  1290. l2_unscale_group(steps, v % steps, scale);
  1291. v = v / steps;
  1292. s->sb_samples[ch][k * 12 + l + 1][i] =
  1293. l2_unscale_group(steps, v % steps, scale);
  1294. v = v / steps;
  1295. s->sb_samples[ch][k * 12 + l + 2][i] =
  1296. l2_unscale_group(steps, v, scale);
  1297. } else {
  1298. for(m=0;m<3;m++) {
  1299. v = get_bits(&s->gb, bits);
  1300. v = l1_unscale(bits - 1, v, scale);
  1301. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1302. }
  1303. }
  1304. } else {
  1305. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1306. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1307. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1308. }
  1309. }
  1310. /* next subband in alloc table */
  1311. j += 1 << bit_alloc_bits;
  1312. }
  1313. /* XXX: find a way to avoid this duplication of code */
  1314. for(i=bound;i<sblimit;i++) {
  1315. bit_alloc_bits = alloc_table[j];
  1316. b = bit_alloc[0][i];
  1317. if (b) {
  1318. int mant, scale0, scale1;
  1319. scale0 = scale_factors[0][i][k];
  1320. scale1 = scale_factors[1][i][k];
  1321. qindex = alloc_table[j+b];
  1322. bits = quant_bits[qindex];
  1323. if (bits < 0) {
  1324. /* 3 values at the same time */
  1325. v = get_bits(&s->gb, -bits);
  1326. steps = quant_steps[qindex];
  1327. mant = v % steps;
  1328. v = v / steps;
  1329. s->sb_samples[0][k * 12 + l + 0][i] =
  1330. l2_unscale_group(steps, mant, scale0);
  1331. s->sb_samples[1][k * 12 + l + 0][i] =
  1332. l2_unscale_group(steps, mant, scale1);
  1333. mant = v % steps;
  1334. v = v / steps;
  1335. s->sb_samples[0][k * 12 + l + 1][i] =
  1336. l2_unscale_group(steps, mant, scale0);
  1337. s->sb_samples[1][k * 12 + l + 1][i] =
  1338. l2_unscale_group(steps, mant, scale1);
  1339. s->sb_samples[0][k * 12 + l + 2][i] =
  1340. l2_unscale_group(steps, v, scale0);
  1341. s->sb_samples[1][k * 12 + l + 2][i] =
  1342. l2_unscale_group(steps, v, scale1);
  1343. } else {
  1344. for(m=0;m<3;m++) {
  1345. mant = get_bits(&s->gb, bits);
  1346. s->sb_samples[0][k * 12 + l + m][i] =
  1347. l1_unscale(bits - 1, mant, scale0);
  1348. s->sb_samples[1][k * 12 + l + m][i] =
  1349. l1_unscale(bits - 1, mant, scale1);
  1350. }
  1351. }
  1352. } else {
  1353. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1354. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1355. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1356. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1357. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1358. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1359. }
  1360. /* next subband in alloc table */
  1361. j += 1 << bit_alloc_bits;
  1362. }
  1363. /* fill remaining samples to zero */
  1364. for(i=sblimit;i<SBLIMIT;i++) {
  1365. for(ch=0;ch<s->nb_channels;ch++) {
  1366. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1367. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1368. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1369. }
  1370. }
  1371. }
  1372. }
  1373. return 3 * 12;
  1374. }
  1375. /*
  1376. * Seek back in the stream for backstep bytes (at most 511 bytes)
  1377. */
  1378. static void seek_to_maindata(MPADecodeContext *s, unsigned int backstep)
  1379. {
  1380. uint8_t *ptr;
  1381. /* compute current position in stream */
  1382. ptr = (uint8_t *)(s->gb.buffer + (get_bits_count(&s->gb)>>3));
  1383. /* copy old data before current one */
  1384. ptr -= backstep;
  1385. memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] +
  1386. BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
  1387. /* init get bits again */
  1388. init_get_bits(&s->gb, ptr, (s->frame_size + backstep)*8);
  1389. /* prepare next buffer */
  1390. s->inbuf_index ^= 1;
  1391. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  1392. s->old_frame_size = s->frame_size;
  1393. }
  1394. static inline void lsf_sf_expand(int *slen,
  1395. int sf, int n1, int n2, int n3)
  1396. {
  1397. if (n3) {
  1398. slen[3] = sf % n3;
  1399. sf /= n3;
  1400. } else {
  1401. slen[3] = 0;
  1402. }
  1403. if (n2) {
  1404. slen[2] = sf % n2;
  1405. sf /= n2;
  1406. } else {
  1407. slen[2] = 0;
  1408. }
  1409. slen[1] = sf % n1;
  1410. sf /= n1;
  1411. slen[0] = sf;
  1412. }
  1413. static void exponents_from_scale_factors(MPADecodeContext *s,
  1414. GranuleDef *g,
  1415. int16_t *exponents)
  1416. {
  1417. const uint8_t *bstab, *pretab;
  1418. int len, i, j, k, l, v0, shift, gain, gains[3];
  1419. int16_t *exp_ptr;
  1420. exp_ptr = exponents;
  1421. gain = g->global_gain - 210;
  1422. shift = g->scalefac_scale + 1;
  1423. bstab = band_size_long[s->sample_rate_index];
  1424. pretab = mpa_pretab[g->preflag];
  1425. for(i=0;i<g->long_end;i++) {
  1426. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
  1427. len = bstab[i];
  1428. for(j=len;j>0;j--)
  1429. *exp_ptr++ = v0;
  1430. }
  1431. if (g->short_start < 13) {
  1432. bstab = band_size_short[s->sample_rate_index];
  1433. gains[0] = gain - (g->subblock_gain[0] << 3);
  1434. gains[1] = gain - (g->subblock_gain[1] << 3);
  1435. gains[2] = gain - (g->subblock_gain[2] << 3);
  1436. k = g->long_end;
  1437. for(i=g->short_start;i<13;i++) {
  1438. len = bstab[i];
  1439. for(l=0;l<3;l++) {
  1440. v0 = gains[l] - (g->scale_factors[k++] << shift);
  1441. for(j=len;j>0;j--)
  1442. *exp_ptr++ = v0;
  1443. }
  1444. }
  1445. }
  1446. }
  1447. /* handle n = 0 too */
  1448. static inline int get_bitsz(GetBitContext *s, int n)
  1449. {
  1450. if (n == 0)
  1451. return 0;
  1452. else
  1453. return get_bits(s, n);
  1454. }
  1455. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1456. int16_t *exponents, int end_pos)
  1457. {
  1458. int s_index;
  1459. int linbits, code, x, y, l, v, i, j, k, pos;
  1460. GetBitContext last_gb;
  1461. VLC *vlc;
  1462. uint8_t *code_table;
  1463. /* low frequencies (called big values) */
  1464. s_index = 0;
  1465. for(i=0;i<3;i++) {
  1466. j = g->region_size[i];
  1467. if (j == 0)
  1468. continue;
  1469. /* select vlc table */
  1470. k = g->table_select[i];
  1471. l = mpa_huff_data[k][0];
  1472. linbits = mpa_huff_data[k][1];
  1473. vlc = &huff_vlc[l];
  1474. code_table = huff_code_table[l];
  1475. /* read huffcode and compute each couple */
  1476. for(;j>0;j--) {
  1477. if (get_bits_count(&s->gb) >= end_pos)
  1478. break;
  1479. if (code_table) {
  1480. code = get_vlc(&s->gb, vlc);
  1481. if (code < 0)
  1482. return -1;
  1483. y = code_table[code];
  1484. x = y >> 4;
  1485. y = y & 0x0f;
  1486. } else {
  1487. x = 0;
  1488. y = 0;
  1489. }
  1490. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1491. i, g->region_size[i] - j, x, y, exponents[s_index]);
  1492. if (x) {
  1493. if (x == 15)
  1494. x += get_bitsz(&s->gb, linbits);
  1495. v = l3_unscale(x, exponents[s_index]);
  1496. if (get_bits1(&s->gb))
  1497. v = -v;
  1498. } else {
  1499. v = 0;
  1500. }
  1501. g->sb_hybrid[s_index++] = v;
  1502. if (y) {
  1503. if (y == 15)
  1504. y += get_bitsz(&s->gb, linbits);
  1505. v = l3_unscale(y, exponents[s_index]);
  1506. if (get_bits1(&s->gb))
  1507. v = -v;
  1508. } else {
  1509. v = 0;
  1510. }
  1511. g->sb_hybrid[s_index++] = v;
  1512. }
  1513. }
  1514. /* high frequencies */
  1515. vlc = &huff_quad_vlc[g->count1table_select];
  1516. last_gb.buffer = NULL;
  1517. while (s_index <= 572) {
  1518. pos = get_bits_count(&s->gb);
  1519. if (pos >= end_pos) {
  1520. if (pos > end_pos && last_gb.buffer != NULL) {
  1521. /* some encoders generate an incorrect size for this
  1522. part. We must go back into the data */
  1523. s_index -= 4;
  1524. s->gb = last_gb;
  1525. }
  1526. break;
  1527. }
  1528. last_gb= s->gb;
  1529. code = get_vlc(&s->gb, vlc);
  1530. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1531. if (code < 0)
  1532. return -1;
  1533. for(i=0;i<4;i++) {
  1534. if (code & (8 >> i)) {
  1535. /* non zero value. Could use a hand coded function for
  1536. 'one' value */
  1537. v = l3_unscale(1, exponents[s_index]);
  1538. if(get_bits1(&s->gb))
  1539. v = -v;
  1540. } else {
  1541. v = 0;
  1542. }
  1543. g->sb_hybrid[s_index++] = v;
  1544. }
  1545. }
  1546. while (s_index < 576)
  1547. g->sb_hybrid[s_index++] = 0;
  1548. return 0;
  1549. }
  1550. /* Reorder short blocks from bitstream order to interleaved order. It
  1551. would be faster to do it in parsing, but the code would be far more
  1552. complicated */
  1553. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1554. {
  1555. int i, j, k, len;
  1556. int32_t *ptr, *dst, *ptr1;
  1557. int32_t tmp[576];
  1558. if (g->block_type != 2)
  1559. return;
  1560. if (g->switch_point) {
  1561. if (s->sample_rate_index != 8) {
  1562. ptr = g->sb_hybrid + 36;
  1563. } else {
  1564. ptr = g->sb_hybrid + 48;
  1565. }
  1566. } else {
  1567. ptr = g->sb_hybrid;
  1568. }
  1569. for(i=g->short_start;i<13;i++) {
  1570. len = band_size_short[s->sample_rate_index][i];
  1571. ptr1 = ptr;
  1572. for(k=0;k<3;k++) {
  1573. dst = tmp + k;
  1574. for(j=len;j>0;j--) {
  1575. *dst = *ptr++;
  1576. dst += 3;
  1577. }
  1578. }
  1579. memcpy(ptr1, tmp, len * 3 * sizeof(int32_t));
  1580. }
  1581. }
  1582. #define ISQRT2 FIXR(0.70710678118654752440)
  1583. static void compute_stereo(MPADecodeContext *s,
  1584. GranuleDef *g0, GranuleDef *g1)
  1585. {
  1586. int i, j, k, l;
  1587. int32_t v1, v2;
  1588. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1589. int32_t (*is_tab)[16];
  1590. int32_t *tab0, *tab1;
  1591. int non_zero_found_short[3];
  1592. /* intensity stereo */
  1593. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1594. if (!s->lsf) {
  1595. is_tab = is_table;
  1596. sf_max = 7;
  1597. } else {
  1598. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1599. sf_max = 16;
  1600. }
  1601. tab0 = g0->sb_hybrid + 576;
  1602. tab1 = g1->sb_hybrid + 576;
  1603. non_zero_found_short[0] = 0;
  1604. non_zero_found_short[1] = 0;
  1605. non_zero_found_short[2] = 0;
  1606. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1607. for(i = 12;i >= g1->short_start;i--) {
  1608. /* for last band, use previous scale factor */
  1609. if (i != 11)
  1610. k -= 3;
  1611. len = band_size_short[s->sample_rate_index][i];
  1612. for(l=2;l>=0;l--) {
  1613. tab0 -= len;
  1614. tab1 -= len;
  1615. if (!non_zero_found_short[l]) {
  1616. /* test if non zero band. if so, stop doing i-stereo */
  1617. for(j=0;j<len;j++) {
  1618. if (tab1[j] != 0) {
  1619. non_zero_found_short[l] = 1;
  1620. goto found1;
  1621. }
  1622. }
  1623. sf = g1->scale_factors[k + l];
  1624. if (sf >= sf_max)
  1625. goto found1;
  1626. v1 = is_tab[0][sf];
  1627. v2 = is_tab[1][sf];
  1628. for(j=0;j<len;j++) {
  1629. tmp0 = tab0[j];
  1630. tab0[j] = MULL(tmp0, v1);
  1631. tab1[j] = MULL(tmp0, v2);
  1632. }
  1633. } else {
  1634. found1:
  1635. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1636. /* lower part of the spectrum : do ms stereo
  1637. if enabled */
  1638. for(j=0;j<len;j++) {
  1639. tmp0 = tab0[j];
  1640. tmp1 = tab1[j];
  1641. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1642. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1643. }
  1644. }
  1645. }
  1646. }
  1647. }
  1648. non_zero_found = non_zero_found_short[0] |
  1649. non_zero_found_short[1] |
  1650. non_zero_found_short[2];
  1651. for(i = g1->long_end - 1;i >= 0;i--) {
  1652. len = band_size_long[s->sample_rate_index][i];
  1653. tab0 -= len;
  1654. tab1 -= len;
  1655. /* test if non zero band. if so, stop doing i-stereo */
  1656. if (!non_zero_found) {
  1657. for(j=0;j<len;j++) {
  1658. if (tab1[j] != 0) {
  1659. non_zero_found = 1;
  1660. goto found2;
  1661. }
  1662. }
  1663. /* for last band, use previous scale factor */
  1664. k = (i == 21) ? 20 : i;
  1665. sf = g1->scale_factors[k];
  1666. if (sf >= sf_max)
  1667. goto found2;
  1668. v1 = is_tab[0][sf];
  1669. v2 = is_tab[1][sf];
  1670. for(j=0;j<len;j++) {
  1671. tmp0 = tab0[j];
  1672. tab0[j] = MULL(tmp0, v1);
  1673. tab1[j] = MULL(tmp0, v2);
  1674. }
  1675. } else {
  1676. found2:
  1677. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1678. /* lower part of the spectrum : do ms stereo
  1679. if enabled */
  1680. for(j=0;j<len;j++) {
  1681. tmp0 = tab0[j];
  1682. tmp1 = tab1[j];
  1683. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1684. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1685. }
  1686. }
  1687. }
  1688. }
  1689. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1690. /* ms stereo ONLY */
  1691. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1692. global gain */
  1693. tab0 = g0->sb_hybrid;
  1694. tab1 = g1->sb_hybrid;
  1695. for(i=0;i<576;i++) {
  1696. tmp0 = tab0[i];
  1697. tmp1 = tab1[i];
  1698. tab0[i] = tmp0 + tmp1;
  1699. tab1[i] = tmp0 - tmp1;
  1700. }
  1701. }
  1702. }
  1703. static void compute_antialias_integer(MPADecodeContext *s,
  1704. GranuleDef *g)
  1705. {
  1706. int32_t *ptr, *csa;
  1707. int n, i;
  1708. /* we antialias only "long" bands */
  1709. if (g->block_type == 2) {
  1710. if (!g->switch_point)
  1711. return;
  1712. /* XXX: check this for 8000Hz case */
  1713. n = 1;
  1714. } else {
  1715. n = SBLIMIT - 1;
  1716. }
  1717. ptr = g->sb_hybrid + 18;
  1718. for(i = n;i > 0;i--) {
  1719. int tmp0, tmp1, tmp2;
  1720. csa = &csa_table[0][0];
  1721. #define INT_AA(j) \
  1722. tmp0 = ptr[-1-j];\
  1723. tmp1 = ptr[ j];\
  1724. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1725. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1726. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1727. INT_AA(0)
  1728. INT_AA(1)
  1729. INT_AA(2)
  1730. INT_AA(3)
  1731. INT_AA(4)
  1732. INT_AA(5)
  1733. INT_AA(6)
  1734. INT_AA(7)
  1735. ptr += 18;
  1736. }
  1737. }
  1738. static void compute_antialias_float(MPADecodeContext *s,
  1739. GranuleDef *g)
  1740. {
  1741. int32_t *ptr;
  1742. int n, i;
  1743. /* we antialias only "long" bands */
  1744. if (g->block_type == 2) {
  1745. if (!g->switch_point)
  1746. return;
  1747. /* XXX: check this for 8000Hz case */
  1748. n = 1;
  1749. } else {
  1750. n = SBLIMIT - 1;
  1751. }
  1752. ptr = g->sb_hybrid + 18;
  1753. for(i = n;i > 0;i--) {
  1754. float tmp0, tmp1;
  1755. float *csa = &csa_table_float[0][0];
  1756. #define FLOAT_AA(j)\
  1757. tmp0= ptr[-1-j];\
  1758. tmp1= ptr[ j];\
  1759. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1760. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1761. FLOAT_AA(0)
  1762. FLOAT_AA(1)
  1763. FLOAT_AA(2)
  1764. FLOAT_AA(3)
  1765. FLOAT_AA(4)
  1766. FLOAT_AA(5)
  1767. FLOAT_AA(6)
  1768. FLOAT_AA(7)
  1769. ptr += 18;
  1770. }
  1771. }
  1772. static void compute_imdct(MPADecodeContext *s,
  1773. GranuleDef *g,
  1774. int32_t *sb_samples,
  1775. int32_t *mdct_buf)
  1776. {
  1777. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1778. int32_t out2[12];
  1779. int i, j, mdct_long_end, v, sblimit;
  1780. /* find last non zero block */
  1781. ptr = g->sb_hybrid + 576;
  1782. ptr1 = g->sb_hybrid + 2 * 18;
  1783. while (ptr >= ptr1) {
  1784. ptr -= 6;
  1785. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1786. if (v != 0)
  1787. break;
  1788. }
  1789. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1790. if (g->block_type == 2) {
  1791. /* XXX: check for 8000 Hz */
  1792. if (g->switch_point)
  1793. mdct_long_end = 2;
  1794. else
  1795. mdct_long_end = 0;
  1796. } else {
  1797. mdct_long_end = sblimit;
  1798. }
  1799. buf = mdct_buf;
  1800. ptr = g->sb_hybrid;
  1801. for(j=0;j<mdct_long_end;j++) {
  1802. /* apply window & overlap with previous buffer */
  1803. out_ptr = sb_samples + j;
  1804. /* select window */
  1805. if (g->switch_point && j < 2)
  1806. win1 = mdct_win[0];
  1807. else
  1808. win1 = mdct_win[g->block_type];
  1809. /* select frequency inversion */
  1810. win = win1 + ((4 * 36) & -(j & 1));
  1811. imdct36(out_ptr, buf, ptr, win);
  1812. out_ptr += 18*SBLIMIT;
  1813. ptr += 18;
  1814. buf += 18;
  1815. }
  1816. for(j=mdct_long_end;j<sblimit;j++) {
  1817. /* select frequency inversion */
  1818. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1819. out_ptr = sb_samples + j;
  1820. for(i=0; i<6; i++){
  1821. *out_ptr = buf[i];
  1822. out_ptr += SBLIMIT;
  1823. }
  1824. imdct12(out2, ptr + 0);
  1825. for(i=0;i<6;i++) {
  1826. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1827. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1828. out_ptr += SBLIMIT;
  1829. }
  1830. imdct12(out2, ptr + 1);
  1831. for(i=0;i<6;i++) {
  1832. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1833. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1834. out_ptr += SBLIMIT;
  1835. }
  1836. imdct12(out2, ptr + 2);
  1837. for(i=0;i<6;i++) {
  1838. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1839. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1840. buf[i + 6*2] = 0;
  1841. }
  1842. ptr += 18;
  1843. buf += 18;
  1844. }
  1845. /* zero bands */
  1846. for(j=sblimit;j<SBLIMIT;j++) {
  1847. /* overlap */
  1848. out_ptr = sb_samples + j;
  1849. for(i=0;i<18;i++) {
  1850. *out_ptr = buf[i];
  1851. buf[i] = 0;
  1852. out_ptr += SBLIMIT;
  1853. }
  1854. buf += 18;
  1855. }
  1856. }
  1857. #if defined(DEBUG)
  1858. void sample_dump(int fnum, int32_t *tab, int n)
  1859. {
  1860. static FILE *files[16], *f;
  1861. char buf[512];
  1862. int i;
  1863. int32_t v;
  1864. f = files[fnum];
  1865. if (!f) {
  1866. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1867. fnum,
  1868. #ifdef USE_HIGHPRECISION
  1869. "hp"
  1870. #else
  1871. "lp"
  1872. #endif
  1873. );
  1874. f = fopen(buf, "w");
  1875. if (!f)
  1876. return;
  1877. files[fnum] = f;
  1878. }
  1879. if (fnum == 0) {
  1880. static int pos = 0;
  1881. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1882. for(i=0;i<n;i++) {
  1883. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1884. if ((i % 18) == 17)
  1885. av_log(NULL, AV_LOG_DEBUG, "\n");
  1886. }
  1887. pos += n;
  1888. }
  1889. for(i=0;i<n;i++) {
  1890. /* normalize to 23 frac bits */
  1891. v = tab[i] << (23 - FRAC_BITS);
  1892. fwrite(&v, 1, sizeof(int32_t), f);
  1893. }
  1894. }
  1895. #endif
  1896. /* main layer3 decoding function */
  1897. static int mp_decode_layer3(MPADecodeContext *s)
  1898. {
  1899. int nb_granules, main_data_begin, private_bits;
  1900. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
  1901. GranuleDef granules[2][2], *g;
  1902. int16_t exponents[576];
  1903. /* read side info */
  1904. if (s->lsf) {
  1905. main_data_begin = get_bits(&s->gb, 8);
  1906. if (s->nb_channels == 2)
  1907. private_bits = get_bits(&s->gb, 2);
  1908. else
  1909. private_bits = get_bits(&s->gb, 1);
  1910. nb_granules = 1;
  1911. } else {
  1912. main_data_begin = get_bits(&s->gb, 9);
  1913. if (s->nb_channels == 2)
  1914. private_bits = get_bits(&s->gb, 3);
  1915. else
  1916. private_bits = get_bits(&s->gb, 5);
  1917. nb_granules = 2;
  1918. for(ch=0;ch<s->nb_channels;ch++) {
  1919. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1920. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1921. }
  1922. }
  1923. for(gr=0;gr<nb_granules;gr++) {
  1924. for(ch=0;ch<s->nb_channels;ch++) {
  1925. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1926. g = &granules[ch][gr];
  1927. g->part2_3_length = get_bits(&s->gb, 12);
  1928. g->big_values = get_bits(&s->gb, 9);
  1929. g->global_gain = get_bits(&s->gb, 8);
  1930. /* if MS stereo only is selected, we precompute the
  1931. 1/sqrt(2) renormalization factor */
  1932. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1933. MODE_EXT_MS_STEREO)
  1934. g->global_gain -= 2;
  1935. if (s->lsf)
  1936. g->scalefac_compress = get_bits(&s->gb, 9);
  1937. else
  1938. g->scalefac_compress = get_bits(&s->gb, 4);
  1939. blocksplit_flag = get_bits(&s->gb, 1);
  1940. if (blocksplit_flag) {
  1941. g->block_type = get_bits(&s->gb, 2);
  1942. if (g->block_type == 0)
  1943. return -1;
  1944. g->switch_point = get_bits(&s->gb, 1);
  1945. for(i=0;i<2;i++)
  1946. g->table_select[i] = get_bits(&s->gb, 5);
  1947. for(i=0;i<3;i++)
  1948. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1949. /* compute huffman coded region sizes */
  1950. if (g->block_type == 2)
  1951. g->region_size[0] = (36 / 2);
  1952. else {
  1953. if (s->sample_rate_index <= 2)
  1954. g->region_size[0] = (36 / 2);
  1955. else if (s->sample_rate_index != 8)
  1956. g->region_size[0] = (54 / 2);
  1957. else
  1958. g->region_size[0] = (108 / 2);
  1959. }
  1960. g->region_size[1] = (576 / 2);
  1961. } else {
  1962. int region_address1, region_address2, l;
  1963. g->block_type = 0;
  1964. g->switch_point = 0;
  1965. for(i=0;i<3;i++)
  1966. g->table_select[i] = get_bits(&s->gb, 5);
  1967. /* compute huffman coded region sizes */
  1968. region_address1 = get_bits(&s->gb, 4);
  1969. region_address2 = get_bits(&s->gb, 3);
  1970. dprintf("region1=%d region2=%d\n",
  1971. region_address1, region_address2);
  1972. g->region_size[0] =
  1973. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  1974. l = region_address1 + region_address2 + 2;
  1975. /* should not overflow */
  1976. if (l > 22)
  1977. l = 22;
  1978. g->region_size[1] =
  1979. band_index_long[s->sample_rate_index][l] >> 1;
  1980. }
  1981. /* convert region offsets to region sizes and truncate
  1982. size to big_values */
  1983. g->region_size[2] = (576 / 2);
  1984. j = 0;
  1985. for(i=0;i<3;i++) {
  1986. k = g->region_size[i];
  1987. if (k > g->big_values)
  1988. k = g->big_values;
  1989. g->region_size[i] = k - j;
  1990. j = k;
  1991. }
  1992. /* compute band indexes */
  1993. if (g->block_type == 2) {
  1994. if (g->switch_point) {
  1995. /* if switched mode, we handle the 36 first samples as
  1996. long blocks. For 8000Hz, we handle the 48 first
  1997. exponents as long blocks (XXX: check this!) */
  1998. if (s->sample_rate_index <= 2)
  1999. g->long_end = 8;
  2000. else if (s->sample_rate_index != 8)
  2001. g->long_end = 6;
  2002. else
  2003. g->long_end = 4; /* 8000 Hz */
  2004. if (s->sample_rate_index != 8)
  2005. g->short_start = 3;
  2006. else
  2007. g->short_start = 2;
  2008. } else {
  2009. g->long_end = 0;
  2010. g->short_start = 0;
  2011. }
  2012. } else {
  2013. g->short_start = 13;
  2014. g->long_end = 22;
  2015. }
  2016. g->preflag = 0;
  2017. if (!s->lsf)
  2018. g->preflag = get_bits(&s->gb, 1);
  2019. g->scalefac_scale = get_bits(&s->gb, 1);
  2020. g->count1table_select = get_bits(&s->gb, 1);
  2021. dprintf("block_type=%d switch_point=%d\n",
  2022. g->block_type, g->switch_point);
  2023. }
  2024. }
  2025. if (!s->adu_mode) {
  2026. /* now we get bits from the main_data_begin offset */
  2027. dprintf("seekback: %d\n", main_data_begin);
  2028. seek_to_maindata(s, main_data_begin);
  2029. }
  2030. for(gr=0;gr<nb_granules;gr++) {
  2031. for(ch=0;ch<s->nb_channels;ch++) {
  2032. g = &granules[ch][gr];
  2033. bits_pos = get_bits_count(&s->gb);
  2034. if (!s->lsf) {
  2035. uint8_t *sc;
  2036. int slen, slen1, slen2;
  2037. /* MPEG1 scale factors */
  2038. slen1 = slen_table[0][g->scalefac_compress];
  2039. slen2 = slen_table[1][g->scalefac_compress];
  2040. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  2041. if (g->block_type == 2) {
  2042. n = g->switch_point ? 17 : 18;
  2043. j = 0;
  2044. for(i=0;i<n;i++)
  2045. g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
  2046. for(i=0;i<18;i++)
  2047. g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
  2048. for(i=0;i<3;i++)
  2049. g->scale_factors[j++] = 0;
  2050. } else {
  2051. sc = granules[ch][0].scale_factors;
  2052. j = 0;
  2053. for(k=0;k<4;k++) {
  2054. n = (k == 0 ? 6 : 5);
  2055. if ((g->scfsi & (0x8 >> k)) == 0) {
  2056. slen = (k < 2) ? slen1 : slen2;
  2057. for(i=0;i<n;i++)
  2058. g->scale_factors[j++] = get_bitsz(&s->gb, slen);
  2059. } else {
  2060. /* simply copy from last granule */
  2061. for(i=0;i<n;i++) {
  2062. g->scale_factors[j] = sc[j];
  2063. j++;
  2064. }
  2065. }
  2066. }
  2067. g->scale_factors[j++] = 0;
  2068. }
  2069. #if defined(DEBUG)
  2070. {
  2071. printf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  2072. g->scfsi, gr, ch);
  2073. for(i=0;i<j;i++)
  2074. printf(" %d", g->scale_factors[i]);
  2075. printf("\n");
  2076. }
  2077. #endif
  2078. } else {
  2079. int tindex, tindex2, slen[4], sl, sf;
  2080. /* LSF scale factors */
  2081. if (g->block_type == 2) {
  2082. tindex = g->switch_point ? 2 : 1;
  2083. } else {
  2084. tindex = 0;
  2085. }
  2086. sf = g->scalefac_compress;
  2087. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2088. /* intensity stereo case */
  2089. sf >>= 1;
  2090. if (sf < 180) {
  2091. lsf_sf_expand(slen, sf, 6, 6, 0);
  2092. tindex2 = 3;
  2093. } else if (sf < 244) {
  2094. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2095. tindex2 = 4;
  2096. } else {
  2097. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2098. tindex2 = 5;
  2099. }
  2100. } else {
  2101. /* normal case */
  2102. if (sf < 400) {
  2103. lsf_sf_expand(slen, sf, 5, 4, 4);
  2104. tindex2 = 0;
  2105. } else if (sf < 500) {
  2106. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2107. tindex2 = 1;
  2108. } else {
  2109. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2110. tindex2 = 2;
  2111. g->preflag = 1;
  2112. }
  2113. }
  2114. j = 0;
  2115. for(k=0;k<4;k++) {
  2116. n = lsf_nsf_table[tindex2][tindex][k];
  2117. sl = slen[k];
  2118. for(i=0;i<n;i++)
  2119. g->scale_factors[j++] = get_bitsz(&s->gb, sl);
  2120. }
  2121. /* XXX: should compute exact size */
  2122. for(;j<40;j++)
  2123. g->scale_factors[j] = 0;
  2124. #if defined(DEBUG)
  2125. {
  2126. printf("gr=%d ch=%d scale_factors:\n",
  2127. gr, ch);
  2128. for(i=0;i<40;i++)
  2129. printf(" %d", g->scale_factors[i]);
  2130. printf("\n");
  2131. }
  2132. #endif
  2133. }
  2134. exponents_from_scale_factors(s, g, exponents);
  2135. /* read Huffman coded residue */
  2136. if (huffman_decode(s, g, exponents,
  2137. bits_pos + g->part2_3_length) < 0)
  2138. return -1;
  2139. #if defined(DEBUG)
  2140. sample_dump(0, g->sb_hybrid, 576);
  2141. #endif
  2142. /* skip extension bits */
  2143. bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
  2144. if (bits_left < 0) {
  2145. dprintf("bits_left=%d\n", bits_left);
  2146. return -1;
  2147. }
  2148. while (bits_left >= 16) {
  2149. skip_bits(&s->gb, 16);
  2150. bits_left -= 16;
  2151. }
  2152. if (bits_left > 0)
  2153. skip_bits(&s->gb, bits_left);
  2154. } /* ch */
  2155. if (s->nb_channels == 2)
  2156. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2157. for(ch=0;ch<s->nb_channels;ch++) {
  2158. g = &granules[ch][gr];
  2159. reorder_block(s, g);
  2160. #if defined(DEBUG)
  2161. sample_dump(0, g->sb_hybrid, 576);
  2162. #endif
  2163. s->compute_antialias(s, g);
  2164. #if defined(DEBUG)
  2165. sample_dump(1, g->sb_hybrid, 576);
  2166. #endif
  2167. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2168. #if defined(DEBUG)
  2169. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2170. #endif
  2171. }
  2172. } /* gr */
  2173. return nb_granules * 18;
  2174. }
  2175. static int mp_decode_frame(MPADecodeContext *s,
  2176. OUT_INT *samples)
  2177. {
  2178. int i, nb_frames, ch;
  2179. OUT_INT *samples_ptr;
  2180. init_get_bits(&s->gb, s->inbuf + HEADER_SIZE,
  2181. (s->inbuf_ptr - s->inbuf - HEADER_SIZE)*8);
  2182. /* skip error protection field */
  2183. if (s->error_protection)
  2184. get_bits(&s->gb, 16);
  2185. dprintf("frame %d:\n", s->frame_count);
  2186. switch(s->layer) {
  2187. case 1:
  2188. nb_frames = mp_decode_layer1(s);
  2189. break;
  2190. case 2:
  2191. nb_frames = mp_decode_layer2(s);
  2192. break;
  2193. case 3:
  2194. default:
  2195. nb_frames = mp_decode_layer3(s);
  2196. break;
  2197. }
  2198. #if defined(DEBUG)
  2199. for(i=0;i<nb_frames;i++) {
  2200. for(ch=0;ch<s->nb_channels;ch++) {
  2201. int j;
  2202. printf("%d-%d:", i, ch);
  2203. for(j=0;j<SBLIMIT;j++)
  2204. printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2205. printf("\n");
  2206. }
  2207. }
  2208. #endif
  2209. /* apply the synthesis filter */
  2210. for(ch=0;ch<s->nb_channels;ch++) {
  2211. samples_ptr = samples + ch;
  2212. for(i=0;i<nb_frames;i++) {
  2213. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2214. window, &s->dither_state,
  2215. samples_ptr, s->nb_channels,
  2216. s->sb_samples[ch][i]);
  2217. samples_ptr += 32 * s->nb_channels;
  2218. }
  2219. }
  2220. #ifdef DEBUG
  2221. s->frame_count++;
  2222. #endif
  2223. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2224. }
  2225. static int decode_frame(AVCodecContext * avctx,
  2226. void *data, int *data_size,
  2227. uint8_t * buf, int buf_size)
  2228. {
  2229. MPADecodeContext *s = avctx->priv_data;
  2230. uint32_t header;
  2231. uint8_t *buf_ptr;
  2232. int len, out_size;
  2233. OUT_INT *out_samples = data;
  2234. buf_ptr = buf;
  2235. while (buf_size > 0) {
  2236. len = s->inbuf_ptr - s->inbuf;
  2237. if (s->frame_size == 0) {
  2238. /* special case for next header for first frame in free
  2239. format case (XXX: find a simpler method) */
  2240. if (s->free_format_next_header != 0) {
  2241. s->inbuf[0] = s->free_format_next_header >> 24;
  2242. s->inbuf[1] = s->free_format_next_header >> 16;
  2243. s->inbuf[2] = s->free_format_next_header >> 8;
  2244. s->inbuf[3] = s->free_format_next_header;
  2245. s->inbuf_ptr = s->inbuf + 4;
  2246. s->free_format_next_header = 0;
  2247. goto got_header;
  2248. }
  2249. /* no header seen : find one. We need at least HEADER_SIZE
  2250. bytes to parse it */
  2251. len = HEADER_SIZE - len;
  2252. if (len > buf_size)
  2253. len = buf_size;
  2254. if (len > 0) {
  2255. memcpy(s->inbuf_ptr, buf_ptr, len);
  2256. buf_ptr += len;
  2257. buf_size -= len;
  2258. s->inbuf_ptr += len;
  2259. }
  2260. if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
  2261. got_header:
  2262. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2263. (s->inbuf[2] << 8) | s->inbuf[3];
  2264. if (ff_mpa_check_header(header) < 0) {
  2265. /* no sync found : move by one byte (inefficient, but simple!) */
  2266. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2267. s->inbuf_ptr--;
  2268. dprintf("skip %x\n", header);
  2269. /* reset free format frame size to give a chance
  2270. to get a new bitrate */
  2271. s->free_format_frame_size = 0;
  2272. } else {
  2273. if (decode_header(s, header) == 1) {
  2274. /* free format: prepare to compute frame size */
  2275. s->frame_size = -1;
  2276. }
  2277. /* update codec info */
  2278. avctx->sample_rate = s->sample_rate;
  2279. avctx->channels = s->nb_channels;
  2280. avctx->bit_rate = s->bit_rate;
  2281. avctx->sub_id = s->layer;
  2282. switch(s->layer) {
  2283. case 1:
  2284. avctx->frame_size = 384;
  2285. break;
  2286. case 2:
  2287. avctx->frame_size = 1152;
  2288. break;
  2289. case 3:
  2290. if (s->lsf)
  2291. avctx->frame_size = 576;
  2292. else
  2293. avctx->frame_size = 1152;
  2294. break;
  2295. }
  2296. }
  2297. }
  2298. } else if (s->frame_size == -1) {
  2299. /* free format : find next sync to compute frame size */
  2300. len = MPA_MAX_CODED_FRAME_SIZE - len;
  2301. if (len > buf_size)
  2302. len = buf_size;
  2303. if (len == 0) {
  2304. /* frame too long: resync */
  2305. s->frame_size = 0;
  2306. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2307. s->inbuf_ptr--;
  2308. } else {
  2309. uint8_t *p, *pend;
  2310. uint32_t header1;
  2311. int padding;
  2312. memcpy(s->inbuf_ptr, buf_ptr, len);
  2313. /* check for header */
  2314. p = s->inbuf_ptr - 3;
  2315. pend = s->inbuf_ptr + len - 4;
  2316. while (p <= pend) {
  2317. header = (p[0] << 24) | (p[1] << 16) |
  2318. (p[2] << 8) | p[3];
  2319. header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2320. (s->inbuf[2] << 8) | s->inbuf[3];
  2321. /* check with high probability that we have a
  2322. valid header */
  2323. if ((header & SAME_HEADER_MASK) ==
  2324. (header1 & SAME_HEADER_MASK)) {
  2325. /* header found: update pointers */
  2326. len = (p + 4) - s->inbuf_ptr;
  2327. buf_ptr += len;
  2328. buf_size -= len;
  2329. s->inbuf_ptr = p;
  2330. /* compute frame size */
  2331. s->free_format_next_header = header;
  2332. s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
  2333. padding = (header1 >> 9) & 1;
  2334. if (s->layer == 1)
  2335. s->free_format_frame_size -= padding * 4;
  2336. else
  2337. s->free_format_frame_size -= padding;
  2338. dprintf("free frame size=%d padding=%d\n",
  2339. s->free_format_frame_size, padding);
  2340. decode_header(s, header1);
  2341. goto next_data;
  2342. }
  2343. p++;
  2344. }
  2345. /* not found: simply increase pointers */
  2346. buf_ptr += len;
  2347. s->inbuf_ptr += len;
  2348. buf_size -= len;
  2349. }
  2350. } else if (len < s->frame_size) {
  2351. if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
  2352. s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
  2353. len = s->frame_size - len;
  2354. if (len > buf_size)
  2355. len = buf_size;
  2356. memcpy(s->inbuf_ptr, buf_ptr, len);
  2357. buf_ptr += len;
  2358. s->inbuf_ptr += len;
  2359. buf_size -= len;
  2360. }
  2361. next_data:
  2362. if (s->frame_size > 0 &&
  2363. (s->inbuf_ptr - s->inbuf) >= s->frame_size) {
  2364. if (avctx->parse_only) {
  2365. /* simply return the frame data */
  2366. *(uint8_t **)data = s->inbuf;
  2367. out_size = s->inbuf_ptr - s->inbuf;
  2368. } else {
  2369. out_size = mp_decode_frame(s, out_samples);
  2370. }
  2371. s->inbuf_ptr = s->inbuf;
  2372. s->frame_size = 0;
  2373. if(out_size>=0)
  2374. *data_size = out_size;
  2375. else
  2376. av_log(avctx, AV_LOG_DEBUG, "Error while decoding mpeg audio frame\n"); //FIXME return -1 / but also return the number of bytes consumed
  2377. break;
  2378. }
  2379. }
  2380. return buf_ptr - buf;
  2381. }
  2382. static int decode_frame_adu(AVCodecContext * avctx,
  2383. void *data, int *data_size,
  2384. uint8_t * buf, int buf_size)
  2385. {
  2386. MPADecodeContext *s = avctx->priv_data;
  2387. uint32_t header;
  2388. int len, out_size;
  2389. OUT_INT *out_samples = data;
  2390. len = buf_size;
  2391. // Discard too short frames
  2392. if (buf_size < HEADER_SIZE) {
  2393. *data_size = 0;
  2394. return buf_size;
  2395. }
  2396. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2397. len = MPA_MAX_CODED_FRAME_SIZE;
  2398. memcpy(s->inbuf, buf, len);
  2399. s->inbuf_ptr = s->inbuf + len;
  2400. // Get header and restore sync word
  2401. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2402. (s->inbuf[2] << 8) | s->inbuf[3] | 0xffe00000;
  2403. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2404. *data_size = 0;
  2405. return buf_size;
  2406. }
  2407. decode_header(s, header);
  2408. /* update codec info */
  2409. avctx->sample_rate = s->sample_rate;
  2410. avctx->channels = s->nb_channels;
  2411. avctx->bit_rate = s->bit_rate;
  2412. avctx->sub_id = s->layer;
  2413. avctx->frame_size=s->frame_size = len;
  2414. if (avctx->parse_only) {
  2415. /* simply return the frame data */
  2416. *(uint8_t **)data = s->inbuf;
  2417. out_size = s->inbuf_ptr - s->inbuf;
  2418. } else {
  2419. out_size = mp_decode_frame(s, out_samples);
  2420. }
  2421. *data_size = out_size;
  2422. return buf_size;
  2423. }
  2424. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2425. static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
  2426. static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
  2427. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2428. static int chan_offset[9][5] = {
  2429. {0},
  2430. {0}, // C
  2431. {0}, // FLR
  2432. {2,0}, // C FLR
  2433. {2,0,3}, // C FLR BS
  2434. {4,0,2}, // C FLR BLRS
  2435. {4,0,2,5}, // C FLR BLRS LFE
  2436. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2437. {0,2} // FLR BLRS
  2438. };
  2439. static int decode_init_mp3on4(AVCodecContext * avctx)
  2440. {
  2441. MP3On4DecodeContext *s = avctx->priv_data;
  2442. int i;
  2443. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2444. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2445. return -1;
  2446. }
  2447. s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
  2448. s->frames = mp3Frames[s->chan_cfg];
  2449. if(!s->frames) {
  2450. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2451. return -1;
  2452. }
  2453. avctx->channels = mp3Channels[s->chan_cfg];
  2454. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2455. * We replace avctx->priv_data with the context of the first decoder so that
  2456. * decode_init() does not have to be changed.
  2457. * Other decoders will be inited here copying data from the first context
  2458. */
  2459. // Allocate zeroed memory for the first decoder context
  2460. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2461. // Put decoder context in place to make init_decode() happy
  2462. avctx->priv_data = s->mp3decctx[0];
  2463. decode_init(avctx);
  2464. // Restore mp3on4 context pointer
  2465. avctx->priv_data = s;
  2466. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2467. /* Create a separate codec/context for each frame (first is already ok).
  2468. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2469. */
  2470. for (i = 1; i < s->frames; i++) {
  2471. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2472. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2473. s->mp3decctx[i]->inbuf = &s->mp3decctx[i]->inbuf1[0][BACKSTEP_SIZE];
  2474. s->mp3decctx[i]->inbuf_ptr = s->mp3decctx[i]->inbuf;
  2475. s->mp3decctx[i]->adu_mode = 1;
  2476. }
  2477. return 0;
  2478. }
  2479. static int decode_close_mp3on4(AVCodecContext * avctx)
  2480. {
  2481. MP3On4DecodeContext *s = avctx->priv_data;
  2482. int i;
  2483. for (i = 0; i < s->frames; i++)
  2484. if (s->mp3decctx[i])
  2485. av_free(s->mp3decctx[i]);
  2486. return 0;
  2487. }
  2488. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2489. void *data, int *data_size,
  2490. uint8_t * buf, int buf_size)
  2491. {
  2492. MP3On4DecodeContext *s = avctx->priv_data;
  2493. MPADecodeContext *m;
  2494. int len, out_size = 0;
  2495. uint32_t header;
  2496. OUT_INT *out_samples = data;
  2497. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2498. OUT_INT *outptr, *bp;
  2499. int fsize;
  2500. unsigned char *start2 = buf, *start;
  2501. int fr, i, j, n;
  2502. int off = avctx->channels;
  2503. int *coff = chan_offset[s->chan_cfg];
  2504. len = buf_size;
  2505. // Discard too short frames
  2506. if (buf_size < HEADER_SIZE) {
  2507. *data_size = 0;
  2508. return buf_size;
  2509. }
  2510. // If only one decoder interleave is not needed
  2511. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2512. for (fr = 0; fr < s->frames; fr++) {
  2513. start = start2;
  2514. fsize = (start[0] << 4) | (start[1] >> 4);
  2515. start2 += fsize;
  2516. if (fsize > len)
  2517. fsize = len;
  2518. len -= fsize;
  2519. if (fsize > MPA_MAX_CODED_FRAME_SIZE)
  2520. fsize = MPA_MAX_CODED_FRAME_SIZE;
  2521. m = s->mp3decctx[fr];
  2522. assert (m != NULL);
  2523. /* copy original to new */
  2524. m->inbuf_ptr = m->inbuf + fsize;
  2525. memcpy(m->inbuf, start, fsize);
  2526. // Get header
  2527. header = (m->inbuf[0] << 24) | (m->inbuf[1] << 16) |
  2528. (m->inbuf[2] << 8) | m->inbuf[3] | 0xfff00000;
  2529. if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
  2530. *data_size = 0;
  2531. return buf_size;
  2532. }
  2533. decode_header(m, header);
  2534. mp_decode_frame(m, decoded_buf);
  2535. n = MPA_FRAME_SIZE * m->nb_channels;
  2536. out_size += n * sizeof(OUT_INT);
  2537. if(s->frames > 1) {
  2538. /* interleave output data */
  2539. bp = out_samples + coff[fr];
  2540. if(m->nb_channels == 1) {
  2541. for(j = 0; j < n; j++) {
  2542. *bp = decoded_buf[j];
  2543. bp += off;
  2544. }
  2545. } else {
  2546. for(j = 0; j < n; j++) {
  2547. bp[0] = decoded_buf[j++];
  2548. bp[1] = decoded_buf[j];
  2549. bp += off;
  2550. }
  2551. }
  2552. }
  2553. }
  2554. /* update codec info */
  2555. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2556. avctx->frame_size= buf_size;
  2557. avctx->bit_rate = 0;
  2558. for (i = 0; i < s->frames; i++)
  2559. avctx->bit_rate += s->mp3decctx[i]->bit_rate;
  2560. *data_size = out_size;
  2561. return buf_size;
  2562. }
  2563. AVCodec mp2_decoder =
  2564. {
  2565. "mp2",
  2566. CODEC_TYPE_AUDIO,
  2567. CODEC_ID_MP2,
  2568. sizeof(MPADecodeContext),
  2569. decode_init,
  2570. NULL,
  2571. NULL,
  2572. decode_frame,
  2573. CODEC_CAP_PARSE_ONLY,
  2574. };
  2575. AVCodec mp3_decoder =
  2576. {
  2577. "mp3",
  2578. CODEC_TYPE_AUDIO,
  2579. CODEC_ID_MP3,
  2580. sizeof(MPADecodeContext),
  2581. decode_init,
  2582. NULL,
  2583. NULL,
  2584. decode_frame,
  2585. CODEC_CAP_PARSE_ONLY,
  2586. };
  2587. AVCodec mp3adu_decoder =
  2588. {
  2589. "mp3adu",
  2590. CODEC_TYPE_AUDIO,
  2591. CODEC_ID_MP3ADU,
  2592. sizeof(MPADecodeContext),
  2593. decode_init,
  2594. NULL,
  2595. NULL,
  2596. decode_frame_adu,
  2597. CODEC_CAP_PARSE_ONLY,
  2598. };
  2599. AVCodec mp3on4_decoder =
  2600. {
  2601. "mp3on4",
  2602. CODEC_TYPE_AUDIO,
  2603. CODEC_ID_MP3ON4,
  2604. sizeof(MP3On4DecodeContext),
  2605. decode_init_mp3on4,
  2606. NULL,
  2607. decode_close_mp3on4,
  2608. decode_frame_mp3on4,
  2609. 0
  2610. };