You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1127 lines
33KB

  1. /*
  2. * jrevdct.c
  3. *
  4. * Copyright (C) 1991, 1992, Thomas G. Lane.
  5. * This file is part of the Independent JPEG Group's software.
  6. * For conditions of distribution and use, see the accompanying README file.
  7. *
  8. * This file contains the basic inverse-DCT transformation subroutine.
  9. *
  10. * This implementation is based on an algorithm described in
  11. * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
  12. * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
  13. * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
  14. * The primary algorithm described there uses 11 multiplies and 29 adds.
  15. * We use their alternate method with 12 multiplies and 32 adds.
  16. * The advantage of this method is that no data path contains more than one
  17. * multiplication; this allows a very simple and accurate implementation in
  18. * scaled fixed-point arithmetic, with a minimal number of shifts.
  19. *
  20. * I've made lots of modifications to attempt to take advantage of the
  21. * sparse nature of the DCT matrices we're getting. Although the logic
  22. * is cumbersome, it's straightforward and the resulting code is much
  23. * faster.
  24. *
  25. * A better way to do this would be to pass in the DCT block as a sparse
  26. * matrix, perhaps with the difference cases encoded.
  27. */
  28. /**
  29. * @file jrevdct.c
  30. * Independent JPEG Group's LLM idct.
  31. */
  32. #include "common.h"
  33. #include "dsputil.h"
  34. #define EIGHT_BIT_SAMPLES
  35. #define DCTSIZE 8
  36. #define DCTSIZE2 64
  37. #define GLOBAL
  38. #define RIGHT_SHIFT(x, n) ((x) >> (n))
  39. typedef DCTELEM DCTBLOCK[DCTSIZE2];
  40. #define CONST_BITS 13
  41. /*
  42. * This routine is specialized to the case DCTSIZE = 8.
  43. */
  44. #if DCTSIZE != 8
  45. Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
  46. #endif
  47. /*
  48. * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT
  49. * on each column. Direct algorithms are also available, but they are
  50. * much more complex and seem not to be any faster when reduced to code.
  51. *
  52. * The poop on this scaling stuff is as follows:
  53. *
  54. * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
  55. * larger than the true IDCT outputs. The final outputs are therefore
  56. * a factor of N larger than desired; since N=8 this can be cured by
  57. * a simple right shift at the end of the algorithm. The advantage of
  58. * this arrangement is that we save two multiplications per 1-D IDCT,
  59. * because the y0 and y4 inputs need not be divided by sqrt(N).
  60. *
  61. * We have to do addition and subtraction of the integer inputs, which
  62. * is no problem, and multiplication by fractional constants, which is
  63. * a problem to do in integer arithmetic. We multiply all the constants
  64. * by CONST_SCALE and convert them to integer constants (thus retaining
  65. * CONST_BITS bits of precision in the constants). After doing a
  66. * multiplication we have to divide the product by CONST_SCALE, with proper
  67. * rounding, to produce the correct output. This division can be done
  68. * cheaply as a right shift of CONST_BITS bits. We postpone shifting
  69. * as long as possible so that partial sums can be added together with
  70. * full fractional precision.
  71. *
  72. * The outputs of the first pass are scaled up by PASS1_BITS bits so that
  73. * they are represented to better-than-integral precision. These outputs
  74. * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
  75. * with the recommended scaling. (To scale up 12-bit sample data further, an
  76. * intermediate int32 array would be needed.)
  77. *
  78. * To avoid overflow of the 32-bit intermediate results in pass 2, we must
  79. * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
  80. * shows that the values given below are the most effective.
  81. */
  82. #ifdef EIGHT_BIT_SAMPLES
  83. #define PASS1_BITS 2
  84. #else
  85. #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
  86. #endif
  87. #define ONE ((int32_t) 1)
  88. #define CONST_SCALE (ONE << CONST_BITS)
  89. /* Convert a positive real constant to an integer scaled by CONST_SCALE.
  90. * IMPORTANT: if your compiler doesn't do this arithmetic at compile time,
  91. * you will pay a significant penalty in run time. In that case, figure
  92. * the correct integer constant values and insert them by hand.
  93. */
  94. /* Actually FIX is no longer used, we precomputed them all */
  95. #define FIX(x) ((int32_t) ((x) * CONST_SCALE + 0.5))
  96. /* Descale and correctly round an int32_t value that's scaled by N bits.
  97. * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
  98. * the fudge factor is correct for either sign of X.
  99. */
  100. #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
  101. /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
  102. * For 8-bit samples with the recommended scaling, all the variable
  103. * and constant values involved are no more than 16 bits wide, so a
  104. * 16x16->32 bit multiply can be used instead of a full 32x32 multiply;
  105. * this provides a useful speedup on many machines.
  106. * There is no way to specify a 16x16->32 multiply in portable C, but
  107. * some C compilers will do the right thing if you provide the correct
  108. * combination of casts.
  109. * NB: for 12-bit samples, a full 32-bit multiplication will be needed.
  110. */
  111. #ifdef EIGHT_BIT_SAMPLES
  112. #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
  113. #define MULTIPLY(var,const) (((int16_t) (var)) * ((int16_t) (const)))
  114. #endif
  115. #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
  116. #define MULTIPLY(var,const) (((int16_t) (var)) * ((int32_t) (const)))
  117. #endif
  118. #endif
  119. #ifndef MULTIPLY /* default definition */
  120. #define MULTIPLY(var,const) ((var) * (const))
  121. #endif
  122. /*
  123. Unlike our decoder where we approximate the FIXes, we need to use exact
  124. ones here or successive P-frames will drift too much with Reference frame coding
  125. */
  126. #define FIX_0_211164243 1730
  127. #define FIX_0_275899380 2260
  128. #define FIX_0_298631336 2446
  129. #define FIX_0_390180644 3196
  130. #define FIX_0_509795579 4176
  131. #define FIX_0_541196100 4433
  132. #define FIX_0_601344887 4926
  133. #define FIX_0_765366865 6270
  134. #define FIX_0_785694958 6436
  135. #define FIX_0_899976223 7373
  136. #define FIX_1_061594337 8697
  137. #define FIX_1_111140466 9102
  138. #define FIX_1_175875602 9633
  139. #define FIX_1_306562965 10703
  140. #define FIX_1_387039845 11363
  141. #define FIX_1_451774981 11893
  142. #define FIX_1_501321110 12299
  143. #define FIX_1_662939225 13623
  144. #define FIX_1_847759065 15137
  145. #define FIX_1_961570560 16069
  146. #define FIX_2_053119869 16819
  147. #define FIX_2_172734803 17799
  148. #define FIX_2_562915447 20995
  149. #define FIX_3_072711026 25172
  150. /*
  151. * Perform the inverse DCT on one block of coefficients.
  152. */
  153. void j_rev_dct(DCTBLOCK data)
  154. {
  155. int32_t tmp0, tmp1, tmp2, tmp3;
  156. int32_t tmp10, tmp11, tmp12, tmp13;
  157. int32_t z1, z2, z3, z4, z5;
  158. int32_t d0, d1, d2, d3, d4, d5, d6, d7;
  159. register DCTELEM *dataptr;
  160. int rowctr;
  161. /* Pass 1: process rows. */
  162. /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
  163. /* furthermore, we scale the results by 2**PASS1_BITS. */
  164. dataptr = data;
  165. for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
  166. /* Due to quantization, we will usually find that many of the input
  167. * coefficients are zero, especially the AC terms. We can exploit this
  168. * by short-circuiting the IDCT calculation for any row in which all
  169. * the AC terms are zero. In that case each output is equal to the
  170. * DC coefficient (with scale factor as needed).
  171. * With typical images and quantization tables, half or more of the
  172. * row DCT calculations can be simplified this way.
  173. */
  174. register int *idataptr = (int*)dataptr;
  175. /* WARNING: we do the same permutation as MMX idct to simplify the
  176. video core */
  177. d0 = dataptr[0];
  178. d2 = dataptr[1];
  179. d4 = dataptr[2];
  180. d6 = dataptr[3];
  181. d1 = dataptr[4];
  182. d3 = dataptr[5];
  183. d5 = dataptr[6];
  184. d7 = dataptr[7];
  185. if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) {
  186. /* AC terms all zero */
  187. if (d0) {
  188. /* Compute a 32 bit value to assign. */
  189. DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS);
  190. register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
  191. idataptr[0] = v;
  192. idataptr[1] = v;
  193. idataptr[2] = v;
  194. idataptr[3] = v;
  195. }
  196. dataptr += DCTSIZE; /* advance pointer to next row */
  197. continue;
  198. }
  199. /* Even part: reverse the even part of the forward DCT. */
  200. /* The rotator is sqrt(2)*c(-6). */
  201. {
  202. if (d6) {
  203. if (d2) {
  204. /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
  205. z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
  206. tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
  207. tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
  208. tmp0 = (d0 + d4) << CONST_BITS;
  209. tmp1 = (d0 - d4) << CONST_BITS;
  210. tmp10 = tmp0 + tmp3;
  211. tmp13 = tmp0 - tmp3;
  212. tmp11 = tmp1 + tmp2;
  213. tmp12 = tmp1 - tmp2;
  214. } else {
  215. /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
  216. tmp2 = MULTIPLY(-d6, FIX_1_306562965);
  217. tmp3 = MULTIPLY(d6, FIX_0_541196100);
  218. tmp0 = (d0 + d4) << CONST_BITS;
  219. tmp1 = (d0 - d4) << CONST_BITS;
  220. tmp10 = tmp0 + tmp3;
  221. tmp13 = tmp0 - tmp3;
  222. tmp11 = tmp1 + tmp2;
  223. tmp12 = tmp1 - tmp2;
  224. }
  225. } else {
  226. if (d2) {
  227. /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
  228. tmp2 = MULTIPLY(d2, FIX_0_541196100);
  229. tmp3 = MULTIPLY(d2, FIX_1_306562965);
  230. tmp0 = (d0 + d4) << CONST_BITS;
  231. tmp1 = (d0 - d4) << CONST_BITS;
  232. tmp10 = tmp0 + tmp3;
  233. tmp13 = tmp0 - tmp3;
  234. tmp11 = tmp1 + tmp2;
  235. tmp12 = tmp1 - tmp2;
  236. } else {
  237. /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
  238. tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
  239. tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
  240. }
  241. }
  242. /* Odd part per figure 8; the matrix is unitary and hence its
  243. * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
  244. */
  245. if (d7) {
  246. if (d5) {
  247. if (d3) {
  248. if (d1) {
  249. /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
  250. z1 = d7 + d1;
  251. z2 = d5 + d3;
  252. z3 = d7 + d3;
  253. z4 = d5 + d1;
  254. z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
  255. tmp0 = MULTIPLY(d7, FIX_0_298631336);
  256. tmp1 = MULTIPLY(d5, FIX_2_053119869);
  257. tmp2 = MULTIPLY(d3, FIX_3_072711026);
  258. tmp3 = MULTIPLY(d1, FIX_1_501321110);
  259. z1 = MULTIPLY(-z1, FIX_0_899976223);
  260. z2 = MULTIPLY(-z2, FIX_2_562915447);
  261. z3 = MULTIPLY(-z3, FIX_1_961570560);
  262. z4 = MULTIPLY(-z4, FIX_0_390180644);
  263. z3 += z5;
  264. z4 += z5;
  265. tmp0 += z1 + z3;
  266. tmp1 += z2 + z4;
  267. tmp2 += z2 + z3;
  268. tmp3 += z1 + z4;
  269. } else {
  270. /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
  271. z2 = d5 + d3;
  272. z3 = d7 + d3;
  273. z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
  274. tmp0 = MULTIPLY(d7, FIX_0_298631336);
  275. tmp1 = MULTIPLY(d5, FIX_2_053119869);
  276. tmp2 = MULTIPLY(d3, FIX_3_072711026);
  277. z1 = MULTIPLY(-d7, FIX_0_899976223);
  278. z2 = MULTIPLY(-z2, FIX_2_562915447);
  279. z3 = MULTIPLY(-z3, FIX_1_961570560);
  280. z4 = MULTIPLY(-d5, FIX_0_390180644);
  281. z3 += z5;
  282. z4 += z5;
  283. tmp0 += z1 + z3;
  284. tmp1 += z2 + z4;
  285. tmp2 += z2 + z3;
  286. tmp3 = z1 + z4;
  287. }
  288. } else {
  289. if (d1) {
  290. /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
  291. z1 = d7 + d1;
  292. z4 = d5 + d1;
  293. z5 = MULTIPLY(d7 + z4, FIX_1_175875602);
  294. tmp0 = MULTIPLY(d7, FIX_0_298631336);
  295. tmp1 = MULTIPLY(d5, FIX_2_053119869);
  296. tmp3 = MULTIPLY(d1, FIX_1_501321110);
  297. z1 = MULTIPLY(-z1, FIX_0_899976223);
  298. z2 = MULTIPLY(-d5, FIX_2_562915447);
  299. z3 = MULTIPLY(-d7, FIX_1_961570560);
  300. z4 = MULTIPLY(-z4, FIX_0_390180644);
  301. z3 += z5;
  302. z4 += z5;
  303. tmp0 += z1 + z3;
  304. tmp1 += z2 + z4;
  305. tmp2 = z2 + z3;
  306. tmp3 += z1 + z4;
  307. } else {
  308. /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
  309. tmp0 = MULTIPLY(-d7, FIX_0_601344887);
  310. z1 = MULTIPLY(-d7, FIX_0_899976223);
  311. z3 = MULTIPLY(-d7, FIX_1_961570560);
  312. tmp1 = MULTIPLY(-d5, FIX_0_509795579);
  313. z2 = MULTIPLY(-d5, FIX_2_562915447);
  314. z4 = MULTIPLY(-d5, FIX_0_390180644);
  315. z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
  316. z3 += z5;
  317. z4 += z5;
  318. tmp0 += z3;
  319. tmp1 += z4;
  320. tmp2 = z2 + z3;
  321. tmp3 = z1 + z4;
  322. }
  323. }
  324. } else {
  325. if (d3) {
  326. if (d1) {
  327. /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
  328. z1 = d7 + d1;
  329. z3 = d7 + d3;
  330. z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
  331. tmp0 = MULTIPLY(d7, FIX_0_298631336);
  332. tmp2 = MULTIPLY(d3, FIX_3_072711026);
  333. tmp3 = MULTIPLY(d1, FIX_1_501321110);
  334. z1 = MULTIPLY(-z1, FIX_0_899976223);
  335. z2 = MULTIPLY(-d3, FIX_2_562915447);
  336. z3 = MULTIPLY(-z3, FIX_1_961570560);
  337. z4 = MULTIPLY(-d1, FIX_0_390180644);
  338. z3 += z5;
  339. z4 += z5;
  340. tmp0 += z1 + z3;
  341. tmp1 = z2 + z4;
  342. tmp2 += z2 + z3;
  343. tmp3 += z1 + z4;
  344. } else {
  345. /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
  346. z3 = d7 + d3;
  347. tmp0 = MULTIPLY(-d7, FIX_0_601344887);
  348. z1 = MULTIPLY(-d7, FIX_0_899976223);
  349. tmp2 = MULTIPLY(d3, FIX_0_509795579);
  350. z2 = MULTIPLY(-d3, FIX_2_562915447);
  351. z5 = MULTIPLY(z3, FIX_1_175875602);
  352. z3 = MULTIPLY(-z3, FIX_0_785694958);
  353. tmp0 += z3;
  354. tmp1 = z2 + z5;
  355. tmp2 += z3;
  356. tmp3 = z1 + z5;
  357. }
  358. } else {
  359. if (d1) {
  360. /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
  361. z1 = d7 + d1;
  362. z5 = MULTIPLY(z1, FIX_1_175875602);
  363. z1 = MULTIPLY(z1, FIX_0_275899380);
  364. z3 = MULTIPLY(-d7, FIX_1_961570560);
  365. tmp0 = MULTIPLY(-d7, FIX_1_662939225);
  366. z4 = MULTIPLY(-d1, FIX_0_390180644);
  367. tmp3 = MULTIPLY(d1, FIX_1_111140466);
  368. tmp0 += z1;
  369. tmp1 = z4 + z5;
  370. tmp2 = z3 + z5;
  371. tmp3 += z1;
  372. } else {
  373. /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
  374. tmp0 = MULTIPLY(-d7, FIX_1_387039845);
  375. tmp1 = MULTIPLY(d7, FIX_1_175875602);
  376. tmp2 = MULTIPLY(-d7, FIX_0_785694958);
  377. tmp3 = MULTIPLY(d7, FIX_0_275899380);
  378. }
  379. }
  380. }
  381. } else {
  382. if (d5) {
  383. if (d3) {
  384. if (d1) {
  385. /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
  386. z2 = d5 + d3;
  387. z4 = d5 + d1;
  388. z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
  389. tmp1 = MULTIPLY(d5, FIX_2_053119869);
  390. tmp2 = MULTIPLY(d3, FIX_3_072711026);
  391. tmp3 = MULTIPLY(d1, FIX_1_501321110);
  392. z1 = MULTIPLY(-d1, FIX_0_899976223);
  393. z2 = MULTIPLY(-z2, FIX_2_562915447);
  394. z3 = MULTIPLY(-d3, FIX_1_961570560);
  395. z4 = MULTIPLY(-z4, FIX_0_390180644);
  396. z3 += z5;
  397. z4 += z5;
  398. tmp0 = z1 + z3;
  399. tmp1 += z2 + z4;
  400. tmp2 += z2 + z3;
  401. tmp3 += z1 + z4;
  402. } else {
  403. /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
  404. z2 = d5 + d3;
  405. z5 = MULTIPLY(z2, FIX_1_175875602);
  406. tmp1 = MULTIPLY(d5, FIX_1_662939225);
  407. z4 = MULTIPLY(-d5, FIX_0_390180644);
  408. z2 = MULTIPLY(-z2, FIX_1_387039845);
  409. tmp2 = MULTIPLY(d3, FIX_1_111140466);
  410. z3 = MULTIPLY(-d3, FIX_1_961570560);
  411. tmp0 = z3 + z5;
  412. tmp1 += z2;
  413. tmp2 += z2;
  414. tmp3 = z4 + z5;
  415. }
  416. } else {
  417. if (d1) {
  418. /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
  419. z4 = d5 + d1;
  420. z5 = MULTIPLY(z4, FIX_1_175875602);
  421. z1 = MULTIPLY(-d1, FIX_0_899976223);
  422. tmp3 = MULTIPLY(d1, FIX_0_601344887);
  423. tmp1 = MULTIPLY(-d5, FIX_0_509795579);
  424. z2 = MULTIPLY(-d5, FIX_2_562915447);
  425. z4 = MULTIPLY(z4, FIX_0_785694958);
  426. tmp0 = z1 + z5;
  427. tmp1 += z4;
  428. tmp2 = z2 + z5;
  429. tmp3 += z4;
  430. } else {
  431. /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
  432. tmp0 = MULTIPLY(d5, FIX_1_175875602);
  433. tmp1 = MULTIPLY(d5, FIX_0_275899380);
  434. tmp2 = MULTIPLY(-d5, FIX_1_387039845);
  435. tmp3 = MULTIPLY(d5, FIX_0_785694958);
  436. }
  437. }
  438. } else {
  439. if (d3) {
  440. if (d1) {
  441. /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
  442. z5 = d1 + d3;
  443. tmp3 = MULTIPLY(d1, FIX_0_211164243);
  444. tmp2 = MULTIPLY(-d3, FIX_1_451774981);
  445. z1 = MULTIPLY(d1, FIX_1_061594337);
  446. z2 = MULTIPLY(-d3, FIX_2_172734803);
  447. z4 = MULTIPLY(z5, FIX_0_785694958);
  448. z5 = MULTIPLY(z5, FIX_1_175875602);
  449. tmp0 = z1 - z4;
  450. tmp1 = z2 + z4;
  451. tmp2 += z5;
  452. tmp3 += z5;
  453. } else {
  454. /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
  455. tmp0 = MULTIPLY(-d3, FIX_0_785694958);
  456. tmp1 = MULTIPLY(-d3, FIX_1_387039845);
  457. tmp2 = MULTIPLY(-d3, FIX_0_275899380);
  458. tmp3 = MULTIPLY(d3, FIX_1_175875602);
  459. }
  460. } else {
  461. if (d1) {
  462. /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
  463. tmp0 = MULTIPLY(d1, FIX_0_275899380);
  464. tmp1 = MULTIPLY(d1, FIX_0_785694958);
  465. tmp2 = MULTIPLY(d1, FIX_1_175875602);
  466. tmp3 = MULTIPLY(d1, FIX_1_387039845);
  467. } else {
  468. /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
  469. tmp0 = tmp1 = tmp2 = tmp3 = 0;
  470. }
  471. }
  472. }
  473. }
  474. }
  475. /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
  476. dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
  477. dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
  478. dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
  479. dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
  480. dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
  481. dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
  482. dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
  483. dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
  484. dataptr += DCTSIZE; /* advance pointer to next row */
  485. }
  486. /* Pass 2: process columns. */
  487. /* Note that we must descale the results by a factor of 8 == 2**3, */
  488. /* and also undo the PASS1_BITS scaling. */
  489. dataptr = data;
  490. for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
  491. /* Columns of zeroes can be exploited in the same way as we did with rows.
  492. * However, the row calculation has created many nonzero AC terms, so the
  493. * simplification applies less often (typically 5% to 10% of the time).
  494. * On machines with very fast multiplication, it's possible that the
  495. * test takes more time than it's worth. In that case this section
  496. * may be commented out.
  497. */
  498. d0 = dataptr[DCTSIZE*0];
  499. d1 = dataptr[DCTSIZE*1];
  500. d2 = dataptr[DCTSIZE*2];
  501. d3 = dataptr[DCTSIZE*3];
  502. d4 = dataptr[DCTSIZE*4];
  503. d5 = dataptr[DCTSIZE*5];
  504. d6 = dataptr[DCTSIZE*6];
  505. d7 = dataptr[DCTSIZE*7];
  506. /* Even part: reverse the even part of the forward DCT. */
  507. /* The rotator is sqrt(2)*c(-6). */
  508. if (d6) {
  509. if (d2) {
  510. /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
  511. z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
  512. tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
  513. tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
  514. tmp0 = (d0 + d4) << CONST_BITS;
  515. tmp1 = (d0 - d4) << CONST_BITS;
  516. tmp10 = tmp0 + tmp3;
  517. tmp13 = tmp0 - tmp3;
  518. tmp11 = tmp1 + tmp2;
  519. tmp12 = tmp1 - tmp2;
  520. } else {
  521. /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
  522. tmp2 = MULTIPLY(-d6, FIX_1_306562965);
  523. tmp3 = MULTIPLY(d6, FIX_0_541196100);
  524. tmp0 = (d0 + d4) << CONST_BITS;
  525. tmp1 = (d0 - d4) << CONST_BITS;
  526. tmp10 = tmp0 + tmp3;
  527. tmp13 = tmp0 - tmp3;
  528. tmp11 = tmp1 + tmp2;
  529. tmp12 = tmp1 - tmp2;
  530. }
  531. } else {
  532. if (d2) {
  533. /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
  534. tmp2 = MULTIPLY(d2, FIX_0_541196100);
  535. tmp3 = MULTIPLY(d2, FIX_1_306562965);
  536. tmp0 = (d0 + d4) << CONST_BITS;
  537. tmp1 = (d0 - d4) << CONST_BITS;
  538. tmp10 = tmp0 + tmp3;
  539. tmp13 = tmp0 - tmp3;
  540. tmp11 = tmp1 + tmp2;
  541. tmp12 = tmp1 - tmp2;
  542. } else {
  543. /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
  544. tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
  545. tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
  546. }
  547. }
  548. /* Odd part per figure 8; the matrix is unitary and hence its
  549. * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
  550. */
  551. if (d7) {
  552. if (d5) {
  553. if (d3) {
  554. if (d1) {
  555. /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
  556. z1 = d7 + d1;
  557. z2 = d5 + d3;
  558. z3 = d7 + d3;
  559. z4 = d5 + d1;
  560. z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
  561. tmp0 = MULTIPLY(d7, FIX_0_298631336);
  562. tmp1 = MULTIPLY(d5, FIX_2_053119869);
  563. tmp2 = MULTIPLY(d3, FIX_3_072711026);
  564. tmp3 = MULTIPLY(d1, FIX_1_501321110);
  565. z1 = MULTIPLY(-z1, FIX_0_899976223);
  566. z2 = MULTIPLY(-z2, FIX_2_562915447);
  567. z3 = MULTIPLY(-z3, FIX_1_961570560);
  568. z4 = MULTIPLY(-z4, FIX_0_390180644);
  569. z3 += z5;
  570. z4 += z5;
  571. tmp0 += z1 + z3;
  572. tmp1 += z2 + z4;
  573. tmp2 += z2 + z3;
  574. tmp3 += z1 + z4;
  575. } else {
  576. /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
  577. z1 = d7;
  578. z2 = d5 + d3;
  579. z3 = d7 + d3;
  580. z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
  581. tmp0 = MULTIPLY(d7, FIX_0_298631336);
  582. tmp1 = MULTIPLY(d5, FIX_2_053119869);
  583. tmp2 = MULTIPLY(d3, FIX_3_072711026);
  584. z1 = MULTIPLY(-d7, FIX_0_899976223);
  585. z2 = MULTIPLY(-z2, FIX_2_562915447);
  586. z3 = MULTIPLY(-z3, FIX_1_961570560);
  587. z4 = MULTIPLY(-d5, FIX_0_390180644);
  588. z3 += z5;
  589. z4 += z5;
  590. tmp0 += z1 + z3;
  591. tmp1 += z2 + z4;
  592. tmp2 += z2 + z3;
  593. tmp3 = z1 + z4;
  594. }
  595. } else {
  596. if (d1) {
  597. /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
  598. z1 = d7 + d1;
  599. z2 = d5;
  600. z3 = d7;
  601. z4 = d5 + d1;
  602. z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
  603. tmp0 = MULTIPLY(d7, FIX_0_298631336);
  604. tmp1 = MULTIPLY(d5, FIX_2_053119869);
  605. tmp3 = MULTIPLY(d1, FIX_1_501321110);
  606. z1 = MULTIPLY(-z1, FIX_0_899976223);
  607. z2 = MULTIPLY(-d5, FIX_2_562915447);
  608. z3 = MULTIPLY(-d7, FIX_1_961570560);
  609. z4 = MULTIPLY(-z4, FIX_0_390180644);
  610. z3 += z5;
  611. z4 += z5;
  612. tmp0 += z1 + z3;
  613. tmp1 += z2 + z4;
  614. tmp2 = z2 + z3;
  615. tmp3 += z1 + z4;
  616. } else {
  617. /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
  618. tmp0 = MULTIPLY(-d7, FIX_0_601344887);
  619. z1 = MULTIPLY(-d7, FIX_0_899976223);
  620. z3 = MULTIPLY(-d7, FIX_1_961570560);
  621. tmp1 = MULTIPLY(-d5, FIX_0_509795579);
  622. z2 = MULTIPLY(-d5, FIX_2_562915447);
  623. z4 = MULTIPLY(-d5, FIX_0_390180644);
  624. z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
  625. z3 += z5;
  626. z4 += z5;
  627. tmp0 += z3;
  628. tmp1 += z4;
  629. tmp2 = z2 + z3;
  630. tmp3 = z1 + z4;
  631. }
  632. }
  633. } else {
  634. if (d3) {
  635. if (d1) {
  636. /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
  637. z1 = d7 + d1;
  638. z3 = d7 + d3;
  639. z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
  640. tmp0 = MULTIPLY(d7, FIX_0_298631336);
  641. tmp2 = MULTIPLY(d3, FIX_3_072711026);
  642. tmp3 = MULTIPLY(d1, FIX_1_501321110);
  643. z1 = MULTIPLY(-z1, FIX_0_899976223);
  644. z2 = MULTIPLY(-d3, FIX_2_562915447);
  645. z3 = MULTIPLY(-z3, FIX_1_961570560);
  646. z4 = MULTIPLY(-d1, FIX_0_390180644);
  647. z3 += z5;
  648. z4 += z5;
  649. tmp0 += z1 + z3;
  650. tmp1 = z2 + z4;
  651. tmp2 += z2 + z3;
  652. tmp3 += z1 + z4;
  653. } else {
  654. /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
  655. z3 = d7 + d3;
  656. tmp0 = MULTIPLY(-d7, FIX_0_601344887);
  657. z1 = MULTIPLY(-d7, FIX_0_899976223);
  658. tmp2 = MULTIPLY(d3, FIX_0_509795579);
  659. z2 = MULTIPLY(-d3, FIX_2_562915447);
  660. z5 = MULTIPLY(z3, FIX_1_175875602);
  661. z3 = MULTIPLY(-z3, FIX_0_785694958);
  662. tmp0 += z3;
  663. tmp1 = z2 + z5;
  664. tmp2 += z3;
  665. tmp3 = z1 + z5;
  666. }
  667. } else {
  668. if (d1) {
  669. /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
  670. z1 = d7 + d1;
  671. z5 = MULTIPLY(z1, FIX_1_175875602);
  672. z1 = MULTIPLY(z1, FIX_0_275899380);
  673. z3 = MULTIPLY(-d7, FIX_1_961570560);
  674. tmp0 = MULTIPLY(-d7, FIX_1_662939225);
  675. z4 = MULTIPLY(-d1, FIX_0_390180644);
  676. tmp3 = MULTIPLY(d1, FIX_1_111140466);
  677. tmp0 += z1;
  678. tmp1 = z4 + z5;
  679. tmp2 = z3 + z5;
  680. tmp3 += z1;
  681. } else {
  682. /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
  683. tmp0 = MULTIPLY(-d7, FIX_1_387039845);
  684. tmp1 = MULTIPLY(d7, FIX_1_175875602);
  685. tmp2 = MULTIPLY(-d7, FIX_0_785694958);
  686. tmp3 = MULTIPLY(d7, FIX_0_275899380);
  687. }
  688. }
  689. }
  690. } else {
  691. if (d5) {
  692. if (d3) {
  693. if (d1) {
  694. /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
  695. z2 = d5 + d3;
  696. z4 = d5 + d1;
  697. z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
  698. tmp1 = MULTIPLY(d5, FIX_2_053119869);
  699. tmp2 = MULTIPLY(d3, FIX_3_072711026);
  700. tmp3 = MULTIPLY(d1, FIX_1_501321110);
  701. z1 = MULTIPLY(-d1, FIX_0_899976223);
  702. z2 = MULTIPLY(-z2, FIX_2_562915447);
  703. z3 = MULTIPLY(-d3, FIX_1_961570560);
  704. z4 = MULTIPLY(-z4, FIX_0_390180644);
  705. z3 += z5;
  706. z4 += z5;
  707. tmp0 = z1 + z3;
  708. tmp1 += z2 + z4;
  709. tmp2 += z2 + z3;
  710. tmp3 += z1 + z4;
  711. } else {
  712. /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
  713. z2 = d5 + d3;
  714. z5 = MULTIPLY(z2, FIX_1_175875602);
  715. tmp1 = MULTIPLY(d5, FIX_1_662939225);
  716. z4 = MULTIPLY(-d5, FIX_0_390180644);
  717. z2 = MULTIPLY(-z2, FIX_1_387039845);
  718. tmp2 = MULTIPLY(d3, FIX_1_111140466);
  719. z3 = MULTIPLY(-d3, FIX_1_961570560);
  720. tmp0 = z3 + z5;
  721. tmp1 += z2;
  722. tmp2 += z2;
  723. tmp3 = z4 + z5;
  724. }
  725. } else {
  726. if (d1) {
  727. /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
  728. z4 = d5 + d1;
  729. z5 = MULTIPLY(z4, FIX_1_175875602);
  730. z1 = MULTIPLY(-d1, FIX_0_899976223);
  731. tmp3 = MULTIPLY(d1, FIX_0_601344887);
  732. tmp1 = MULTIPLY(-d5, FIX_0_509795579);
  733. z2 = MULTIPLY(-d5, FIX_2_562915447);
  734. z4 = MULTIPLY(z4, FIX_0_785694958);
  735. tmp0 = z1 + z5;
  736. tmp1 += z4;
  737. tmp2 = z2 + z5;
  738. tmp3 += z4;
  739. } else {
  740. /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
  741. tmp0 = MULTIPLY(d5, FIX_1_175875602);
  742. tmp1 = MULTIPLY(d5, FIX_0_275899380);
  743. tmp2 = MULTIPLY(-d5, FIX_1_387039845);
  744. tmp3 = MULTIPLY(d5, FIX_0_785694958);
  745. }
  746. }
  747. } else {
  748. if (d3) {
  749. if (d1) {
  750. /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
  751. z5 = d1 + d3;
  752. tmp3 = MULTIPLY(d1, FIX_0_211164243);
  753. tmp2 = MULTIPLY(-d3, FIX_1_451774981);
  754. z1 = MULTIPLY(d1, FIX_1_061594337);
  755. z2 = MULTIPLY(-d3, FIX_2_172734803);
  756. z4 = MULTIPLY(z5, FIX_0_785694958);
  757. z5 = MULTIPLY(z5, FIX_1_175875602);
  758. tmp0 = z1 - z4;
  759. tmp1 = z2 + z4;
  760. tmp2 += z5;
  761. tmp3 += z5;
  762. } else {
  763. /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
  764. tmp0 = MULTIPLY(-d3, FIX_0_785694958);
  765. tmp1 = MULTIPLY(-d3, FIX_1_387039845);
  766. tmp2 = MULTIPLY(-d3, FIX_0_275899380);
  767. tmp3 = MULTIPLY(d3, FIX_1_175875602);
  768. }
  769. } else {
  770. if (d1) {
  771. /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
  772. tmp0 = MULTIPLY(d1, FIX_0_275899380);
  773. tmp1 = MULTIPLY(d1, FIX_0_785694958);
  774. tmp2 = MULTIPLY(d1, FIX_1_175875602);
  775. tmp3 = MULTIPLY(d1, FIX_1_387039845);
  776. } else {
  777. /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
  778. tmp0 = tmp1 = tmp2 = tmp3 = 0;
  779. }
  780. }
  781. }
  782. }
  783. /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
  784. dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3,
  785. CONST_BITS+PASS1_BITS+3);
  786. dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3,
  787. CONST_BITS+PASS1_BITS+3);
  788. dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2,
  789. CONST_BITS+PASS1_BITS+3);
  790. dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2,
  791. CONST_BITS+PASS1_BITS+3);
  792. dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1,
  793. CONST_BITS+PASS1_BITS+3);
  794. dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1,
  795. CONST_BITS+PASS1_BITS+3);
  796. dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0,
  797. CONST_BITS+PASS1_BITS+3);
  798. dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0,
  799. CONST_BITS+PASS1_BITS+3);
  800. dataptr++; /* advance pointer to next column */
  801. }
  802. }
  803. #undef DCTSIZE
  804. #define DCTSIZE 4
  805. #define DCTSTRIDE 8
  806. void j_rev_dct4(DCTBLOCK data)
  807. {
  808. int32_t tmp0, tmp1, tmp2, tmp3;
  809. int32_t tmp10, tmp11, tmp12, tmp13;
  810. int32_t z1;
  811. int32_t d0, d2, d4, d6;
  812. register DCTELEM *dataptr;
  813. int rowctr;
  814. /* Pass 1: process rows. */
  815. /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
  816. /* furthermore, we scale the results by 2**PASS1_BITS. */
  817. data[0] += 4;
  818. dataptr = data;
  819. for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
  820. /* Due to quantization, we will usually find that many of the input
  821. * coefficients are zero, especially the AC terms. We can exploit this
  822. * by short-circuiting the IDCT calculation for any row in which all
  823. * the AC terms are zero. In that case each output is equal to the
  824. * DC coefficient (with scale factor as needed).
  825. * With typical images and quantization tables, half or more of the
  826. * row DCT calculations can be simplified this way.
  827. */
  828. register int *idataptr = (int*)dataptr;
  829. d0 = dataptr[0];
  830. d2 = dataptr[1];
  831. d4 = dataptr[2];
  832. d6 = dataptr[3];
  833. if ((d2 | d4 | d6) == 0) {
  834. /* AC terms all zero */
  835. if (d0) {
  836. /* Compute a 32 bit value to assign. */
  837. DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS);
  838. register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
  839. idataptr[0] = v;
  840. idataptr[1] = v;
  841. }
  842. dataptr += DCTSTRIDE; /* advance pointer to next row */
  843. continue;
  844. }
  845. /* Even part: reverse the even part of the forward DCT. */
  846. /* The rotator is sqrt(2)*c(-6). */
  847. if (d6) {
  848. if (d2) {
  849. /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
  850. z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
  851. tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
  852. tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
  853. tmp0 = (d0 + d4) << CONST_BITS;
  854. tmp1 = (d0 - d4) << CONST_BITS;
  855. tmp10 = tmp0 + tmp3;
  856. tmp13 = tmp0 - tmp3;
  857. tmp11 = tmp1 + tmp2;
  858. tmp12 = tmp1 - tmp2;
  859. } else {
  860. /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
  861. tmp2 = MULTIPLY(-d6, FIX_1_306562965);
  862. tmp3 = MULTIPLY(d6, FIX_0_541196100);
  863. tmp0 = (d0 + d4) << CONST_BITS;
  864. tmp1 = (d0 - d4) << CONST_BITS;
  865. tmp10 = tmp0 + tmp3;
  866. tmp13 = tmp0 - tmp3;
  867. tmp11 = tmp1 + tmp2;
  868. tmp12 = tmp1 - tmp2;
  869. }
  870. } else {
  871. if (d2) {
  872. /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
  873. tmp2 = MULTIPLY(d2, FIX_0_541196100);
  874. tmp3 = MULTIPLY(d2, FIX_1_306562965);
  875. tmp0 = (d0 + d4) << CONST_BITS;
  876. tmp1 = (d0 - d4) << CONST_BITS;
  877. tmp10 = tmp0 + tmp3;
  878. tmp13 = tmp0 - tmp3;
  879. tmp11 = tmp1 + tmp2;
  880. tmp12 = tmp1 - tmp2;
  881. } else {
  882. /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
  883. tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
  884. tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
  885. }
  886. }
  887. /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
  888. dataptr[0] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
  889. dataptr[1] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
  890. dataptr[2] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
  891. dataptr[3] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
  892. dataptr += DCTSTRIDE; /* advance pointer to next row */
  893. }
  894. /* Pass 2: process columns. */
  895. /* Note that we must descale the results by a factor of 8 == 2**3, */
  896. /* and also undo the PASS1_BITS scaling. */
  897. dataptr = data;
  898. for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
  899. /* Columns of zeroes can be exploited in the same way as we did with rows.
  900. * However, the row calculation has created many nonzero AC terms, so the
  901. * simplification applies less often (typically 5% to 10% of the time).
  902. * On machines with very fast multiplication, it's possible that the
  903. * test takes more time than it's worth. In that case this section
  904. * may be commented out.
  905. */
  906. d0 = dataptr[DCTSTRIDE*0];
  907. d2 = dataptr[DCTSTRIDE*1];
  908. d4 = dataptr[DCTSTRIDE*2];
  909. d6 = dataptr[DCTSTRIDE*3];
  910. /* Even part: reverse the even part of the forward DCT. */
  911. /* The rotator is sqrt(2)*c(-6). */
  912. if (d6) {
  913. if (d2) {
  914. /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
  915. z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
  916. tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
  917. tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
  918. tmp0 = (d0 + d4) << CONST_BITS;
  919. tmp1 = (d0 - d4) << CONST_BITS;
  920. tmp10 = tmp0 + tmp3;
  921. tmp13 = tmp0 - tmp3;
  922. tmp11 = tmp1 + tmp2;
  923. tmp12 = tmp1 - tmp2;
  924. } else {
  925. /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
  926. tmp2 = MULTIPLY(-d6, FIX_1_306562965);
  927. tmp3 = MULTIPLY(d6, FIX_0_541196100);
  928. tmp0 = (d0 + d4) << CONST_BITS;
  929. tmp1 = (d0 - d4) << CONST_BITS;
  930. tmp10 = tmp0 + tmp3;
  931. tmp13 = tmp0 - tmp3;
  932. tmp11 = tmp1 + tmp2;
  933. tmp12 = tmp1 - tmp2;
  934. }
  935. } else {
  936. if (d2) {
  937. /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
  938. tmp2 = MULTIPLY(d2, FIX_0_541196100);
  939. tmp3 = MULTIPLY(d2, FIX_1_306562965);
  940. tmp0 = (d0 + d4) << CONST_BITS;
  941. tmp1 = (d0 - d4) << CONST_BITS;
  942. tmp10 = tmp0 + tmp3;
  943. tmp13 = tmp0 - tmp3;
  944. tmp11 = tmp1 + tmp2;
  945. tmp12 = tmp1 - tmp2;
  946. } else {
  947. /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
  948. tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
  949. tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
  950. }
  951. }
  952. /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
  953. dataptr[DCTSTRIDE*0] = tmp10 >> (CONST_BITS+PASS1_BITS+3);
  954. dataptr[DCTSTRIDE*1] = tmp11 >> (CONST_BITS+PASS1_BITS+3);
  955. dataptr[DCTSTRIDE*2] = tmp12 >> (CONST_BITS+PASS1_BITS+3);
  956. dataptr[DCTSTRIDE*3] = tmp13 >> (CONST_BITS+PASS1_BITS+3);
  957. dataptr++; /* advance pointer to next column */
  958. }
  959. }
  960. void j_rev_dct2(DCTBLOCK data){
  961. int d00, d01, d10, d11;
  962. data[0] += 4;
  963. d00 = data[0+0*DCTSTRIDE] + data[1+0*DCTSTRIDE];
  964. d01 = data[0+0*DCTSTRIDE] - data[1+0*DCTSTRIDE];
  965. d10 = data[0+1*DCTSTRIDE] + data[1+1*DCTSTRIDE];
  966. d11 = data[0+1*DCTSTRIDE] - data[1+1*DCTSTRIDE];
  967. data[0+0*DCTSTRIDE]= (d00 + d10)>>3;
  968. data[1+0*DCTSTRIDE]= (d01 + d11)>>3;
  969. data[0+1*DCTSTRIDE]= (d00 - d10)>>3;
  970. data[1+1*DCTSTRIDE]= (d01 - d11)>>3;
  971. }
  972. void j_rev_dct1(DCTBLOCK data){
  973. data[0] = (data[0] + 4)>>3;
  974. }
  975. #undef FIX
  976. #undef CONST_BITS