You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

834 lines
27KB

  1. /*
  2. * ALAC (Apple Lossless Audio Codec) decoder
  3. * Copyright (c) 2005 David Hammerton
  4. * All rights reserved.
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. */
  20. /**
  21. * @file alac.c
  22. * ALAC (Apple Lossless Audio Codec) decoder
  23. * @author 2005 David Hammerton
  24. *
  25. * For more information on the ALAC format, visit:
  26. * http://crazney.net/programs/itunes/alac.html
  27. *
  28. * Note: This decoder expects a 36- (0x24-)byte QuickTime atom to be
  29. * passed through the extradata[_size] fields. This atom is tacked onto
  30. * the end of an 'alac' stsd atom and has the following format:
  31. * bytes 0-3 atom size (0x24), big-endian
  32. * bytes 4-7 atom type ('alac', not the 'alac' tag from start of stsd)
  33. * bytes 8-35 data bytes needed by decoder
  34. */
  35. #include "avcodec.h"
  36. #include "bitstream.h"
  37. #define ALAC_EXTRADATA_SIZE 36
  38. typedef struct {
  39. AVCodecContext *avctx;
  40. GetBitContext gb;
  41. /* init to 0; first frame decode should initialize from extradata and
  42. * set this to 1 */
  43. int context_initialized;
  44. int samplesize;
  45. int numchannels;
  46. int bytespersample;
  47. /* buffers */
  48. int32_t *predicterror_buffer_a;
  49. int32_t *predicterror_buffer_b;
  50. int32_t *outputsamples_buffer_a;
  51. int32_t *outputsamples_buffer_b;
  52. /* stuff from setinfo */
  53. uint32_t setinfo_max_samples_per_frame; /* 0x1000 = 4096 */ /* max samples per frame? */
  54. uint8_t setinfo_7a; /* 0x00 */
  55. uint8_t setinfo_sample_size; /* 0x10 */
  56. uint8_t setinfo_rice_historymult; /* 0x28 */
  57. uint8_t setinfo_rice_initialhistory; /* 0x0a */
  58. uint8_t setinfo_rice_kmodifier; /* 0x0e */
  59. uint8_t setinfo_7f; /* 0x02 */
  60. uint16_t setinfo_80; /* 0x00ff */
  61. uint32_t setinfo_82; /* 0x000020e7 */
  62. uint32_t setinfo_86; /* 0x00069fe4 */
  63. uint32_t setinfo_8a_rate; /* 0x0000ac44 */
  64. /* end setinfo stuff */
  65. } ALACContext;
  66. static void allocate_buffers(ALACContext *alac)
  67. {
  68. alac->predicterror_buffer_a = av_malloc(alac->setinfo_max_samples_per_frame * 4);
  69. alac->predicterror_buffer_b = av_malloc(alac->setinfo_max_samples_per_frame * 4);
  70. alac->outputsamples_buffer_a = av_malloc(alac->setinfo_max_samples_per_frame * 4);
  71. alac->outputsamples_buffer_b = av_malloc(alac->setinfo_max_samples_per_frame * 4);
  72. }
  73. void alac_set_info(ALACContext *alac)
  74. {
  75. unsigned char *ptr = alac->avctx->extradata;
  76. ptr += 4; /* size */
  77. ptr += 4; /* alac */
  78. ptr += 4; /* 0 ? */
  79. alac->setinfo_max_samples_per_frame = BE_32(ptr); /* buffer size / 2 ? */
  80. ptr += 4;
  81. alac->setinfo_7a = *ptr++;
  82. alac->setinfo_sample_size = *ptr++;
  83. alac->setinfo_rice_historymult = *ptr++;
  84. alac->setinfo_rice_initialhistory = *ptr++;
  85. alac->setinfo_rice_kmodifier = *ptr++;
  86. alac->setinfo_7f = *ptr++;
  87. alac->setinfo_80 = BE_16(ptr);
  88. ptr += 2;
  89. alac->setinfo_82 = BE_32(ptr);
  90. ptr += 4;
  91. alac->setinfo_86 = BE_32(ptr);
  92. ptr += 4;
  93. alac->setinfo_8a_rate = BE_32(ptr);
  94. ptr += 4;
  95. allocate_buffers(alac);
  96. }
  97. /* hideously inefficient. could use a bitmask search,
  98. * alternatively bsr on x86,
  99. */
  100. static int count_leading_zeros(int32_t input)
  101. {
  102. int i = 0;
  103. while (!(0x80000000 & input) && i < 32) {
  104. i++;
  105. input = input << 1;
  106. }
  107. return i;
  108. }
  109. void bastardized_rice_decompress(ALACContext *alac,
  110. int32_t *output_buffer,
  111. int output_size,
  112. int readsamplesize, /* arg_10 */
  113. int rice_initialhistory, /* arg424->b */
  114. int rice_kmodifier, /* arg424->d */
  115. int rice_historymult, /* arg424->c */
  116. int rice_kmodifier_mask /* arg424->e */
  117. )
  118. {
  119. int output_count;
  120. unsigned int history = rice_initialhistory;
  121. int sign_modifier = 0;
  122. for (output_count = 0; output_count < output_size; output_count++) {
  123. int32_t x = 0;
  124. int32_t x_modified;
  125. int32_t final_val;
  126. /* read x - number of 1s before 0 represent the rice */
  127. while (x <= 8 && get_bits1(&alac->gb)) {
  128. x++;
  129. }
  130. if (x > 8) { /* RICE THRESHOLD */
  131. /* use alternative encoding */
  132. int32_t value;
  133. value = get_bits(&alac->gb, readsamplesize);
  134. /* mask value to readsamplesize size */
  135. if (readsamplesize != 32)
  136. value &= (0xffffffff >> (32 - readsamplesize));
  137. x = value;
  138. } else {
  139. /* standard rice encoding */
  140. int extrabits;
  141. int k; /* size of extra bits */
  142. /* read k, that is bits as is */
  143. k = 31 - rice_kmodifier - count_leading_zeros((history >> 9) + 3);
  144. if (k < 0)
  145. k += rice_kmodifier;
  146. else
  147. k = rice_kmodifier;
  148. if (k != 1) {
  149. extrabits = show_bits(&alac->gb, k);
  150. /* multiply x by 2^k - 1, as part of their strange algorithm */
  151. x = (x << k) - x;
  152. if (extrabits > 1) {
  153. x += extrabits - 1;
  154. get_bits(&alac->gb, k);
  155. } else {
  156. get_bits(&alac->gb, k - 1);
  157. }
  158. }
  159. }
  160. x_modified = sign_modifier + x;
  161. final_val = (x_modified + 1) / 2;
  162. if (x_modified & 1) final_val *= -1;
  163. output_buffer[output_count] = final_val;
  164. sign_modifier = 0;
  165. /* now update the history */
  166. history += (x_modified * rice_historymult)
  167. - ((history * rice_historymult) >> 9);
  168. if (x_modified > 0xffff)
  169. history = 0xffff;
  170. /* special case: there may be compressed blocks of 0 */
  171. if ((history < 128) && (output_count+1 < output_size)) {
  172. int block_size;
  173. sign_modifier = 1;
  174. x = 0;
  175. while (x <= 8 && get_bits1(&alac->gb)) {
  176. x++;
  177. }
  178. if (x > 8) {
  179. block_size = get_bits(&alac->gb, 16);
  180. block_size &= 0xffff;
  181. } else {
  182. int k;
  183. int extrabits;
  184. k = count_leading_zeros(history) + ((history + 16) >> 6 /* / 64 */) - 24;
  185. extrabits = show_bits(&alac->gb, k);
  186. block_size = (((1 << k) - 1) & rice_kmodifier_mask) * x
  187. + extrabits - 1;
  188. if (extrabits < 2) {
  189. x = 1 - extrabits;
  190. block_size += x;
  191. get_bits(&alac->gb, k - 1);
  192. } else {
  193. get_bits(&alac->gb, k);
  194. }
  195. }
  196. if (block_size > 0) {
  197. memset(&output_buffer[output_count+1], 0, block_size * 4);
  198. output_count += block_size;
  199. }
  200. if (block_size > 0xffff)
  201. sign_modifier = 0;
  202. history = 0;
  203. }
  204. }
  205. }
  206. #define SIGN_EXTENDED32(val, bits) ((val << (32 - bits)) >> (32 - bits))
  207. #define SIGN_ONLY(v) \
  208. ((v < 0) ? (-1) : \
  209. ((v > 0) ? (1) : \
  210. (0)))
  211. static void predictor_decompress_fir_adapt(int32_t *error_buffer,
  212. int32_t *buffer_out,
  213. int output_size,
  214. int readsamplesize,
  215. int16_t *predictor_coef_table,
  216. int predictor_coef_num,
  217. int predictor_quantitization)
  218. {
  219. int i;
  220. /* first sample always copies */
  221. *buffer_out = *error_buffer;
  222. if (!predictor_coef_num) {
  223. if (output_size <= 1) return;
  224. memcpy(buffer_out+1, error_buffer+1, (output_size-1) * 4);
  225. return;
  226. }
  227. if (predictor_coef_num == 0x1f) { /* 11111 - max value of predictor_coef_num */
  228. /* second-best case scenario for fir decompression,
  229. * error describes a small difference from the previous sample only
  230. */
  231. if (output_size <= 1) return;
  232. for (i = 0; i < output_size - 1; i++) {
  233. int32_t prev_value;
  234. int32_t error_value;
  235. prev_value = buffer_out[i];
  236. error_value = error_buffer[i+1];
  237. buffer_out[i+1] = SIGN_EXTENDED32((prev_value + error_value), readsamplesize);
  238. }
  239. return;
  240. }
  241. /* read warm-up samples */
  242. if (predictor_coef_num > 0) {
  243. int i;
  244. for (i = 0; i < predictor_coef_num; i++) {
  245. int32_t val;
  246. val = buffer_out[i] + error_buffer[i+1];
  247. val = SIGN_EXTENDED32(val, readsamplesize);
  248. buffer_out[i+1] = val;
  249. }
  250. }
  251. #if 0
  252. /* 4 and 8 are very common cases (the only ones i've seen). these
  253. * should be unrolled and optimised
  254. */
  255. if (predictor_coef_num == 4) {
  256. /* FIXME: optimised general case */
  257. return;
  258. }
  259. if (predictor_coef_table == 8) {
  260. /* FIXME: optimised general case */
  261. return;
  262. }
  263. #endif
  264. /* general case */
  265. if (predictor_coef_num > 0) {
  266. for (i = predictor_coef_num + 1;
  267. i < output_size;
  268. i++) {
  269. int j;
  270. int sum = 0;
  271. int outval;
  272. int error_val = error_buffer[i];
  273. for (j = 0; j < predictor_coef_num; j++) {
  274. sum += (buffer_out[predictor_coef_num-j] - buffer_out[0]) *
  275. predictor_coef_table[j];
  276. }
  277. outval = (1 << (predictor_quantitization-1)) + sum;
  278. outval = outval >> predictor_quantitization;
  279. outval = outval + buffer_out[0] + error_val;
  280. outval = SIGN_EXTENDED32(outval, readsamplesize);
  281. buffer_out[predictor_coef_num+1] = outval;
  282. if (error_val > 0) {
  283. int predictor_num = predictor_coef_num - 1;
  284. while (predictor_num >= 0 && error_val > 0) {
  285. int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
  286. int sign = SIGN_ONLY(val);
  287. predictor_coef_table[predictor_num] -= sign;
  288. val *= sign; /* absolute value */
  289. error_val -= ((val >> predictor_quantitization) *
  290. (predictor_coef_num - predictor_num));
  291. predictor_num--;
  292. }
  293. } else if (error_val < 0) {
  294. int predictor_num = predictor_coef_num - 1;
  295. while (predictor_num >= 0 && error_val < 0) {
  296. int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
  297. int sign = - SIGN_ONLY(val);
  298. predictor_coef_table[predictor_num] -= sign;
  299. val *= sign; /* neg value */
  300. error_val -= ((val >> predictor_quantitization) *
  301. (predictor_coef_num - predictor_num));
  302. predictor_num--;
  303. }
  304. }
  305. buffer_out++;
  306. }
  307. }
  308. }
  309. void deinterlace_16(int32_t *buffer_a, int32_t *buffer_b,
  310. int16_t *buffer_out,
  311. int numchannels, int numsamples,
  312. uint8_t interlacing_shift,
  313. uint8_t interlacing_leftweight)
  314. {
  315. int i;
  316. if (numsamples <= 0) return;
  317. /* weighted interlacing */
  318. if (interlacing_leftweight) {
  319. for (i = 0; i < numsamples; i++) {
  320. int32_t difference, midright;
  321. int16_t left;
  322. int16_t right;
  323. midright = buffer_a[i];
  324. difference = buffer_b[i];
  325. right = midright - ((difference * interlacing_leftweight) >> interlacing_shift);
  326. left = (midright - ((difference * interlacing_leftweight) >> interlacing_shift))
  327. + difference;
  328. buffer_out[i*numchannels] = left;
  329. buffer_out[i*numchannels + 1] = right;
  330. }
  331. return;
  332. }
  333. /* otherwise basic interlacing took place */
  334. for (i = 0; i < numsamples; i++) {
  335. int16_t left, right;
  336. left = buffer_a[i];
  337. right = buffer_b[i];
  338. buffer_out[i*numchannels] = left;
  339. buffer_out[i*numchannels + 1] = right;
  340. }
  341. }
  342. static int alac_decode_frame(AVCodecContext *avctx,
  343. void *outbuffer, int *outputsize,
  344. uint8_t *inbuffer, int input_buffer_size)
  345. {
  346. ALACContext *alac = avctx->priv_data;
  347. int channels;
  348. int32_t outputsamples;
  349. /* short-circuit null buffers */
  350. if (!inbuffer || !input_buffer_size)
  351. return input_buffer_size;
  352. /* initialize from the extradata */
  353. if (!alac->context_initialized) {
  354. if (alac->avctx->extradata_size != ALAC_EXTRADATA_SIZE) {
  355. av_log(NULL, AV_LOG_ERROR, "alac: expected %d extradata bytes\n",
  356. ALAC_EXTRADATA_SIZE);
  357. return input_buffer_size;
  358. }
  359. alac_set_info(alac);
  360. alac->context_initialized = 1;
  361. }
  362. outputsamples = alac->setinfo_max_samples_per_frame;
  363. init_get_bits(&alac->gb, inbuffer, input_buffer_size * 8);
  364. channels = get_bits(&alac->gb, 3);
  365. *outputsize = outputsamples * alac->bytespersample;
  366. switch(channels) {
  367. case 0: { /* 1 channel */
  368. int hassize;
  369. int isnotcompressed;
  370. int readsamplesize;
  371. int wasted_bytes;
  372. int ricemodifier;
  373. /* 2^result = something to do with output waiting.
  374. * perhaps matters if we read > 1 frame in a pass?
  375. */
  376. get_bits(&alac->gb, 4);
  377. get_bits(&alac->gb, 12); /* unknown, skip 12 bits */
  378. hassize = get_bits(&alac->gb, 1); /* the output sample size is stored soon */
  379. wasted_bytes = get_bits(&alac->gb, 2); /* unknown ? */
  380. isnotcompressed = get_bits(&alac->gb, 1); /* whether the frame is compressed */
  381. if (hassize) {
  382. /* now read the number of samples,
  383. * as a 32bit integer */
  384. outputsamples = get_bits(&alac->gb, 32);
  385. *outputsize = outputsamples * alac->bytespersample;
  386. }
  387. readsamplesize = alac->setinfo_sample_size - (wasted_bytes * 8);
  388. if (!isnotcompressed) {
  389. /* so it is compressed */
  390. int16_t predictor_coef_table[32];
  391. int predictor_coef_num;
  392. int prediction_type;
  393. int prediction_quantitization;
  394. int i;
  395. /* skip 16 bits, not sure what they are. seem to be used in
  396. * two channel case */
  397. get_bits(&alac->gb, 8);
  398. get_bits(&alac->gb, 8);
  399. prediction_type = get_bits(&alac->gb, 4);
  400. prediction_quantitization = get_bits(&alac->gb, 4);
  401. ricemodifier = get_bits(&alac->gb, 3);
  402. predictor_coef_num = get_bits(&alac->gb, 5);
  403. /* read the predictor table */
  404. for (i = 0; i < predictor_coef_num; i++) {
  405. predictor_coef_table[i] = (int16_t)get_bits(&alac->gb, 16);
  406. }
  407. if (wasted_bytes) {
  408. /* these bytes seem to have something to do with
  409. * > 2 channel files.
  410. */
  411. av_log(NULL, AV_LOG_ERROR, "FIXME: unimplemented, unhandling of wasted_bytes\n");
  412. }
  413. bastardized_rice_decompress(alac,
  414. alac->predicterror_buffer_a,
  415. outputsamples,
  416. readsamplesize,
  417. alac->setinfo_rice_initialhistory,
  418. alac->setinfo_rice_kmodifier,
  419. ricemodifier * alac->setinfo_rice_historymult / 4,
  420. (1 << alac->setinfo_rice_kmodifier) - 1);
  421. if (prediction_type == 0) {
  422. /* adaptive fir */
  423. predictor_decompress_fir_adapt(alac->predicterror_buffer_a,
  424. alac->outputsamples_buffer_a,
  425. outputsamples,
  426. readsamplesize,
  427. predictor_coef_table,
  428. predictor_coef_num,
  429. prediction_quantitization);
  430. } else {
  431. av_log(NULL, AV_LOG_ERROR, "FIXME: unhandled prediction type: %i\n", prediction_type);
  432. /* i think the only other prediction type (or perhaps this is just a
  433. * boolean?) runs adaptive fir twice.. like:
  434. * predictor_decompress_fir_adapt(predictor_error, tempout, ...)
  435. * predictor_decompress_fir_adapt(predictor_error, outputsamples ...)
  436. * little strange..
  437. */
  438. }
  439. } else {
  440. /* not compressed, easy case */
  441. if (readsamplesize <= 16) {
  442. int i;
  443. for (i = 0; i < outputsamples; i++) {
  444. int32_t audiobits = get_bits(&alac->gb, readsamplesize);
  445. audiobits = SIGN_EXTENDED32(audiobits, readsamplesize);
  446. alac->outputsamples_buffer_a[i] = audiobits;
  447. }
  448. } else {
  449. int i;
  450. for (i = 0; i < outputsamples; i++) {
  451. int32_t audiobits;
  452. audiobits = get_bits(&alac->gb, 16);
  453. /* special case of sign extension..
  454. * as we'll be ORing the low 16bits into this */
  455. audiobits = audiobits << 16;
  456. audiobits = audiobits >> (32 - readsamplesize);
  457. audiobits |= get_bits(&alac->gb, readsamplesize - 16);
  458. alac->outputsamples_buffer_a[i] = audiobits;
  459. }
  460. }
  461. /* wasted_bytes = 0; // unused */
  462. }
  463. switch(alac->setinfo_sample_size) {
  464. case 16: {
  465. int i;
  466. for (i = 0; i < outputsamples; i++) {
  467. int16_t sample = alac->outputsamples_buffer_a[i];
  468. sample = be2me_16(sample);
  469. ((int16_t*)outbuffer)[i * alac->numchannels] = sample;
  470. }
  471. break;
  472. }
  473. case 20:
  474. case 24:
  475. case 32:
  476. av_log(NULL, AV_LOG_ERROR, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size);
  477. break;
  478. default:
  479. break;
  480. }
  481. break;
  482. }
  483. case 1: { /* 2 channels */
  484. int hassize;
  485. int isnotcompressed;
  486. int readsamplesize;
  487. int wasted_bytes;
  488. uint8_t interlacing_shift;
  489. uint8_t interlacing_leftweight;
  490. /* 2^result = something to do with output waiting.
  491. * perhaps matters if we read > 1 frame in a pass?
  492. */
  493. get_bits(&alac->gb, 4);
  494. get_bits(&alac->gb, 12); /* unknown, skip 12 bits */
  495. hassize = get_bits(&alac->gb, 1); /* the output sample size is stored soon */
  496. wasted_bytes = get_bits(&alac->gb, 2); /* unknown ? */
  497. isnotcompressed = get_bits(&alac->gb, 1); /* whether the frame is compressed */
  498. if (hassize) {
  499. /* now read the number of samples,
  500. * as a 32bit integer */
  501. outputsamples = get_bits(&alac->gb, 32);
  502. *outputsize = outputsamples * alac->bytespersample;
  503. }
  504. readsamplesize = alac->setinfo_sample_size - (wasted_bytes * 8) + 1;
  505. if (!isnotcompressed) {
  506. /* compressed */
  507. int16_t predictor_coef_table_a[32];
  508. int predictor_coef_num_a;
  509. int prediction_type_a;
  510. int prediction_quantitization_a;
  511. int ricemodifier_a;
  512. int16_t predictor_coef_table_b[32];
  513. int predictor_coef_num_b;
  514. int prediction_type_b;
  515. int prediction_quantitization_b;
  516. int ricemodifier_b;
  517. int i;
  518. interlacing_shift = get_bits(&alac->gb, 8);
  519. interlacing_leftweight = get_bits(&alac->gb, 8);
  520. /******** channel 1 ***********/
  521. prediction_type_a = get_bits(&alac->gb, 4);
  522. prediction_quantitization_a = get_bits(&alac->gb, 4);
  523. ricemodifier_a = get_bits(&alac->gb, 3);
  524. predictor_coef_num_a = get_bits(&alac->gb, 5);
  525. /* read the predictor table */
  526. for (i = 0; i < predictor_coef_num_a; i++) {
  527. predictor_coef_table_a[i] = (int16_t)get_bits(&alac->gb, 16);
  528. }
  529. /******** channel 2 *********/
  530. prediction_type_b = get_bits(&alac->gb, 4);
  531. prediction_quantitization_b = get_bits(&alac->gb, 4);
  532. ricemodifier_b = get_bits(&alac->gb, 3);
  533. predictor_coef_num_b = get_bits(&alac->gb, 5);
  534. /* read the predictor table */
  535. for (i = 0; i < predictor_coef_num_b; i++) {
  536. predictor_coef_table_b[i] = (int16_t)get_bits(&alac->gb, 16);
  537. }
  538. /*********************/
  539. if (wasted_bytes) {
  540. /* see mono case */
  541. av_log(NULL, AV_LOG_ERROR, "FIXME: unimplemented, unhandling of wasted_bytes\n");
  542. }
  543. /* channel 1 */
  544. bastardized_rice_decompress(alac,
  545. alac->predicterror_buffer_a,
  546. outputsamples,
  547. readsamplesize,
  548. alac->setinfo_rice_initialhistory,
  549. alac->setinfo_rice_kmodifier,
  550. ricemodifier_a * alac->setinfo_rice_historymult / 4,
  551. (1 << alac->setinfo_rice_kmodifier) - 1);
  552. if (prediction_type_a == 0) {
  553. /* adaptive fir */
  554. predictor_decompress_fir_adapt(alac->predicterror_buffer_a,
  555. alac->outputsamples_buffer_a,
  556. outputsamples,
  557. readsamplesize,
  558. predictor_coef_table_a,
  559. predictor_coef_num_a,
  560. prediction_quantitization_a);
  561. } else {
  562. /* see mono case */
  563. av_log(NULL, AV_LOG_ERROR, "FIXME: unhandled prediction type: %i\n", prediction_type_a);
  564. }
  565. /* channel 2 */
  566. bastardized_rice_decompress(alac,
  567. alac->predicterror_buffer_b,
  568. outputsamples,
  569. readsamplesize,
  570. alac->setinfo_rice_initialhistory,
  571. alac->setinfo_rice_kmodifier,
  572. ricemodifier_b * alac->setinfo_rice_historymult / 4,
  573. (1 << alac->setinfo_rice_kmodifier) - 1);
  574. if (prediction_type_b == 0) {
  575. /* adaptive fir */
  576. predictor_decompress_fir_adapt(alac->predicterror_buffer_b,
  577. alac->outputsamples_buffer_b,
  578. outputsamples,
  579. readsamplesize,
  580. predictor_coef_table_b,
  581. predictor_coef_num_b,
  582. prediction_quantitization_b);
  583. } else {
  584. av_log(NULL, AV_LOG_ERROR, "FIXME: unhandled prediction type: %i\n", prediction_type_b);
  585. }
  586. } else {
  587. /* not compressed, easy case */
  588. if (alac->setinfo_sample_size <= 16) {
  589. int i;
  590. for (i = 0; i < outputsamples; i++) {
  591. int32_t audiobits_a, audiobits_b;
  592. audiobits_a = get_bits(&alac->gb, alac->setinfo_sample_size);
  593. audiobits_b = get_bits(&alac->gb, alac->setinfo_sample_size);
  594. audiobits_a = SIGN_EXTENDED32(audiobits_a, alac->setinfo_sample_size);
  595. audiobits_b = SIGN_EXTENDED32(audiobits_b, alac->setinfo_sample_size);
  596. alac->outputsamples_buffer_a[i] = audiobits_a;
  597. alac->outputsamples_buffer_b[i] = audiobits_b;
  598. }
  599. } else {
  600. int i;
  601. for (i = 0; i < outputsamples; i++) {
  602. int32_t audiobits_a, audiobits_b;
  603. audiobits_a = get_bits(&alac->gb, 16);
  604. audiobits_a = audiobits_a << 16;
  605. audiobits_a = audiobits_a >> (32 - alac->setinfo_sample_size);
  606. audiobits_a |= get_bits(&alac->gb, alac->setinfo_sample_size - 16);
  607. audiobits_b = get_bits(&alac->gb, 16);
  608. audiobits_b = audiobits_b << 16;
  609. audiobits_b = audiobits_b >> (32 - alac->setinfo_sample_size);
  610. audiobits_b |= get_bits(&alac->gb, alac->setinfo_sample_size - 16);
  611. alac->outputsamples_buffer_a[i] = audiobits_a;
  612. alac->outputsamples_buffer_b[i] = audiobits_b;
  613. }
  614. }
  615. /* wasted_bytes = 0; */
  616. interlacing_shift = 0;
  617. interlacing_leftweight = 0;
  618. }
  619. switch(alac->setinfo_sample_size) {
  620. case 16: {
  621. deinterlace_16(alac->outputsamples_buffer_a,
  622. alac->outputsamples_buffer_b,
  623. (int16_t*)outbuffer,
  624. alac->numchannels,
  625. outputsamples,
  626. interlacing_shift,
  627. interlacing_leftweight);
  628. break;
  629. }
  630. case 20:
  631. case 24:
  632. case 32:
  633. av_log(NULL, AV_LOG_ERROR, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size);
  634. break;
  635. default:
  636. break;
  637. }
  638. break;
  639. }
  640. }
  641. return input_buffer_size;
  642. }
  643. static int alac_decode_init(AVCodecContext * avctx)
  644. {
  645. ALACContext *alac = avctx->priv_data;
  646. alac->avctx = avctx;
  647. alac->context_initialized = 0;
  648. alac->samplesize = alac->avctx->bits_per_sample;
  649. alac->numchannels = alac->avctx->channels;
  650. alac->bytespersample = (alac->samplesize / 8) * alac->numchannels;
  651. return 0;
  652. }
  653. static int alac_decode_close(AVCodecContext *avctx)
  654. {
  655. ALACContext *alac = avctx->priv_data;
  656. av_free(alac->predicterror_buffer_a);
  657. av_free(alac->predicterror_buffer_b);
  658. av_free(alac->outputsamples_buffer_a);
  659. av_free(alac->outputsamples_buffer_b);
  660. return 0;
  661. }
  662. AVCodec alac_decoder = {
  663. "alac",
  664. CODEC_TYPE_AUDIO,
  665. CODEC_ID_ALAC,
  666. sizeof(ALACContext),
  667. alac_decode_init,
  668. NULL,
  669. alac_decode_close,
  670. alac_decode_frame,
  671. };