You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1782 lines
63KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #include <assert.h>
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avutil.h"
  39. #include "libavutil/bswap.h"
  40. #include "libavutil/cpu.h"
  41. #include "libavutil/intreadwrite.h"
  42. #include "libavutil/mathematics.h"
  43. #include "libavutil/opt.h"
  44. #include "libavutil/pixdesc.h"
  45. #include "libavutil/ppc/cpu.h"
  46. #include "libavutil/x86/asm.h"
  47. #include "libavutil/x86/cpu.h"
  48. #include "rgb2rgb.h"
  49. #include "swscale.h"
  50. #include "swscale_internal.h"
  51. unsigned swscale_version(void)
  52. {
  53. return LIBSWSCALE_VERSION_INT;
  54. }
  55. const char *swscale_configuration(void)
  56. {
  57. return LIBAV_CONFIGURATION;
  58. }
  59. const char *swscale_license(void)
  60. {
  61. #define LICENSE_PREFIX "libswscale license: "
  62. return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  63. }
  64. #define RET 0xC3 // near return opcode for x86
  65. typedef struct FormatEntry {
  66. uint8_t is_supported_in :1;
  67. uint8_t is_supported_out :1;
  68. uint8_t is_supported_endianness :1;
  69. } FormatEntry;
  70. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  71. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  72. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  73. [AV_PIX_FMT_RGB24] = { 1, 1 },
  74. [AV_PIX_FMT_BGR24] = { 1, 1 },
  75. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  76. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  77. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  78. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  79. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  80. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  81. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  82. [AV_PIX_FMT_PAL8] = { 1, 0 },
  83. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  84. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  85. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  86. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  87. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  88. [AV_PIX_FMT_BGR8] = { 1, 1 },
  89. [AV_PIX_FMT_BGR4] = { 0, 1 },
  90. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  91. [AV_PIX_FMT_RGB8] = { 1, 1 },
  92. [AV_PIX_FMT_RGB4] = { 0, 1 },
  93. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  94. [AV_PIX_FMT_NV12] = { 1, 1 },
  95. [AV_PIX_FMT_NV21] = { 1, 1 },
  96. [AV_PIX_FMT_ARGB] = { 1, 1 },
  97. [AV_PIX_FMT_RGBA] = { 1, 1 },
  98. [AV_PIX_FMT_ABGR] = { 1, 1 },
  99. [AV_PIX_FMT_BGRA] = { 1, 1 },
  100. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  101. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  102. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  103. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  104. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  105. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  106. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  107. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  108. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  109. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  110. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  111. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  112. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  113. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  114. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  115. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  116. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  117. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  118. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  119. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  120. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  121. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  122. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  123. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  124. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  125. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  126. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  127. [AV_PIX_FMT_RGBA64BE] = { 0, 0 },
  128. [AV_PIX_FMT_RGBA64LE] = { 0, 0 },
  129. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  130. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  131. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  132. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  133. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  134. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  135. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  136. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  137. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  138. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  139. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  140. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  141. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  142. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  143. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  144. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  145. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  146. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  147. [AV_PIX_FMT_Y400A] = { 1, 0 },
  148. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  149. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  150. [AV_PIX_FMT_BGRA64BE] = { 0, 0 },
  151. [AV_PIX_FMT_BGRA64LE] = { 0, 0 },
  152. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  153. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  154. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  155. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  156. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  157. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  158. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  159. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  160. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  161. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  162. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  163. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  164. [AV_PIX_FMT_GBRP] = { 1, 1 },
  165. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  166. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  167. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  168. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  169. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  170. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  171. [AV_PIX_FMT_XYZ12BE] = { 0, 0, 1 },
  172. [AV_PIX_FMT_XYZ12LE] = { 0, 0, 1 },
  173. };
  174. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  175. {
  176. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  177. format_entries[pix_fmt].is_supported_in : 0;
  178. }
  179. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  180. {
  181. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  182. format_entries[pix_fmt].is_supported_out : 0;
  183. }
  184. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  185. {
  186. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  187. format_entries[pix_fmt].is_supported_endianness : 0;
  188. }
  189. const char *sws_format_name(enum AVPixelFormat format)
  190. {
  191. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  192. if (desc)
  193. return desc->name;
  194. else
  195. return "Unknown format";
  196. }
  197. static double getSplineCoeff(double a, double b, double c, double d,
  198. double dist)
  199. {
  200. if (dist <= 1.0)
  201. return ((d * dist + c) * dist + b) * dist + a;
  202. else
  203. return getSplineCoeff(0.0,
  204. b + 2.0 * c + 3.0 * d,
  205. c + 3.0 * d,
  206. -b - 3.0 * c - 6.0 * d,
  207. dist - 1.0);
  208. }
  209. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  210. int *outFilterSize, int xInc, int srcW,
  211. int dstW, int filterAlign, int one,
  212. int flags, int cpu_flags,
  213. SwsVector *srcFilter, SwsVector *dstFilter,
  214. double param[2], int is_horizontal)
  215. {
  216. int i;
  217. int filterSize;
  218. int filter2Size;
  219. int minFilterSize;
  220. int64_t *filter = NULL;
  221. int64_t *filter2 = NULL;
  222. const int64_t fone = 1LL << 54;
  223. int ret = -1;
  224. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  225. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  226. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  227. if (FFABS(xInc - 0x10000) < 10) { // unscaled
  228. int i;
  229. filterSize = 1;
  230. FF_ALLOCZ_OR_GOTO(NULL, filter,
  231. dstW * sizeof(*filter) * filterSize, fail);
  232. for (i = 0; i < dstW; i++) {
  233. filter[i * filterSize] = fone;
  234. (*filterPos)[i] = i;
  235. }
  236. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  237. int i;
  238. int xDstInSrc;
  239. filterSize = 1;
  240. FF_ALLOC_OR_GOTO(NULL, filter,
  241. dstW * sizeof(*filter) * filterSize, fail);
  242. xDstInSrc = xInc / 2 - 0x8000;
  243. for (i = 0; i < dstW; i++) {
  244. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  245. (*filterPos)[i] = xx;
  246. filter[i] = fone;
  247. xDstInSrc += xInc;
  248. }
  249. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  250. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  251. int i;
  252. int xDstInSrc;
  253. filterSize = 2;
  254. FF_ALLOC_OR_GOTO(NULL, filter,
  255. dstW * sizeof(*filter) * filterSize, fail);
  256. xDstInSrc = xInc / 2 - 0x8000;
  257. for (i = 0; i < dstW; i++) {
  258. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  259. int j;
  260. (*filterPos)[i] = xx;
  261. // bilinear upscale / linear interpolate / area averaging
  262. for (j = 0; j < filterSize; j++) {
  263. int64_t coeff = fone - FFABS((xx << 16) - xDstInSrc) *
  264. (fone >> 16);
  265. if (coeff < 0)
  266. coeff = 0;
  267. filter[i * filterSize + j] = coeff;
  268. xx++;
  269. }
  270. xDstInSrc += xInc;
  271. }
  272. } else {
  273. int64_t xDstInSrc;
  274. int sizeFactor;
  275. if (flags & SWS_BICUBIC)
  276. sizeFactor = 4;
  277. else if (flags & SWS_X)
  278. sizeFactor = 8;
  279. else if (flags & SWS_AREA)
  280. sizeFactor = 1; // downscale only, for upscale it is bilinear
  281. else if (flags & SWS_GAUSS)
  282. sizeFactor = 8; // infinite ;)
  283. else if (flags & SWS_LANCZOS)
  284. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  285. else if (flags & SWS_SINC)
  286. sizeFactor = 20; // infinite ;)
  287. else if (flags & SWS_SPLINE)
  288. sizeFactor = 20; // infinite ;)
  289. else if (flags & SWS_BILINEAR)
  290. sizeFactor = 2;
  291. else {
  292. sizeFactor = 0; // GCC warning killer
  293. assert(0);
  294. }
  295. if (xInc <= 1 << 16)
  296. filterSize = 1 + sizeFactor; // upscale
  297. else
  298. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  299. filterSize = FFMIN(filterSize, srcW - 2);
  300. filterSize = FFMAX(filterSize, 1);
  301. FF_ALLOC_OR_GOTO(NULL, filter,
  302. dstW * sizeof(*filter) * filterSize, fail);
  303. xDstInSrc = xInc - 0x10000;
  304. for (i = 0; i < dstW; i++) {
  305. int xx = (xDstInSrc - ((filterSize - 2) << 16)) / (1 << 17);
  306. int j;
  307. (*filterPos)[i] = xx;
  308. for (j = 0; j < filterSize; j++) {
  309. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  310. double floatd;
  311. int64_t coeff;
  312. if (xInc > 1 << 16)
  313. d = d * dstW / srcW;
  314. floatd = d * (1.0 / (1 << 30));
  315. if (flags & SWS_BICUBIC) {
  316. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  317. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  318. if (d >= 1LL << 31) {
  319. coeff = 0.0;
  320. } else {
  321. int64_t dd = (d * d) >> 30;
  322. int64_t ddd = (dd * d) >> 30;
  323. if (d < 1LL << 30)
  324. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  325. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  326. (6 * (1 << 24) - 2 * B) * (1 << 30);
  327. else
  328. coeff = (-B - 6 * C) * ddd +
  329. (6 * B + 30 * C) * dd +
  330. (-12 * B - 48 * C) * d +
  331. (8 * B + 24 * C) * (1 << 30);
  332. }
  333. coeff *= fone >> (30 + 24);
  334. }
  335. #if 0
  336. else if (flags & SWS_X) {
  337. double p = param ? param * 0.01 : 0.3;
  338. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  339. coeff *= pow(2.0, -p * d * d);
  340. }
  341. #endif
  342. else if (flags & SWS_X) {
  343. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  344. double c;
  345. if (floatd < 1.0)
  346. c = cos(floatd * M_PI);
  347. else
  348. c = -1.0;
  349. if (c < 0.0)
  350. c = -pow(-c, A);
  351. else
  352. c = pow(c, A);
  353. coeff = (c * 0.5 + 0.5) * fone;
  354. } else if (flags & SWS_AREA) {
  355. int64_t d2 = d - (1 << 29);
  356. if (d2 * xInc < -(1LL << (29 + 16)))
  357. coeff = 1.0 * (1LL << (30 + 16));
  358. else if (d2 * xInc < (1LL << (29 + 16)))
  359. coeff = -d2 * xInc + (1LL << (29 + 16));
  360. else
  361. coeff = 0.0;
  362. coeff *= fone >> (30 + 16);
  363. } else if (flags & SWS_GAUSS) {
  364. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  365. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  366. } else if (flags & SWS_SINC) {
  367. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  368. } else if (flags & SWS_LANCZOS) {
  369. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  370. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  371. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  372. if (floatd > p)
  373. coeff = 0;
  374. } else if (flags & SWS_BILINEAR) {
  375. coeff = (1 << 30) - d;
  376. if (coeff < 0)
  377. coeff = 0;
  378. coeff *= fone >> 30;
  379. } else if (flags & SWS_SPLINE) {
  380. double p = -2.196152422706632;
  381. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  382. } else {
  383. coeff = 0.0; // GCC warning killer
  384. assert(0);
  385. }
  386. filter[i * filterSize + j] = coeff;
  387. xx++;
  388. }
  389. xDstInSrc += 2 * xInc;
  390. }
  391. }
  392. /* apply src & dst Filter to filter -> filter2
  393. * av_free(filter);
  394. */
  395. assert(filterSize > 0);
  396. filter2Size = filterSize;
  397. if (srcFilter)
  398. filter2Size += srcFilter->length - 1;
  399. if (dstFilter)
  400. filter2Size += dstFilter->length - 1;
  401. assert(filter2Size > 0);
  402. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  403. for (i = 0; i < dstW; i++) {
  404. int j, k;
  405. if (srcFilter) {
  406. for (k = 0; k < srcFilter->length; k++) {
  407. for (j = 0; j < filterSize; j++)
  408. filter2[i * filter2Size + k + j] +=
  409. srcFilter->coeff[k] * filter[i * filterSize + j];
  410. }
  411. } else {
  412. for (j = 0; j < filterSize; j++)
  413. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  414. }
  415. // FIXME dstFilter
  416. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  417. }
  418. av_freep(&filter);
  419. /* try to reduce the filter-size (step1 find size and shift left) */
  420. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  421. minFilterSize = 0;
  422. for (i = dstW - 1; i >= 0; i--) {
  423. int min = filter2Size;
  424. int j;
  425. int64_t cutOff = 0.0;
  426. /* get rid of near zero elements on the left by shifting left */
  427. for (j = 0; j < filter2Size; j++) {
  428. int k;
  429. cutOff += FFABS(filter2[i * filter2Size]);
  430. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  431. break;
  432. /* preserve monotonicity because the core can't handle the
  433. * filter otherwise */
  434. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  435. break;
  436. // move filter coefficients left
  437. for (k = 1; k < filter2Size; k++)
  438. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  439. filter2[i * filter2Size + k - 1] = 0;
  440. (*filterPos)[i]++;
  441. }
  442. cutOff = 0;
  443. /* count near zeros on the right */
  444. for (j = filter2Size - 1; j > 0; j--) {
  445. cutOff += FFABS(filter2[i * filter2Size + j]);
  446. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  447. break;
  448. min--;
  449. }
  450. if (min > minFilterSize)
  451. minFilterSize = min;
  452. }
  453. if (PPC_ALTIVEC(cpu_flags)) {
  454. // we can handle the special case 4, so we don't want to go the full 8
  455. if (minFilterSize < 5)
  456. filterAlign = 4;
  457. /* We really don't want to waste our time doing useless computation, so
  458. * fall back on the scalar C code for very small filters.
  459. * Vectorizing is worth it only if you have a decent-sized vector. */
  460. if (minFilterSize < 3)
  461. filterAlign = 1;
  462. }
  463. if (INLINE_MMX(cpu_flags)) {
  464. // special case for unscaled vertical filtering
  465. if (minFilterSize == 1 && filterAlign == 2)
  466. filterAlign = 1;
  467. }
  468. assert(minFilterSize > 0);
  469. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  470. assert(filterSize > 0);
  471. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  472. if (filterSize >= MAX_FILTER_SIZE * 16 /
  473. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  474. goto fail;
  475. *outFilterSize = filterSize;
  476. if (flags & SWS_PRINT_INFO)
  477. av_log(NULL, AV_LOG_VERBOSE,
  478. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  479. filter2Size, filterSize);
  480. /* try to reduce the filter-size (step2 reduce it) */
  481. for (i = 0; i < dstW; i++) {
  482. int j;
  483. for (j = 0; j < filterSize; j++) {
  484. if (j >= filter2Size)
  485. filter[i * filterSize + j] = 0;
  486. else
  487. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  488. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  489. filter[i * filterSize + j] = 0;
  490. }
  491. }
  492. // FIXME try to align filterPos if possible
  493. // fix borders
  494. if (is_horizontal) {
  495. for (i = 0; i < dstW; i++) {
  496. int j;
  497. if ((*filterPos)[i] < 0) {
  498. // move filter coefficients left to compensate for filterPos
  499. for (j = 1; j < filterSize; j++) {
  500. int left = FFMAX(j + (*filterPos)[i], 0);
  501. filter[i * filterSize + left] += filter[i * filterSize + j];
  502. filter[i * filterSize + j] = 0;
  503. }
  504. (*filterPos)[i] = 0;
  505. }
  506. if ((*filterPos)[i] + filterSize > srcW) {
  507. int shift = (*filterPos)[i] + filterSize - srcW;
  508. // move filter coefficients right to compensate for filterPos
  509. for (j = filterSize - 2; j >= 0; j--) {
  510. int right = FFMIN(j + shift, filterSize - 1);
  511. filter[i * filterSize + right] += filter[i * filterSize + j];
  512. filter[i * filterSize + j] = 0;
  513. }
  514. (*filterPos)[i] = srcW - filterSize;
  515. }
  516. }
  517. }
  518. // Note the +1 is for the MMX scaler which reads over the end
  519. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  520. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  521. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  522. /* normalize & store in outFilter */
  523. for (i = 0; i < dstW; i++) {
  524. int j;
  525. int64_t error = 0;
  526. int64_t sum = 0;
  527. for (j = 0; j < filterSize; j++) {
  528. sum += filter[i * filterSize + j];
  529. }
  530. sum = (sum + one / 2) / one;
  531. for (j = 0; j < *outFilterSize; j++) {
  532. int64_t v = filter[i * filterSize + j] + error;
  533. int intV = ROUNDED_DIV(v, sum);
  534. (*outFilter)[i * (*outFilterSize) + j] = intV;
  535. error = v - intV * sum;
  536. }
  537. }
  538. (*filterPos)[dstW + 0] =
  539. (*filterPos)[dstW + 1] =
  540. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  541. * read over the end */
  542. for (i = 0; i < *outFilterSize; i++) {
  543. int k = (dstW - 1) * (*outFilterSize) + i;
  544. (*outFilter)[k + 1 * (*outFilterSize)] =
  545. (*outFilter)[k + 2 * (*outFilterSize)] =
  546. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  547. }
  548. ret = 0;
  549. fail:
  550. av_free(filter);
  551. av_free(filter2);
  552. return ret;
  553. }
  554. #if HAVE_MMXEXT_INLINE
  555. static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
  556. int16_t *filter, int32_t *filterPos,
  557. int numSplits)
  558. {
  559. uint8_t *fragmentA;
  560. x86_reg imm8OfPShufW1A;
  561. x86_reg imm8OfPShufW2A;
  562. x86_reg fragmentLengthA;
  563. uint8_t *fragmentB;
  564. x86_reg imm8OfPShufW1B;
  565. x86_reg imm8OfPShufW2B;
  566. x86_reg fragmentLengthB;
  567. int fragmentPos;
  568. int xpos, i;
  569. // create an optimized horizontal scaling routine
  570. /* This scaler is made of runtime-generated MMXEXT code using specially tuned
  571. * pshufw instructions. For every four output pixels, if four input pixels
  572. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  573. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  574. */
  575. // code fragment
  576. __asm__ volatile (
  577. "jmp 9f \n\t"
  578. // Begin
  579. "0: \n\t"
  580. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  581. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  582. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  583. "punpcklbw %%mm7, %%mm1 \n\t"
  584. "punpcklbw %%mm7, %%mm0 \n\t"
  585. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  586. "1: \n\t"
  587. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  588. "2: \n\t"
  589. "psubw %%mm1, %%mm0 \n\t"
  590. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  591. "pmullw %%mm3, %%mm0 \n\t"
  592. "psllw $7, %%mm1 \n\t"
  593. "paddw %%mm1, %%mm0 \n\t"
  594. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  595. "add $8, %%"REG_a" \n\t"
  596. // End
  597. "9: \n\t"
  598. // "int $3 \n\t"
  599. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  600. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  601. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  602. "dec %1 \n\t"
  603. "dec %2 \n\t"
  604. "sub %0, %1 \n\t"
  605. "sub %0, %2 \n\t"
  606. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  607. "sub %0, %3 \n\t"
  608. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  609. "=r" (fragmentLengthA)
  610. );
  611. __asm__ volatile (
  612. "jmp 9f \n\t"
  613. // Begin
  614. "0: \n\t"
  615. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  616. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  617. "punpcklbw %%mm7, %%mm0 \n\t"
  618. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  619. "1: \n\t"
  620. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  621. "2: \n\t"
  622. "psubw %%mm1, %%mm0 \n\t"
  623. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  624. "pmullw %%mm3, %%mm0 \n\t"
  625. "psllw $7, %%mm1 \n\t"
  626. "paddw %%mm1, %%mm0 \n\t"
  627. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  628. "add $8, %%"REG_a" \n\t"
  629. // End
  630. "9: \n\t"
  631. // "int $3 \n\t"
  632. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  633. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  634. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  635. "dec %1 \n\t"
  636. "dec %2 \n\t"
  637. "sub %0, %1 \n\t"
  638. "sub %0, %2 \n\t"
  639. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  640. "sub %0, %3 \n\t"
  641. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  642. "=r" (fragmentLengthB)
  643. );
  644. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  645. fragmentPos = 0;
  646. for (i = 0; i < dstW / numSplits; i++) {
  647. int xx = xpos >> 16;
  648. if ((i & 3) == 0) {
  649. int a = 0;
  650. int b = ((xpos + xInc) >> 16) - xx;
  651. int c = ((xpos + xInc * 2) >> 16) - xx;
  652. int d = ((xpos + xInc * 3) >> 16) - xx;
  653. int inc = (d + 1 < 4);
  654. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  655. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  656. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  657. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  658. int maxShift = 3 - (d + inc);
  659. int shift = 0;
  660. if (filterCode) {
  661. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  662. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  663. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  664. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  665. filterPos[i / 2] = xx;
  666. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  667. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  668. ((b + inc) << 2) |
  669. ((c + inc) << 4) |
  670. ((d + inc) << 6);
  671. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  672. (c << 4) |
  673. (d << 6);
  674. if (i + 4 - inc >= dstW)
  675. shift = maxShift; // avoid overread
  676. else if ((filterPos[i / 2] & 3) <= maxShift)
  677. shift = filterPos[i / 2] & 3; // align
  678. if (shift && i >= shift) {
  679. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  680. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  681. filterPos[i / 2] -= shift;
  682. }
  683. }
  684. fragmentPos += fragmentLength;
  685. if (filterCode)
  686. filterCode[fragmentPos] = RET;
  687. }
  688. xpos += xInc;
  689. }
  690. if (filterCode)
  691. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  692. return fragmentPos + 1;
  693. }
  694. #endif /* HAVE_MMXEXT_INLINE */
  695. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  696. {
  697. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  698. *h = desc->log2_chroma_w;
  699. *v = desc->log2_chroma_h;
  700. }
  701. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  702. int srcRange, const int table[4], int dstRange,
  703. int brightness, int contrast, int saturation)
  704. {
  705. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  706. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
  707. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  708. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  709. c->brightness = brightness;
  710. c->contrast = contrast;
  711. c->saturation = saturation;
  712. c->srcRange = srcRange;
  713. c->dstRange = dstRange;
  714. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  715. return -1;
  716. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  717. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  718. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  719. contrast, saturation);
  720. // FIXME factorize
  721. if (ARCH_PPC)
  722. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  723. contrast, saturation);
  724. return 0;
  725. }
  726. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  727. int *srcRange, int **table, int *dstRange,
  728. int *brightness, int *contrast, int *saturation)
  729. {
  730. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  731. return -1;
  732. *inv_table = c->srcColorspaceTable;
  733. *table = c->dstColorspaceTable;
  734. *srcRange = c->srcRange;
  735. *dstRange = c->dstRange;
  736. *brightness = c->brightness;
  737. *contrast = c->contrast;
  738. *saturation = c->saturation;
  739. return 0;
  740. }
  741. static int handle_jpeg(enum AVPixelFormat *format)
  742. {
  743. switch (*format) {
  744. case AV_PIX_FMT_YUVJ420P:
  745. *format = AV_PIX_FMT_YUV420P;
  746. return 1;
  747. case AV_PIX_FMT_YUVJ422P:
  748. *format = AV_PIX_FMT_YUV422P;
  749. return 1;
  750. case AV_PIX_FMT_YUVJ444P:
  751. *format = AV_PIX_FMT_YUV444P;
  752. return 1;
  753. case AV_PIX_FMT_YUVJ440P:
  754. *format = AV_PIX_FMT_YUV440P;
  755. return 1;
  756. default:
  757. return 0;
  758. }
  759. }
  760. SwsContext *sws_alloc_context(void)
  761. {
  762. SwsContext *c = av_mallocz(sizeof(SwsContext));
  763. if (c) {
  764. c->av_class = &sws_context_class;
  765. av_opt_set_defaults(c);
  766. }
  767. return c;
  768. }
  769. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  770. SwsFilter *dstFilter)
  771. {
  772. int i;
  773. int usesVFilter, usesHFilter;
  774. int unscaled;
  775. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  776. int srcW = c->srcW;
  777. int srcH = c->srcH;
  778. int dstW = c->dstW;
  779. int dstH = c->dstH;
  780. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16);
  781. int dst_stride_px = dst_stride >> 1;
  782. int flags, cpu_flags;
  783. enum AVPixelFormat srcFormat = c->srcFormat;
  784. enum AVPixelFormat dstFormat = c->dstFormat;
  785. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
  786. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
  787. cpu_flags = av_get_cpu_flags();
  788. flags = c->flags;
  789. emms_c();
  790. if (!rgb15to16)
  791. sws_rgb2rgb_init();
  792. unscaled = (srcW == dstW && srcH == dstH);
  793. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  794. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  795. if (!sws_isSupportedInput(srcFormat)) {
  796. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  797. sws_format_name(srcFormat));
  798. return AVERROR(EINVAL);
  799. }
  800. if (!sws_isSupportedOutput(dstFormat)) {
  801. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  802. sws_format_name(dstFormat));
  803. return AVERROR(EINVAL);
  804. }
  805. }
  806. i = flags & (SWS_POINT |
  807. SWS_AREA |
  808. SWS_BILINEAR |
  809. SWS_FAST_BILINEAR |
  810. SWS_BICUBIC |
  811. SWS_X |
  812. SWS_GAUSS |
  813. SWS_LANCZOS |
  814. SWS_SINC |
  815. SWS_SPLINE |
  816. SWS_BICUBLIN);
  817. /* provide a default scaler if not set by caller */
  818. if (!i) {
  819. if (dstW < srcW && dstH < srcH)
  820. flags |= SWS_GAUSS;
  821. else if (dstW > srcW && dstH > srcH)
  822. flags |= SWS_SINC;
  823. else
  824. flags |= SWS_LANCZOS;
  825. c->flags = flags;
  826. } else if (i & (i - 1)) {
  827. av_log(c, AV_LOG_ERROR,
  828. "Exactly one scaler algorithm must be chosen\n");
  829. return AVERROR(EINVAL);
  830. }
  831. /* sanity check */
  832. if (srcW < 4 || srcH < 1 || dstW < 8 || dstH < 1) {
  833. /* FIXME check if these are enough and try to lower them after
  834. * fixing the relevant parts of the code */
  835. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  836. srcW, srcH, dstW, dstH);
  837. return AVERROR(EINVAL);
  838. }
  839. if (!dstFilter)
  840. dstFilter = &dummyFilter;
  841. if (!srcFilter)
  842. srcFilter = &dummyFilter;
  843. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  844. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  845. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  846. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  847. c->vRounder = 4 * 0x0001000100010001ULL;
  848. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  849. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  850. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  851. (dstFilter->chrV && dstFilter->chrV->length > 1);
  852. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  853. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  854. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  855. (dstFilter->chrH && dstFilter->chrH->length > 1);
  856. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  857. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  858. if (isPlanarRGB(dstFormat)) {
  859. if (!(flags & SWS_FULL_CHR_H_INT)) {
  860. av_log(c, AV_LOG_DEBUG,
  861. "%s output is not supported with half chroma resolution, switching to full\n",
  862. av_get_pix_fmt_name(dstFormat));
  863. flags |= SWS_FULL_CHR_H_INT;
  864. c->flags = flags;
  865. }
  866. }
  867. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  868. * chroma interpolation */
  869. if (flags & SWS_FULL_CHR_H_INT &&
  870. isAnyRGB(dstFormat) &&
  871. !isPlanarRGB(dstFormat) &&
  872. dstFormat != AV_PIX_FMT_RGBA &&
  873. dstFormat != AV_PIX_FMT_ARGB &&
  874. dstFormat != AV_PIX_FMT_BGRA &&
  875. dstFormat != AV_PIX_FMT_ABGR &&
  876. dstFormat != AV_PIX_FMT_RGB24 &&
  877. dstFormat != AV_PIX_FMT_BGR24) {
  878. av_log(c, AV_LOG_ERROR,
  879. "full chroma interpolation for destination format '%s' not yet implemented\n",
  880. sws_format_name(dstFormat));
  881. flags &= ~SWS_FULL_CHR_H_INT;
  882. c->flags = flags;
  883. }
  884. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  885. c->chrDstHSubSample = 1;
  886. // drop some chroma lines if the user wants it
  887. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  888. SWS_SRC_V_CHR_DROP_SHIFT;
  889. c->chrSrcVSubSample += c->vChrDrop;
  890. /* drop every other pixel for chroma calculation unless user
  891. * wants full chroma */
  892. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  893. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  894. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  895. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  896. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  897. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  898. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  899. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  900. (flags & SWS_FAST_BILINEAR)))
  901. c->chrSrcHSubSample = 1;
  902. // Note the -((-x)>>y) is so that we always round toward +inf.
  903. c->chrSrcW = -((-srcW) >> c->chrSrcHSubSample);
  904. c->chrSrcH = -((-srcH) >> c->chrSrcVSubSample);
  905. c->chrDstW = -((-dstW) >> c->chrDstHSubSample);
  906. c->chrDstH = -((-dstH) >> c->chrDstVSubSample);
  907. /* unscaled special cases */
  908. if (unscaled && !usesHFilter && !usesVFilter &&
  909. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  910. ff_get_unscaled_swscale(c);
  911. if (c->swscale) {
  912. if (flags & SWS_PRINT_INFO)
  913. av_log(c, AV_LOG_INFO,
  914. "using unscaled %s -> %s special converter\n",
  915. sws_format_name(srcFormat), sws_format_name(dstFormat));
  916. return 0;
  917. }
  918. }
  919. c->srcBpc = 1 + desc_src->comp[0].depth_minus1;
  920. if (c->srcBpc < 8)
  921. c->srcBpc = 8;
  922. c->dstBpc = 1 + desc_dst->comp[0].depth_minus1;
  923. if (c->dstBpc < 8)
  924. c->dstBpc = 8;
  925. if (c->dstBpc == 16)
  926. dst_stride <<= 1;
  927. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer,
  928. (FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3) + 16,
  929. fail);
  930. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 10) {
  931. c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  932. (srcW & 15) == 0) ? 1 : 0;
  933. if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
  934. && (flags & SWS_FAST_BILINEAR)) {
  935. if (flags & SWS_PRINT_INFO)
  936. av_log(c, AV_LOG_INFO,
  937. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  938. }
  939. if (usesHFilter)
  940. c->canMMXEXTBeUsed = 0;
  941. } else
  942. c->canMMXEXTBeUsed = 0;
  943. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  944. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  945. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  946. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  947. * correct scaling.
  948. * n-2 is the last chrominance sample available.
  949. * This is not perfect, but no one should notice the difference, the more
  950. * correct variant would be like the vertical one, but that would require
  951. * some special code for the first and last pixel */
  952. if (flags & SWS_FAST_BILINEAR) {
  953. if (c->canMMXEXTBeUsed) {
  954. c->lumXInc += 20;
  955. c->chrXInc += 20;
  956. }
  957. // we don't use the x86 asm scaler if MMX is available
  958. else if (INLINE_MMX(cpu_flags)) {
  959. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  960. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  961. }
  962. }
  963. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  964. /* precalculate horizontal scaler filter coefficients */
  965. {
  966. #if HAVE_MMXEXT_INLINE
  967. // can't downscale !!!
  968. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  969. c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  970. NULL, NULL, 8);
  971. c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  972. NULL, NULL, NULL, 4);
  973. #if USE_MMAP
  974. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  975. PROT_READ | PROT_WRITE,
  976. MAP_PRIVATE | MAP_ANONYMOUS,
  977. -1, 0);
  978. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  979. PROT_READ | PROT_WRITE,
  980. MAP_PRIVATE | MAP_ANONYMOUS,
  981. -1, 0);
  982. #elif HAVE_VIRTUALALLOC
  983. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  984. c->lumMmxextFilterCodeSize,
  985. MEM_COMMIT,
  986. PAGE_EXECUTE_READWRITE);
  987. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  988. c->chrMmxextFilterCodeSize,
  989. MEM_COMMIT,
  990. PAGE_EXECUTE_READWRITE);
  991. #else
  992. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  993. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  994. #endif
  995. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  996. return AVERROR(ENOMEM);
  997. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  998. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  999. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1000. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1001. init_hscaler_mmxext(dstW, c->lumXInc, c->lumMmxextFilterCode,
  1002. c->hLumFilter, c->hLumFilterPos, 8);
  1003. init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1004. c->hChrFilter, c->hChrFilterPos, 4);
  1005. #if USE_MMAP
  1006. mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1007. mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1008. #endif
  1009. } else
  1010. #endif /* HAVE_MMXEXT_INLINE */
  1011. {
  1012. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1013. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1014. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1015. &c->hLumFilterSize, c->lumXInc,
  1016. srcW, dstW, filterAlign, 1 << 14,
  1017. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1018. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1019. c->param, 1) < 0)
  1020. goto fail;
  1021. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1022. &c->hChrFilterSize, c->chrXInc,
  1023. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1024. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1025. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1026. c->param, 1) < 0)
  1027. goto fail;
  1028. }
  1029. } // initialize horizontal stuff
  1030. /* precalculate vertical scaler filter coefficients */
  1031. {
  1032. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1033. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1034. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1035. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1036. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1037. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1038. c->param, 0) < 0)
  1039. goto fail;
  1040. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1041. c->chrYInc, c->chrSrcH, c->chrDstH,
  1042. filterAlign, (1 << 12),
  1043. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1044. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1045. c->param, 0) < 0)
  1046. goto fail;
  1047. #if HAVE_ALTIVEC
  1048. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1049. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1050. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1051. int j;
  1052. short *p = (short *)&c->vYCoeffsBank[i];
  1053. for (j = 0; j < 8; j++)
  1054. p[j] = c->vLumFilter[i];
  1055. }
  1056. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1057. int j;
  1058. short *p = (short *)&c->vCCoeffsBank[i];
  1059. for (j = 0; j < 8; j++)
  1060. p[j] = c->vChrFilter[i];
  1061. }
  1062. #endif
  1063. }
  1064. // calculate buffer sizes so that they won't run out while handling these damn slices
  1065. c->vLumBufSize = c->vLumFilterSize;
  1066. c->vChrBufSize = c->vChrFilterSize;
  1067. for (i = 0; i < dstH; i++) {
  1068. int chrI = (int64_t)i * c->chrDstH / dstH;
  1069. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1070. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1071. << c->chrSrcVSubSample));
  1072. nextSlice >>= c->chrSrcVSubSample;
  1073. nextSlice <<= c->chrSrcVSubSample;
  1074. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1075. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1076. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1077. (nextSlice >> c->chrSrcVSubSample))
  1078. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1079. c->vChrFilterPos[chrI];
  1080. }
  1081. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1082. * need to allocate several megabytes to handle all possible cases) */
  1083. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1084. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1085. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1086. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1087. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1088. /* Note we need at least one pixel more at the end because of the MMX code
  1089. * (just in case someone wants to replace the 4000/8000). */
  1090. /* align at 16 bytes for AltiVec */
  1091. for (i = 0; i < c->vLumBufSize; i++) {
  1092. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1093. dst_stride + 16, fail);
  1094. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1095. }
  1096. // 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate)
  1097. c->uv_off_px = dst_stride_px + 64 / (c->dstBpc & ~7);
  1098. c->uv_off_byte = dst_stride + 16;
  1099. for (i = 0; i < c->vChrBufSize; i++) {
  1100. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1101. dst_stride * 2 + 32, fail);
  1102. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1103. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1104. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1105. }
  1106. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1107. for (i = 0; i < c->vLumBufSize; i++) {
  1108. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1109. dst_stride + 16, fail);
  1110. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1111. }
  1112. // try to avoid drawing green stuff between the right end and the stride end
  1113. for (i = 0; i < c->vChrBufSize; i++)
  1114. memset(c->chrUPixBuf[i], 64, dst_stride * 2 + 1);
  1115. assert(c->chrDstH <= dstH);
  1116. if (flags & SWS_PRINT_INFO) {
  1117. if (flags & SWS_FAST_BILINEAR)
  1118. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1119. else if (flags & SWS_BILINEAR)
  1120. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1121. else if (flags & SWS_BICUBIC)
  1122. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1123. else if (flags & SWS_X)
  1124. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1125. else if (flags & SWS_POINT)
  1126. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1127. else if (flags & SWS_AREA)
  1128. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1129. else if (flags & SWS_BICUBLIN)
  1130. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1131. else if (flags & SWS_GAUSS)
  1132. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1133. else if (flags & SWS_SINC)
  1134. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1135. else if (flags & SWS_LANCZOS)
  1136. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1137. else if (flags & SWS_SPLINE)
  1138. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1139. else
  1140. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1141. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1142. sws_format_name(srcFormat),
  1143. #ifdef DITHER1XBPP
  1144. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1145. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1146. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1147. "dithered " : "",
  1148. #else
  1149. "",
  1150. #endif
  1151. sws_format_name(dstFormat));
  1152. if (INLINE_MMXEXT(cpu_flags))
  1153. av_log(c, AV_LOG_INFO, "using MMXEXT\n");
  1154. else if (INLINE_AMD3DNOW(cpu_flags))
  1155. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1156. else if (INLINE_MMX(cpu_flags))
  1157. av_log(c, AV_LOG_INFO, "using MMX\n");
  1158. else if (PPC_ALTIVEC(cpu_flags))
  1159. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1160. else
  1161. av_log(c, AV_LOG_INFO, "using C\n");
  1162. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1163. av_log(c, AV_LOG_DEBUG,
  1164. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1165. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1166. av_log(c, AV_LOG_DEBUG,
  1167. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1168. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1169. c->chrXInc, c->chrYInc);
  1170. }
  1171. c->swscale = ff_getSwsFunc(c);
  1172. return 0;
  1173. fail: // FIXME replace things by appropriate error codes
  1174. return -1;
  1175. }
  1176. #if FF_API_SWS_GETCONTEXT
  1177. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1178. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1179. int flags, SwsFilter *srcFilter,
  1180. SwsFilter *dstFilter, const double *param)
  1181. {
  1182. SwsContext *c;
  1183. if (!(c = sws_alloc_context()))
  1184. return NULL;
  1185. c->flags = flags;
  1186. c->srcW = srcW;
  1187. c->srcH = srcH;
  1188. c->dstW = dstW;
  1189. c->dstH = dstH;
  1190. c->srcRange = handle_jpeg(&srcFormat);
  1191. c->dstRange = handle_jpeg(&dstFormat);
  1192. c->srcFormat = srcFormat;
  1193. c->dstFormat = dstFormat;
  1194. if (param) {
  1195. c->param[0] = param[0];
  1196. c->param[1] = param[1];
  1197. }
  1198. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1199. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1200. c->dstRange, 0, 1 << 16, 1 << 16);
  1201. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1202. sws_freeContext(c);
  1203. return NULL;
  1204. }
  1205. return c;
  1206. }
  1207. #endif
  1208. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1209. float lumaSharpen, float chromaSharpen,
  1210. float chromaHShift, float chromaVShift,
  1211. int verbose)
  1212. {
  1213. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1214. if (!filter)
  1215. return NULL;
  1216. if (lumaGBlur != 0.0) {
  1217. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1218. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1219. } else {
  1220. filter->lumH = sws_getIdentityVec();
  1221. filter->lumV = sws_getIdentityVec();
  1222. }
  1223. if (chromaGBlur != 0.0) {
  1224. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1225. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1226. } else {
  1227. filter->chrH = sws_getIdentityVec();
  1228. filter->chrV = sws_getIdentityVec();
  1229. }
  1230. if (chromaSharpen != 0.0) {
  1231. SwsVector *id = sws_getIdentityVec();
  1232. sws_scaleVec(filter->chrH, -chromaSharpen);
  1233. sws_scaleVec(filter->chrV, -chromaSharpen);
  1234. sws_addVec(filter->chrH, id);
  1235. sws_addVec(filter->chrV, id);
  1236. sws_freeVec(id);
  1237. }
  1238. if (lumaSharpen != 0.0) {
  1239. SwsVector *id = sws_getIdentityVec();
  1240. sws_scaleVec(filter->lumH, -lumaSharpen);
  1241. sws_scaleVec(filter->lumV, -lumaSharpen);
  1242. sws_addVec(filter->lumH, id);
  1243. sws_addVec(filter->lumV, id);
  1244. sws_freeVec(id);
  1245. }
  1246. if (chromaHShift != 0.0)
  1247. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1248. if (chromaVShift != 0.0)
  1249. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1250. sws_normalizeVec(filter->chrH, 1.0);
  1251. sws_normalizeVec(filter->chrV, 1.0);
  1252. sws_normalizeVec(filter->lumH, 1.0);
  1253. sws_normalizeVec(filter->lumV, 1.0);
  1254. if (verbose)
  1255. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1256. if (verbose)
  1257. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1258. return filter;
  1259. }
  1260. SwsVector *sws_allocVec(int length)
  1261. {
  1262. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1263. if (!vec)
  1264. return NULL;
  1265. vec->length = length;
  1266. vec->coeff = av_malloc(sizeof(double) * length);
  1267. if (!vec->coeff)
  1268. av_freep(&vec);
  1269. return vec;
  1270. }
  1271. SwsVector *sws_getGaussianVec(double variance, double quality)
  1272. {
  1273. const int length = (int)(variance * quality + 0.5) | 1;
  1274. int i;
  1275. double middle = (length - 1) * 0.5;
  1276. SwsVector *vec = sws_allocVec(length);
  1277. if (!vec)
  1278. return NULL;
  1279. for (i = 0; i < length; i++) {
  1280. double dist = i - middle;
  1281. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1282. sqrt(2 * variance * M_PI);
  1283. }
  1284. sws_normalizeVec(vec, 1.0);
  1285. return vec;
  1286. }
  1287. SwsVector *sws_getConstVec(double c, int length)
  1288. {
  1289. int i;
  1290. SwsVector *vec = sws_allocVec(length);
  1291. if (!vec)
  1292. return NULL;
  1293. for (i = 0; i < length; i++)
  1294. vec->coeff[i] = c;
  1295. return vec;
  1296. }
  1297. SwsVector *sws_getIdentityVec(void)
  1298. {
  1299. return sws_getConstVec(1.0, 1);
  1300. }
  1301. static double sws_dcVec(SwsVector *a)
  1302. {
  1303. int i;
  1304. double sum = 0;
  1305. for (i = 0; i < a->length; i++)
  1306. sum += a->coeff[i];
  1307. return sum;
  1308. }
  1309. void sws_scaleVec(SwsVector *a, double scalar)
  1310. {
  1311. int i;
  1312. for (i = 0; i < a->length; i++)
  1313. a->coeff[i] *= scalar;
  1314. }
  1315. void sws_normalizeVec(SwsVector *a, double height)
  1316. {
  1317. sws_scaleVec(a, height / sws_dcVec(a));
  1318. }
  1319. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1320. {
  1321. int length = a->length + b->length - 1;
  1322. int i, j;
  1323. SwsVector *vec = sws_getConstVec(0.0, length);
  1324. if (!vec)
  1325. return NULL;
  1326. for (i = 0; i < a->length; i++) {
  1327. for (j = 0; j < b->length; j++) {
  1328. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1329. }
  1330. }
  1331. return vec;
  1332. }
  1333. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1334. {
  1335. int length = FFMAX(a->length, b->length);
  1336. int i;
  1337. SwsVector *vec = sws_getConstVec(0.0, length);
  1338. if (!vec)
  1339. return NULL;
  1340. for (i = 0; i < a->length; i++)
  1341. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1342. for (i = 0; i < b->length; i++)
  1343. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1344. return vec;
  1345. }
  1346. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1347. {
  1348. int length = FFMAX(a->length, b->length);
  1349. int i;
  1350. SwsVector *vec = sws_getConstVec(0.0, length);
  1351. if (!vec)
  1352. return NULL;
  1353. for (i = 0; i < a->length; i++)
  1354. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1355. for (i = 0; i < b->length; i++)
  1356. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1357. return vec;
  1358. }
  1359. /* shift left / or right if "shift" is negative */
  1360. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1361. {
  1362. int length = a->length + FFABS(shift) * 2;
  1363. int i;
  1364. SwsVector *vec = sws_getConstVec(0.0, length);
  1365. if (!vec)
  1366. return NULL;
  1367. for (i = 0; i < a->length; i++) {
  1368. vec->coeff[i + (length - 1) / 2 -
  1369. (a->length - 1) / 2 - shift] = a->coeff[i];
  1370. }
  1371. return vec;
  1372. }
  1373. void sws_shiftVec(SwsVector *a, int shift)
  1374. {
  1375. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1376. av_free(a->coeff);
  1377. a->coeff = shifted->coeff;
  1378. a->length = shifted->length;
  1379. av_free(shifted);
  1380. }
  1381. void sws_addVec(SwsVector *a, SwsVector *b)
  1382. {
  1383. SwsVector *sum = sws_sumVec(a, b);
  1384. av_free(a->coeff);
  1385. a->coeff = sum->coeff;
  1386. a->length = sum->length;
  1387. av_free(sum);
  1388. }
  1389. void sws_subVec(SwsVector *a, SwsVector *b)
  1390. {
  1391. SwsVector *diff = sws_diffVec(a, b);
  1392. av_free(a->coeff);
  1393. a->coeff = diff->coeff;
  1394. a->length = diff->length;
  1395. av_free(diff);
  1396. }
  1397. void sws_convVec(SwsVector *a, SwsVector *b)
  1398. {
  1399. SwsVector *conv = sws_getConvVec(a, b);
  1400. av_free(a->coeff);
  1401. a->coeff = conv->coeff;
  1402. a->length = conv->length;
  1403. av_free(conv);
  1404. }
  1405. SwsVector *sws_cloneVec(SwsVector *a)
  1406. {
  1407. int i;
  1408. SwsVector *vec = sws_allocVec(a->length);
  1409. if (!vec)
  1410. return NULL;
  1411. for (i = 0; i < a->length; i++)
  1412. vec->coeff[i] = a->coeff[i];
  1413. return vec;
  1414. }
  1415. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1416. {
  1417. int i;
  1418. double max = 0;
  1419. double min = 0;
  1420. double range;
  1421. for (i = 0; i < a->length; i++)
  1422. if (a->coeff[i] > max)
  1423. max = a->coeff[i];
  1424. for (i = 0; i < a->length; i++)
  1425. if (a->coeff[i] < min)
  1426. min = a->coeff[i];
  1427. range = max - min;
  1428. for (i = 0; i < a->length; i++) {
  1429. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1430. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1431. for (; x > 0; x--)
  1432. av_log(log_ctx, log_level, " ");
  1433. av_log(log_ctx, log_level, "|\n");
  1434. }
  1435. }
  1436. void sws_freeVec(SwsVector *a)
  1437. {
  1438. if (!a)
  1439. return;
  1440. av_freep(&a->coeff);
  1441. a->length = 0;
  1442. av_free(a);
  1443. }
  1444. void sws_freeFilter(SwsFilter *filter)
  1445. {
  1446. if (!filter)
  1447. return;
  1448. if (filter->lumH)
  1449. sws_freeVec(filter->lumH);
  1450. if (filter->lumV)
  1451. sws_freeVec(filter->lumV);
  1452. if (filter->chrH)
  1453. sws_freeVec(filter->chrH);
  1454. if (filter->chrV)
  1455. sws_freeVec(filter->chrV);
  1456. av_free(filter);
  1457. }
  1458. void sws_freeContext(SwsContext *c)
  1459. {
  1460. int i;
  1461. if (!c)
  1462. return;
  1463. if (c->lumPixBuf) {
  1464. for (i = 0; i < c->vLumBufSize; i++)
  1465. av_freep(&c->lumPixBuf[i]);
  1466. av_freep(&c->lumPixBuf);
  1467. }
  1468. if (c->chrUPixBuf) {
  1469. for (i = 0; i < c->vChrBufSize; i++)
  1470. av_freep(&c->chrUPixBuf[i]);
  1471. av_freep(&c->chrUPixBuf);
  1472. av_freep(&c->chrVPixBuf);
  1473. }
  1474. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1475. for (i = 0; i < c->vLumBufSize; i++)
  1476. av_freep(&c->alpPixBuf[i]);
  1477. av_freep(&c->alpPixBuf);
  1478. }
  1479. av_freep(&c->vLumFilter);
  1480. av_freep(&c->vChrFilter);
  1481. av_freep(&c->hLumFilter);
  1482. av_freep(&c->hChrFilter);
  1483. #if HAVE_ALTIVEC
  1484. av_freep(&c->vYCoeffsBank);
  1485. av_freep(&c->vCCoeffsBank);
  1486. #endif
  1487. av_freep(&c->vLumFilterPos);
  1488. av_freep(&c->vChrFilterPos);
  1489. av_freep(&c->hLumFilterPos);
  1490. av_freep(&c->hChrFilterPos);
  1491. #if HAVE_MMX_INLINE
  1492. #if USE_MMAP
  1493. if (c->lumMmxextFilterCode)
  1494. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1495. if (c->chrMmxextFilterCode)
  1496. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1497. #elif HAVE_VIRTUALALLOC
  1498. if (c->lumMmxextFilterCode)
  1499. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1500. if (c->chrMmxextFilterCode)
  1501. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1502. #else
  1503. av_free(c->lumMmxextFilterCode);
  1504. av_free(c->chrMmxextFilterCode);
  1505. #endif
  1506. c->lumMmxextFilterCode = NULL;
  1507. c->chrMmxextFilterCode = NULL;
  1508. #endif /* HAVE_MMX_INLINE */
  1509. av_freep(&c->yuvTable);
  1510. av_free(c->formatConvBuffer);
  1511. av_free(c);
  1512. }
  1513. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1514. int srcH, enum AVPixelFormat srcFormat,
  1515. int dstW, int dstH,
  1516. enum AVPixelFormat dstFormat, int flags,
  1517. SwsFilter *srcFilter,
  1518. SwsFilter *dstFilter,
  1519. const double *param)
  1520. {
  1521. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1522. SWS_PARAM_DEFAULT };
  1523. if (!param)
  1524. param = default_param;
  1525. if (context &&
  1526. (context->srcW != srcW ||
  1527. context->srcH != srcH ||
  1528. context->srcFormat != srcFormat ||
  1529. context->dstW != dstW ||
  1530. context->dstH != dstH ||
  1531. context->dstFormat != dstFormat ||
  1532. context->flags != flags ||
  1533. context->param[0] != param[0] ||
  1534. context->param[1] != param[1])) {
  1535. sws_freeContext(context);
  1536. context = NULL;
  1537. }
  1538. if (!context) {
  1539. if (!(context = sws_alloc_context()))
  1540. return NULL;
  1541. context->srcW = srcW;
  1542. context->srcH = srcH;
  1543. context->srcRange = handle_jpeg(&srcFormat);
  1544. context->srcFormat = srcFormat;
  1545. context->dstW = dstW;
  1546. context->dstH = dstH;
  1547. context->dstRange = handle_jpeg(&dstFormat);
  1548. context->dstFormat = dstFormat;
  1549. context->flags = flags;
  1550. context->param[0] = param[0];
  1551. context->param[1] = param[1];
  1552. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1553. context->srcRange,
  1554. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1555. context->dstRange, 0, 1 << 16, 1 << 16);
  1556. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1557. sws_freeContext(context);
  1558. return NULL;
  1559. }
  1560. }
  1561. return context;
  1562. }